131586-Thumbnail Image.png
Description
Dielectrophoresis has been shown in the recent past to successfully separate bioparticles of very subtle differences at high resolutions using biophysical forces. In this study, we test the biophysical differences of methicillin resistant and susceptible Staph. aureus that are known

Dielectrophoresis has been shown in the recent past to successfully separate bioparticles of very subtle differences at high resolutions using biophysical forces. In this study, we test the biophysical differences of methicillin resistant and susceptible Staph. aureus that are known to have very similar genomes by using a modified gradient insulator-based dielectrophoresis device (g-iDEP). MRSA is commonly seen in hospitals and is the leading killer of infectious bacteria, claiming the lives of around 10,000 people annually. G-iDEP improves many capabilities within the DEP field including sample size, cost, ease of use and analysis time. This is a promising foundation to creating a more clinically optimized diagnostic tool for both separation and detection of bacteria in the healthcare field. The capture on-set potential for fluorescently tagged MRSA (801 ± 34V) is higher than fluorescently tagged MSSA (610 ± 32V), resulting in a higher electrokinetic to dielectrophoretic mobility ratio for MRSA. Since the strains have proven to be genomically similar through sequencing, it is reasonable to attribute this significant biophysical difference to the added PBP2a enzyme in MRSA. These results are consistent with other bacterial studied within in this device and have proven to be reproducible.
355.68 KB application/pdf

Download restricted. Please sign in.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Download count: 1

Details

Title
  • Biophysical differentiation of MRSA and MSSA using Dielectrophoresis
Contributors
Date Created
2020-05
Resource Type
  • Text
  • Machine-readable links