Analysis, simulation and measurements of CBS antennas loaded with non-uniformly biased ferrite material

150815-Thumbnail Image.png
Description
When ferrite materials are used in antenna designs, they introduce some interesting and unique performance characteristics. One of the attractive features, for example, is the ability to reconfigure the center frequency of the antenna. In addition, ferrite materials also introduce

When ferrite materials are used in antenna designs, they introduce some interesting and unique performance characteristics. One of the attractive features, for example, is the ability to reconfigure the center frequency of the antenna. In addition, ferrite materials also introduce a number of challenges in the modeling and simulation of such antennas. In order for the ferrite material to be useful in an antenna design, it usually is subjected to an external magnetic field. This field induces the internal magnetic field inside the ferrite material. The internal field plays a pivotal role in the radiation characteristics of the antenna. Thus, from the numerical point of view, accurate computation of this field is critical to the overall accuracy of the analysis. Usually the internal field is non-uniform and its computation is often a rather complex and non-trivial task. Therefore, to facilitate the modeling, simplifying assumptions, which introduce some kind of averaging, are often made. In this study, ferrite-loaded cavity-backed slot antennas are used to demonstrate that averaging procedures can lead to very unsatisfactory results. For instance, it is common practice to assume that the external field is uniform by averaging its distribution. One of the pivotal points in this study is the demonstration that the external magnetic field plays a very significant role and should be included in the modeling without averaging, if the accurate results are to be attained. Results presented in this study clearly support this argument. A procedure which avoids such averaging is presented and verified by comparing simulations with measurements. In contrast to the previous formulations, the modeling methodology developed in this dissertation leads to accurate results which compare very well with measurements for both uniform and non-uniform field distributions. The utility of this methodology is especially evident for the case when the magnetic field is severely non-uniform.
Date Created
2012
Agent

High impedance surface using a loop with negative impedance elements

149495-Thumbnail Image.png
Description
Antennas are required now to be compact and mobile. Traditional horizontally polarized antennas are placed in a quarter wave distance from a ground plane making the antenna system quite bulky. High impedance surfaces are proposed for an antenna ground in

Antennas are required now to be compact and mobile. Traditional horizontally polarized antennas are placed in a quarter wave distance from a ground plane making the antenna system quite bulky. High impedance surfaces are proposed for an antenna ground in close proximity. A new method to achieve a high impedance surface is suggested using a metamaterial comprising an infinite periodic array of conducting loops each of which is loaded with a non-Foster element. The non-Foster element cancels the loop's inductance resulting in a material with high effective permeability. Using this material as a spacer layer, it is possible to achieve a high impedance surface over a broad bandwidth. The proposed structure is different from Sievenpiper's high impedance surface because it has no need for a capacitive layer. As a result, however, it does not suppress the propagation of surface wave modes. The proposed structure is compared to another structure with frequency selective surface loaded with a non-Foster element on a simple spacer layer. In particular, the sensitivity of each structure to component tolerances is considered. The proposed structure shows a high impedance surface over broadband frequency but is much more sensitive than the frequency selective surface structure.
Date Created
2010
Agent