132857-Thumbnail Image.png
Description
Predictive analytics have been used in a wide variety of settings, including healthcare,
sports, banking, and other disciplines. We use predictive analytics and modeling to
determine the impact of certain factors that increase the probability of a successful
fourth down

Predictive analytics have been used in a wide variety of settings, including healthcare,
sports, banking, and other disciplines. We use predictive analytics and modeling to
determine the impact of certain factors that increase the probability of a successful
fourth down conversion in the Power 5 conferences. The logistic regression models
predict the likelihood of going for fourth down with a 64% or more probability based on
2015-17 data obtained from ESPN’s college football API. Offense type though important
but non-measurable was incorporated as a random effect. We found that distance to go,
play type, field position, and week of the season were key leading covariates in
predictability. On average, our model performed as much as 14% better than coaches
in 2018.
615.87 KB application/pdf

Download restricted. Please sign in.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • Predictive Modeling of 4th Down Selection in Power 5 Conference: Data Analytics
Contributors
Date Created
2019-05
Resource Type
  • Text
  • Machine-readable links