Description
Nanostructured materials show signicant enhancement in the thermoelectric g-
ure of merit (zT) due to quantum connement eects. Improving the eciency of
thermoelectric devices allows for the development of better, more economical waste
heat recovery systems. Such systems may be used as bottoming or co-generation
cycles in conjunction with conventional power cycles to recover some of the wasted
heat. Thermal conductivity measurement systems are an important part of the char-
acterization processes of thermoelectric materials. These systems must possess the
capability of accurately measuring the thermal conductivity of both bulk and thin-lm
samples at dierent ambient temperatures.
This paper discusses the construction, validation, and improvement of a thermal
conductivity measurement platform based on the 3-Omega technique. Room temperature
measurements of thermal conductivity done on control samples with known properties
such as undoped bulk silicon (Si), bulk gallium arsenide (GaAs), and silicon dioxide
(SiO2) thin lms yielded 150 W=m􀀀K, 50 W=m􀀀K, and 1:46 W=m􀀀K respectively.
These quantities were all within 8% of literature values. In addition, the thermal
conductivity of bulk SiO2 was measured as a function of temperature in a Helium-
4 cryostat from 75K to 250K. The results showed good agreement with literature
values that all fell within the error range of each measurement. The uncertainty in
the measurements ranged from 19% at 75K to 30% at 250K. Finally, the system
was used to measure the room temperature thermal conductivity of a nanocomposite
composed of cadmium selenide, CdSe, nanocrystals in an indium selenide, In2Se3,
matrix as a function of the concentration of In2Se3. The observed trend was in
qualitative agreement with the expected behavior.
i
ure of merit (zT) due to quantum connement eects. Improving the eciency of
thermoelectric devices allows for the development of better, more economical waste
heat recovery systems. Such systems may be used as bottoming or co-generation
cycles in conjunction with conventional power cycles to recover some of the wasted
heat. Thermal conductivity measurement systems are an important part of the char-
acterization processes of thermoelectric materials. These systems must possess the
capability of accurately measuring the thermal conductivity of both bulk and thin-lm
samples at dierent ambient temperatures.
This paper discusses the construction, validation, and improvement of a thermal
conductivity measurement platform based on the 3-Omega technique. Room temperature
measurements of thermal conductivity done on control samples with known properties
such as undoped bulk silicon (Si), bulk gallium arsenide (GaAs), and silicon dioxide
(SiO2) thin lms yielded 150 W=m􀀀K, 50 W=m􀀀K, and 1:46 W=m􀀀K respectively.
These quantities were all within 8% of literature values. In addition, the thermal
conductivity of bulk SiO2 was measured as a function of temperature in a Helium-
4 cryostat from 75K to 250K. The results showed good agreement with literature
values that all fell within the error range of each measurement. The uncertainty in
the measurements ranged from 19% at 75K to 30% at 250K. Finally, the system
was used to measure the room temperature thermal conductivity of a nanocomposite
composed of cadmium selenide, CdSe, nanocrystals in an indium selenide, In2Se3,
matrix as a function of the concentration of In2Se3. The observed trend was in
qualitative agreement with the expected behavior.
i
Download count: 12
Details
Title
- Construction of a thermal conductivity measurement platform for bulk and thin film materials based on the 3-Omega technique
Contributors
- Jaber, Abbas (Author)
- Wang, Robert (Thesis advisor)
- Wang, Liping (Committee member)
- Rykaczewski, Konrad (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2014
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: M.S., Arizona State University, 2014
- bibliographyIncludes bibliographical references (p. 35-36)
- Field of study: Mechanical engineering
Citation and reuse
Statement of Responsibility
by Abbas Jaber