Description
This dissertation explores different methodologies for combining two popular design paradigms in the field of computer experiments. Space-filling designs are commonly used in order to ensure that there is good coverage of the design space, but they may not result

This dissertation explores different methodologies for combining two popular design paradigms in the field of computer experiments. Space-filling designs are commonly used in order to ensure that there is good coverage of the design space, but they may not result in good properties when it comes to model fitting. Optimal designs traditionally perform very well in terms of model fitting, particularly when a polynomial is intended, but can result in problematic replication in the case of insignificant factors. By bringing these two design types together, positive properties of each can be retained while mitigating potential weaknesses. Hybrid space-filling designs, generated as Latin hypercubes augmented with I-optimal points, are compared to designs of each contributing component. A second design type called a bridge design is also evaluated, which further integrates the disparate design types. Bridge designs are the result of a Latin hypercube undergoing coordinate exchange to reach constrained D-optimality, ensuring that there is zero replication of factors in any one-dimensional projection. Lastly, bridge designs were augmented with I-optimal points with two goals in mind. Augmentation with candidate points generated assuming the same underlying analysis model serves to reduce the prediction variance without greatly compromising the space-filling property of the design, while augmentation with candidate points generated assuming a different underlying analysis model can greatly reduce the impact of model misspecification during the design phase. Each of these composite designs are compared to pure space-filling and optimal designs. They typically out-perform pure space-filling designs in terms of prediction variance and alphabetic efficiency, while maintaining comparability with pure optimal designs at small sample size. This justifies them as excellent candidates for initial experimentation.
Reuse Permissions
  • Downloads
    PDF (2.7 MB)
    Download count: 1

    Details

    Title
    • Bridging the gap between space-filling and optimal designs
    Contributors
    Date Created
    2013
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph.D., Arizona State University, 2013
    • bibliography
      Includes bibliographical references (p. 109-112)
    • Field of study: Industrial engineering

    Citation and reuse

    Statement of Responsibility

    by Kathryn Kennedy

    Machine-readable links