Description
This thesis presents a multi-modal motion tracking system for stroke patient rehabilitation. This system deploys two sensor modules: marker-based motion capture system and inertial measurement unit (IMU). The integrated system provides real-time measurement of the right arm and trunk movement, even in the presence of marker occlusion. The information from the two sensors is fused through quaternion-based recursive filters to promise robust detection of torso compensation (undesired body motion). Since this algorithm allows flexible sensor configurations, it presents a framework for fusing the IMU data and vision data that can adapt to various sensor selection scenarios. The proposed system consequently has the potential to improve both the robustness and flexibility of the sensing process. Through comparison between the complementary filter, the extended Kalman filter (EKF), the unscented Kalman filter (UKF) and the particle filter (PF), the experimental part evaluated the performance of the quaternion-based complementary filter for 10 sensor combination scenarios. Experimental results demonstrate the favorable performance of the proposed system in case of occlusion. Such investigation also provides valuable information for filtering algorithm and strategy selection in specific sensor applications.
Download count: 1
Details
Title
- Multimodal movement sensing using motion capture and inertial sensors for mixed-reality rehabilitation
Contributors
- Liu, Yangzi (Author)
- Qian, Gang (Thesis advisor)
- Olson, Loren (Committee member)
- Si, Jennie (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2010
Subjects
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: M.S., Arizona State University, 2010
- bibliographyIncludes bibliographical references (p. 65-67)
- Field of study: Electrical engineering
Citation and reuse
Statement of Responsibility
by Yangzi Liu