Federated Learning (FL) is envisaged to be a promising solution for collaboratively training a machine learning model while keeping the training data decentralized and private. Instead of sharing raw data to the central entity, the participating client devices share focused…
Federated Learning (FL) is envisaged to be a promising solution for collaboratively training a machine learning model while keeping the training data decentralized and private. Instead of sharing raw data to the central entity, the participating client devices share focused updates for aggregation to ensure global convergence of the model. Owing to the shortcomings of manually handcrafted neural network architectures, the research community is striving to develop Neural Architecture Search (NAS) approaches to automatically search for optimal networks that fit the clients’ data. Despite the inaccessibility of clients’ data in an FL setting, the federated NAS literature has recently witnessed great progress to apply these NAS techniques to an FL setting. However, one of the key bottlenecks of Federated Learning is the cost of communication between clients and the server, and the state-of-the-art federated NAS techniques search for networks with millions of parameters that require several rounds of communication to find the optimal weight parameters. Also, deploying a network having millions of parameters on edge devices (which are the typical participants in an FL process) is infeasible due to its computational limitations and increased latency. Thus, this work proposes Weight-Agnostic Federated Neural Architecture Search (WFNAS), a novel evolutionary framework to search for well-performing and minimally connected weight-agnostic network architectures in an FL setting. As the connectivity of the networks themselves is the solution, there is no need for weight training and hyperparameter tuning, reducing the communication overhead significantly. The experiments indicate a gain of nearly 40% for orthogonal (vertical FL) data distributions compared to local training. This work is the first federated NAS technique in the literature for vertical FL. Although the experiments are performed in a resource-constrained environment, the aim of this thesis is to show a new direction of research to the FL community.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Personalized learning is gaining popularity in online computer science education due to its characteristics of pacing the learning progress and adapting the instructional approach to each individual learner from a diverse background. Among various instructional methods in computer science education,…
Personalized learning is gaining popularity in online computer science education due to its characteristics of pacing the learning progress and adapting the instructional approach to each individual learner from a diverse background. Among various instructional methods in computer science education, hands-on labs have unique requirements of understanding learners' behavior and assessing learners' performance for personalization. Hands-on labs are a critical learning approach for cybersecurity education. It provides real-world complex problem scenarios and helps learners develop a deeper understanding of knowledge and concepts while solving real-world problems. But there are unique challenges when using hands-on labs for cybersecurity education. Existing hands-on lab exercises materials are usually managed in a problem-centric fashion, while it lacks a coherent way to manage existing labs and provide productive lab exercising plans for cybersecurity learners. To solve these challenges, a personalized learning platform called ThoTh Lab specifically designed for computer science hands-on labs in a cloud environment is established. ThoTh Lab can identify the learning style from student activities and adapt learning material accordingly. With the awareness of student learning styles, instructors are able to use techniques more suitable for the specific student, and hence, improve the speed and quality of the learning process. ThoTh Lab also provides student performance prediction, which allows the instructors to change the learning progress and take other measurements to help the students timely. A knowledge graph in the cybersecurity domain is also constructed using Natural language processing (NLP) technologies including word embedding and hyperlink-based concept mining. This knowledge graph is then utilized during the regular learning process to build a personalized lab recommendation system by suggesting relevant labs based on students' past learning history to maximize their learning outcomes. To evaluate ThoTh Lab, several in-class experiments were carried out in cybersecurity classes for both graduate and undergraduate students at Arizona State University and data was collected over several semesters. The case studies show that, by leveraging the personalized lab platform, students tend to be more absorbed in a lab project, show more interest in the cybersecurity area, spend more effort on the project and gain enhanced learning outcomes.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Graph matching is a fundamental but notoriously difficult problem due to its NP-hard nature, and serves as a cornerstone for a series of applications in machine learning and computer vision, such as image matching, dynamic routing, drug design, to name…
Graph matching is a fundamental but notoriously difficult problem due to its NP-hard nature, and serves as a cornerstone for a series of applications in machine learning and computer vision, such as image matching, dynamic routing, drug design, to name a few. Although there has been massive previous investigation on high-performance graph matching solvers, it still remains a challenging task to tackle the matching problem under real-world scenarios with severe graph uncertainty (e.g., noise, outlier, misleading or ambiguous link).In this dissertation, a main focus is to investigate the essence and propose solutions to graph matching with higher reliability under such uncertainty. To this end, the proposed research was conducted taking into account three perspectives related to reliable graph matching: modeling, optimization and learning. For modeling, graph matching is extended from typical quadratic assignment problem to a more generic mathematical model by introducing a specific family of separable function, achieving higher capacity and reliability. In terms of optimization, a novel high gradient-efficient determinant-based regularization technique is proposed in this research, showing high robustness against outliers. Then learning paradigm for graph matching under intrinsic combinatorial characteristics is explored. First, a study is conducted on the way of filling the gap between discrete problem and its continuous approximation under a deep learning framework. Then this dissertation continues to investigate the necessity of more reliable latent topology of graphs for matching, and propose an effective and flexible framework to obtain it. Coherent findings in this dissertation include theoretical study and several novel algorithms, with rich experiments demonstrating the effectiveness.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Graph matching is a fundamental but notoriously difficult problem due to its NP-hard nature, and serves as a cornerstone for a series of applications in machine learning and computer vision, such as image matching, dynamic routing, drug design, to name…
Graph matching is a fundamental but notoriously difficult problem due to its NP-hard nature, and serves as a cornerstone for a series of applications in machine learning and computer vision, such as image matching, dynamic routing, drug design, to name a few. Although there has been massive previous investigation on high-performance graph matching solvers, it still remains a challenging task to tackle the matching problem under real-world scenarios with severe graph uncertainty (e.g., noise, outlier, misleading or ambiguous link).In this dissertation, a main focus is to investigate the essence and propose solutions to graph matching with higher reliability under such uncertainty. To this end, the proposed research was conducted taking into account three perspectives related to reliable graph matching: modeling, optimization and learning. For modeling, graph matching is extended from typical quadratic assignment problem to a more generic mathematical model by introducing a specific family of separable function, achieving higher capacity and reliability. In terms of optimization, a novel high gradient-efficient determinant-based regularization technique is proposed in this research, showing high robustness against outliers. Then learning paradigm for graph matching under intrinsic combinatorial characteristics is explored. First, a study is conducted on the way of filling the gap between discrete problem and its continuous approximation under a deep learning framework. Then this dissertation continues to investigate the necessity of more reliable latent topology of graphs for matching, and propose an effective and flexible framework to obtain it. Coherent findings in this dissertation include theoretical study and several novel algorithms, with rich experiments demonstrating the effectiveness.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Speedsolving, the art of solving twisty puzzles like the Rubik's Cube as fast as possible, has recently benefitted from the arrival of smartcubes which have special hardware for tracking the cube's face turns and transmitting them via Bluetooth. However, due…
Speedsolving, the art of solving twisty puzzles like the Rubik's Cube as fast as possible, has recently benefitted from the arrival of smartcubes which have special hardware for tracking the cube's face turns and transmitting them via Bluetooth. However, due to their embedded electronics, existing smartcubes cannot be used in competition, reducing their utility in personal speedcubing practice. This thesis proposes a sound-based design for tracking the face turns of a standard, non-smart speedcube consisting of an audio processing receiver in software and a small physical speaker configured as a transmitter. Special attention has been given to ensuring that installing the transmitter requires only a reversible centercap replacement on the original cube. This allows the cube to benefit from smartcube features during practice, while still maintaining compliance with competition regulations. Within a controlled test environment, the software receiver perfectly detected a variety of transmitted move sequences. Furthermore, all components required for the physical transmitter were demonstrated to fit within the centercap of a Gans 356 speedcube.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Data mining, also known as big data analysis, has been identified as a critical and challenging process for a variety of applications in real-world problems. Numerous datasets are collected and generated every day to store the information. The rise in…
Data mining, also known as big data analysis, has been identified as a critical and challenging process for a variety of applications in real-world problems. Numerous datasets are collected and generated every day to store the information. The rise in the number of data volumes and data modality has resulted in the increased demand for data mining methods and strategies of finding anomalies, patterns, and correlations within large data sets to predict outcomes. Effective machine learning methods are widely adapted to build the data mining pipeline for various purposes like business understanding, data understanding, data preparation, modeling, evaluation, and deployment. The major challenges for effectively and efficiently mining big data include (1) data heterogeneity and (2) missing data. Heterogeneity is the natural characteristic of big data, as the data is typically collected from different sources with diverse formats. The missing value is the most common issue faced by the heterogeneous data analysis, which resulted from variety of factors including the data collecting processing, user initiatives, erroneous data entries, and so on. In response to these challenges, in this thesis, three main research directions with application scenarios have been investigated: (1) Mining and Formulating Heterogeneous Data, (2) missing value imputation strategy in various application scenarios in both offline and online manner, and (3) missing value imputation for multi-modality data. Multiple strategies with theoretical analysis are presented, and the evaluation of the effectiveness of the proposed algorithms compared with state-of-the-art methods is discussed.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The rapid growth of Internet-of-things (IoT) and artificial intelligence applications have called forth a new computing paradigm--edge computing. Edge computing applications, such as video surveillance, autonomous driving, and augmented reality, are highly computationally intensive and require real-time processing. Current edge…
The rapid growth of Internet-of-things (IoT) and artificial intelligence applications have called forth a new computing paradigm--edge computing. Edge computing applications, such as video surveillance, autonomous driving, and augmented reality, are highly computationally intensive and require real-time processing. Current edge systems are typically based on commodity general-purpose hardware such as Central Processing Units (CPUs) and Graphical Processing Units (GPUs) , which are mainly designed for large, non-time-sensitive jobs in the cloud and do not match the needs of the edge workloads. Also, these systems are usually power hungry and are not suitable for resource-constrained edge deployments. Such application-hardware mismatch calls forth a new computing backbone to support the high-bandwidth, low-latency, and energy-efficient requirements. Also, the new system should be able to support a variety of edge applications with different characteristics. This thesis addresses the above challenges by studying the use of Field Programmable Gate Array (FPGA) -based computing systems for accelerating the edge workloads, from three critical angles. First, it investigates the feasibility of FPGAs for edge computing, in comparison to conventional CPUs and GPUs. Second, it studies the acceleration of common algorithmic characteristics, identified as loop patterns, using FPGAs, and develops a benchmark tool for analyzing the performance of these patterns on different accelerators. Third, it designs a new edge computing platform using multiple clustered FPGAs to provide high-bandwidth and low-latency acceleration of convolutional neural networks (CNNs) widely used in edge applications. Finally, it studies the acceleration of the emerging neural networks, randomly-wired neural networks, on the multi-FPGA platform. The experimental results from this work show that the new generation of workloads requires rethinking the current edge-computing architecture. First, through the acceleration of common loops, it demonstrates that FPGAs can outperform GPUs in specific loops types up to 14 times. Second, it shows the linear scalability of multi-FPGA platforms in accelerating neural networks. Third, it demonstrates the superiority of the new scheduler to optimally place randomly-wired neural networks on multi-FPGA platforms with 81.1 times better throughput than the available scheduling mechanisms.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Applications over a gesture-based human-computer interface (HCI) require a new user login method with gestures because it does not have traditional input devices. For example, a user may be asked to verify the identity to unlock a device in a…
Applications over a gesture-based human-computer interface (HCI) require a new user login method with gestures because it does not have traditional input devices. For example, a user may be asked to verify the identity to unlock a device in a mobile or wearable platform, or sign in to a virtual site over a Virtual Reality (VR) or Augmented Reality (AR) headset, where no physical keyboard or touchscreen is available. This dissertation presents a unified user login framework and an identity input method using 3D In-Air-Handwriting (IAHW), where a user can log in to a virtual site by writing a passcode in the air very fast like a signature. The presented research contains multiple tasks that span motion signal modeling, user authentication, user identification, template protection, and a thorough evaluation in both security and usability. The results of this research show around 0.1% to 3% Equal Error Rate (EER) in user authentication in different conditions as well as 93% accuracy in user identification, on a dataset with over 100 users and two types of gesture input devices. Besides, current research in this area is severely limited by the availability of the gesture input device, datasets, and software tools. This study provides an infrastructure for IAHW research with an open-source library and open datasets of more than 100K IAHW hand movement signals. Additionally, the proposed user identity input method can be extended to a general word input method for both English and Chinese using limited training data. Hence, this dissertation can help the research community in both cybersecurity and HCI to explore IAHW as a new direction, and potentially pave the way to practical adoption of such technologies in the future.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
There is intense interest in adopting computer-aided diagnosis (CAD) systems, particularly those developed based on deep learning algorithms, for applications in a number of medical specialties. However, success of these CAD systems relies heavily on large annotated datasets; otherwise, dee…
There is intense interest in adopting computer-aided diagnosis (CAD) systems, particularly those developed based on deep learning algorithms, for applications in a number of medical specialties. However, success of these CAD systems relies heavily on large annotated datasets; otherwise, deep learning often results in algorithms that perform poorly and lack generalizability. Therefore, this dissertation seeks to address this critical problem: How to develop efficient and effective deep learning algorithms for medical applications where large annotated datasets are unavailable. In doing so, we have outlined three specific aims: (1) acquiring necessary annotations efficiently from human experts; (2) utilizing existing annotations effectively from advanced architecture; and (3) extracting generic knowledge directly from unannotated images. Our extensive experiments indicate that, with a small part of the dataset annotated, the developed deep learning methods can match, or even outperform those that require annotating the entire dataset. The last part of this dissertation presents the importance and application of imaging in healthcare, elaborating on how the developed techniques can impact several key facets of the CAD system for detecting pulmonary embolism. Further research is necessary to determine the feasibility of applying these advanced deep learning technologies in clinical practice, particularly when annotation is limited. Progress in this area has the potential to enable deep learning algorithms to generalize to real clinical data and eventually allow CAD systems to be employed in clinical medicine at the point of care.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The Internet-of-Things (IoT) boosts the vast amount of streaming data. However, even considering the growth of the cloud computing infrastructure, IoT devices will generate two orders of magnitude more than the capacity that centralized data center servers can process or…
The Internet-of-Things (IoT) boosts the vast amount of streaming data. However, even considering the growth of the cloud computing infrastructure, IoT devices will generate two orders of magnitude more than the capacity that centralized data center servers can process or store. This trend inevitability calls for the need for offloading IoT data processing to a decentralized edge computing infrastructure. On the other hand, deep-learning-based applications gain great progress by taking advantage of heavy centralized computing resources for training large models to fit increasingly complicated tasks. Even though large-scale deep learning models perform well in terms of accuracy, their high computational complexity makes it impossible to offload them onto edge devices for real-time inference and timely response. To enable timely IoT services on edge devices, this dissertation addresses the challenge from two perspectives. On the hardware side, a new field-programmable gate array (FPGA)-based framework for binary neural network and an application-specific integrated circuit (ASIC) accelerator for natural scene text interpretation are proposed, with the awareness of the computing resources and power constraint on edge. On the algorithm side, this work presents both the methodology of building more compact models and finding better computation-accuracy trade-off for existing models.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)