A Neural Network Model for a Tutoring Companion Supporting Students in a Programming with Java Course

157482-Thumbnail Image.png
Description
Feedback represents a vital component of the learning process and is especially important for Computer Science students. With class sizes that are often large, it can be challenging to provide individualized feedback to students. Consistent, constructive, supportive feedback through a

Feedback represents a vital component of the learning process and is especially important for Computer Science students. With class sizes that are often large, it can be challenging to provide individualized feedback to students. Consistent, constructive, supportive feedback through a tutoring companion can scaffold the learning process for students.

This work contributes to the construction of a tutoring companion designed to provide this feedback to students. It aims to bridge the gap between the messages the compiler delivers, and the support required for a novice student to understand the problem and fix their code. Particularly, it provides support for students learning about recursion in a beginning university Java programming course. Besides also providing affective support, a tutoring companion could be more effective when it is embedded into the environment that the student is already using, instead of an additional tool for the student to learn. The proposed Tutoring Companion is embedded into the Eclipse Integrated Development Environment (IDE).

This thesis focuses on the reasoning model for the Tutoring Companion and is developed using the techniques of a neural network. While a student uses the IDE, the Tutoring Companion collects 16 data points, including the presence of certain key words, cyclomatic complexity, and error messages from the compiler, every time it detects an event, such as a run attempt, debug attempt, or a request for help, in the IDE. This data is used as inputs to the neural network. The neural network produces a correlating single output code for the feedback to be provided to the student, which is displayed in the IDE.

The effectiveness of the approach is examined among 38 Computer Science students who solve a programming assignment while the Tutoring Companion assists them. Data is collected from these interactions, including all inputs and outputs for the neural network, and students are surveyed regarding their experience. Results suggest that students feel supported while working with the Companion and promising potential for using a neural network with an embedded companion in the future. Challenges in developing an embedded companion are discussed, as well as opportunities for future work.
Date Created
2019
Agent

Using an automated attendance monitoring system to maximize time for class activities

Description

Class instructors at Arizona State University monitor students’ attendance for classes in which attendance is either mandatory or encouraged. Class monitoring can be done using traditional systems such as sign sheets and roll calls. From my initial observations while attending

Class instructors at Arizona State University monitor students’ attendance for classes in which attendance is either mandatory or encouraged. Class monitoring can be done using traditional systems such as sign sheets and roll calls. From my initial observations while attending a class which utilized a sign sheet for class attendance monitoring, I thought the process took long and was inefficient. As a result, I created an automated system that would replace the traditional systems and improve the class monitoring process. Thus, this study aims to determine whether the automated system reduced the time it takes to monitor class attendance, and whether it was efficient.

To examine the above question, the automated system was deployed to 2 classes at Arizona State University. Additionally, surveys were distributed to 2 instructors and 33 students and they were asked to respond to questions relating to class attendance and the monitoring systems which were being used alternatively with the newly-created automated system. Analysis of the responses demonstrated that use of an automated system reduced the time it takes students to mark their presence, and thus increase the time used for other class activities. The results also indicate that the design of the automated system affects the overall time it takes to monitor attendance. On this basis, it is recommended that instructors utilize an automated system to monitor class attendance. Further research is needed to study the time it takes instructors to set up different monitoring systems in order to ascertain that an automated system reduces the overall time it takes to monitor attendance compared to other traditionally used systems.

Date Created
2019-05
Agent

Evaluation of instructional module development system

156614-Thumbnail Image.png
Description
Academia is not what it used to be. In today’s fast-paced world, requirements

are constantly changing, and adapting to these changes in an academic curriculum

can be challenging. Given a specific aspect of a domain, there can be various levels of

proficiency that

Academia is not what it used to be. In today’s fast-paced world, requirements

are constantly changing, and adapting to these changes in an academic curriculum

can be challenging. Given a specific aspect of a domain, there can be various levels of

proficiency that can be achieved by the students. Considering the wide array of needs,

diverse groups need customized course curriculum. The need for having an archetype

to design a course focusing on the outcomes paved the way for Outcome-based

Education (OBE). OBE focuses on the outcomes as opposed to the traditional way of

following a process [23]. According to D. Clark, the major reason for the creation of

Bloom’s taxonomy was not only to stimulate and inspire a higher quality of thinking

in academia – incorporating not just the basic fact-learning and application, but also

to evaluate and analyze on the facts and its applications [7]. Instructional Module

Development System (IMODS) is the culmination of both these models – Bloom’s

Taxonomy and OBE. It is an open-source web-based software that has been

developed on the principles of OBE and Bloom’s Taxonomy. It guides an instructor,

step-by-step, through an outcomes-based process as they define the learning

objectives, the content to be covered and develop an instruction and assessment plan.

The tool also provides the user with a repository of techniques based on the choices

made by them regarding the level of learning while defining the objectives. This helps

in maintaining alignment among all the components of the course design. The tool

also generates documentation to support the course design and provide feedback

when the course is lacking in certain aspects.

It is not just enough to come up with a model that theoretically facilitates

effective result-oriented course design. There should be facts, experiments and proof

that any model succeeds in achieving what it aims to achieve. And thus, there are two

research objectives of this thesis: (i) design a feature for course design feedback and

evaluate its effectiveness; (ii) evaluate the usefulness of a tool like IMODS on various

aspects – (a) the effectiveness of the tool in educating instructors on OBE; (b) the

effectiveness of the tool in providing appropriate and efficient pedagogy and

assessment techniques; (c) the effectiveness of the tool in building the learning

objectives; (d) effectiveness of the tool in document generation; (e) Usability of the

tool; (f) the effectiveness of OBE on course design and expected student outcomes.

The thesis presents a detailed algorithm for course design feedback, its pseudocode, a

description and proof of the correctness of the feature, methods used for evaluation

of the tool, experiments for evaluation and analysis of the obtained results.
Date Created
2018
Agent