Convolutional Neural Networks for Facial Expression Recognition

135660-Thumbnail Image.png
Description
This paper presents work that was done to create a system capable of facial expression recognition (FER) using deep convolutional neural networks (CNNs) and test multiple configurations and methods. CNNs are able to extract powerful information about an image using

This paper presents work that was done to create a system capable of facial expression recognition (FER) using deep convolutional neural networks (CNNs) and test multiple configurations and methods. CNNs are able to extract powerful information about an image using multiple layers of generic feature detectors. The extracted information can be used to understand the image better through recognizing different features present within the image. Deep CNNs, however, require training sets that can be larger than a million pictures in order to fine tune their feature detectors. For the case of facial expression datasets, none of these large datasets are available. Due to this limited availability of data required to train a new CNN, the idea of using naïve domain adaptation is explored. Instead of creating and using a new CNN trained specifically to extract features related to FER, a previously trained CNN originally trained for another computer vision task is used. Work for this research involved creating a system that can run a CNN, can extract feature vectors from the CNN, and can classify these extracted features. Once this system was built, different aspects of the system were tested and tuned. These aspects include the pre-trained CNN that was used, the layer from which features were extracted, normalization used on input images, and training data for the classifier. Once properly tuned, the created system returned results more accurate than previous attempts on facial expression recognition. Based on these positive results, naïve domain adaptation is shown to successfully leverage advantages of deep CNNs for facial expression recognition.
Date Created
2016-05
Agent

The Dyadic Interaction Assistant for Individuals with Visual Impairments

137492-Thumbnail Image.png
Description
This paper presents an overview of The Dyadic Interaction Assistant for Individuals with Visual Impairments with a focus on the software component. The system is designed to communicate facial information (facial Action Units, facial expressions, and facial features) to an

This paper presents an overview of The Dyadic Interaction Assistant for Individuals with Visual Impairments with a focus on the software component. The system is designed to communicate facial information (facial Action Units, facial expressions, and facial features) to an individual with visual impairments in a dyadic interaction between two people sitting across from each other. Comprised of (1) a webcam, (2) software, and (3) a haptic device, the system can also be described as a series of input, processing, and output stages, respectively. The processing stage of the system builds on the open source FaceTracker software and the application Computer Expression Recognition Toolbox (CERT). While these two sources provide the facial data, the program developed through the IDE Qt Creator and several AppleScripts are used to adapt the information to a Graphical User Interface (GUI) and output the data to a comma-separated values (CSV) file. It is the first software to convey all 3 types of facial information at once in real-time. Future work includes testing and evaluating the quality of the software with human subjects (both sighted and blind/low vision), integrating the haptic device to complete the system, and evaluating the entire system with human subjects (sighted and blind/low vision).
Date Created
2013-05
Agent