Description
Quantum resilience is a pragmatic theory that allows systems engineers to formally characterize the resilience of systems. As a generalized theory, it not only clarifies resilience in the literature, but also can be applied to all disciplines and domains of discourse. Operationalizing resilience in this manner permits decision-makers to compare and contrast system deployment options for suitability in a variety of environments and allows for consistent treatment of resilience across domains. Systems engineers, whether planning future infrastructures or managing ecosystems, are increasingly asked to deliver resilient systems. Quantum resilience provides a way forward that allows specific resilience requirements to be specified, validated, and verified.
Quantum resilience makes two very important claims. First, resilience cannot be characterized without recognizing both the system and the valued function it provides. Second, resilience is not about disturbances, insults, threats, or perturbations. To avoid crippling infinities, characterization of resilience must be accomplishable without disturbances in mind. In light of this, quantum resilience defines resilience as the extent to which a system delivers its valued functions, and characterizes resilience as a function of system productivity and complexity. System productivity vis-à-vis specified “valued functions” involves (1) the quanta of the valued function delivered, and (2) the number of systems (within the greater system) which deliver it. System complexity is defined structurally and relationally and is a function of a variety of items including (1) system-of-systems hierarchical decomposition, (2) interfaces and connections between systems, and (3) inter-system dependencies.
Among the important features of quantum resilience is that it can be implemented in any system engineering tool that provides sufficient design and specification rigor (i.e., one that supports standards like the Lifecycle and Systems Modeling languages and frameworks like the DoD Architecture Framework). Further, this can be accomplished with minimal software development and has been demonstrated in three model-based system engineering tools, two of which are commercially available, well-respected, and widely used. This pragmatic approach assures transparency and consistency in characterization of resilience in any discipline.
Quantum resilience makes two very important claims. First, resilience cannot be characterized without recognizing both the system and the valued function it provides. Second, resilience is not about disturbances, insults, threats, or perturbations. To avoid crippling infinities, characterization of resilience must be accomplishable without disturbances in mind. In light of this, quantum resilience defines resilience as the extent to which a system delivers its valued functions, and characterizes resilience as a function of system productivity and complexity. System productivity vis-à-vis specified “valued functions” involves (1) the quanta of the valued function delivered, and (2) the number of systems (within the greater system) which deliver it. System complexity is defined structurally and relationally and is a function of a variety of items including (1) system-of-systems hierarchical decomposition, (2) interfaces and connections between systems, and (3) inter-system dependencies.
Among the important features of quantum resilience is that it can be implemented in any system engineering tool that provides sufficient design and specification rigor (i.e., one that supports standards like the Lifecycle and Systems Modeling languages and frameworks like the DoD Architecture Framework). Further, this can be accomplished with minimal software development and has been demonstrated in three model-based system engineering tools, two of which are commercially available, well-respected, and widely used. This pragmatic approach assures transparency and consistency in characterization of resilience in any discipline.
Download count: 19
Details
Title
- Quantum resilience
Contributors
- Roberts, Thomas Wade (Author)
- Allenby, Braden (Thesis advisor)
- Chester, Mikhail (Committee member)
- Anderies, John M (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2015
Subjects
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: Ph.D., Arizona State University, 2015
- bibliographyIncludes bibliographical references (p. 238-244)
- Field of study: Civil and environmental engineering
Citation and reuse
Statement of Responsibility
by Thomas Wade Roberts