Description
Americans spend upwards of 90% of their time indoors, hence indoor air quality (IAQ) and the impact of IAQ on human health is a major public health concern. IAQ can be negatively impacted by outdoor pollution infiltrating indoors, the emission

Americans spend upwards of 90% of their time indoors, hence indoor air quality (IAQ) and the impact of IAQ on human health is a major public health concern. IAQ can be negatively impacted by outdoor pollution infiltrating indoors, the emission of indoor pollutants, indoor atmospheric chemistry and poor ventilation. Energy saving measures like retrofits to seal the building envelope to prevent the leakage of heated or cooled air will impact IAQ. However, existing studies have been inconclusive as to whether increased energy efficiency is leading to detrimental IAQ. In this work, field campaigns were conducted in apartment homes in Phoenix, Arizona to evaluate IAQ as it relates to particulate matter (PM), carbonyls, and tobacco specific nitrosamines (TSNA).

To investigate the impacts of an energy efficiency retrofit on IAQ, indoor and outdoor air quality sampling was carried out at Sunnyslope Manor, a city-subsidized senior living apartment complex. Measured indoor formaldehyde levels before the building retrofit exceeded reference exposure limits, but in the long term follow-up sampling, indoor formaldehyde decreased for the entire study population by a statistically significant margin. Indoor PM levels were dominated by fine particles and showed a statistically significant decrease in the long term follow-up sampling within certain resident subpopulations (i.e. residents who reported smoking and residents who had lived longer at the apartment complex). Additionally, indoor glyoxal and methylglyoxal exceeded outdoor concentrations, with methylglyoxal being more prevalent pre-retrofit than glyoxal, suggesting different chemical pathways are involved. Indoor concentrations reported are larger than previous studies. TSNAs, specifically N'-nitrosonornicotine (NNN), 4-(methyl-nitrosamino)-4-(3-pyridyl)-butanal (NNA) and 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK) were evaluated post-retrofit at Sunnyslope Manor. Of the units tested, 86% of the smoking units and 46% of the non-smoking units had traces of at least one of the nitrosamines.
Reuse Permissions
  • Downloads
    PDF (1.2 MB)
    Download count: 1

    Details

    Title
    • Indoor air quality investigations on particulate matter, carbonyls, and tobacco specific nitrosamines
    Contributors
    Date Created
    2014
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph.D., Arizona State University, 2014
    • bibliography
      Includes bibliographical references (p. 96-107)
    • Field of study: Chemistry

    Citation and reuse

    Statement of Responsibility

    by Sarah E. Frey

    Machine-readable links