Description
Many methodological approaches have been utilized to predict student retention and persistence over the years, yet few have utilized a Bayesian framework. It is believed this is due in part to the absence of an established process for guiding educational

Many methodological approaches have been utilized to predict student retention and persistence over the years, yet few have utilized a Bayesian framework. It is believed this is due in part to the absence of an established process for guiding educational researchers reared in a frequentist perspective into the realms of Bayesian analysis and educational data mining. The current study aimed to address this by providing a model-building process for developing a Bayesian network (BN) that leveraged educational data mining, Bayesian analysis, and traditional iterative model-building techniques in order to predict whether community college students will stop out at the completion of each of their first six terms. The study utilized exploratory and confirmatory techniques to reduce an initial pool of more than 50 potential predictor variables to a parsimonious final BN with only four predictor variables. The average in-sample classification accuracy rate for the model was 80% (Cohen's κ = 53%). The model was shown to be generalizable across samples with an average out-of-sample classification accuracy rate of 78% (Cohen's κ = 49%). The classification rates for the BN were also found to be superior to the classification rates produced by an analog frequentist discrete-time survival analysis model.
Reuse Permissions
  • Downloads
    PDF (2 MB)
    Download count: 3

    Details

    Title
    • Applying academic analytics: developing a process for utilizing Bayesian networks to predict stopping out among community college students
    Contributors
    Date Created
    2015
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph. D., Arizona State University, 2015
    • bibliography
      Includes bibliographical references (p. 128-141)
    • Field of study: Educational psychology

    Citation and reuse

    Statement of Responsibility

    by Philip Arcuria

    Machine-readable links