135580-Thumbnail Image.png
Description
Vitamin D, Klotho, and FOXO3 have all been linked to have anti-aging and anti-cancerous effects as separate pathways. Specifically, mice with knockout Klotho in their genes have displayed signs of premature aging, humans who are vitamin D deficient have been

Vitamin D, Klotho, and FOXO3 have all been linked to have anti-aging and anti-cancerous effects as separate pathways. Specifically, mice with knockout Klotho in their genes have displayed signs of premature aging, humans who are vitamin D deficient have been shown to develop cardiovascular disease and cognitive impairments, and those who have displayed overexpression of FOXO3 have shown to have a longer lifespan. Here we took each pathway and attempted to formulate a feedback mechanism loop linking all three separate pathways. We propose that vitamin D levels modulate klotho activity, including the expression of the s-klotho and m-klotho isoforms. Moreover, the anti-oxidation transcription factor FOXO3 is also thought to participate in crosstalk with VDR signaling. Through the connection between 1,25D and Klotho, we probed at their interactions with FOXO3 signaling in kidney and colon cells, and proposed that vitamin D and klotho may reduce oxidative stress and suppress the onset of epithelial cancers through it effects on FOXO3. Results showed a strong support for the cooperation between FOXO3 and 1,25D to stimulate both superoxide dismutase (a FOXO3 response element) and XDR3/ROC (vitamin D response elements). This cooperation was mostly seen in embryonic kidney cells (HEK293) and not in the colon cancer cells (HCT116), which has led to the conclusion that vitamin D and FOXO3 cooperation mainly occurs in kidney tissue and/or in tissue that is not yet been overtaken by cancer. Differences in the Klotho isoforms were seen when measuring FOXO3 and vitamin D activity, but experiments manipulating other components will need to be conducted to further understand the function of Klotho in maintaining reactive oxygenated species levels.
3.14 MB application/pdf

Download restricted. Please sign in.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • Vitamin D-mediated Regulation of Anti-Aging Klotho and FOXO Signaling
Contributors
Date Created
2016-05
Resource Type
  • Text
  • Machine-readable links