132562-Thumbnail Image.png
Description
Titanium dioxide is an essential material under research for energy and environmental applications, chiefly through its photocatalytic properties. These properties allow it to be used for water-splitting, detoxification, and photovoltaics, in addition to its conventional uses in pigmentation and

Titanium dioxide is an essential material under research for energy and environmental applications, chiefly through its photocatalytic properties. These properties allow it to be used for water-splitting, detoxification, and photovoltaics, in addition to its conventional uses in pigmentation and sunscreen. Titanium dioxide exists in several polymorphic structures, of which the most common are rutile and anatase. We focused on anatase for the purposes of this research, due to its promising results for hydrolysis.

Anatase exists often in its reduced form (TiO2-x), enabling it to perform redox reactions through the absorption and release of oxygen into/from the crystal lattice. These processes result in structural changes, induced by defects in the material, which can theoretically be observed using advanced characterization methods. In situ electron microscopy is one of such methods, and can provide a window into these structural changes. However, in order to interpret the structural evolution caused by defects in materials, it is often necessary and pertinent to use atomistic simulations to compare the experimental images with models.

In this thesis project, we modeled the defect structures in anatase, around oxygen vacancies and at surfaces, using molecular dynamics, benchmarked with density functional theory. Using a “reactive” forcefield designed for the simulation of interactions between anatase and water that can model and treat bonding through the use of bond orders, different vacancy structures were analyzed and simulated. To compare these theoretical, generated models with experimental data, the “multislice approach” to TEM image simulation was used. We investigated a series of different vacancy configurations and surfaces and generated fingerprints for comparison with TEM experiments. This comparison demonstrated a proof of concept for a technique suggesting the possibility for the identification of oxygen vacancy structures directly from TEM images. This research aims to improve our atomic-level understanding of oxide materials, by providing a methodology for the analysis of vacancy formation from very subtle phenomena in TEM images.
13.7 MB application/pdf

Download restricted. Please sign in.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Download count: 3

Details

Title
  • Simulation of Atomic Structure around Defects in Anatase
Contributors
Date Created
2019-05
Resource Type
  • Text
  • Machine-readable links