An analysis is presented of a network of distributed receivers encumbered by strong in-band interference. The structure of information present across such receivers and how they might collaborate to recover a signal of interest is studied. Unstructured (random coding) and…
An analysis is presented of a network of distributed receivers encumbered by strong in-band interference. The structure of information present across such receivers and how they might collaborate to recover a signal of interest is studied. Unstructured (random coding) and structured (lattice coding) strategies are studied towards this purpose for a certain adaptable system model. Asymptotic performances of these strategies and algorithms to compute them are developed. A jointly-compressed lattice code with proper configuration performs best of all strategies investigated.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
In this paper, the Software Defined Radio (SDR) platform is considered for building a pseudo-monostatic, 100MHz Pulse-Doppler radar. The SDR platform has many benefits for experimental communications systems as it offers relatively cheap, parametrically dynamic, off-the-shelf access to the Radiofrequency…
In this paper, the Software Defined Radio (SDR) platform is considered for building a pseudo-monostatic, 100MHz Pulse-Doppler radar. The SDR platform has many benefits for experimental communications systems as it offers relatively cheap, parametrically dynamic, off-the-shelf access to the Radiofrequency (RF) spectrum. For this application, the Universal Software Radio Peripheral (USRP) X310 hardware package is utilized with GNURadio for interfacing to the device and Matlab for signal post- processing. Pulse doppler radar processing is used to ascertain the range and velocity of a target considered in simulation and in real, over-the-air (OTA) experiments. The USRP platform offers a scalable and dynamic hardware package that can, with relatively low overhead, be incorporated into other experimental systems. This radar system will be considered for implementation into existing over-the-air Joint Radar- Communications (JRC) spectrum sharing experiments. The JRC system considers a co-designed architecture in which a communications user and a radar user share the same spectral allocation. Where the two systems would traditionally consider one another a source of interference, the receiver is able to decode communications information and discern target information via pulse-doppler radar simultaneously.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
In the past half century, low-power wireless signals from portable radar sensors, initially continuous-wave (CW) radars and more recently ultra-wideband (UWB) radar systems, have been successfully used to detect physiological movements of stationary human beings.
The thesis starts with…
In the past half century, low-power wireless signals from portable radar sensors, initially continuous-wave (CW) radars and more recently ultra-wideband (UWB) radar systems, have been successfully used to detect physiological movements of stationary human beings.
The thesis starts with a careful review of existing signal processing techniques and state of the art methods possible for vital signs monitoring using UWB impulse systems. Then an in-depth analysis of various approaches is presented.
Robust heart-rate monitoring methods are proposed based on a novel result: spectrally the fundamental heartbeat frequency is respiration-interference-limited while its higher-order harmonics are noise-limited. The higher-order statistics related to heartbeat can be a robust indication when the fundamental heartbeat is masked by the strong lower-order harmonics of respiration or when phase calibration is not accurate if phase-based method is used. Analytical spectral analysis is performed to validate that the higher-order harmonics of heartbeat is almost respiration-interference free. Extensive experiments have been conducted to justify an adaptive heart-rate monitoring algorithm. The scenarios of interest are, 1) single subject, 2) multiple subjects at different ranges, 3) multiple subjects at same range, and 4) through wall monitoring.
A remote sensing radar system implemented using the proposed adaptive heart-rate estimation algorithm is compared to the competing remote sensing technology, a remote imaging photoplethysmography system, showing promising results.
State of the art methods for vital signs monitoring are fundamentally related to process the phase variation due to vital signs motions. Their performance are determined by a phase calibration procedure. Existing methods fail to consider the time-varying nature of phase noise. There is no prior knowledge about which of the corrupted complex signals, in-phase component (I) and quadrature component (Q), need to be corrected. A precise phase calibration routine is proposed based on the respiration pattern. The I/Q samples from every breath are more likely to experience similar motion noise and therefore they should be corrected independently. High slow-time sampling rate is used to ensure phase calibration accuracy. Occasionally, a 180-degree phase shift error occurs after the initial calibration step and should be corrected as well. All phase trajectories in the I/Q plot are only allowed in certain angular spaces. This precise phase calibration routine is validated through computer simulations incorporating a time-varying phase noise model, controlled mechanic system, and human subject experiment.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Machine learning (ML) has played an important role in several modern technological innovations and has become an important tool for researchers in various fields of interest. Besides engineering, ML techniques have started to spread across various departments of study, like…
Machine learning (ML) has played an important role in several modern technological innovations and has become an important tool for researchers in various fields of interest. Besides engineering, ML techniques have started to spread across various departments of study, like health-care, medicine, diagnostics, social science, finance, economics etc. These techniques require data to train the algorithms and model a complex system and make predictions based on that model. Due to development of sophisticated sensors it has become easier to collect large volumes of data which is used to make necessary hypotheses using ML. The promising results obtained using ML have opened up new opportunities of research across various departments and this dissertation is a manifestation of it. Here, some unique studies have been presented, from which valuable inference have been drawn for a real-world complex system. Each study has its own unique sets of motivation and relevance to the real world. An ensemble of signal processing (SP) and ML techniques have been explored in each study. This dissertation provides the detailed systematic approach and discusses the results achieved in each study. Valuable inferences drawn from each study play a vital role in areas of science and technology, and it is worth further investigation. This dissertation also provides a set of useful SP and ML tools for researchers in various fields of interest.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Both two-way relays (TWR) and full-duplex (FD) radios are spectrally efficient, and their integration shows great potential to further improve the spectral efficiency, which offers a solution to the fifth generation wireless systems. High quality channel state information (CSI) are…
Both two-way relays (TWR) and full-duplex (FD) radios are spectrally efficient, and their integration shows great potential to further improve the spectral efficiency, which offers a solution to the fifth generation wireless systems. High quality channel state information (CSI) are the key components for the implementation and the performance of the FD TWR system, making channel estimation in FD TWRs crucial.
The impact of channel estimation on spectral efficiency in half-duplex multiple-input-multiple-output (MIMO) TWR systems is investigated. The trade-off between training and data energy is proposed. In the case that two sources are symmetric in power and number of antennas, a closed-form for the optimal ratio of data energy to total energy is derived. It can be shown that the achievable rate is a monotonically increasing function of the data length. The asymmetric case is discussed as well.
Efficient and accurate training schemes for FD TWRs are essential for profiting from the inherent spectrally efficient structures of both FD and TWRs. A novel one-block training scheme with a maximum likelihood (ML) estimator is proposed to estimate the channels between the nodes and the residual self-interference (RSI) channel simultaneously. Baseline training schemes are also considered to compare with the one-block scheme. The Cramer-Rao bounds (CRBs) of the training schemes are derived and analyzed by using the asymptotic properties of Toeplitz matrices. The benefit of estimating the RSI channel is shown analytically in terms of Fisher information.
To obtain fundamental and analytic results of how the RSI affects the spectral efficiency, one-way FD relay systems are studied. Optimal training design and ML channel estimation are proposed to estimate the RSI channel. The CRBs are derived and analyzed in closed-form so that the optimal training sequence can be found via minimizing the CRB. Extensions of the training scheme to frequency-selective channels and multiple relays are also presented.
Simultaneously sensing and transmission in an FD cognitive radio system with MIMO is considered. The trade-off between the transmission rate and the detection accuracy is characterized by the sum-rate of the primary and the secondary users. Different beamforming and combining schemes are proposed and compared.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Software-defined radio provides users with a low-cost and flexible platform for implementing and studying advanced communications and remote sensing applications. Two such applications include unmanned aerial system-to-ground communications channel and joint sensing and communication systems. In this work, these applications…
Software-defined radio provides users with a low-cost and flexible platform for implementing and studying advanced communications and remote sensing applications. Two such applications include unmanned aerial system-to-ground communications channel and joint sensing and communication systems. In this work, these applications are studied.
In the first part, unmanned aerial system-to-ground communications channel models are derived from empirical data collected from software-defined radio transceivers in residential and mountainous desert environments using a small (< 20 kg) unmanned aerial system during low-altitude flight (< 130 m). The Kullback-Leibler divergence measure was employed to characterize model mismatch from the empirical data. Using this measure the derived models accurately describe the underlying data.
In the second part, an experimental joint sensing and communications system is implemented using a network of software-defined radio transceivers. A novel co-design receiver architecture is presented and demonstrated within a three-node joint multiple access system topology consisting of an independent radar and communications transmitter along with a joint radar and communications receiver. The receiver tracks an emulated target moving along a predefined path and simultaneously decodes a communications message. Experimental system performance bounds are characterized jointly using the communications channel capacity and novel estimation information rate.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Spectral congestion is quickly becoming a problem for the telecommunications sector. In order to alleviate spectral congestion and achieve electromagnetic radio frequency (RF) convergence, communications and radar systems are increasingly encouraged to share bandwidth. In direct opposition to the traditional…
Spectral congestion is quickly becoming a problem for the telecommunications sector. In order to alleviate spectral congestion and achieve electromagnetic radio frequency (RF) convergence, communications and radar systems are increasingly encouraged to share bandwidth. In direct opposition to the traditional spectrum sharing approach between radar and communications systems of complete isolation (temporal, spectral or spatial), both systems can be jointly co-designed from the ground up to maximize their joint performance for mutual benefit. In order to properly characterize and understand cooperative spectrum sharing between radar and communications systems, the fundamental limits on performance of a cooperative radar-communications system are investigated. To facilitate this investigation, performance metrics are chosen in this dissertation that allow radar and communications to be compared on the same scale. To that effect, information is chosen as the performance metric and an information theoretic radar performance metric compatible with the communications data rate, the radar estimation rate, is developed. The estimation rate measures the amount of information learned by illuminating a target. With the development of the estimation rate, standard multi-user communications performance bounds are extended with joint radar-communications users to produce bounds on the performance of a joint radar-communications system. System performance for variations of the standard spectrum sharing problem defined in this dissertation are investigated, and inner bounds on performance are extended to account for the effect of continuous radar waveform optimization, multiple radar targets, clutter, phase noise, and radar detection. A detailed interpretation of the estimation rate and a brief discussion on how to use these performance bounds to select an optimal operating point and achieve RF convergence are provided.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The goal is to provide accurate measurement of the channel between a ground source and a receiving satellite.
The effects of the the ionosphere for ground to space propagation for radio waves in the 3-30 MHz HF band is an unstudied…
The goal is to provide accurate measurement of the channel between a ground source and a receiving satellite.
The effects of the the ionosphere for ground to space propagation for radio waves in the 3-30 MHz HF band is an unstudied subject.
The effects of the ionosphere on radio propagation is a long studied subject, the primary focus has been ground to ground by means of ionospheric reflection and space to ground corrections of ionospheric distortions of GPS.
Because of the plasma properties of the ionosphere there is a strong dependence on the frequency of use.
GPS L1 1575.42 MHz and L2 1227.60 MHz are much less effected than the 3-30 MHz HF band used for skywave propagation.
The channel between the ground transmitter and the satellite receiver is characterized by 2 unique polarization modes with respective delays and Dopplers.
Accurate estimates of delay and Doppler are done using polynomial fit functions.
The application of polarimetric separation of the two propagating polarizations allows improved estimate quality of delay and Doppler of the respective mode.
These methods yield good channel models and an effective channel estimation method well suited for the ground to space propagation.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)