A study on home based Parkinson's disease monitoring and evaluation: design, development, and evaluation

Document
Description
Parkinson's disease, the most prevalent movement disorder of the central nervous system, is a chronic condition that affects more than 1000,000 U.S. residents and about 3% of the population over the age of 65. The characteristic symptoms include tremors, bradykinesia,

Parkinson's disease, the most prevalent movement disorder of the central nervous system, is a chronic condition that affects more than 1000,000 U.S. residents and about 3% of the population over the age of 65. The characteristic symptoms include tremors, bradykinesia, rigidity and impaired postural stability. Current therapy based on augmentation or replacement of dopamine is designed to improve patients' motor performance but often leads to levodopa-induced complications, such as dyskinesia and motor fluctuation. With the disease progress, clinicians must closely monitor patients' progress in order to identify any complications or decline in motor function as soon as possible in PD management. Unfortunately, current clinical assessment for Parkinson's is subjective and mostly influenced by brief observations during patient visits. Thus improvement or decline in patients' motor function in between visits is extremely difficult to assess. This may hamper clinicians while making informed decisions about the course of therapy for Parkinson's patients and could negatively impact clinical care. In this study we explored new approaches for PD assessment that aim to provide home-based PD assessment and monitoring. By extending the disease assessment to home, the healthcare burden on patients and their family can be reduced, and the disease progress can be more closely monitored by physicians. To achieve these aims, two novel approaches have been designed, developed and validated. The first approach is a questionnaire based self-evaluation metric, which estimate the PD severity through using self-evaluation score on pre-designed questions. Based on the results of the first approach, a smart phone based approach was invented. The approach takes advantage of the mobile computing technology and clinical decision support approach to evaluate the motor performance of patient daily activity and provide the longitudinal disease assessment and monitoring. Both approaches have been validated on recruited PD patients at the movement disorder program of Barrow Neurological Clinic (BNC) at St Joseph's Hospital and Medical Center. The results of validation tests showed favorable accuracy on detecting and assessing critical symptoms of PD, and shed light on promising future of implementing mobile platform based PD evaluation and monitoring tools to facilitate PD management.