Development of acoustic sensor for flow rate monitoring

151005-Thumbnail Image.png
Description
The project is mainly aimed at detecting the gas flow rate in Biosensors and medical health applications by means of an acoustic method using whistle based device. Considering the challenges involved in maintaining particular flow rate and back pressure for

The project is mainly aimed at detecting the gas flow rate in Biosensors and medical health applications by means of an acoustic method using whistle based device. Considering the challenges involved in maintaining particular flow rate and back pressure for detecting certain analytes in breath analysis the proposed system along with a cell phone provides a suitable way to maintain the flow rate without any additional battery driven device. To achieve this, a system-level approach is implemented which involves development of a closed end whistle which is placed inside a tightly fitted constant back pressure tube. By means of experimentation pressure vs. flowrate curve is initially obtained and used for the development of the particular whistle. Finally, by means of an FFT code in a cell phone the flow rate vs. frequency characteristic curve is obtained. When a person respires through the device a whistle sound is generated which is captured by the cellphone microphone and a FFT analysis is performed to determine the frequency and hence the flow rate from the characteristic curve. This approach can be used to detect flow rate as low as low as 1L/min. The concept has been applied for the first time in this work to the development and optimization of a breath analyzer.
Date Created
2012
Agent

Mobile health applications of breath analysis: challenges and solutions

150990-Thumbnail Image.png
Description
The world of healthcare can be seen as dynamic, often an area where technology and science meet to consummate a greater good for humanity. This relationship has been working well for the last century as evident by the average life

The world of healthcare can be seen as dynamic, often an area where technology and science meet to consummate a greater good for humanity. This relationship has been working well for the last century as evident by the average life expectancy change. For the greater of the last five decades the average life expectancy at birth increased globally by almost 20 years. In the United States specifically, life expectancy has grown from 50 years in 1900 to 78 years in 2009. That is a 76% increase in just over a century. As great as this increase sounds for humanity it means there are soon to be real issues in the healthcare world. A larger older population will need more healthcare services but have fewer young professionals to provide those services. Technology and science will need to continue to push the boundaries in order to develop and provide the solutions needed to continue providing the aging world population sufficient healthcare. One solution sure to help provide a brighter future for healthcare is mobile health (m-health). M-health can help provide a means for healthcare professionals to treat more patients with less work expenditure and do so with more personalized healthcare advice which will lead to better treatments. This paper discusses one area of m-health devices specifically; human breath analysis devices. The current laboratory methods of breath analysis and why these methods are not adequate for common healthcare practices will be discussed in more detail. Then more specifically, mobile breath analysis devices are discussed. The topic will encompass the challenges that need to be met in developing such devices, possible solutions to these challenges, two real examples of mobile breath analysis devices and finally possible future directions for m-health technologies.
Date Created
2012
Agent