Low-Cost Hands-On Engineering Kit and Curriculum for Elementary Level Students and the IRB Process for User-Based Feedback

Description

The creative project was to create a working prototype kit that can teach multiple lessons of the curriculum that the schools or individual families could purchase. The curriculum would be centered on the engineering and science curriculum that is introduced

The creative project was to create a working prototype kit that can teach multiple lessons of the curriculum that the schools or individual families could purchase. The curriculum would be centered on the engineering and science curriculum that is introduced from fourth to sixth grade classes. By creating an interactive kit with curriculum that the students could individualize and use for multiple lessons, the goal is to get them more engaged in the material. The project would consist of a week-long project kit that will introduce different engineering topics for three to four days of the week with mini projects and a final project that pieces together the topics they learned. The biggest take away from the project was how to best get user feedback and fast track the IRB process. The IRB process for a project focusing on minors and teachers will cause some catches in the process. Included is a discussion on the IRB process for a project like this and how to best go through or avoid IRB to ensure the project can progress, while still gathering valuable information.

Date Created
2022-05
Agent

Upper-Extremity Exoskeleton

164630-Thumbnail Image.png
Description

In nature, some animals have an exoskeleton that provides protection, strength, and stability to the organism, but in engineering, an exoskeleton refers to a device that augments or aids human ability. Since the 1890s, engineers have been designing exoskeletal devices,

In nature, some animals have an exoskeleton that provides protection, strength, and stability to the organism, but in engineering, an exoskeleton refers to a device that augments or aids human ability. Since the 1890s, engineers have been designing exoskeletal devices, and conducting research into the possible uses of such devices. These bio-inspired mechanisms do not necessarily relate to a robotic device, though since the 1900s, robotic principles have been applied to the design of exoskeletons making their development a subfield in robotic research. There are different multiple types of exoskeletons that target different areas of the human body, and the targeted area depends on the need of the device. Usually, the devices are developed for medical or military usage; for this project, the focus is on medical development of an automated elbow joint to assist in rehabilitation. This project is being developed for therapeutic purposes in conjunction between Arizona State University and Mayo Clinic. Because of the nature of this project, I am responsible for the development of a lightweight brace that could be applied to the elbow joint that was designed by Dr. Kevin Hollander. In this project, my research centered on the use of the Wilmer orthosis brace design, and its possible application to the exoskeleton elbow being developed for Mayo Clinic. This brace is a lightweight solution that provides extra comfort to the user.

Date Created
2022-05
Agent

Investigating the Effects of Geometry Shapes on FDM Printing Overhangs Without Support

Description

With FDM printing becoming ubiquitous within the commercial and private sectors, there are many who would want to print a part without supports for a variety of reasons. Usually, they want to prints a part with difficult to reach places

With FDM printing becoming ubiquitous within the commercial and private sectors, there are many who would want to print a part without supports for a variety of reasons. Usually, they want to prints a part with difficult to reach places that would make it impossible to remove any support material without damaging the part. I will be going over options to consider when designing parts to ensure a given model will be able to be printed without support material.

Date Created
2021-12
Agent

Soft Actuators for Miniature and Untethered Soft Robots Using Stimuli-Responsive Hydrogels

Description
Soft robots currently rely on additional hardware such as pumps, high voltage supplies,light generation sources, and magnetic field generators for their operation. These components resist miniaturization; thus, embedding them into small-scale soft robots is challenging. This issue limits their applications, especially in

Soft robots currently rely on additional hardware such as pumps, high voltage supplies,light generation sources, and magnetic field generators for their operation. These components resist miniaturization; thus, embedding them into small-scale soft robots is challenging. This issue limits their applications, especially in hyper-redundant mobile robots. This dissertation aims at addressing some of the challenges associated with creating miniature, untethered soft robots that can function without any attachment to external power supplies or receiving any control signals from outside sources. This goal is accomplished by introducing a soft active material and a manufacturing method that together, facilitate the miniaturization of soft robots and effectively supports their autonomous, mobile operation without any connection to outside equipment or human intervention. The soft active material presented here is a hydrogel based on a polymer called poly(Nisopropylacrylamide) (PNIPAAm). This hydrogel responds to changes in the temperature and responds by expanding or contracting. A major challenge regarding PNIPAAm-based hydrogels is their slow response. This challenge is addressed by introducing a mixedsolvent photo-polymerization technique that alters the pore structure of the hydrogel and facilitates the water transport and thus the rate of volume change. Using this technique, the re-swelling response time of hydrogels is reduced to 2:4min – over 25 times faster than hydrogels demonstrated previously. The material properties of hydrogels including their response rate and Young’s modulus are tuned simultaneously. The one-step photopolymerization using UV light is performed in under 15 sec, which is a significant improvement over thermo-polymerization, which takes anywhere between a few minutes to several hours. Photopolymerization is key towards simplifying recipes, improving access to these techniques, and making them tractable for iterative design processes. To address the manufacturing challenges, soft voxel actuators (SVAs) are presented. SVAs are actuated by electrical currents through Joule heating. SVAs weighing only 100 mg require small footprint microcontrollers for their operation which can be embedded in the robotic system. The advantages of hydrogel-based SVAs are demonstrated through different robotic platforms namely a hyper-redundant manipulator with 16 SVAs, an untethered miniature robot for mobile underwater applications using 8 SVAs, and a gripper using 32 SVAs.
Date Created
2021
Agent

Comparison of Evolutionary Strategies and Reinforcement Learning Algorithms on Custom and Non-Conventional Environment

161938-Thumbnail Image.png
Description
Reinforcement Learning(RL) algorithms have made a remarkable contribution in the eld of robotics and training human-like agents. On the other hand, Evolutionary Algorithms(EA) are not well explored and promoted to use in the robotics field. However, they have an excellent

Reinforcement Learning(RL) algorithms have made a remarkable contribution in the eld of robotics and training human-like agents. On the other hand, Evolutionary Algorithms(EA) are not well explored and promoted to use in the robotics field. However, they have an excellent potential to perform well. In thesis work, various RL learning algorithms like Q-learning, Deep Deterministic Policy Gradient(DDPG), and Evolutionary Algorithms(EA) like Harmony Search Algorithm(HSA) are tested for a customized Penalty Kick Robot environment. The experiments are done with both discrete and continuous action space for a penalty kick agent. The main goal is to identify which algorithm suites best in which scenario. Furthermore, a goalkeeper agent is also introduced to block the ball from reaching the goal post using the multiagent learning algorithm.
Date Created
2021
Agent

Magnetic Needle Steering for Medical Applications

161936-Thumbnail Image.png
Description
Many medical procedures, like surgeries, deal with the physical manipulation of sensitive internal tissues. Over time, new medical tools and techniques have been developed to improve the safety and efficacy of these procedures. Despite the leaps and bounds of progress

Many medical procedures, like surgeries, deal with the physical manipulation of sensitive internal tissues. Over time, new medical tools and techniques have been developed to improve the safety and efficacy of these procedures. Despite the leaps and bounds of progress made up to the present day, three major obstacles (among others) persist, bleeding, pain, and the risk of infection. Advances in minimally invasive treatments have transformed many formerly risky surgical procedures into very safe and highly successful routines. Minimally invasive surgeries are characterized by small incision profiles compared to the large incisions in open surgeries, minimizing the aforementioned issues. Minimally invasive procedures lead to several benefits, such as shorter recovery time, fewer complications, and less postoperative pain. In minimally invasive surgery, doctors use various techniques to operate with less damage to the body than open surgery. Today, these procedures have an established, successful history and promising future. Steerable needles are one of the tools proposed for minimally invasive operations. Needle steering is a method for guiding a long, flexible needle through curved paths to reach targets deep in the body, eliminating the need for large incisions. In this dissertation, we present a new needle steering technology: magnetic needle steering. This technology is proposed to address the limitations of conventional needle steering that hindered its clinical applications. Magnetic needle steering eliminates excessive tissue damage, restrictions of the minimum radius of curvature, and the need for a complex nonlinear model, to name a few. It also allows fabricating the needle shaft out of soft and tissue-compliant materials. This is achieved by first developing an electromagnetic coil system capable of producing desired magnetic fields and gradients; then, a magnetically actuated needle is designed, and its effectiveness is experimentally evaluated. Afterward, the scalability of this technique was tested using permanent magnets controlled with a robotic arm. Furthermore, different configurations of permanent magnets and their influence on the magnetic field are investigated, enabling the possibility of designing a desired magnetic field for a specific surgical procedure and operation on a particular organ. Finally, potential future directions towards animal studies and clinical trials are discussed.
Date Created
2021
Agent