133936-Thumbnail Image.png
Description
The aims of this project are: (i) to identify structural and molecular changes in the brains of 3xTg-AD mice and (ii) to determine whether decreasing S6K1 protects the brain from these changes. To achieve our goals, we decided to remove

The aims of this project are: (i) to identify structural and molecular changes in the brains of 3xTg-AD mice and (ii) to determine whether decreasing S6K1 protects the brain from these changes. To achieve our goals, we decided to remove one copy of the S6K1 gene in 3xTg-AD mice by breeding them with S6K1 knockout mice (S6K1+/-). In previous studies, we have seen that reducing S6K1 levels in 3xTg-AD mice improved spatial memory and synaptic plasticity which was associated with reduced A and tau pathology. Here, we used a multiparametric MRI to assess volumetric and blood flow changes in the brain of 20-month-old 3xTg-AD mice. We found that 3xTg-AD/S6K1+/- mice had higher blood flow and cortical volume compared to 3xTg-AD mice. However, we saw no significant differences between 3xTg-AD mice and NonTg mice. We further found A levels and plaque numbers were significantly lower in 3xTg-AD/S6K1+/- mice compared to 3xTg-AD mice. This reduction in plaques could account for the improvement in blood flow in 3xTg-AD/S6K1+/- mice. To try to understand the reason behind the increase in cortical volume in the 3xTg-AD/S6K1+/- when compared to the 3xTg-AD, we measured markers of synaptic density, PSD95, and synaptophysin. We found that PSD95 levels were not different between the four groups. However, synaptophysin levels were significantly lower in 3xTg-AD mice compared to NonTg levels and returned to baseline levels in 3xTg-AD mice lacking one copy of the S6K1 gene. This difference in synaptophysin could explain, at least in part, the difference in volume between the four groups analyzed. Overall, this represents the first evidence showing that reducing mTOR signaling improves blood flow and cortical volume in a mouse model of AD.
1.81 MB application/pdf

Download restricted. Please sign in.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • Role of S6K1 on structural and molecular changes in the brain of a mouse model of AD
Contributors
Date Created
2018-05
Resource Type
  • Text
  • Machine-readable links