Description

The world is undergoing rapid changes in its climate, environment, and ecosystems due to increasing population growth, urbanization, and industrialization. Numerical simulation is becoming an important vehicle to enhance the understanding of these changes and their impacts, with regional and

The world is undergoing rapid changes in its climate, environment, and ecosystems due to increasing population growth, urbanization, and industrialization. Numerical simulation is becoming an important vehicle to enhance the understanding of these changes and their impacts, with regional and global simulation models producing vast amounts of data. Comprehending these multidimensional data and fostering collaborative scientific discovery requires the development of new visualization techniques. In this paper, we present a cyberinfrastructure solution - PolarGlobe - that enables comprehensive analysis and collaboration. PolarGlobe is implemented upon an emerging web graphics library, WebGL, and an open source virtual globe system Cesium, which has the ability to map spatial data onto a virtual Earth. We have also integrated volume rendering techniques, value and spatial filters, and vertical profile visualization to improve rendered images and support a comprehensive exploration of multi-dimensional spatial data. In this study, the climate simulation dataset produced by the extended polar version of the well-known Weather Research and Forecasting Model (WRF) is used to test the proposed techniques. PolarGlobe is also easily extendable to enable data visualization for other Earth Science domains, such as oceanography, weather, or geology.

Reuse Permissions
  • Downloads
    PDF (4.6 MB)

    Details

    Title
    • Web-Scale Multidimensional Visualization of Big Spatial Data to Support Earth Sciences - A Case Study With Visualizing Climate Simulation Data
    Contributors
    Date Created
    2017-06-26
    Resource Type
  • Text
  • Collections this item is in
    Identifier
    • Digital object identifier: 10.3390/informatics4030017
    • Identifier Type
      International standard serial number
      Identifier Value
      2227-9709
    Note
    • The final version of this article, as published in Informatics, can be viewed online at: http://www.mdpi.com/2227-9709/4/3/17

    Citation and reuse

    Cite this item

    This is a suggested citation. Consult the appropriate style guide for specific citation guidelines.

    Wang, S., Li, W., & Wang, F. (2017). Web-Scale Multidimensional Visualization of Big Spatial Data to Support Earth Sciences—A Case Study with Visualizing Climate Simulation Data. Informatics, 4(3), 17. doi:10.3390/informatics4030017

    Machine-readable links