Description
To localize different sound sources in an environment, the auditory system analyzes acoustic properties of sounds reaching the ears to determine the exact location of a sound source. Successful sound localization is important for improving signal detection and speech intelligibility

To localize different sound sources in an environment, the auditory system analyzes acoustic properties of sounds reaching the ears to determine the exact location of a sound source. Successful sound localization is important for improving signal detection and speech intelligibility in a noisy environment. Sound localization is not a uni-sensory experience, and can be influenced by visual information (e.g., the ventriloquist effect). Vision provides contexts and organizes the auditory space for the auditory system. This investigation tracks eye movement of human subjects using a non-invasive eye-tracking system and evaluates the impact of visual stimulation on localization of a phantom sound source generated through timing-based stereophony. It was hypothesized that gaze movement could reveal the way in which visual stimulation (LED lights) shifts the perception of a sound source. However, the results show that subjects do not always move their gaze towards the light direction even when they experience strong visual capture. On average, the gaze direction indicates the perceived sound location with and without light stimulation.

Included in this item (2)


Details

Title
  • Track eye movement of human listeners in a spatial localization task
Contributors
Date Created
2016-05

Machine-readable links