Description
Semiconductor device scaling has kept up with Moore's law for the past decades and they have been scaling by a factor of half every one and half years. Every new generation of device technology opens up new opportunities and challenges and especially so for analog design. High speed and low gain is characteristic of these processes and hence a tradeoff that can enable to get back gain by trading speed is crucial. This thesis proposes a solution that increases the speed of sampling of a circuit by a factor of three while reducing the specifications on analog blocks and keeping the power nearly constant. The techniques are based on the switched capacitor technique called Correlated Level Shifting. A triple channel Cyclic ADC has been implemented, with each channel working at a sampling frequency of 3.33MS/s and a resolution of 14 bits. The specifications are compared with that based on a traditional architecture to show the superiority of the proposed technique.
Download count: 2
Details
Title
- Triple sampling an application to a 14b 10 MS/s cyclic converter
Contributors
- Sivakumar, Balasubramanian (Author)
- Farahani, Bahar Jalali (Thesis advisor)
- Garrity, Douglas (Committee member)
- Bakkaloglu, Bertan (Committee member)
- Aberle, James T., 1961- (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2012
Subjects
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: Ph.D., Arizona State University, 2012
- bibliographyIncludes bibliographical references (p. 101-104)
- Field of study: Electrical engineering
Citation and reuse
Statement of Responsibility
by Balasubramanian Sivakumar