Description
Fisheye cameras are special cameras that have a much larger field of view compared to
conventional cameras. The large field of view comes at a price of non-linear distortions
introduced near the boundaries of the images captured by such cameras. Despite this
drawback, they are being used increasingly in many applications of computer vision,
robotics, reconnaissance, astrophotography, surveillance and automotive applications.
The images captured from such cameras can be corrected for their distortion if the
cameras are calibrated and the distortion function is determined. Calibration also allows
fisheye cameras to be used in tasks involving metric scene measurement, metric
scene reconstruction and other simultaneous localization and mapping (SLAM) algorithms.
This thesis presents a calibration toolbox (FisheyeCDC Toolbox) that implements a collection of some of the most widely used techniques for calibration of fisheye cameras under one package. This enables an inexperienced user to calibrate his/her own camera without the need for a theoretical understanding about computer vision and camera calibration. This thesis also explores some of the applications of calibration such as distortion correction and 3D reconstruction.
conventional cameras. The large field of view comes at a price of non-linear distortions
introduced near the boundaries of the images captured by such cameras. Despite this
drawback, they are being used increasingly in many applications of computer vision,
robotics, reconnaissance, astrophotography, surveillance and automotive applications.
The images captured from such cameras can be corrected for their distortion if the
cameras are calibrated and the distortion function is determined. Calibration also allows
fisheye cameras to be used in tasks involving metric scene measurement, metric
scene reconstruction and other simultaneous localization and mapping (SLAM) algorithms.
This thesis presents a calibration toolbox (FisheyeCDC Toolbox) that implements a collection of some of the most widely used techniques for calibration of fisheye cameras under one package. This enables an inexperienced user to calibrate his/her own camera without the need for a theoretical understanding about computer vision and camera calibration. This thesis also explores some of the applications of calibration such as distortion correction and 3D reconstruction.
Download count: 13
Details
Title
- Fisheye camera calibration and applications
Contributors
- Kashyap Takmul Purushothama Raju, Vinay (Author)
- Karam, Lina (Thesis advisor)
- Turaga, Pavan (Committee member)
- Tepedelenlioğlu, Cihan (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2014
Subjects
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: M.S., Arizona State University, 2014
- bibliographyIncludes bibliographical references (p. 92-95)
- Field of study: Electrical engineering
Citation and reuse
Statement of Responsibility
by Vinay Kashyap Takmul Purushothama Raju