136008-Thumbnail Image.png
Description
Self-monitoring of blood glucose (SMBG) is the standard of care in diabetes management. Current technologies for SMBG are based upon enzymatic electrochemical (amperometric) sensing. To increase the sensitivity and specificity of current devices, a novel method of detecting glucose using

Self-monitoring of blood glucose (SMBG) is the standard of care in diabetes management. Current technologies for SMBG are based upon enzymatic electrochemical (amperometric) sensing. To increase the sensitivity and specificity of current devices, a novel method of detecting glucose using electrochemical impedance spectroscopy (EIS) technology is explored. To test the ability of EIS methods to detect glucose, the enzyme glucose oxidase (GOx) was fixed to gold electrodes through the means of a specific immobilization process. Once GOx was fixed to the gold electrode surface, a 5 mV sine wave sweeping frequencies from 100 kHz to 1 Hz was induced at a glucose range 0-500 mg/dL mixed with a ferricyanide redox mediator. Each frequency in the impedance sweep was analyzed for highest response and R-squared value. The frequency with both factors optimized is specific for the glucose-GOx binding interaction, and was determined to be 1.17 kHz in purified solutions. Four separate electrodes were constructed and date from each were averaged. The correlation between the impedance response and concentration at the low range of detection (0-100 mg/dL of gluose) was determined to be 3.19 ohm/ln (mg/dL) with an R-squared value of 0.86. Its associated lower limit of detection was found to be 41 mg/dL. The same frequency of 1.17 kHz was then verified in whole blood under the glucose range of 0-100 mg/dL while diluting the blood to observe effect. As the blood concentration increased, the response of the sensor decreased logarithmically. The maximized blood detection volume was determined to be 25% whole blood suggesting dilution, coatings, or filtration is required for future adaptation. The above data confirms that EIS offers a new method of glucose detection as an alternative technology for SMBG and offers improved detection at lower concentrations of glucose. The unique frequency response of individual markers allows for modulation of signals so that several markers could be measured with a single sensor. Future work includes assessment of other diabetes associated biomarkers that can be measured on a single sensor, integration testing and tuning of the biomarkers, impedance-time sensing development, and finally, testing on control subjects.
17.9 MB application/pdf

Download restricted. Please sign in.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • The Development of a Simplified and Integrated Glucose-Monitoring Biosensor for Diabetics
Contributors
Date Created
2012-05
Resource Type
  • Text
  • Machine-readable links