134534-Thumbnail Image.png
Description
This research addresses the need for improvement in radiation sensors for applications of ionizing radiation such as radiotherapy. The current sensors involved are polymer gel dosimeters, MOSFETs, radio-chromic films, etc. Most of the sensors involved require expensive equipment's and processing

This research addresses the need for improvement in radiation sensors for applications of ionizing radiation such as radiotherapy. The current sensors involved are polymer gel dosimeters, MOSFETs, radio-chromic films, etc. Most of the sensors involved require expensive equipment's and processing facilities for readout. There is still a need to develop better sensors that can be clinically applied. There are numerous groups around the world trying to conceive a better dosimeter. One of the radiation sensors that was developed recently was based on fluorescence signal emitted from the sensor. To advance the field of radiation sensors, a visual indicator has been developed in-lab as a method of detect ionizing radiation. The intensity of change in color is directly dependent on the amount of incident ionizing radiation. An aqueous gold nanoparticle sensor can be used to accurately determine the incident amount of ionizing radiation1. A gold nanoparticle sensor has been developed in lab with the use of hexadecyltrimethylammonium bromide (C16TAB) as the templating molecule. In the presence of ionizing radiation, the colorless gold salt is reduced and templated, creating a dispersion within the fluid1. The formation of suspended nanoparticles leads to a color change that can be visually detected and accurately analyzed through the employment of a spectrometer. Unfortunately, the toxicity of C16TAB is high. It is expected the toxicity can be reduced by replacing C16TAB with an amino acid, as amino acids can act as templating molecules in the solution and many are naturally occuring2. The experiments included a screening of 20 natural amino acids and 12 unnatural amino acids with the gold salt solution in the presence of ionizing radiation. Stability and absorbance testing was conducted on the amino acid sensors. Additional screening of lead amino acid sensors at various concentrations of irradiation was conducted.
585.04 KB application/pdf

Download restricted. Please sign in.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • Amino Acid Templated Gold Nanoparticles as Sensors of Ionizing Radiation
Contributors
Date Created
2017-05
Resource Type
  • Text
  • Machine-readable links