Description
The application of novel visualization and modeling methods to the study of cardiovascular disease is vital to the development of innovative diagnostic techniques, including those that may aid in the early detection and prevention of cardiovascular disorders. This dissertation focuses

The application of novel visualization and modeling methods to the study of cardiovascular disease is vital to the development of innovative diagnostic techniques, including those that may aid in the early detection and prevention of cardiovascular disorders. This dissertation focuses on the application of particle image velocimetry (PIV) to the study of intracardiac hemodynamics. This is accomplished primarily though the use of ultrasound based PIV, which allows for in vivo visualization of intracardiac flow without the requirement for optical access, as is required with traditional camera-based PIV methods.

The fundamentals of ultrasound PIV are introduced, including experimental methods for its implementation as well as a discussion on estimating and mitigating measurement error. Ultrasound PIV is then compared to optical PIV; this is a highly developed technique with proven accuracy; through rigorous examination it has become the “gold standard” of two-dimensional flow visualization. Results show good agreement between the two methods.

Using a mechanical left heart model, a multi-plane ultrasound PIV technique is introduced and applied to quantify a complex, three-dimensional flow that is analogous to the left intraventricular flow. Changes in ventricular flow dynamics due to the rotational orientation of mechanical heart valves are studied; the results demonstrate the importance of multi-plane imaging techniques when trying to assess the strongly three-dimensional intraventricular flow.

The potential use of ultrasound PIV as an early diagnosis technique is demonstrated through the development of a novel elasticity estimation technique. A finite element analysis routine is couple with an ensemble Kalman filter to allow for the estimation of material elasticity using forcing and displacement data derived from PIV. Results demonstrate that it is possible to estimate elasticity using forcing data derived from a PIV vector field, provided vector density is sufficient.
Reuse Permissions
  • Downloads
    PDF (2 MB)
    Download count: 1

    Details

    Title
    • Modeling cardiac function with particle image velocimetry
    Contributors
    Date Created
    2015
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph.D., Arizona State University, 2015
    • bibliography
      Includes bibliographical references (pages 86-91)
    • Field of study: Mechanical engineering

    Citation and reuse

    Statement of Responsibility

    by John Curtis Westerdale

    Machine-readable links