Biotic vs. Abiotic Processes in Hyperarid Exoplanetary Atmospheres

133545-Thumbnail Image.png
Description
Exoplanetary research is a key component in the search for life outside of Earth and the Solar System. It provides people with a sense of wonder about their role in the evolution of the Universe and helps scientists understand life's

Exoplanetary research is a key component in the search for life outside of Earth and the Solar System. It provides people with a sense of wonder about their role in the evolution of the Universe and helps scientists understand life's potential throughout a seemingly infinite number of unique exoplanetary environments. The purpose of this research project is to identify the most plausible biosignature gases that would indicate life's existence in the context of hyperarid exoplanetary atmospheres. This analysis first defines hyperarid environments based on known analogues for Earth and Mars and discusses the methods that researchers use to determine whether or not an exoplanet is hyperarid. It then identifies the most relevant biosignatures to focus on based on the scientific literature on analogous hyperarid environments and ranks them in order from greatest to least biological plausibility within extreme hyperarid conditions. The research found that methane (CH4) and nitrous oxide (N2O) are the most helpful biosignature gases for these particular exoplanetary scenarios based on reviews of the literature. The research also found that oxygen (O2), hydrogen sulfide (H2S) and ammonia (NH3) are the biosignatures with the least likely biological origin and the highest likelihood of false positive detection. This analysis also found that carbon dioxide (CO2) is a useful companion biosignature within these environments when paired with either CH4 or the pairing of hydrogen (H2) and carbon monoxide (CO). This information will provide a useful road map for dealing with the detection of biosignatures within hyperarid exoplanetary atmospheres during future astrobiology research missions.
Date Created
2018-05
Agent

Assessment of the Vertical Stratification of Microbial Community Structure in Permafrost Peatlands

133650-Thumbnail Image.png
Description
Peatlands are a type of wetlands where the rate of accumulation of organic matter exceed the rate of decomposition and have accumulated more than 30 cm of peat (Joosten and Clark, 2002). Peatlands store approximately 30% of all terrestrial carbon

Peatlands are a type of wetlands where the rate of accumulation of organic matter exceed the rate of decomposition and have accumulated more than 30 cm of peat (Joosten and Clark, 2002). Peatlands store approximately 30% of all terrestrial carbon as recalcitrant peat, partially decomposed plant and microbial biomass, while simultaneously producing almost 40% of the globally emitted methane (Schmidt et al., 2016), making peatlands an important component of the carbon budgets. Published research indicates that the efficiency of carbon usage among microbial communities can determine the soil-carbon response to rising temperatures (Allison et al. 2010). By determining carbon consumption in peatland soils, total community respiration response, and community structure change with additions, models of carbon use efficiency in permafrost peatlands will be well-informed and have a better understanding of how the peatlands will respond to, and utilize, increased availability of carbon compounds due to the melting permafrost. To do this, we will sequence Lutose deep core samples to observe baseline microbial community structure at different depths and different age-gradients, construct substrate incubations of glucose and propionate and observe community respiration response via a gas chromatography flame ionization detector, track the glucose and propionate additions with high-performance liquid chromatography (HPLC), and sequence the samples once more to determine if there was a deviation from the initial community structure obtained prior to the incubations. We found that our initial sequencing data was supported by previous work (Lin et al., 2014), however we were unable to sequence samples post-incubation due to time constraints. In this sequencing analysis we found that the strongest variable that made samples biologically similar was the age-gradient site in which they were extracted. We found that the group with glucose additions produced the most carbon dioxide compared with the other treatments, but was not the treatment that dominated the production of methane. Finally, in the HPLC samples that were analyzed, we found that glucose is likely forming the most by-product accumulation from mass balance calculations, while propionate is likely forming the least. Future experimentation should focus on the shortcomings of this experiment. Further analysis of 16S rRNA sequencing data from after the incubations should be analyzed to determine the change in microbial community structure throughout the experiment. Furthermore, HPLC analysis for the several samples need to be done and followed up with mass balance to determine where the added glucose and propionate are being allocated within the soil. Once these pieces of the puzzle are put into place, our original question of how the microbial community structure changes at different depths and age-gradients within permafrost peatlands will be conclusively answered.
Date Created
2018-05
Agent

Over-expression of a putative multi-heme cytochrome c from Heliobacterium modesticaldum

133710-Thumbnail Image.png
Description
Heliobacterium modesticaldum (H. modesticaldum) is an anaerobic photoheterotroph that can fix nitrogen (N2) and produce molecular hydrogen (H2). Recently, the Redding and Jones labs created a microbial photoelectrosynthesis cell that utilized these properties to produce molecular hydrogen using electrons provided

Heliobacterium modesticaldum (H. modesticaldum) is an anaerobic photoheterotroph that can fix nitrogen (N2) and produce molecular hydrogen (H2). Recently, the Redding and Jones labs created a microbial photoelectrosynthesis cell that utilized these properties to produce molecular hydrogen using electrons provided by a cathode via a chemical mediator. Although this light-driven creation of fuel within a microbial electrochemical cell was the first of its kind, its production rate of hydrogen was low. It was hypothesized that the injection of electrons into H. modesticaldum was a rate-limiting step in H2 production. Within the H. modesticaldum genome, there is a gene (HM1_0653) that encodes a multi-heme cytochrome c that may be directly involved in this step. From past transcriptomic experiments, this gene is known to be very poorly expressed in H. modesticaldum. Our hypothesis was that increasing its expression with a strong promoter could result in faster electron transfer, and thus, increased H2 production in the photoelectrosynthesis cell. In order to test this hypothesis, different promoters that could lead to high expression in H. modesticaldum were included with a copy of HM1_0653 in various plasmid constructs that were first cloned into E. coli before being conjugated with H. modesticaldum. Cloning in E. coli was possible with the newly derived transformation system and by reducing the copy-number of the vector system. When overexpressed in E. coli, the protein appeared to be expressed, but its purification proved to be difficult. Moreover, conjugation with H. modesticaldum was not achieved. Our results are consistent with the idea that high level overexpression in H. modesticaldum was toxic. An inducible promoter may circumvent these issues and prove more successful in future experiments.
Date Created
2018-05
Agent

Evaluating Drivers of Chemodenitrification in Tropical Peat Soil

135559-Thumbnail Image.png
Description
Nitrous oxide (N2O) is a major contributor to the greenhouse effect and to stratospheric ozone depletion. In soils, nitrogen reduction is performed by biotic and abiotic processes, including microbial denitrification and chemical denitrification. Chemical denitrification, or chemodenitrification, is the abiotic

Nitrous oxide (N2O) is a major contributor to the greenhouse effect and to stratospheric ozone depletion. In soils, nitrogen reduction is performed by biotic and abiotic processes, including microbial denitrification and chemical denitrification. Chemical denitrification, or chemodenitrification, is the abiotic step-wise reduction of nitrate (NO3-), nitrite (NO2-), or nitric oxide (NO) to N2O in anoxic environments, with high turnover rates particularly in acidic soils. Chemodenitrification was identified in various environments, but the mechanism is still not understood. In this study, the factors influencing abiotic reduction of NO2- to N2O in acidic tropical peat soil are examined. These factors include pH, organic matter content, and dissolved ferrous iron. Anoxic peat soil from sites located in the Peruvian Amazon was used for incubations. The results show that peat soil (pH ~4.5) appears to reduce NO2- more quickly in the presence of lower pH and higher Fe(II) concentrations. NO2- is completely reduced in excess Fe(II), and Fe(II) is completely oxidized in excess NO2-, providing evidence for the proposed mechanism of chemodenitrification. In addition, first order reaction rate constants kFe(II) and kNO2- were calculated using concentration measurements over 4 hours, to test for the hypothesized reaction rate relationships kFe(II): kFe(II) kFe(II)~NO2- > kFe(II)>NO2- and kNO2-: kFe(II)NO2-. The NO2- k values followed the anticipated pattern, although the Fe(II) k value data was inconclusive. Organic material may also play a role in NO2- reduction through chemodenitrification, and future experimentation will test this possibility. How and to what extent the pH and the concentrations of organic matter and Fe(II) affect the kinetic rate of chemodenitrification will lend insight into the N2O production potential of natural tropical peatlands.
Date Created
2016-05
Agent

Early Assessment of Phage Communities in Amazon Peatland Soils

135542-Thumbnail Image.png
Description
Little is known about the diversity and role of bacteriophages in carbon (C) rich ecosystems such as peatlands in tropical and temperate regions. In fact, there is no currently published assessment of phage abundance on diversity in a key tropical

Little is known about the diversity and role of bacteriophages in carbon (C) rich ecosystems such as peatlands in tropical and temperate regions. In fact, there is no currently published assessment of phage abundance on diversity in a key tropical ecosystem such as Amazon peatlands. To better understand phage assemblages in terrestrial ecosystems and how bacteriophages influence organic C cycling to final products like CO2 and CH4, phage communities and phage-like particles were recovered, quantified, and viable phage particles were enriched from pore water from contrasting Amazon peatlands. Here we present the first results on assessing Amazon bacteriophages on native heterotrophic bacteria. Several steps to test for methodological suitability were taken. First, the efficiency of iron flocculation method was determined using fluorescent microscopy counts of phage TLS, a TolC-specific and LPS-specific bacteriophage, and Escherichia coli host pre- and post-extraction method. One-hundred percent efficiency and 0.15% infectivity was evidenced. Infectivity effects were determined by calculating plaque forming units pre and post extraction method. After testing these methods, fieldwork in the Amazon peatlands ensued, where phages were enriched from pore water samples. Phages were extracted and concentrated by in tandem filtering rounds to remove organic matter and bacteria, and then iron flocculation to bind the phages and allow for precipitation onto a filter. Phage concentrates were then used for overall counts, with fluorescent microscopy, as well as phage isolation attempts. Phage isolations were performed by first testing for lysis of host cells in liquid media using OD600 absorbance of cultures with and without phage concentrate as well as attempts with the cross-streaking methods. Forty-five heterotrophic bacterial isolates obtained from the same Amazon peatland were challenged with phage concentrates. Once a putative host was found, steps were taken to further propagate and isolate the phage. Several putative phages were enriched from Amazon peatland pore water and require further characterization. TEM imaging was taken of two phages isolated from two plaques. Genomes of selected phages will be sequenced for identification. These results provide the groundwork for further characterizing the role bacteriophage play in C cycling and greenhouse gas production from Amazon peatland soils.
Date Created
2016-05
Agent

Photosynthesis under Rocks: Hypolith Distribution across the Namib Desert Rainfall Gradient

134651-Thumbnail Image.png
Description
“Extremophile” is used to describe life that has adapted to extreme conditions and the conditions they live in are often used to understand the limits of life. In locations with low precipitation and high solar radiation, photosynthetic cyanobacteria can colonize

“Extremophile” is used to describe life that has adapted to extreme conditions and the conditions they live in are often used to understand the limits of life. In locations with low precipitation and high solar radiation, photosynthetic cyanobacteria can colonize the underside of quartz fragments, forming ‘hypoliths.’ The quartz provides protection against wind, reduces solar radiation, and slows the rate of evaporation following infrequent rain or fog events. In most desert systems, vascular plants are the main primary producers. However, hypoliths might play a key role in carbon fixation in hyperarid deserts that are mostly devoid of vegetation. I investigated hypolith distribution and carbon fixation at six sites along a rainfall and fog gradient in the central Namib Desert in Namibia. I used line point intersect transects to assess ground cover (bare soil, colonized quartz fragment, non-colonized quartz fragment, non-quartz rock, grass, or lichen) at each site. Additionally, at each site I selected 12 hypoliths and measured cyanobacteria colonization on quartz and measured CO2 flux of hypoliths at five of the six sites.
Ground cover was fairly similar among sites, with bare ground > non-colonized quartz fragments > colonized quartz fragments > non-quartz rocks. Grass was present only at the site with the highest mean annual precipitation (MAP) where it accounted for 1% of ground cover. Lichens were present only at the lowest MAP site, where they accounted for 30% of ground cover. The proportion of quartz fragments colonized generally increased with MAP, from 5.9% of soil covered by colonized hypoliths at the most costal (lowest MAP) site, to 18.7% at the most inland (highest MAP) site. There was CO2 uptake from most hypoliths measured, with net carbon uptake rates ranging from 0.3 to 6.4 μmol m-2 s-1 on well hydrated hypoliths. These carbon flux values are similar to previous work in the Mojave Desert. Our results suggest that hypoliths might play a key role in the fixation of organic carbon in hyperarid ecosystems where quartz fragments are abundant, with MAP constraining hypolith abundance. A better understanding of these extremophiles and the niche they fill could give an understanding of how microbial life might exist in extraterrestrial environments similar to hyperarid deserts.
Date Created
2016-12
Agent

Trait-Based Modeling of Peatland Methanogen Communities

134464-Thumbnail Image.png
Description
Methanogens are methane-producing archaea that play a major role in the global carbon cycle. However, despite their importance, the community dynamics of these organisms have not been thoroughly characterized or modeled. In the majority of methanogenesis models, the communities are

Methanogens are methane-producing archaea that play a major role in the global carbon cycle. However, despite their importance, the community dynamics of these organisms have not been thoroughly characterized or modeled. In the majority of methanogenesis models, the communities are approximated as a chemical reaction or divided into two populations based on the most common methanogenic pathways. These models provide reasonable estimate of methanogenesis rates but cannot predict community structure. In this work, a trait-based model for methanogenic communities in peatlands is developed. The model divides methanogens commonly found in wetlands into ten guilds, with divisions based on factors such as substrate affinity, pH tolerance, and phylogeny. The model uses steady-state, mixotrophic Monod kinetics to model growth and assumes peatlands operate as a semi-batch system. An extensive literature review was performed to parameterize the model. The acetoclastic module of the model was validated against experimental data. It was found that this portion of the model was able to reproduce the major result of an experiment that examined competition between Methanosaeta and Methanosarcina species under irregular feeding conditions. The model was analyzed as a whole using Monte Carlo simulation methods. It was found that equilibrium membership is negatively correlated with a guild's half-substrate constant, but independent of the guild's yield. These results match what is seen in simple pairwise competition models. In contrast, it was found that both the half-substrate constant and yield affected a guild's numerical dominance. Lower half-substrate constants and higher yields led to a guild accounting for a greater fraction of community biomass. This is not seen in simple pairwise competitions models where only yield affects final biomass. As a whole, the development of this model framework and the accompanying analyses have laid the groundwork for a new class of more detailed methanogen community models that go beyond the two compartment acetoclastic-hydrogenotrophic assumption. .
Date Created
2017-05
Agent

Preliminary Metabolic Reconstruction of Two Methane Producing Microbes: Methanoregula boonei 6A8 and Methanosphaerula palustris E1-9c

137143-Thumbnail Image.png
Description
Methane (CH4) is very important in the environment as it is a greenhouse gas and important for the degradation of organic matter. During the last 200 years the atmospheric concentration of CH4 has tripled. Methanogens are methane-producing microbes from the

Methane (CH4) is very important in the environment as it is a greenhouse gas and important for the degradation of organic matter. During the last 200 years the atmospheric concentration of CH4 has tripled. Methanogens are methane-producing microbes from the Archaea domain that complete the final step in breaking down organic matter to generate methane through a process called methanogenesis. They contribute to about 74% of the CH4 present on the Earth's atmosphere, producing 1 billion tons of methane annually. The purpose of this work is to generate a preliminary metabolic reconstruction model of two methanogens: Methanoregula boonei 6A8 and Methanosphaerula palustris E1-9c. M. boonei and M. palustris are part of the Methanomicrobiales order and perform hydrogenotrophic methanogenesis, which means that they reduce CO2 to CH4 by using H2 as their major electron donor. Metabolic models are frameworks for understanding a cell as a system and they provide the means to assess the changes in gene regulation in response in various environmental and physiological constraints. The Pathway-Tools software v16 was used to generate these draft models. The models were manually curated using literature searches, the KEGG database and homology methods with the Methanosarcina acetivorans strain, the closest methanogen strain with a nearly complete metabolic reconstruction. These preliminary models attempt to complete the pathways required for amino acid biosynthesis, methanogenesis, and major cofactors related to methanogenesis. The M. boonei reconstruction currently includes 99 pathways and has 82% of its reactions completed, while the M. palustris reconstruction includes 102 pathways and has 89% of its reactions completed.
Date Created
2014-05
Agent

Investigation of the effect of efflux pumps on the toxicity of phenol, 2-phenylethanol, and styrene to E. coli

136282-Thumbnail Image.png
Description
Depletion of fossil fuel resources has led to the investigation of alternate feedstocks for and methods of chemical synthesis, in particular the use of E. coli biocatalysts to produce fine commodity chemicals from renewable glucose sources. Production of phenol, 2-phenylethanol,

Depletion of fossil fuel resources has led to the investigation of alternate feedstocks for and methods of chemical synthesis, in particular the use of E. coli biocatalysts to produce fine commodity chemicals from renewable glucose sources. Production of phenol, 2-phenylethanol, and styrene was investigated, in particular the limitation in yield and accumulation that results from high product toxicity. This paper examines two methods of product toxicity mitigation: the use of efflux pumps and the separation of pathways which produce less toxic intermediates. A library of 43 efflux pumps from various organisms were screened for their potential to confer resistance to phenol, 2-phenylethanol, and styrene on an E. coli host. A pump sourced from P. putida was found to allow for increased host growth in the presence of styrene as compared to a cell with no efflux pump. The separation of styrene producing pathway was also investigated. Cells capable of performing the first and latter halves of the synthesis were allowed to grow separately and later combined in order to capitalize on the relatively lower toxicity of the intermediate, trans-cinnamate. The styrene production and yield from this separated set of cultures was compared to that resulting from the growth of cells containing the full set of styrene synthesis genes. Results from this experiment were inconclusive.
Date Created
2015-05
Agent

Complete Genome Sequence of Methanosphaerula Palustris E1-9CT, a Hydrogenotrophic Methanogen Isolated From a Minerotrophic Fen Peatland

128454-Thumbnail Image.png
Description

Here, we report the complete genome sequence (2.92 Mb) of Methanosphaerula palustris E1-9CT, a methanogen isolated from a minerotrophic fen. This is the first genome report of the Methanosphaerula genus, within the Methanoregulaceae family, in the Methanomicrobiales order. E1-9CT relatives

Here, we report the complete genome sequence (2.92 Mb) of Methanosphaerula palustris E1-9CT, a methanogen isolated from a minerotrophic fen. This is the first genome report of the Methanosphaerula genus, within the Methanoregulaceae family, in the Methanomicrobiales order. E1-9CT relatives are found in a wide range of ecological and geographical settings.

Date Created
2015-11-05
Agent