136341-Thumbnail Image.png
Description
Recently, electric and magnetic field sensing has come of interest to the military for a variety of applications, including imaging circuitry and detecting explosive devices. This thesis describes research at the ASU's Flexible Electronics and Display Center (FEDC) towards the

Recently, electric and magnetic field sensing has come of interest to the military for a variety of applications, including imaging circuitry and detecting explosive devices. This thesis describes research at the ASU's Flexible Electronics and Display Center (FEDC) towards the development of a flexible electric and magnetic field imaging blanket. D-dot sensors, which detect changes in electric flux, were chosen for electric field sensing, and a single D-dot sensor in combination with a lock-in amplifier was used to detect individuals passing through an oscillating electric field. This was then developed into a 1 x 16 array of D-dot sensors used to image the field generated by two parallel wires. After the fabrication of a two-dimensional array, it was discovered that commercial field effect transistors did not have a high enough off-resistance to isolate the sensor form the column line. Three alternative solutions were proposed. The first was a one-dimensional array combined with a mechanical stepper to move the array across the E-field pattern. The second was a 1 x 16 strip detector combined with the techniques of computed tomography to reconstruct the image of the field. Such techniques include filtered back projection and algebraic iterative reconstruction (AIR). Lastly, an array of D-dot sensors was fabricated on a flexible substrate, enabled by the high off-resistance of the thin film transistors produced by the FEDC. The research on magnetic field imaging began with a feasibility study of three different types of magnetic field sensors: planar spiral inductors, Hall effect sensors, and giant magnetoresistance (GMR). An experimental array of these sensors was designed and fabricated, and the sensors were used to image the fringe fields of a Helmholtz coil. Furthermore, combining the inductors with the other two types of sensors resulted in three-dimensional sensors. From these measurements, it was determined that planar spiral inductors and Hall effect sensors are best suited for future imaging arrays.
10.54 MB application/pdf

Download restricted. Please sign in.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Download count: 4

Details

Title
  • Developing a Flexible Electric and Magnetic Field Imaging Blanket
Contributors
Date Created
2015-05
Resource Type
  • Text
  • Machine-readable links