Modeling and simulation of variations in nano-CMOS design

Document
Description
CMOS technology is expected to enter the 10nm regime for future integrated circuits (IC). Such aggressive scaling leads to vastly increased variability, posing a grand challenge to robust IC design. Variations in CMOS are often divided into two types: intrinsic

CMOS technology is expected to enter the 10nm regime for future integrated circuits (IC). Such aggressive scaling leads to vastly increased variability, posing a grand challenge to robust IC design. Variations in CMOS are often divided into two types: intrinsic variations and process-induced variations. Intrinsic variations are limited by fundamental physics. They are inherent to CMOS structure, considered as one of the ultimate barriers to the continual scaling of CMOS devices. In this work the three primary intrinsic variations sources are studied, including random dopant fluctuation (RDF), line-edge roughness (LER) and oxide thickness fluctuation (OTF). The research is focused on the modeling and simulation of those variations and their scaling trends. Besides the three variations, a time dependent variation source, Random Telegraph Noise (RTN) is also studied. Different from the other three variations, RTN does not contribute much to the total variation amount, but aggregate the worst case of Vth variations in CMOS. In this work a TCAD based simulation study on RTN is presented, and a new SPICE based simulation method for RTN is proposed for time domain circuit analysis. Process-induced variations arise from the imperfection in silicon fabrication, and vary from foundries to foundries. In this work the layout dependent Vth shift due to Rapid-Thermal Annealing (RTA) are investigated. In this work, we develop joint thermal/TCAD simulation and compact modeling tools to analyze performance variability under various layout pattern densities and RTA conditions. Moreover, we propose a suite of compact models that bridge the underlying RTA process with device parameter change for efficient design optimization.