Salomon's House: A Synthetic Biology Science Fiction Prototype

Description
Based upon the idea of a "science fiction prototype" as originally designed by Brian David Johnson, Salomon’s House is a science fiction novella, written to be as scientifically accurate as possible and to present a balanced account of the potential

Based upon the idea of a "science fiction prototype" as originally designed by Brian David Johnson, Salomon’s House is a science fiction novella, written to be as scientifically accurate as possible and to present a balanced account of the potential social consequences of genetic engineering. It aims to explore the answers to some core questions that have plagued scientists and philosophers alike while entertaining its readers with a punchy, character-driven narrative.
Date Created
2023-05
Agent

The Failures, Successes, and Future of the Modern Biocontainment Paradigm

Description

The debate around genetic engineering has permeated society for decades. A crucial aspect of this debate is the containment of genetically engineered organisms. This project outlines the three types of biocontainment and the conclusions drawn about each in the form

The debate around genetic engineering has permeated society for decades. A crucial aspect of this debate is the containment of genetically engineered organisms. This project outlines the three types of biocontainment and the conclusions drawn about each in the form of policy briefs. These briefs utilize case studies to sketch an overview of the current biocontainment paradigm in the United States. In addition, there is a brief discussing the major conclusions drawn from the case studies, as well as a brief containing useful definitions.

Date Created
2023-05
Agent

Placeless: An Ethnography of Biotechnology in the San Francisco Bay Area

171759-Thumbnail Image.png
Description
This dissertation investigates the relationship between the universal aspirationsof technology and the particularity of place, by way of close participant observation with biotechnology companies in the San Francisco Bay Area. Its central claim is that the aspiration to placelessness in

This dissertation investigates the relationship between the universal aspirationsof technology and the particularity of place, by way of close participant observation with biotechnology companies in the San Francisco Bay Area. Its central claim is that the aspiration to placelessness in the development of science and technology operates as material configurations, modes of subjectivation, and historical conditions particular to places. Following Foucault’s late work in ethics, I conduct a series of sustained investigations into the reflective modes of critique biotechnologists make in thinking of and being in the San Francisco Bay Area. I show the ways the aspiration to placelessness exists in place at four different vantage points: the organization, the city, the broader cultural history of the region, and the practices of self-cultivation undertaken by technologists. Within biotechnology organizations, biological work is digitized and automated only through an intensification of bespoke material infrastructures, physical labor, and tacit institutional knowledge. Biotechnology organizations have come into existence through a history of settler colonial erasure, industrial devastation, post-war industrial decay, and urban renewal in Bay Area industrial suburbs and neighborhoods. A nostalgic imagination of the broader San Francisco Bay Area and its history of counterculture become mobilized as an antidote to the felt lifelessness of these forms of urban renewal and technological order and incorporated back into engineering practice. Finally, the technologist themselves must aspire to placelessness, in ways critiqued by local landless people’s movements who offer an alternative ethic to place in their imperative to gentrifiers to “move home with your parents.” I conclude by reflecting on the ways interlocutors at each of these vantage points are actively exploring the creation of more enduring relationships to place in the face of the unintended but intensified forms of social suffering in zones of technological innovation.
Date Created
2022
Agent

Advancing Methods to Monitor and Assess Personal Ultraviolet Radiation Exposure

168395-Thumbnail Image.png
Description
Ultraviolet (UV) radiation is the most well-known cause of skin cancer, and skin cancer is the most common type of cancer in the United States. People are exposed to UV rays when they engage in outdoor activities, particularly exercise, which

Ultraviolet (UV) radiation is the most well-known cause of skin cancer, and skin cancer is the most common type of cancer in the United States. People are exposed to UV rays when they engage in outdoor activities, particularly exercise, which is an important health behavior. Thus, researchers and the general public have shown increasing interest in measuring UV exposures during outdoor physical activity using wearable sensors. However, minimal research exists at the intersection of UV sensors, personal exposure, adaptive behavior due to exposures, and risk of skin damage. Three studies are presented in this dissertation: (1) a state-of-the-art review that synthesizes the current academic and grey literature surrounding personal UV sensing technologies; (2) the first study to investigate the effects of specific physical activity types, skin type, and solar angle on personal exposure in different outdoor environmental contexts; and (3) a study that develops recommendations for future UV-sensing wearables based on follow-up interviews with participants from the second study, who used a wrist-worn UV sensor while exercising outdoors. The first study provides recommendations for 13 commercially available sensors that are most suitable for various types of research or personal use. The review findings will help guide researchers in future studies assessing UV exposure with wearables during physical activity. The second study outlines the development of predictive models for individual-level UV exposure, which are also provided. These models recommend the inclusion of sky view factor, solar angle, activity type, urban environment type, and the directions traveled during physical activity. Finally, based on user feedback, the third study recommends that future UV-sensing wearables should be multi-functional watches where users can toggle between showing their UV exposure results in cumulative and countdown formats, which is intuitive and aesthetically pleasing to users.
Date Created
2021
Agent

Literature Review and Definitions

165212-Thumbnail Image.png
Description

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific conditions. As interest in this field has grown over the last few decades, researchers in molecular and synthetic biology have discovered many novel ways to accomplish this containment, but the current literature faces some ambiguity and overlap in the ways they describe various biocontainment methods. Additionally, the way publications report the robustness of the techniques they test is inconsistent, making it uncertain how regulators could assess the safety and efficacy of these methods if they are eventually to be used in practical, consumer applications. This project organizes and clarifies the descriptions of these techniques within an interactive flowchart, linking to definitions and references to publications on each within an Excel table. For each reference, variables such as the containment approach, testing methods, and results reported are compiled, to illustrate the varying degrees to which these techniques are tested.

Date Created
2022-05
Agent

Dilly Final Project (Spring 2022)

165211-Thumbnail Image.png
Description

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific conditions. As interest in this field has grown over the last few decades, researchers in molecular and synthetic biology have discovered many novel ways to accomplish this containment, but the current literature faces some ambiguity and overlap in the ways they describe various biocontainment methods. Additionally, the way publications report the robustness of the techniques they test is inconsistent, making it uncertain how regulators could assess the safety and efficacy of these methods if they are eventually to be used in practical, consumer applications. This project organizes and clarifies the descriptions of these techniques within an interactive flowchart, linking to definitions and references to publications on each within an Excel table. For each reference, variables such as the containment approach, testing methods, and results reported are compiled, to illustrate the varying degrees to which these techniques are tested.

Date Created
2022-05
Agent

Containment Flowchart With Links

165210-Thumbnail Image.png
Description

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific conditions. As interest in this field has grown over the last few decades, researchers in molecular and synthetic biology have discovered many novel ways to accomplish this containment, but the current literature faces some ambiguity and overlap in the ways they describe various biocontainment methods. Additionally, the way publications report the robustness of the techniques they test is inconsistent, making it uncertain how regulators could assess the safety and efficacy of these methods if they are eventually to be used in practical, consumer applications. This project organizes and clarifies the descriptions of these techniques within an interactive flowchart, linking to definitions and references to publications on each within an Excel table. For each reference, variables such as the containment approach, testing methods, and results reported are compiled, to illustrate the varying degrees to which these techniques are tested.

Date Created
2022-05
Agent

Testing and Regulation of Genetically Engineered Biological Containment Techniques

Description
Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific conditions. As interest in this field has grown over the last few decades, researchers in molecular and synthetic biology have discovered many novel ways to accomplish this containment, but the current literature faces some ambiguity and overlap in the ways they describe various biocontainment methods. Additionally, the way publications report the robustness of the techniques they test is inconsistent, making it uncertain how regulators could assess the safety and efficacy of these methods if they are eventually to be used in practical, consumer applications. This project organizes and clarifies the descriptions of these techniques within an interactive flowchart, linking to definitions and references to publications on each within an Excel table. For each reference, variables such as the containment approach, testing methods, and results reported are compiled, to illustrate the varying degrees to which these techniques are tested.
Date Created
2022-05
Agent

Mapping the Implications of AI and Machine Learning in the Healthcare Market

Description

Within the last decade, there has been a lot of hype surrounding the potential medical applications of artificial intelligence (AI) and machine learning (ML) technologies. During the same timespan, big tech companies such as Microsoft, Apple, Amazon, and Google have

Within the last decade, there has been a lot of hype surrounding the potential medical applications of artificial intelligence (AI) and machine learning (ML) technologies. During the same timespan, big tech companies such as Microsoft, Apple, Amazon, and Google have entered the healthcare market as developers of health-based AI and ML technologies. This project aims to create a comprehensive map of the existing health-AI market landscape for the standard biotech reader and to provide a critical commentary on the existing market structure.

Date Created
2021-05
Agent

Benefits and Difficulties of Telegenetics for Genetic Counseling During the COVID-19 Pandemic

148279-Thumbnail Image.png
Description

Telehealth is the use of information and communications technology by healthcare professionals to provide care to patients. When this technology is being used specifically for genetic services, it is called telegenetics. Previous studies that examine the small-scale use of telegenetics

Telehealth is the use of information and communications technology by healthcare professionals to provide care to patients. When this technology is being used specifically for genetic services, it is called telegenetics. Previous studies that examine the small-scale use of telegenetics for the field of genetic counseling have shown that the technology may provide a way to address the problem of patient access to genetic counseling services, assuming its efficacy. Patients are satisfied with telegenetics, but genetic counselors hold more reservations. Because of this and the many regulatory barriers in its way, telegenetics was only slowly being adopted when the coronavirus was declared a pandemic in March 2020. The pandemic forced a switch to telegenetics at a scale never seen before. This study begins with a literature review to assess the situation of telegenetics before and during the pandemic. It then surveys practicing genetic counselors in Arizona in order to reveal what they think about telegenetics when it is the encouraged, and sometimes only, modality. Since the literature review revealed that genetic counselors, not patients, are the ones with concerns, it is important to hear their points of view. This study reveals that genetic counselors want telegenetics as an option but not as a replacement for in-person appointments. All respondents agreed that increased patient access is the main benefit of telegenetics. There are reported challenges that must be overcome, but genetic counselors in Arizona overwhelming believe that telegenetics use will be continued in the future.

Date Created
2021-05
Agent