Data Analytics in College Sports: How Statistics Can be Used to Predict Sun Devil Success

Description
College athletics are a multi-billion dollar industry featuring hard-working student-athletes competing at a high level for national championships across a variety of different sports. Across the college sports landscape, coaches and players are always seeking an edge they can gain

College athletics are a multi-billion dollar industry featuring hard-working student-athletes competing at a high level for national championships across a variety of different sports. Across the college sports landscape, coaches and players are always seeking an edge they can gain in order to obtain a competitive advantage over their opponents. While this may sound nefarious, the vast amounts of data about these games and student-athletes can be used to glean insights about the sports themselves in order to help student-athletes be more successful. Data analytics can be used to make sense of the available data by creating models and using other tools available that can predict how student-athletes and their teams will do in the future based on the data gathered from how they have performed in the past. Colleges and universities across the country compete in a vast array of sports. As a result of these differences, the sports with the largest amounts of data available will be the more popular college sports, such as football, men’s and women’s basketball, baseball and softball. Arizona State University, as a member of the Pac-12 conference, has a storied athletic tradition and decades of history in all of these sports, providing a large amount of data that can be used to analyze student-athlete success in these sports and help predict future success. However, data is available from numerous other college athletic programs that could provide a much larger sample to help predict with greater accuracy why certain teams and student-athletes are more successful than others. The explosion of analytics across the sports world has resulted in a new focus on utilizing statistical techniques to improve all aspects of different sports. Sports science has influenced medical departments, and model-building has been used to determine optimal in-game strategy and predict the outcomes of future games based on team strength. It is this latter approach that has become the focus of this paper, with football being used as a subject due to its vast popularity and massive supply of easily accessible data.
Date Created
2022-05

Data Analysis of Effects of Officer Briefing Synergy in Combat Flight Simulation Game Dreadnought (2017)

148238-Thumbnail Image.png
Description

Dreadnought is a free-to-play multiplayer flight simulation in which two teams of 8 players each compete against one another to complete an objective. Each player controls a large-scale spaceship, various aspects of which can be customized to improve a player’s

Dreadnought is a free-to-play multiplayer flight simulation in which two teams of 8 players each compete against one another to complete an objective. Each player controls a large-scale spaceship, various aspects of which can be customized to improve a player’s performance in a game. One such aspect is Officer Briefings, which are passive abilities that grant ships additional capabilities. Two of these Briefings, known as Retaliator and Get My Good Side, have strong synergy when used together, which has led to the Dreadnought community’s claiming that the Briefings are too powerful and should be rebalanced to be more in line with the power levels of other Briefings. This study collected gameplay data with and without the use of these specific Officer Briefings to determine the precise impact on gameplay. Linear correlation matrices and inference on two means were used to determine performance impact. It was found that, although these Officer Briefings do improve an individual player’s performance in a game, they do not have a consistent impact on the player’s team performance, and that these Officer Briefings are therefore not in need of rebalancing.

Date Created
2021-05
Agent

A Predictive Statistical Analysis on Loan Data

148431-Thumbnail Image.png
Description

Created predictive models using R to determine significant variables that help determine whether someone will default on their loans using a data set of almost 900,000 loan applicants.

Date Created
2021-05
Agent