Biology question generation from a semantic network

154146-Thumbnail Image.png
Description
Science instructors need questions for use in exams, homework assignments, class discussions, reviews, and other instructional activities. Textbooks never have enough questions, so instructors must find them from other sources or generate their own questions. In order to

Science instructors need questions for use in exams, homework assignments, class discussions, reviews, and other instructional activities. Textbooks never have enough questions, so instructors must find them from other sources or generate their own questions. In order to supply instructors with biology questions, a semantic network approach was developed for generating open response biology questions. The generated questions were compared to professional authorized questions.

To boost students’ learning experience, adaptive selection was built on the generated questions. Bayesian Knowledge Tracing was used as embedded assessment of the student’s current competence so that a suitable question could be selected based on the student’s previous performance. A between-subjects experiment with 42 participants was performed, where half of the participants studied with adaptive selected questions and the rest studied with mal-adaptive order of questions. Both groups significantly improved their test scores, and the participants in adaptive group registered larger learning gains than participants in the control group.

To explore the possibility of generating rich instructional feedback for machine-generated questions, a question-paragraph mapping task was identified. Given a set of questions and a list of paragraphs for a textbook, the goal of the task was to map the related paragraphs to each question. An algorithm was developed whose performance was comparable to human annotators.

A multiple-choice question with high quality distractors (incorrect answers) can be pedagogically valuable as well as being much easier to grade than open-response questions. Thus, an algorithm was developed to generate good distractors for multiple-choice questions. The machine-generated multiple-choice questions were compared to human-generated questions in terms of three measures: question difficulty, question discrimination and distractor usefulness. By recruiting 200 participants from Amazon Mechanical Turk, it turned out that the two types of questions performed very closely on all the three measures.
Date Created
2015
Agent

Answering deep queries specified in natural language with respect to a frame based knowledge base and developing related natural language understanding components

154047-Thumbnail Image.png
Description
Question Answering has been under active research for decades, but it has recently taken the spotlight following IBM Watson's success in Jeopardy! and digital assistants such as Apple's Siri, Google Now, and Microsoft Cortana through every smart-phone and browser. However,

Question Answering has been under active research for decades, but it has recently taken the spotlight following IBM Watson's success in Jeopardy! and digital assistants such as Apple's Siri, Google Now, and Microsoft Cortana through every smart-phone and browser. However, most of the research in Question Answering aims at factual questions rather than deep ones such as ``How'' and ``Why'' questions.

In this dissertation, I suggest a different approach in tackling this problem. We believe that the answers of deep questions need to be formally defined before found.

Because these answers must be defined based on something, it is better to be more structural in natural language text; I define Knowledge Description Graphs (KDGs), a graphical structure containing information about events, entities, and classes. We then propose formulations and algorithms to construct KDGs from a frame-based knowledge base, define the answers of various ``How'' and ``Why'' questions with respect to KDGs, and suggest how to obtain the answers from KDGs using Answer Set Programming. Moreover, I discuss how to derive missing information in constructing KDGs when the knowledge base is under-specified and how to answer many factual question types with respect to the knowledge base.

After having the answers of various questions with respect to a knowledge base, I extend our research to use natural language text in specifying deep questions and knowledge base, generate natural language text from those specification. Toward these goals, I developed NL2KR, a system which helps in translating natural language to formal language. I show NL2KR's use in translating ``How'' and ``Why'' questions, and generating simple natural language sentences from natural language KDG specification. Finally, I discuss applications of the components I developed in Natural Language Understanding.
Date Created
2015
Agent

Planning challenges in human-robot teaming

153091-Thumbnail Image.png
Description
As robotic technology and its various uses grow steadily more complex and ubiquitous, humans are coming into increasing contact with robotic agents. A large portion of such contact is cooperative interaction, where both humans and robots are required to work

As robotic technology and its various uses grow steadily more complex and ubiquitous, humans are coming into increasing contact with robotic agents. A large portion of such contact is cooperative interaction, where both humans and robots are required to work on the same application towards achieving common goals. These application scenarios are characterized by a need to leverage the strengths of each agent as part of a unified team to reach those common goals. To ensure that the robotic agent is truly a contributing team-member, it must exhibit some degree of autonomy in achieving goals that have been delegated to it. Indeed, a significant portion of the utility of such human-robot teams derives from the delegation of goals to the robot, and autonomy on the part of the robot in achieving those goals. In order to be considered truly autonomous, the robot must be able to make its own plans to achieve the goals assigned to it, with only minimal direction and assistance from the human.

Automated planning provides the solution to this problem -- indeed, one of the main motivations that underpinned the beginnings of the field of automated planning was to provide planning support for Shakey the robot with the STRIPS system. For long, however, automated planners suffered from scalability issues that precluded their application to real world, real time robotic systems. Recent decades have seen a gradual abeyance of those issues, and fast planning systems are now the norm rather than the exception. However, some of these advances in speedup and scalability have been achieved by ignoring or abstracting out challenges that real world integrated robotic systems must confront.

In this work, the problem of planning for human-hobot teaming is introduced. The central idea -- the use of automated planning systems as mediators in such human-robot teaming scenarios -- and the main challenges inspired from real world scenarios that must be addressed in order to make such planning seamless are presented: (i) Goals which can be specified or changed at execution time, after the planning process has completed; (ii) Worlds and scenarios where the state changes dynamically while a previous plan is executing; (iii) Models that are incomplete and can be changed during execution; and (iv) Information about the human agent's plan and intentions that can be used for coordination. These challenges are compounded by the fact that the human-robot team must execute in an open world, rife with dynamic events and other agents; and in a manner that encourages the exchange of information between the human and the robot. As an answer to these challenges, implemented solutions and a fielded prototype that combines all of those solutions into one planning system are discussed. Results from running this prototype in real world scenarios are presented, and extensions to some of the solutions are offered as appropriate.
Date Created
2014
Agent

Planning with incomplete user preferences and domain models

152834-Thumbnail Image.png
Description
Current work in planning assumes that user preferences and/or domain dynamics are completely specified in advance, and aims to search for a single solution plan to satisfy these. In many real world scenarios, however, providing a complete specification of user

Current work in planning assumes that user preferences and/or domain dynamics are completely specified in advance, and aims to search for a single solution plan to satisfy these. In many real world scenarios, however, providing a complete specification of user preferences and domain dynamics becomes a time-consuming and error-prone task. More often than not, a user may provide no knowledge or at best partial knowledge of her preferences with respect to a desired plan. Similarly, a domain writer may only be able to determine certain parts, not all, of the model of some actions in a domain. Such modeling issues requires new concepts on what a solution should be, and novel techniques in solving the problem. When user preferences are incomplete, rather than presenting a single plan, the planner must instead provide a set of plans containing one or more plans that are similar to the one that the user prefers. This research first proposes the usage of different measures to capture the quality of such plan sets. These are domain-independent distance measures based on plan elements if no knowledge of the user preferences is given, or the Integrated Preference Function measure in case incomplete knowledge of such preferences is provided. It then investigates various heuristic approaches to generate plan sets in accordance with these measures, and presents empirical results demonstrating the promise of the methods. The second part of this research addresses planning problems with incomplete domain models, specifically those annotated with possible preconditions and effects of actions. It formalizes the notion of plan robustness capturing the probability of success for plans during execution. A method of assessing plan robustness based on the weighted model counting approach is proposed. Two approaches for synthesizing robust plans are introduced. The first one compiles the robust plan synthesis problems to the conformant probabilistic planning problems. The second approximates the robustness measure with lower and upper bounds, incorporating them into a stochastic local search for estimating distance heuristic to a goal state. The resulting planner outperforms a state-of-the-art planner that can handle incomplete domain models in both plan quality and planning time.
Date Created
2014
Agent

Towards efficient online reasoning about actions

152790-Thumbnail Image.png
Description
Modeling dynamic systems is an interesting problem in Knowledge Representation (KR) due to their usefulness in reasoning about real-world environments. In order to effectively do this, a number of different formalisms have been considered ranging from low-level languages, such as

Modeling dynamic systems is an interesting problem in Knowledge Representation (KR) due to their usefulness in reasoning about real-world environments. In order to effectively do this, a number of different formalisms have been considered ranging from low-level languages, such as Answer Set Programming (ASP), to high-level action languages, such as C+ and BC. These languages show a lot of promise over many traditional approaches as they allow a developer to automate many tasks which require reasoning within dynamic environments in a succinct and elaboration tolerant manner. However, despite their strengths, they are still insufficient for modeling many systems, especially those of non-trivial scale or that require the ability to cope with exceptions which occur during execution, such as unexpected events or unintended consequences to actions which have been performed. In order to address these challenges, a theoretical framework is created which focuses on improving the feasibility of applying KR techniques to such problems. The framework is centered on the action language BC+, which integrates many of the strengths of existing KR formalisms, and provides the ability to perform efficient reasoning in an incremental fashion while handling exceptions which occur during execution. The result is a developer friendly formalism suitable for performing reasoning in an online environment. Finally, the newly enhanced Cplus2ASP 2 is introduced, which provides a number of improvements over the original version. These improvements include implementing BC+ among several additional languages, providing enhanced developer support, and exhibiting a significant performance increase over its predecessors and similar systems.
Date Created
2014
Agent

Representing, reasoning and answering questions about biological pathways various applications

152428-Thumbnail Image.png
Description
Biological organisms are made up of cells containing numerous interconnected biochemical processes. Diseases occur when normal functionality of these processes is disrupted, manifesting as disease symptoms. Thus, understanding these biochemical processes and their interrelationships is a primary task in biomedical

Biological organisms are made up of cells containing numerous interconnected biochemical processes. Diseases occur when normal functionality of these processes is disrupted, manifesting as disease symptoms. Thus, understanding these biochemical processes and their interrelationships is a primary task in biomedical research and a prerequisite for activities including diagnosing diseases and drug development. Scientists studying these interconnected processes have identified various pathways involved in drug metabolism, diseases, and signal transduction, etc. High-throughput technologies, new algorithms and speed improvements over the last decade have resulted in deeper knowledge about biological systems, leading to more refined pathways. Such pathways tend to be large and complex, making it difficult for an individual to remember all aspects. Thus, computer models are needed to represent and analyze them. The refinement activity itself requires reasoning with a pathway model by posing queries against it and comparing the results against the real biological system. Many existing models focus on structural and/or factoid questions, relying on surface-level information. These are generally not the kind of questions that a biologist may ask someone to test their understanding of biological processes. Examples of questions requiring understanding of biological processes are available in introductory college level biology text books. Such questions serve as a model for the question answering system developed in this thesis. Thus, the main goal of this thesis is to develop a system that allows the encoding of knowledge about biological pathways to answer questions demonstrating understanding of the pathways. To that end, a language is developed to specify a pathway and pose questions against it. Some existing tools are modified and used to accomplish this goal. The utility of the framework developed in this thesis is illustrated with applications in the biological domain. Finally, the question answering system is used in real world applications by extracting pathway knowledge from text and answering questions related to drug development.
Date Created
2014
Agent

An intelligent co-reference resolver for Winograd schema sentences containing resolved semantic entities

152168-Thumbnail Image.png
Description
There has been a lot of research in the field of artificial intelligence about thinking machines. Alan Turing proposed a test to observe a machine's intelligent behaviour with respect to natural language conversation. The Winograd schema challenge is suggested as

There has been a lot of research in the field of artificial intelligence about thinking machines. Alan Turing proposed a test to observe a machine's intelligent behaviour with respect to natural language conversation. The Winograd schema challenge is suggested as an alternative, to the Turing test. It needs inferencing capabilities, reasoning abilities and background knowledge to get the answer right. It involves a coreference resolution task in which a machine is given a sentence containing a situation which involves two entities, one pronoun and some more information about the situation and the machine has to come up with the right resolution of a pronoun to one of the entities. The complexity of the task is increased with the fact that the Winograd sentences are not constrained by one domain or specific sentence structure and it also contains a lot of human proper names. This modification makes the task of association of entities, to one particular word in the sentence, to derive the answer, difficult. I have developed a pronoun resolver system for the confined domain Winograd sentences. I have developed a classifier or filter which takes input sentences and decides to accept or reject them based on a particular criteria. Once the sentence is accepted. I run parsers on it to obtain the detailed analysis. Furthermore I have developed four answering modules which use world knowledge and inferencing mechanisms to try and resolve the pronoun. The four techniques I use are : ConceptNet knowledgebase, Search engine pattern counts,Narrative event chains and sentiment analysis. I have developed a particular aggregation mechanism for the answers from these modules to arrive at a final answer. I have used caching technique for the association relations that I obtain for different modules, so as to boost the performance. I run my system on the standard ‘nyu dataset’ of Winograd sentences and questions. This dataset is then restricted, by my classifier, to 90 sentences. I evaluate my system on this 90 sentence dataset. When I compare my results against the state of the art system on the same dataset, I get nearly 4.5 % improvement in the restricted domain.
Date Created
2013
Agent

Robust implementation of NL2KR system and it's application in iRODS domain

151963-Thumbnail Image.png
Description
Currently, to interact with computer based systems one needs to learn the specific interface language of that system. In most cases, interaction would be much easier if it could be done in natural language. For that, we will need a

Currently, to interact with computer based systems one needs to learn the specific interface language of that system. In most cases, interaction would be much easier if it could be done in natural language. For that, we will need a module which understands natural language and automatically translates it to the interface language of the system. NL2KR (Natural language to knowledge representation) v.1 system is a prototype of such a system. It is a learning based system that learns new meanings of words in terms of lambda-calculus formulas given an initial lexicon of some words and their meanings and a training corpus of sentences with their translations. As a part of this thesis, we take the prototype NL2KR v.1 system and enhance various components of it to make it usable for somewhat substantial and useful interface languages. We revamped the lexicon learning components, Inverse-lambda and Generalization modules, and redesigned the lexicon learning algorithm which uses these components to learn new meanings of words. Similarly, we re-developed an inbuilt parser of the system in Answer Set Programming (ASP) and also integrated external parser with the system. Apart from this, we added some new rich features like various system configurations and memory cache in the learning component of the NL2KR system. These enhancements helped in learning more meanings of the words, boosted performance of the system by reducing the computation time by a factor of 8 and improved the usability of the system. We evaluated the NL2KR system on iRODS domain. iRODS is a rule-oriented data system, which helps in managing large set of computer files using policies. This system provides a Rule-Oriented interface langauge whose syntactic structure is like any procedural programming language (eg. C). However, direct translation of natural language (NL) to this interface language is difficult. So, for automatic translation of NL to this language, we define a simple intermediate Policy Declarative Language (IPDL) to represent the knowledge in the policies, which then can be directly translated to iRODS rules. We develop a corpus of 100 policy statements and manually translate them to IPDL langauge. This corpus is then used for the evaluation of NL2KR system. We performed 10 fold cross validation on the system. Furthermore, using this corpus, we illustrate how different components of our NL2KR system work.
Date Created
2013
Agent

Gene regulatory networks: modeling, intervention and context

151940-Thumbnail Image.png
Description
Biological systems are complex in many dimensions as endless transportation and communication networks all function simultaneously. Our ability to intervene within both healthy and diseased systems is tied directly to our ability to understand and model core functionality. The progress

Biological systems are complex in many dimensions as endless transportation and communication networks all function simultaneously. Our ability to intervene within both healthy and diseased systems is tied directly to our ability to understand and model core functionality. The progress in increasingly accurate and thorough high-throughput measurement technologies has provided a deluge of data from which we may attempt to infer a representation of the true genetic regulatory system. A gene regulatory network model, if accurate enough, may allow us to perform hypothesis testing in the form of computational experiments. Of great importance to modeling accuracy is the acknowledgment of biological contexts within the models -- i.e. recognizing the heterogeneous nature of the true biological system and the data it generates. This marriage of engineering, mathematics and computer science with systems biology creates a cycle of progress between computer simulation and lab experimentation, rapidly translating interventions and treatments for patients from the bench to the bedside. This dissertation will first discuss the landscape for modeling the biological system, explore the identification of targets for intervention in Boolean network models of biological interactions, and explore context specificity both in new graphical depictions of models embodying context-specific genomic regulation and in novel analysis approaches designed to reveal embedded contextual information. Overall, the dissertation will explore a spectrum of biological modeling with a goal towards therapeutic intervention, with both formal and informal notions of biological context, in such a way that will enable future work to have an even greater impact in terms of direct patient benefit on an individualized level.
Date Created
2013
Agent

Advancing biomedical named entity recognition with multivariate feature selection and semantically motivated features

151867-Thumbnail Image.png
Description
Automating aspects of biocuration through biomedical information extraction could significantly impact biomedical research by enabling greater biocuration throughput and improving the feasibility of a wider scope. An important step in biomedical information extraction systems is named entity recognition (NER), where

Automating aspects of biocuration through biomedical information extraction could significantly impact biomedical research by enabling greater biocuration throughput and improving the feasibility of a wider scope. An important step in biomedical information extraction systems is named entity recognition (NER), where mentions of entities such as proteins and diseases are located within natural-language text and their semantic type is determined. This step is critical for later tasks in an information extraction pipeline, including normalization and relationship extraction. BANNER is a benchmark biomedical NER system using linear-chain conditional random fields and the rich feature set approach. A case study with BANNER locating genes and proteins in biomedical literature is described. The first corpus for disease NER adequate for use as training data is introduced, and employed in a case study of disease NER. The first corpus locating adverse drug reactions (ADRs) in user posts to a health-related social website is also described, and a system to locate and identify ADRs in social media text is created and evaluated. The rich feature set approach to creating NER feature sets is argued to be subject to diminishing returns, implying that additional improvements may require more sophisticated methods for creating the feature set. This motivates the first application of multivariate feature selection with filters and false discovery rate analysis to biomedical NER, resulting in a feature set at least 3 orders of magnitude smaller than the set created by the rich feature set approach. Finally, two novel approaches to NER by modeling the semantics of token sequences are introduced. The first method focuses on the sequence content by using language models to determine whether a sequence resembles entries in a lexicon of entity names or text from an unlabeled corpus more closely. The second method models the distributional semantics of token sequences, determining the similarity between a potential mention and the token sequences from the training data by analyzing the contexts where each sequence appears in a large unlabeled corpus. The second method is shown to improve the performance of BANNER on multiple data sets.
Date Created
2013
Agent