Description
Nitrate, a widespread contaminant in surface water, can cause eutrophication and toxicity to aquatic organisms. To augment the nitrate-removal capacity of constructed wetlands, I applied the H2-based Membrane Biofilm Reactor (MBfR) in a novel configuration called the in situ

Nitrate, a widespread contaminant in surface water, can cause eutrophication and toxicity to aquatic organisms. To augment the nitrate-removal capacity of constructed wetlands, I applied the H2-based Membrane Biofilm Reactor (MBfR) in a novel configuration called the in situ MBfR (isMBfR). The goal of my thesis is to evaluate and model the nitrate removal performance for a bench-scale isMBfR system.

I operated the bench-scale isMBfR system in 7 different conditions to evaluate its nitrate-removal performance. When I supplied H2 with the isMBfR (stages 1 - 6), I observed at least 70% nitrate removal, and almost all of the denitrification occurred in the "MBfR zone." When I stopped the H2 supply in stage 7, the nitrate-removal percentage immediately dropped from 92% (stage 6) to 11% (stage 7). Denitrification raised the pH of the bulk liquid to ~ 9.0 for the first 6 stages, but the high pH did not impair the performance of the denitrifiers. Microbial community analyses indicated that DB were the dominant bacteria in the "MBfR zone," while photosynthetic Cyanobacteria were dominant in the "photo-zone".

I derived stoichiometric relationships among COD, alkalinity, H2, Dissolved Oxygen (DO), and nitrate to model the nitrate removal capacity of the "MBfR zone." The stoichiometric relationships corresponded well to the nitrate-removal capacity for all stages expect stage 3, which was limited by the abundance of Denitrifying Bacteria (DB) so that the H2 supply capacity could not be completely used.

Finally, I analyzed two case studies for the real-world application of the isMBfR to constructed wetlands. Based on the characteristics for the wetlands and the stoichiometric relationships, I designed a feasible operation condition (membrane area and H2 pressure) for each wetland. In both cases, the amount of isMBfR surface area was modest, from 0.022 to 1.2 m2/m3 of wetland volume.
Reuse Permissions
  • Downloads
    PDF (1.2 MB)

    Details

    Title
    • An in situ MBfR system to treat nitrate-contaminated surface water
    Contributors
    Date Created
    2014
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: M.S., Arizona State University, 2014
    • bibliography
      Includes bibliographical references (p. 70-74)
    • Field of study: Civil and environmental engineering

    Citation and reuse

    Statement of Responsibility

    by Yizhou Li

    Machine-readable links