Description
In Iwasawa theory, one studies how an arithmetic or geometric object grows as its field of definition varies over certain sequences of number fields. For example, let $F/\mathbb{Q}$ be a finite extension of fields, and let $E:y^2 = x^3 +

In Iwasawa theory, one studies how an arithmetic or geometric object grows as its field of definition varies over certain sequences of number fields. For example, let $F/\mathbb{Q}$ be a finite extension of fields, and let $E:y^2 = x^3 + Ax + B$ with $A,B \in F$ be an elliptic curve. If $F = F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots F_\infty = \bigcup_{i=0}^\infty F_i$, one may be interested in properties like the ranks and torsion subgroups of the increasing family of curves $E(F_0) \subseteq E(F_1) \subseteq \cdots \subseteq E(F_\infty)$. The main technique for studying this sequence of curves when $\Gal(F_\infty/F)$ has a $p$-adic analytic structure is to use the action of $\Gal(F_n/F)$ on $E(F_n)$ and the Galois cohomology groups attached to $E$, i.e. the Selmer and Tate-Shafarevich groups. As $n$ varies, these Galois actions fit into a coherent family, and taking a direct limit one obtains a short exact sequence of modules $$0 \longrightarrow E(F_\infty) \otimes(\mathbb{Q}_p/\mathbb{Z}_p) \longrightarrow \Sel_E(F_\infty)_p \longrightarrow \Sha_E(F_\infty)_p \longrightarrow 0 $$ over the profinite group algebra $\mathbb{Z}_p[[\Gal(F_\infty/F)]]$. When $\Gal(F_\infty/F) \cong \mathbb{Z}_p$, this ring is isomorphic to $\Lambda = \mathbb{Z}_p[[T]]$, and the $\Lambda$-module structure of $\Sel_E(F_\infty)_p$ and $\Sha_E(F_\infty)_p$ encode all the information about the curves $E(F_n)$ as $n$ varies. In this dissertation, it will be shown how one can classify certain finitely generated $\Lambda$-modules with fixed characteristic polynomial $f(T) \in \mathbb{Z}_p[T]$ up to isomorphism. The results yield explicit generators for each module up to isomorphism. As an application, it is shown how to identify the isomorphism class of $\Sel_E(\mathbb{Q_\infty})_p$ in this explicit form, where $\mathbb{Q}_\infty$ is the cyclotomic $\mathbb{Z}_p$-extension of $\mathbb{Q}$, and $E$ is an elliptic curve over $\mathbb{Q}$ with good ordinary reduction at $p$, and possessing the property that $E(\mathbb{Q})$ has no $p$-torsion.
Reuse Permissions
  • Downloads
    PDF (373.9 KB)
    Download count: 5

    Details

    Title
    • Classifying lambda-modules up to isomorphism and applications to Iwasawa theory
    Contributors
    Date Created
    2011
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Vita
    • thesis
      Partial requirement for: Ph.D., Arizona State University, 2011
    • bibliography
      Includes bibliographical references (p. 63-64)
    • Field of study: Mathematics

    Citation and reuse

    Statement of Responsibility

    Chase Leroyce Franks

    Machine-readable links