WalkIT CoHab: Walking Intervention through Texting Study of Cohabiting Individuals

136407-Thumbnail Image.png
Description
With an excessive amount of resources in the United States healthcare system being spent on the treatment of diseases that are largely preventable through lifestyle change, the need for successful physical activity interventions is apparent. Unfortunately an individual's physical activity

With an excessive amount of resources in the United States healthcare system being spent on the treatment of diseases that are largely preventable through lifestyle change, the need for successful physical activity interventions is apparent. Unfortunately an individual's physical activity and health goals are often not supported by the social context of their daily lives. This single-case design study, Walking Intervention through Text messaging for CoHabiting individuals (WalkIT CoHab), looks at the efficacy of a text based adaptive physical activity intervention to promote walking over a three month period and the effects of social support in intervention performance in three pairs of cohabiting pairs of individuals (n=6). Mean step increase from baseline to intervention ranged from 1300 to 3000 steps per day for all individuals, an average 45.87% increase in physical activity. Goal attainment during the intervention ranged from 43.96% to 71.43%, meaning all participants exceeded the 40% success rate predicted by 60th percentile goals. Social support scores for study partners, unlike social support scores for family and friends, were often in the high social support range and had a moderate increase from pre to post visits for most participants. Although there was variation amongst participants, there was a high correlation in physical activity trends and successful goal attainment in each pair of participants. Less ambitious percentile goals and more personalized motivational text messages might be beneficial to some participants. An extended intervention, something the majority of participants expressed interest in, would further support the efficacy of this behavioral intervention and allow for possible long term benefits of social support in the intervention to be investigated.
Date Created
2015-05
Agent

Prevalence of Optimal Lifestyle Behaviors in College Undergraduate Students

136228-Thumbnail Image.png
Description
Background: Cardiovascular disease (CVD) is the leading cause of mortality in the United States and remains a great public health challenge. Unhealthy lifestyle behaviors (e.g., unhealthy diet, sedentary behavior, cigarette smoking, and obesity) are associated with a greater risk of

Background: Cardiovascular disease (CVD) is the leading cause of mortality in the United States and remains a great public health challenge. Unhealthy lifestyle behaviors (e.g., unhealthy diet, sedentary behavior, cigarette smoking, and obesity) are associated with a greater risk of incident CVD and all-cause mortality. From the prevention strategy, maintaining a healthy lifestyle throughout a lifetime is a key to CVD prevention. Nonetheless, the prevalence of healthy lifestyle behaviors in US communities is low as 3 to 5%. Moreover, the prevalence of a healthy population among college students remains unknown. Objective: We investigated the prevalence of healthy lifestyle behaviors among college students. Methods: We recruited 747 undergraduate students from Arizona State University using a survey questionnaire. The survey questionnaire investigated demographic characteristics, body mass index, dietary habits, physical activity habits, and smoking habits. The chi-square test was used to investigate the frequency of ideal lifestyle behaviors in college students. Results: Prevalence of students who met all 4 ideal health behaviors (ideal cardiovascular health) is very low at 7.6%. Approximately 55.7% of students had only 2 or less ideal lifestyle behaviors (poor cardiovascular health). In addition, there were no statistical differences in combined ideal lifestyle behaviors across gender and different years of undergraduate studies. Conclusion: College students had a very low prevalence of healthy lifestyle behaviors. Increasing healthy low-risk students throughout college education is an important strategy to prevent chronic disease morbidity and mortality at individual and population level.
Date Created
2015-05
Agent

The Effect of Exercise Training on Biventricular Myocardial Strain in Heart Failure With Preserved Ejection Fraction

128140-Thumbnail Image.png
Description

Aims: High-intensity interval training (HIIT) improves peak oxygen uptake and left ventricular diastology in patients with heart failure with preserved ejection fraction (HFpEF). However, its effects on myocardial strain in HFpEF remain unknown. We explored the effects of HIIT and

Aims: High-intensity interval training (HIIT) improves peak oxygen uptake and left ventricular diastology in patients with heart failure with preserved ejection fraction (HFpEF). However, its effects on myocardial strain in HFpEF remain unknown. We explored the effects of HIIT and moderate-intensity aerobic continuous training (MI-ACT) on left and right ventricular strain parameters in patients with HFpEF. Furthermore, we explored their relationship with peak oxygen uptake (VO2peak).

Methods and Results: Fifteen patients with HFpEF (age = 70 ± 8.3 years) were randomized to either: (i) HIIT (4 × 4 min, 85–90% peak heart rate, interspersed with 3 min of active recovery; n = 9) or (ii) MI-ACT (30 min at 70% peak heart rate; n = 6). Patients were trained 3 days/week for 4 weeks and underwent VO2peak testing and 2D echocardiography at baseline and after completion of the 12 sessions of supervised exercise training. Left ventricular (LV) and right ventricular (RV) average global peak systolic longitudinal strain (GLS) and peak systolic longitudinal strain rate (GSR) were quantified. Paired t-tests were used to examine within-group differences and unpaired t-tests used for between-group differences (α = 0.05). Right ventricular average global peak systolic longitudinal strain improved significantly in the HIIT group after training (pre = −18.4 ± 3.2%, post = −21.4 ± 1.7%; P = 0.02) while RV-GSR, LV-GLS, and LV-GSR did not (P > 0.2). No significant improvements were observed following MI-ACT. No significant between-group differences were observed for any strain measure. ΔLV-GLS and ΔRV-GLS were modestly correlated with ΔVO2peak (r = −0.48 and r = −0.45; P = 0.1, respectively).

Conclusions: In patients with HFpEF, 4 weeks of HIIT significantly improved RV-GLS.

Date Created
2017-03-16
Agent

Adaptive Goal Setting and Financial Incentives: A 2 × 2 Factorial Randomized Controlled Trial to Increase Adults’ Physical Activity

Description

Background: Emerging interventions that rely on and harness variability in behavior to adapt to individual performance over time may outperform interventions that prescribe static goals (e.g., 10,000 steps/day). The purpose of this factorial trial was to compare adaptive vs. static

Background: Emerging interventions that rely on and harness variability in behavior to adapt to individual performance over time may outperform interventions that prescribe static goals (e.g., 10,000 steps/day). The purpose of this factorial trial was to compare adaptive vs. static goal setting and immediate vs. delayed, non-contingent financial rewards for increasing free-living physical activity (PA).

Methods: A 4-month 2 × 2 factorial randomized controlled trial tested main effects for goal setting (adaptive vs. static goals) and rewards (immediate vs. delayed) and interactions between factors to increase steps/day as measured by a Fitbit Zip. Moderate-to-vigorous PA (MVPA) minutes/day was examined as a secondary outcome.

Results: Participants (N = 96) were mainly female (77%), aged 41 ± 9.5 years, and all were insufficiently active and overweight/obese (mean BMI = 34.1 ± 6.2). Participants across all groups increased by 2389 steps/day on average from baseline to intervention phase (p < .001). Participants receiving static goals showed a stronger increase in steps per day from baseline phase to intervention phase (2630 steps/day) than those receiving adaptive goals (2149 steps/day; difference = 482 steps/day, p = .095). Participants receiving immediate rewards showed stronger improvement (2762 step/day increase) from baseline to intervention phase than those receiving delayed rewards (2016 steps/day increase; difference = 746 steps/day, p = .009). However, the adaptive goals group showed a slower decrease in steps/day from the beginning of the intervention phase to the end of the intervention phase (i.e. less than half the rate) compared to the static goals group (−7.7 steps vs. -18.3 steps each day; difference = 10.7 steps/day, p < .001) resulting in better improvements for the adaptive goals group by study end. Rate of change over the intervention phase did not differ between reward groups. Significant goal phase x goal setting x reward interactions were observed.

Conclusions: Adaptive goals outperformed static goals (i.e., 10,000 steps) over a 4-month period. Small immediate rewards outperformed larger, delayed rewards. Adaptive goals with either immediate or delayed rewards should be preferred for promoting PA.

Date Created
2017-03-29
Agent

Effects of physical activity on sleep in sedentary adults with sleep problems

155169-Thumbnail Image.png
Description
Physical activity is critical for optimal health and has emerged as a viable option to improve sleep. Moderate- and vigorous-intensity physical activity comparisons to improve sleep in non-exercising adults with sleep problems is limited. The purpose was to determine the

Physical activity is critical for optimal health and has emerged as a viable option to improve sleep. Moderate- and vigorous-intensity physical activity comparisons to improve sleep in non-exercising adults with sleep problems is limited. The purpose was to determine the effects of moderate- or vigorous-intensity exercise on sleep outcomes and peripheral skin temperature compared to a no-exercise control. The exercise intensity preference also was determined.

Eleven women (46.9±7.0 years) not participating in regular exercise and self-reporting insomnia completed a graded maximal exercise test followed by a crossover trial of three randomly assigned conditions separated by a 1-week washout. Participants performed moderate-intensity [MIC, 30 minutes, 65-70% maximum heart rate (HRmax)] or high-intensity (HIT, 20 minutes, 1-minute bouts at 90-95% HRmax alternating with 1-minute active recovery) treadmill walking or a no-exercise control (NEC) on two consecutive weekdays 4-6 hours prior to typical bed time. A dual-function wrist-worn accelerometer/temperature monitor recorded movement and skin temperature from which sleep-onset latency (SOL), sleep maintenance, sleep efficiency, total sleep time (TST), and peripheral skin temperature changes were calculated. Participants self-reported sleep outcomes weekly, enjoyment of exercise the morning after HIT and MIC, and exercise intensity preference upon completing all conditions. Mixed models analysis of variance examined differences between and within conditions controlling for demographic characteristics and habitual physical activity.

HIT resulted in up to a 90-minute TST increase on night four (448 minutes, 95% CI 422.4-474.2) compared to nights one-three. MIC nights three (43.5 minutes, 95% CI 30.4-56.6) and four (42.1 minutes 95% CI 29.0-55.2) showed nearly a 30-minute SOL worsening compared to nights one-two. No other actigraphy-measured sleep parameters differenced within or between conditions. Self-reported sleep outcomes, peripheral skin temperature change, and exercise enjoyment between conditions were similar (p>0.05). More participants preferred lower (n=3) to higher (n=1) intensity activities.

Early evening high-intensity and moderate-intensity exercise had no effect on sleep outcomes compared to a control in non-exercising adults reporting sleep complaints. Sleep benefits from HIT may require exercise on successive days. Participants indicated partiality for lower intensity exercise. More information on timing and mode of physical activity to improve sleep in this population is warranted.
Date Created
2016
Agent

Comparison of hemodynamic responses to acute and chronic exercise in obese and lean prehypertensive men

154503-Thumbnail Image.png
Description
PURPOSE: Lean hypertension (HTN) is characterized by a mechanistically different HTN when compared to obese HTN. The purpose of this study is to assess whether body phenotype influences blood pressure (BP) responses following both acute and chronic exercise.

PURPOSE: Lean hypertension (HTN) is characterized by a mechanistically different HTN when compared to obese HTN. The purpose of this study is to assess whether body phenotype influences blood pressure (BP) responses following both acute and chronic exercise. METHODS: Obese (body mass index (BMI) > 30 kg/m2) and lean (BMI < 25 kg/m2) men with pre-hypertension (PHTN) (systolic BP (SBP) 120 - 139 or diastolic BP (DBP) 80 - 89 mm Hg) were asked to participate in a two-phase trial. Phase 1 assessed differences in post-exercise hypotension between groups in response to an acute exercise bout. Phase 2 consisted of a two-week aerobic exercise intervention at 65-70% of heart rate (HR) max on a cycle ergometer. Primary outcome measures were: brachial BP, central (aortic) BP, cardiac output (CO), and systemic vascular resistance (SVR) measured acutely after one exercise session and following two weeks of training. RESULTS: There were no differences between groups for baseline resting brachial BP, central BP, age, or VO2 peak (all P > 0.05). At rest, obese PHTN had greater CO compared to lean PHTN (6.3 ± 1 vs 4.7 ± 1 L/min-1, P = 0.005) and decreased SVR compared to lean PHTN (1218 ± 263 vs 1606 ± 444 Dyn.s/cm5, P = 0.003). Average 60-minute post-exercise brachial and central SBP reduced by 3 mm Hg in Lean PHTN in response to acute exercise (P < 0.005), while significantly increasing 4 mm Hg for brachial and 3 mm Hg for central SBP (P < 0.05). SVR had a significantly greater reduction following acute exercise in lean PHTN (-223 Dyn·s/cm5) compared to obese PHTN (-75 Dyn·s/cm5, P < 0.001). In lean subjects chronic training reduced brachial BP by 4 mm Hg and central BP by 3 mm Hg but training had no effect on the BP’s in obese subjects. Resting BP reduction in response to training was accompanied by reductions in SVR within lean (-169 Dyn·s/cm5, P < 0.001), while obese experienced increased SVR following training (47 Dyn·s/cm5, P < 0.001). CONCLUSION: Hemodynamic response to both acute and chronic exercise training differ between obese and lean individuals.
Date Created
2016
Agent

Effects of a novel, high-intensity aerobic interval training program on diastolic and cardiovascular function in patients with heart failure with preserved ejection fraction

150821-Thumbnail Image.png
Description
Heart failure is a major worldwide health concern and is the leading cause of hospitalization among elderly Americans. Approximately 50% of those diagnosed with heart failure have heart failure with preserved ejection fraction (HFPEF). HFPEF presents a therapeutic dilemma because

Heart failure is a major worldwide health concern and is the leading cause of hospitalization among elderly Americans. Approximately 50% of those diagnosed with heart failure have heart failure with preserved ejection fraction (HFPEF). HFPEF presents a therapeutic dilemma because pharmacological strategies that are effective for the treatment of heart failure and reduced ejection fraction have failed to show benefit in HFPEF. Long term moderate intensity exercise programs have been shown to improve diastolic function in patients HFPEF. High intensity interval training (HIIT) has been shown to improve diastolic function in patients with heart failure and reduced ejection fraction. However, the effects of high intensity interval training in patients with HFPEF are unknown. Fourteen patients with HFPEF were randomized to either: (1) a novel program of high-intensity aerobic interval training (n = 8), or (2) a commonly prescribed program of moderate-intensity (MOD) aerobic exercise training (n = 6). Before and after four weeks of exercise training, patients underwent a treadmill graded exercise test for the determination of peak oxygen uptake (VO2peak), a brachial artery reactivity test for assessment of endothelium-dependent flow-mediated dilation (BAFMD), aortic pulse wave velocity assessment as an index of vascular stiffness and two-dimensional echocardiography for assessment of left ventricular diastolic and systolic function. I hypothesized that (1) high-intensity aerobic interval training would result in superior improvements in FMD, aortic pulse wave velocity, VO2peak, diastolic function and, (2) changes in these parameters would be correlated with changes in VO2peak. The principal findings of the study were that a one month long high intensity interval training program resulted in significant improvements in diastolic function as measured by two-dimensional echocardiography [pre diastolic dysfunction (DD) grade - 2.13 + 0.4 vs. post DD grade - 1.25 + 0.7, p = 0.03]. The left atrial volume index was reduced in the HIIT group compared to MOD ( - 4.4 + 6.2 ml/m2 vs. 5.8 + 10.7 ml/m2, p = 0.02). Early mitral flow (E) improved in the HIIT group (pre - 0.93 + 0.2 m/s vs. post - 0.78 + 0.3 m/s, p = 0.03). A significant inverse correlation was observed between change in BAFMD and change in diastolic dysfunction grade (r = - 0.585, p = 0.028) when all the data were pooled. HIIT appears to be a time-efficient and safe strategy for improving diastolic function in patients with heart failure and preserved ejection fraction. These data may have implications for cardiovascular risk reduction in this population.
Date Created
2012
Agent