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ABSTRACT

The rapid increase in the volume and complexity of data lead to accelerated Ar-

tificial Intelligence (AI) applications, primarily as intelligent machines, in everyday

life. Providing explanations is considered an imperative ability for an AI agent in a

human-robot teaming framework, which provides the rationale behind an AI agent’s

decision-making. Therefore, the validity of the AI models is constrained based on

their ability to explain their decision-making rationale. On the other hand, AI agents

cannot perceive the social situation that human experts may recognize using their

background knowledge, specifically in cybersecurity and the military. Social behavior

depends on situation awareness, and it relies on interpretability, transparency, and

fairness when we envision efficient Human-AI collaboration. Consequently, the human

remains an essential element for planning, especially when the problem’s constraints

are difficult to express for an agent in a dynamic setting. This dissertation will first

develop different model-based explanation generation approaches to predict where the

human teammate would misunderstand the plan and, therefore, generate an explana-

tion accordingly. The robot’s generated explanation or interactive explicable behavior

maintains the human teammate’s cognitive workload and increases the overall team

situation awareness throughout human-robot interaction. Further, it will focus on a

rule-based model to preserve the collaborative engagement of the team by exploring

essential aspects of the facilitator agent design. In addition to recognizing wherein

the plan might be discrepancies, focusing on the decision-making process provides

insight into the reason behind the conflict between the human expectation and the

robot’s behavior. Employing a rule-based framework will shift the focus from assisting

an individual (human) teammate to helping the team interactively while maintaining

collaboration. Hence, concentrating on teaming provides the opportunity to recognize

some cognitive biases that skew the teammate’s expectations and affect interaction
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behavior. This dissertation investigates how to maintain collaboration engagement

or cognitive readiness for collaborative planning tasks. Moreover, this dissertation

aims to lay out a planning framework focusing on the human teammate’s cognitive

abilities to understand the machine-provided explanations while collaborating on a

planning task. Consequently, this dissertation explored the design for AI facilitator,

helping a team tasked with a challenging task to plan collaboratively, mitigating the

teaming biases, and communicate effectively. This dissertation investigates the effect

of some cognitive biases on the task outcome and shapes the utility function. The

facilitator’s role is to facilitate goal alignment, the consensus of planning strategies,

utility management, effective communication, and mitigate biases.
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PREFACE

My research originally stemmed from my passion for understanding how our brain,

incredibly conscientious, functions while interacting with the world.

As the world moves further into the artificial intelligence (AI) age, we mimic

consciousness’s functionalities and attributes into robots. Thus, learning how the

robots can be engaged in our activities is an approach to discern our cognitive

abilities. Further, it sheds light on how we model others to predict and adjust our

behaviors every day in complex teaming scenarios.

My passion is to find out and develop tools to forecast sizable teams’ rationality,

such as societies, utilizing AI and planning, interacting under complicated

situations, cognitive biases, specific expectations, etc.

xiii



Chapter 1

INTRODUCTION

As human-agent collaboration becomes more ubiquitous in our everyday life, intel-

ligent machines are increasingly taking on more crucial roles in human-AI teams.

Consequently, the validity of the intelligent machines is constrained by their ability

to facilitate efficient collaboration. In this dissertation, I will study two distinct roles

that AI agents are expected to play in human-AI interaction, one being an one-on-

one relationship (i.e., a teammate) and one being one-to-many (i.e., a facilitator). In

the role of a teammate, the AI agent focuses on establishing a mutual understanding

between the human and AI peer. As a facilitator, the AI agent provides directions

and suggestions to maintain collaborative engagement or cognitive readiness within

the team.

AI Teammate

As intelligent robots become more prevalent in our lives, the interaction of such

AI agents with humans becomes more frequent and essential. Similar to a human

teammate, a robotic agent is required to not only understand its human peers, but

also explain its own decision or behaviors when necessary. Explanations in a teaming

context provide the rationale behind an individual agent’s decision making, and help

with building a shared situation awareness and maintaining trust between teammates

Cooke (2015); Zakershahrak et al. (2019).

Prior work on generating explanations has been focused on providing the rationale

behind the robot’s decision making Chakraborti et al. (2017b, 2019). Therefore, the

human is expected to understand an explanation regardless of how much informa-
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tion it contains. Although these approaches provide the right explanations from the

explainer’s perspective, they fail to heed the cognitive requirement of understanding

an explanation from the explainee’s perspective. Little discussion has been given on

the ways of presenting such information Chakraborti et al. (2017a). One remaining

challenge in explanation generation, is the consideration of the cognitive capabili-

ties and preferences of the human to understand an explanation provided by a robot

teammate Zakershahrak et al. (2020).

The main motivation of my research towards explanation generation is to main-

tain/reduce the cognitive workload of the human when sharing explanations. Expla-

nation generation in human-robot teaming and explainable decision making can be

categorized into the following dimensions:

1. Cognitive model explanation: how to explain the decision-making process of the

robot

2. Explain domain model (dynamics), including the initial state and goal

3. Behavior explanation: directly explain a behavior

In chapters 2, 3, and 4, explanation is defined as any information that is provided

to any human or agent, in terms of model features. The aim of providing explanations

is to establish situation awareness in teaming. However, in chapter 5, I use facilitation

interventions which is a rule-based approach to preserve the collaborative engagement

of the team. The facilitation intervention can be viewed as implicit coaching behavior.

Another approach to keep the human in the loop for effective human-robot team-

ing is to provide explicable behavior. For effective teaming, a robot must maintain a

behavioral model of its human teammates to project the team status and be aware of

its human teammates’ expectations of itself. Being aware of the human teammates’
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expectations leads to robot behaviors that align with the human expectation, thus

facilitating more efficient and potentially safer teams. Chapter 2 addresses the prob-

lem of human-robot interaction with the consideration of such teammate models in

sequential domains by leveraging the concept of plan explicability. This means the

robot needs to work with (possibly incorrect) human planning preferences and learn

human preconceptions about its model. To achieve this, I assumed that humans un-

derstand the agent’s intention by attaching abstract tasks with the agent’s actions,

which I acknowledge as a labeling process. Then, I learn the human preferences using

conditional random fields (CRFs). Then I use the learned model to label a new team

plan (comprised of human and robot actions) to compute its explicability and pre-

dictability score. Having these measures helps the robot to dynamically synthesize

plans that are more explainable based on human preferences.

Furthermore, throughout my research, I have explored the effect of explanation

generation approaches on domain models: In Chapter 3, I argue that explanations,

especially complex ones, should be provided in an online fashion, such that each

explanation is broken into multiple parts, which are then communicated separately

and intertwined with plan execution. One of the main challenges here is that the

different parts of an explanation could be dependent on each other, which must be

taken into account when generating online explanations Zakershahrak et al. (2019).

In Chapter 4, I focus on the influence of the order of information on the cognitive

effort of the explainee in planning tasks. Considering that making an explanation

is normally not an instantaneous effort; instead, information must be conveyed in a

sequential order; furthermore, given the characterizations of our cognitive systems Er-

icsson and Smith (1991); Kahneman (2011), we often could not (or would not) wait

until all the information has been conveyed before processing it. As a result, the

order of presenting information matters. Hence, one of the keys to reducing cognitive
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effort is to minimize the cumulative effort required for processing all the informa-

tion progressively in an explanation. Consequently, I term my approach progressive

explanation generation, to capture that aspect Zakershahrak et al. (2020).

AI Facilitator

In Chapter 5, I design an online planning framework to study the effects of facili-

tation behavior throughout Human-AI teaming context. My approach to addressing

this urgent need is to develop an AI capability to facilitate the commander’s planning

team’s discussion. This rule-based behavior, in addition to recognizing wherein the

plan might be discrepancies, focusing on the decision-making process provides insight

into the reason behind the conflict between the human and the robot. Also, employing

a rule-based framework, I shift the focus in this chapter from assisting an individual

human teammate to helping the team interactively by focusing on the team decision

processes.

The AI facilitation capability ensures that the planning team is always operat-

ing at a high level of decision effectiveness, ensuring that all team members are in

harmonization. I expect these teams to be dynamic since as new, novel options are

considered, it will require adding additional expertise to the team. I expect that

the facilitation agent will enable the team to generate and analyze more prospects

in less time. And the facilitation agent, as it is closely following the entire planning

discussion, will be able to synthesize the plan and the plan rationale, which will be

very useful for both a more detailed analysis of the selected plan and the execution

of the plan.

In Chapter 6, I employ the findings of the approaches introduced in this disserta-

tion to highlight my most important findings on human-robot team design, towards

human-machine symbiosis.
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Chapter 7 discusses the future directions of this line of research both in terms of

efficient agent design and human-agent collaboration studies.

1.1 Overview of Contributions

Throughout this dissertation, I have studied two distinct AI roles: (1) AI as a

teammate; (2) AI as a team facilitator. AI as a teammate aims to take over the roles

in the team that is hard, dangerous, or even boring for the human. Therefore, for this

role, the impact of explanation generation is to increase the situation awareness, trust,

and transparency in human teammates throughout the interaction. Hence, AI design

focuses on reducing/maintaining the required human mental workload to understand

AI reasoning. On the other hand, AI as a team facilitator focuses on the overall team

behavior such as goal alignment, planning process strategies, effective communication,

utility alignment, bias mitigation, etc. Therefore, I explored AI facilitator design to

answer (1) how a team articulates the given information and (2) distinguishes the

critical information to fulfill a task. I elaborated my contributions toward each AI

goal in the following subsections.

1.1.1 Chapter 2

My contribution in this chapter includes generating joint plan for human and

robot which is more explainable, and implementing the ideas in a human-robot first

respondent task scenario. I extend the plan explicability to consider interactive set-

tings in which the human and robot’s behaviors can influence each other. I term this

new measure Interactive Plan Explicability (IPE). I compare the joint plan generated

by our approach with the consideration of this measure using the fast forward (FF)

planner, with the plan generated by FF without such consideration and the plan cre-

ated with human subjects interacting with a robot running an FF planner. Because
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the human teammate is expected to adapt to the robot’s behavior dynamically when

it deviates from her expectation, the plan created with human subjects is expected to

be more explicable than the FF plan and comparable to the explicable plan generated

by our approach. Results indicate that the explicability score of plans generated by

our algorithm is indeed closer to the human interactive plan than the plan devel-

oped by FF, implying that the plans developed by our algorithms align better with

the expected plans of the human during execution. This can lead to more efficient

collaboration in practice.

1.1.2 Chapter 3

In this chapter, I provide a new (online) approach to generate explanations given

both the domain models of the robot and the human. Here, I break down a complex

explanation and calculate the optimal time to share sub-explanations intertwined with

the robot plan execution to increase the team situation awareness and trust. For a

robotic teammate, the ability to generate explanations to justify its behavior is one of

an explainable agency’s essential requirements. Prior work on explanation generation

has been focused on supporting the rationale behind the robot’s decision or behavior.

These approaches, however, fail to consider the mental demand for understanding

the received explanation. In other words, the human teammate is expected to under-

stand an explanation no matter how much information is presented. In this chapter,

I argue that explanations, especially those of a complex nature, should be made in

an online fashion during the execution. This helps spread out the information to be

explained and thus reduces humans’ mental workload in highly cognitive demanding

tasks. However, a challenge here is that the different parts of an explanation may be

dependent on each other, which must be taken into account when generating online

explanations. To this end, a general formulation of online explanation generation is
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presented with three variations satisfying different “online” properties. The new ex-

planation generation methods are based on a model reconciliation setting introduced

in our prior work. I evaluated these methods both with human subjects in a simu-

lated rover domain, using NASA Task Load Index (TLX), and synthetically with ten

different problems across two standard IPC domains. Results strongly suggest that

my methods generate explanations that are perceived as less cognitively demanding

and much preferred over the baselines and are computationally efficient.

1.1.3 Chapter 4

In this chapter, I provide a learning approach to understand how humans pro-

gressively perceive a complex explanation. The output of my approach is to provide

the optimal sequence of sub-explanation that achieves the least cognitive demand to

provide the maximum possible situation awareness. Prior work on generating ex-

planations in a planning and decision-making context has focused on providing the

rationale behind an AI agent’s decision-making. Although these methods offer the

proper explanations from the explainer’s perspective, they fail to heed the cogni-

tive requirement of understanding an explanation from the explainee’s (the human’s)

perspective. In this chapter, I set out to address this issue by first considering the

influence of information order in an explanation, or the progressiveness of ex-

planations. Intuitively, progression builds later concepts on previous ones and is

known to contribute to better learning. In this work, I aim to investigate similar

effects during explanation generation when an explanation is broken into multiple

parts that are communicated sequentially. The challenge here lies in modeling the

humans’ preferences for information order in receiving such explanations to assist un-

derstanding. Given this sequential process, a formulation based on goal-based MDP

for generating progressive explanations is presented. The reward function of this
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MDP is learned via inverse reinforcement learning based on explanations that are re-

trieved via human subject studies. I first evaluated our approach on a scavenger-hunt

domain to demonstrate its effectiveness in capturing the humans’ preferences. Upon

analyzing the results, it revealed something more fundamental: the preferences arise

strongly from both domain-dependent and independence features. The correlation

with domain-independent features pushed us to verify this result further in an escape

room domain. Results confirmed our hypothesis that the process of understanding

an explanation was dynamic. The human preference that reflected this aspect cor-

responded precisely to the progression for knowledge assimilation hidden deeper in

our cognitive function. I showed that progressive explanations achieved better task

performance and reduced cognitive load. These results shed light on designing ex-

plainable robots across various domains. Robotic applications are strongly correlated

with independent domain features, which I further verified using an escape-room do-

main. Results strongly confirmed that order matters when making explanations and

sometimes even plays a dominant role. My method is evaluated on two domains:

escape-room and scavenger-hunt domain employing human subjects and IPC rover

domain for simulation. The results show that the progressive explanation generation

method reduces the cognitive load over two baselines.

1.1.4 Chapter 5

To better understand the team processes to decide on complex tasks, in chapter 5, I

focused on team dynamics during the planning. Hence, one question I am answering

is: How teammates articulate the inputs to the planning problem? This question

consists of two parts, what to solve?, and How to solve it? Since I concentrate on

cognitive demanding collaborative tasks, the most important factors toward answering

these questions are: the agreed utility function, mitigating team cognitive biases, and
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a heuristic to determine effective communication. Finally, the result of this chapter

will elucidates the important factors in designing an AI facilitator agent, as well as

the facilitator effect on overall collaboration and team communication.

1.2 Challenges

One of the main challenges in this work is the distinction and identification of

human mental models. In particular, the identification of the human’s mental model

(dynamics model) is a general problem across all the chapters. In this dissertation, I

have utilized two common approaches:

1. I assume/impose a human model, i.e.,I assume the initial human model is known

and know how it may be changed by the agent’s explanation/facilitation be-

haviors, or pre-train the human’s initial model in terms of what is know and

unknown;

2. Learn the human model.

The first approach is functional when studying the overall team interaction pat-

tern, specifically the impact of robots’ actions on humans teaming behavior and vice

versa throughout a teaming scheme. This approach is helpful when we design or

test interaction strategies for human-robot teams. On the other hand, the second

approach is beneficial when focusing on how each explanation is perceived from an

individual team member’s perspective. For instance, the second approach is appropri-

ate for understanding each new sub-explanation’s effect on the previously generated

sub-explanations.

Chapter 2 used a labeling approach to learn about the human model (second

approach). The initial model associates a label to each action/behavior of each team-

mate. These labels then will be used to predict the human expectation in new sce-
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narios based on the calculated similarity of learned actions-label pairs.

Chapter 3, 4 & 5: I employed the first approach to know the human’s model or

pre-train it. The mental states and the rewards associated with them are captured

with respect to the task. Hence, the reward is defined as a linear weighted sum of fea-

tures categorized as domain-dependent and independent, calculated from states in the

domain. This definition affects many design choices of the task and the environment

in which humans and robots interact. One interesting future work in this direction is

extracting features and applying them towards the reward definition, given the task

and environment as input.
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Chapter 2

INTERACTIVE PLAN EXPLICABILITY

There is an ever-growing number of robotic applications, among which many de-

pend on the ability of the robot being an effective teammate. The team effectiveness

is a compound metric that captures how team members consistently act according

to the expectation of the team Cooke et al. (2015). Effective teaming consists of (1)

situation awareness in terms of recognizing the status of the team tasks and team-

mates’ states, (2) shared mental model to predict or foresee the next action of the

team under the current context, (3) direct and indirect interaction between the team-

mates, and (4) taking proactive actions considering other team members’ subgoals to

support their achievement Cooke (2015); Cooke et al. (2015).

Hence, to achieve a comparable level of efficiency as in human teams, a key chal-

lenge in human-robot teaming is to ensure that the robot always assists humans in

an expected and understandable fashion that is consistent with the teaming context.

To do this, a robotic teammate must first be able to recognize the intent of its human

teammates and then coordinate with them in a way that is expected. This argu-

ment has been more prominently made recently in human-robot teaming research

Chakraborti et al. (2017a). It is argued that the robot must maintain mental models

of its human teammates. These mental models not only include human intent and

other mental states, but also their expectations of the robot. The ability to accom-

modate such expectations can lead to more fluent teaming, even though it often leads

to suboptimal plans due to the differences between the robot’s plan and that of the

human expectation.

There are many reasons why the robot’s plan would differ from that of the human

11



expectation. For example, humans may misunderstand the abilities of their robotic

teammates, resulting in inconsistencies between the robot’s domain model and the

human’s interpretation of this model. Modeling the human expectation is particularly

challenging since the robot often does not have direct access to it and it is difficult to

be learned. To address this issue, we use the notion of plan explicability discussed in

Zhang et al. (2017), where an approach was proposed to learn the model of expectation

based on a labeling process. That work, however, focused on the human being an

observer. In this work, we extend the notion of plan explicability to an interactive

setting where the human is cooperating with the robot.

In an interactive teaming setting, the behaviors of the human and robot can

influence each other. For instance, consider a scenario where a human is assigned

to a first-response task with a robotic teammate after a disaster occurred. Due to

the hazardous situation in the environment, the human stays at the command center

and the robot enters the environment to provide medical assistance at the locations

where injured people are likely to be present. The team’s goal is to provide medical

assistance as quickly as possible. However, due to damages incurred by the disaster,

some paths may be blocked which is unknown to the human and only perceivable

by the robot teammate that is working at the disaster scene. Hence, the situation

may happen that the human would command the robot to visit a room and expects

the robot to follow the shortest path in her view, but the robot would take a longer

route due to obstacles that the human is unaware of. This robot behavior from the

human’s perspective is inexplicable. In an interactive setting, this may trigger the

human to more closely monitor the robot’s behavior and command the robot more

frequently. These interactions directly influence the mental models of the human

and hence can change her teaming behavior, which would in turn affect the robot,

thus forming a tight interaction. In such a case, a plan is comprised of both human
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and robot actions, and the influence of the agent’s behavior on each other must be

explicitly considered.

In such teaming scenarios, the ability of the robot to predict the joint team behav-

ior hence can increase the team effectiveness since the robot can now anticipate the

human’s response and how it should react accordingly. This in turn allows the robot

to choose plans that are the least interruptive to the human thus improving teaming

fluency. To achieve this, similar to plan explicability Zhang et al. (2017), we assume

that humans interpret robot plans by attaching abstract task labels to robot actions

as a labeling process. The difference here is that the plan contains not only robot ac-

tions but also human actions. The human actions provide the teaming context for the

labeling process, which is modeled using Conditional Random Fields (CRFs). The

learned model can be used to label a new team plan to compute its interactive plan

explicability score, similar to the explicability score in Zhang et al. (2017). Having

these measures allows the robot to synthesize plans that are more explicable to the

human. Our contribution in this work includes extending plan explicability to in-

teractive teaming scenarios, implementing a plan monitoring and replanning process

during actual human-robot interaction, as well as evaluating this approach using a

synthetic first response domain.

2.1 Related Work

The notion of robotic teammate, or that using robots to complement humans in

various tasks, has attracted lots of research interest. At the same time, however, the

realization of this notion is challenging due to the human-aware aspect Chakraborti

et al. (2017a), or that the robot must consider the human in the loop, both in terms of

physical and mental models while planning to achieve the team goal. In such cases, it

is no longer sufficient to model humans as parts of the environment Chakraborti et al.
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(2015). Instead, human-robot teaming applications require the robot to be proactive

in assisting humans Fern et al. (2007).

There are different aspects to be considered for human-robot teaming. First, the

robot must take the human’s intent into account. Various plan recognition algorithms

Kautz and Allen (1986); Ramırez and Geffner (2010) can be applied to perform plan

recognition based on a given set of observations. The challenge is how the robot

can utilize this information to synthesize a plan while avoiding conflicts or providing

proactive assistance Chakraborti et al. (2016); Cirillo et al. (2009). There are different

approaches to planning with such consideration Chakraborti et al. (2015, 2017b).

A more challenging aspect, for the robot to be considered as a teammate, is to be

socially acceptable, where the robot must be aware of the expectation of the human

teammates and act accordingly. The challenge is to model the human’s expectation

of the robot and align the robot’s behavior with this expectation. In Dragan and

Srinivasa (2013), the approach is to generate “legible” motions that show the robot’s

intent implicitly Knepper et al. (2017). Another approach is to train the team suffi-

ciently so that each team member would maintain a good prediction model of each

other’s behavior Nikolaidis et al. (2014). These approaches, however, work only in

relatively simple and repetitive domains. For more complex domains, the robot is

required to learn and model the human expectation from interactions Chakraborti

et al. (2017a); Zhang et al. (2016). Using these models, the robot will be able to

anticipate human expectations in order to remain comprehensible to the human, or

to choose a behavior that is the least interruptive when it does not match perfectly

with the expectation. This ability is well known to promote sustainability of teaming

situation awareness Cooke (2015) in human-human teams. While this work is inspired

by Zhang et al. (2017), we significantly extend the framework to consider interactive

human-robot teaming instead of having the human being merely an observer.
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2.2 Background

2.2.1 Planning

A planning problem can be formulated as a tuple P = 〈F,M, I,G〉, where F is a

set of fluents, M is the domain model which consists of a set of actions A and a cost

function C. I ⊆ F is the initial state and G ⊆ F is the goal state. Each action in A

is a tuple consists of preconditions and effects. C assigns a non-negative cost to each

action. Given a planning problem with I and G, the objective is to synthesize a plan

π = 〈a1, a2, ..., an〉 which consists of a sequence of actions that lead to the goal state

from the initial state. The cost c(π) is the sum of the costs of all the actions in the

plan π.

2.2.2 Plan Explicability

The explicability of a plan Zhang et al. (2016) is correlated with a mapping of high-

level tasks (as interpreted by humans) to the actions performed by the robotic agent.

The demand for generating explicable plans is due to the inconsistencies between the

robot’s model and the human’s interpretation of the robot model (which captures the

human’s expectation of the robot). To formalize the explicable planning problem,

consider the setting with two models where MR is the robot model and M̃R is the

human’s interpretation of MR. For a given initial and goal state pair, 〈I,G〉, let πMR

be a plan generated by the robot using MR, and πM̃R
be the plan of the human’s

expectation using M̃R. An explicable plan in MR is a plan πMR
that minimizes the

weighted sum of plan cost of πMR
and the plan distance between πMR

and πM̃R
. It

can be written as:

argminπMR
cost(πMR

) + α · dist(πMR
, πM̃R

) (2.1)
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where cost returns the cost of a plan, dist computes the distance between two plans,

and α denotes the relative weight. In Eq. (2.1), M̃R is often unknown and dist needs

to be specified. To deal with this, in Zhang et al. (2016), the distance between the two

plans is approximated using a CRF model, where a labeling scheme is used to map

the human interpretations of the robot’s actions as task labels to the robot actions

in πMR
. Then the dist function is defined as a composition of two functions as shown

in Eq. (2.2), where F is a domain independent function that takes plan labels as its

input and L?(πMR
) is a labeling scheme that maps task labels to the actions in MR.

dist(πMR
, πM̃R

) = F ◦ L?(πMR
) (2.2)

Using a CRF model to learn the labeling scheme L?, Eq. (2.2) becomes:

argminπMR
cost(πMR

)+

α · F ◦ LCRF (πMR
| {Si | Si = L?(πiMR

)}) (2.3)

where LCRF (πMR
) is the learned CRF model of L? and {Si} is the training data.

Plan Explicability : Given a robot plan π in MR

π = 〈a0, a1, a2, ..., aN〉 (2.4)

where a0 is the starting action and there are N actions in π, and a set of action labels

T given by

T = {T1, T2, ..., TM} (2.5)

where M is the number of labels, we can first apply L?CRF to obtain the label sequence,

Lπ. The explicability score of π is computed based on Lπ. The explicability measure

as in Zhang et al. (2017) is defined as follows:

Fθ(Lπ) =

∑
i∈[1,N ] 1L(ai)6=∅

N
(2.6)
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where Fθ(Lπ) : Lπ → [0, 1] (with 1 being the most explicable), 1 is an indicator

function, and Fθ is the domain independent function that converts plan labels to the

final score. When the labeling process can’t assign a label to an action ai, its label

L(ai) will be the empty set (implemented as a special label).

2.3 INTERACTIVE PLAN EXPLICABILITY

In our work, the robot creates composite plans for both the human and robot

using an estimated human model and the robot’s model, which can be considered

as its prediction of the joint plan that the team is going to perform. At the same

time, however, the human would also anticipate such a plan to achieve the same task,

except with an estimated robot model and the human’s own model.

Each problem in this domain can be expressed as a tuple PT = 〈I,MR, M̃H ,ΠC , G〉.

In this tuple, I denotes the initial state of the planning problem, while G represents

the shared goal of the team. MR represents the actual robot model and M̃H denotes

the approximate human model provided to the robot, which may also be learned

Zhang et al. (2015a). The actual human model MH could be quite different from M̃H

provided to the robot. Similarly, the approximate robot model from the human M̃R

may be different from the actual robot model MR. See an illustration of the problem

setting in Fig. 2.1. Finally ΠC represents a set of annotated plans that are provided

as the training set for the CRF model.

2.3.1 Problem Formulation

In this work, the plan for the team will be represented by a composite plan, which

is defined as follows:

Definition 2.3.1 (Composite Plan). A composite plan πc captures the actions per-

formed by both the human and robot to achieve the goal and is represented as πc =
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Figure 2.1: The robot’s planning process is informed by an approximate human model

and the robot’s own model, while the human’s planning process is informed by an

approximate robot model and the human’s own model.

{aφ11 , a
φ2
2 , ..., a

φi
i , ..., a

φn
n }. Here aφii represents the ith action in the plan performed by

the agent φi ( where φi can be either H or R).

In our current setting, we assume that only one agent is executing its action at any

given time (please see discussion section to see how we plan to relax this assumption).

To generate an explicable plan, the robot needs to synthesize a composite plan that

is as close as possible to the plan that the human expects. This is an especially

daunting challenge, given that we have multiple points of uncertainty (e.g., M̃H and

M̃R). Nevertheless, a similar method to Zhang et al. (2017) can be utilized here by

updating Eq. (2.1) as follows:

argmin
π
MR,M̃H
C

cost(πMR,M̃H

C )

+ α · dist(πMR,M̃H

C , πM̃R,MH

C ) (2.7)

where πMR,M̃H

C is the composite plan created by the robot using MR and M̃H , while

πM̃R,MH

C is the composite plan that assumed to be expected by the human. Similar to

our prior work, we assume that the distance function dist(πMR,M̃H

C , πM̃R,MH

C ) can be
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calculated as a function of action labels for πMR,M̃H

C :

argmin
π
MR,M̃H
C

cost(πMR,M̃H

C )

+ α · F ◦ LCRF (πMR,M̃H

C | {Si | Si = L?(πiC)}) (2.8)

Similarly, the labeling process for each action is modeled by a CRF LCRF trained

on a set of labeled team execution traces ({πiC}). For planning, we can easily adopt

any state space planner that uses forward search, while ensuring that the heuristic

itself takes into account the explicability score. To search for an explicable plan, we

use a heuristic search method as shown in Algorithm 2.3.2; the heuristic is f = g+h,

where g is the cost of the plan prefix and h is calculated as follows:

h = −Fθ(LCRF (CurrentState.path+ rp)) (2.9)

where + above represents concatenation and rp = relaxedP lan(CurrentState,Goal).

The planner algorithm is provided in Algorithm 1 and the algorithm to calculate the

f value is given in Algorithm 2.3.2.

2.3.2 Monitoring & Replanning for Interactive Teaming

In an interactive setting, given that the robot does not have access to the complete

and accurate human model nor the human’s expectation of its own model, the robot

will rely on replanning when the human deviates from its plan. This is discussed in

more detail next. The main components of our monitoring & replanning system for

training the CRF model are as follows:

• Controller: The service controlling robot actions and the planner used by the

robot to achieve the goal is presented in Algorithm 3, it starts with an initial

plan and performs replanning whenever the actual human action does not align

with the explicable plan.
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• Planner: This module is responsible for generating the composite plans. It

takes the current state, combined robot and human planning model (where the

human model is an approximation of the exact model), the trained CRF model,

and any plan prefix. Robot calls the planner before starting any execution. If

the executed plan deviates, the controller calls the planner again with updated

current state and a plan prefix consisting of all actions that have been executed

up to that point. The details about the planner are covered in Algorithm 1.

Algorithm 1: Algorithm for a planner to generate explicable plans

Input: StartState, CombinedModel, Goal, PlanPrefix

CurrentState:= StartState;

CurrentPlan := Planner(CurrentState, CombinedModel, Goal, PlanPrefix);

statePriorityQueue.add(allNeighboursWithFValue (currentState, Goal,

PlanPrefix));

while statePriorityQueue is not empty do

currentState := statePriorityQueue.getBestState();

if currentState satisfies Goal then

return currentState.path;

else

statePriorityQueue.add(allNeighboursWithFValue (currentState,

Goal, PlanPrefix));

The controller service runs a monitoring component, which ensures that the human

performs the expected action. If the state changes do not correspond to the expected

action, the monitor calls the planner again to produce a new plan (replanning process).

The controller feeds the planner the latest state along with the list of actions that

have been executed till that point (referred to as current plan prefix). To allow the
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Algorithm 2: Algorithm for allNeighboursWithFValue to calculate the f

value for each of the neighboring states.

Input: CurrentState, Goal, PlanPrefix

neighborList := [];

for state in CurrentState.neighbors do

rp := state.relaxedPlan(Goal);

h := findExplicabilityScore(PlanPrefix + CurrentState.path + rp);

g := CurrentState.path.cost;

f := g + h;

neighborList.add(tuple(state, f));

return neighborList;

CRF model to incorporate plan context from previously executed actions, it needs to

consider current plan prefix as part of a larger plan containing the previously executed

actions, rather than a new planning problem.

2.4 EVALUATION

To evaluate our system, we tested it on a modified synthetic first response domain,

where the robots were assigned to a first-response task after a disaster occurred. In

this scenario, the human’s task is to team up with a remote robot that is working

on the disaster scene. The team goal is to search all the marked locations as fast as

possible and the human’s role is to help the robot by providing high-level guidance

about what the next marked location to visit. The human peer has access to the

floor plan of the scene before the disaster. However, some paths may be blocked due

to the disaster that the human may not know about; the robot, however, can use

its sensors to detect these changes. Due to these changes in the environment, the
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Algorithm 3: Algorithm for the controller service.

Input: CombinedModel, Goal

CurrentPlan := Planner(CurrentState, CombinedModel, Goal);

CurrentPlanPrefix := [];

for action in CurrentPlan do

if action is robot action then

execute action;

add action to CurrentPlanPrefix;

else

executedAction := waitForHumanAction();

add executedAction to CurrentPlanPrefix;

if executedAction = action then

Continue;

else

CurrentState := Monitor();

CurrentPlan := Planner(CurrentState, CombinedModel, Goal,

CurrentPlanPrefix);

robot might not take the expected paths of the human. Therefore, the robot delays

in between performing its actions while it diverges from the expected path, so the

human changes preference and the robot re-plans after that. If the human does not

change her preference, however, the robot continues to visit the original room asked

by the human. An example of the scenario is discussed in detail in section 2.4.1.

For data collection, we implemented the discussed scenario by developing an in-

teractive web application using MEAN (Mongo-Express-Angular-Node) stack. We

collected human trials for two different settings of the domain. The trials collected
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were from the people having basic knowledge of computers and not the researchers

having the background understanding of this experiment. For the data collection

they were only given the instructions to perform the experiment and the map where

to perform the experiment.

We collected human trials in two different settings of this domain. In the first

setting, the human’s commands have priorities and the robot would always move

toward the commanded location. Therefore, the robot needs the human command to

move toward visiting the marked locations. In the second setting, the robot respects

the human’s commands only if it aligns with its own plan (a plan computed using

FF Hoffmann and Nebel (2001) based on the robot model and approximate human

model), which contains both human and robot actions. Hence, the robot may start to

execute the predicted plan without the human command. However, when the human

commands are aligned with the predicted plan, then the robot moves 10% faster,

and the time to visit the marked locations reduces. In both settings, the human can

command the robot to change the next room to be visited during the task, simply by

clicking on any of the marked locations. In both settings, the robot delays 1 second

before performing the next action.

After each action, the system asks the human whether the robot’s action makes

sense or not. This is translated later as the explicability labels. If the action of the

robot makes sense, therefore it is inferred as explicable for the human. Otherwise,

it is inexplicable. The costs of all of the actions are the same in both versions. For

each scenario, there is a test instance with the exact same settings and instructions

respectively. All scenarios were limited to four marked locations to be visited and

random number of obstacles and changes in the map. All scenarios were limited to

four marked locations to be visited and random number of obstacles and changes in

the map. We have generated a set of 16 problems for training and 4 problems for
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Table 2.1: Plan Action Distance (to the actual interactive human-robot plan) Com-

parison Between Human vs FF Plan and Human vs Explicable Plan

Explicable Plan Optimal Plan

Distance Score from Human Plan 0.9277 0.9267

testing. In both settings, if the human actions deviate from what the robot predicted,

the robot starts to re-plan from the current state to the goal. Then, the robot follows

the amended plan. The robot continues this behavior until all goals are met. We

used FF plan in testing for both settings. We collected an initial set of 44 plan traces,

which we then used to train our CRF model. The human subjects are selected from a

major university in North America. They had general background knowledge about

the interactive online games. Their age ranges from 21 to 33 years old. We combined

the team plans alongside with their labels from both scenarios to form one model and

then used the model to label the test instances. All training sets were collected from

human trials, with random initial states and random goals.

2.4.1 Use Case

Consider a scenario as shown in Figure 2.3. The robot is shown in its initial state

with the red box; Grey cells are the unseen obstacles which has happened due to the

disaster and only the robot that is working on the scene can sense these changes. All

of the tile types for each cell are represented in Figure 2.2.

In the FF plan, the human ordered the robot to visit room #4, room #1, room

#2 and room #3 respectively. The highlighted yellow cells show where on the map

the human set those orders accordingly. In the explicable plan, however, the human

peer ordered the robot to visit room #1 first, but since the room #4 is closer than

room #1, it decides to visit room #4. As the robot gets closer to room #4, it waits
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and hopes that the human changes her preference to room #4. After the human

preference changes (on the cell marked as E2), the robot visits room #4 as it is

shown in Figure 2.3 and continues to room #1. The same situation happens again

on the location marked as E3 and the human changes order to visit room #1. The

robot continues until all of the rooms are visited.

Figure 2.2: Left: A sample map that the human subject sees, Middle: the description

of each tile type; Right: The robot’s view, the gray cells are unseen obstacles due to

the disaster.

Since in the explicable plan the robot senses the blocked path, it estimates the

human change and re-plan as it performs actions. The plan generated by Fast Forward

(FF) planner does not make this distinction. We used the trained CRF model to

evaluate the explicability of the FF plan and explicable plan. The FF plan has the

explicability score of 0.16 while the explicable plan has the score of 0.29 (calculated

by (6)).

The FF planner produces the inexplicable plans because the planner itself is obliv-

ious to human’s preconceived notions about the robot’s action model or to the actual

team characteristics (in most scenarios the human would prefer the robot to incur

additional costs if it can lead to a convenient and intuitive plan for the human). By

using the concepts of explicability during the plan generation process, we are able to
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Figure 2.3: Use Case. The initial state is indicated with a white arrow inside the

red box. Yellow cells refers to human actions; Set-to-visit is a human action which

commands the robot to visit a marked location. Grey cells are the unseen obstacles

which has happened due to the disaster and only the robot that is working on the

scene can sense these changes. A sample map of the actual environment is shown in

Figure 2.2.

capture any such preconceptions and model the team dynamics to match what the

human would expect from her teammate.

2.4.2 Results

Table 2.2 and 2.3 show the overall and detailed interactive explicability score for

plans generated by FF and our approach. We analyzed the results in terms of the
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explicability scores computed using Equation (2.6) while ignoring human actions.

The human plan in Table 2.2 is the plan created by the human subjects for a

mixed of both settings considered. The interactive explicable plan is created using

the heuristic search method mentioned in Equation (2.9).

As illustrated in Table 2.2, the explicability score of interactive explicable plan is

comparable to the human plan (0.7% difference), while the explicability score differ-

ence between FF plan and human plan is 10.8%.

The results indicate that the explicability score of plans generated by our algo-

rithm is comparable to the actual interactive plan, implying that the plans created by

our algorithm can lead to more efficient collaboration in practice. One possible reason

for the low explicability score of FF plan is that FF tends to create plans that are less

costly while ignoring the fact that the human and robot view the environment differ-

ently and thus less costly plans in one view are also more likely to be misaligned with

less costly plans in the other. Note, however, that whether the explicable plan would

lead to better teaming performance requires further investigation and evaluation with

actual human subjects. This will be explored in our future work.

Table 2.4 illustrates the subjective questionnaire results for both games on a 1-10

Likert scale, where 1 is the lowest and 10 is the highest score. The results of the

table indicate that human subjects perceive the robot’s actions, which is the result

of our explicable planner contributing to the team effectiveness and they prefer to

collaborate with the robot consequently.

2.5 CONCLUSIONS

In conclusion, this chapter aims to create a general way of generating explicable

plans for human-robot teams, where the human is an active player. To generate an

explicable plan for a human-robot team, we need not only consider the plan cost,
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Table 2.2: Overall Interactive Explicability Scores

Plan Type Interactive Explicability Score

Interactive Explicable Plan 0.833

FF Planner 0.716

Human Plan 0.803

Table 2.3: Elaborated explicability Score for Test Scenarios

Scenario # FF Plan interactive Explicable plan

1 0.16 0.34

2 0.18 0.30

3 0.20 0.33

4 0.28 0.38

but also the preconceptions that the human may have about the robot. Also, the

robot should try to perform actions that may benefit the human plans, even if they

incur a higher cost for the robot. Although we have mainly focused on two member

teams, we believe that these ideas can be easily extended to larger team sizes with

a few changes to the current formulation. One of the main challenges in larger team

sizes would be to maintain the order in which the agents may choose to perform their

actions. Another assumption we made for this work was that all action executions

were sequential, it would be interesting to see if this formulation can be extended to

support simultaneous action executions. It should be straightforward to extend the

current formulation to support simultaneous action executions by considering joint
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Table 2.4: Questionnaire Results Based on Likert Scale

Questions

Robot contribution to team effectiveness 8.37

Human contribution to team effectiveness 6.86

Preference to collaborate with the robot 8.41

actions at any time step. Another way we may be able to achieve this would be by

using temporal planners Do and Kambhampati (2003) instead of relying on sequential

ones. Also, the current system assumes the provision of an approximate human

planning model and relies on replanning to correct its plans whenever the human

deviates from the predicted explicable plan. We could possibly explore the idea of

incorporating models like capability model Zhang et al. (2015a) to learn such human

models. A possible way this work can be further extended would be to incorporate

predictability as defined by Zhang et al. (2015b) into the plan generation process.

So instead of just focusing on generating the most explicable plans, we can try to

produce plans that are both explicable and predictable. In conclusion, this work aims

at introducing a way of creating plans for human-robot teams, that are naturally

more explicable and more preferred by the human. Currently, the system provides

the modeling of human planning preferences and relies on replanning to correct its

plans whenever the human deviates from the explicable action. It would be also

interesting to see if we can incorporate models like capability model Zhang et al.

(2015a).
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Chapter 3

ONLINE EXPLANATION GENERATION FOR PLANNING TASKS IN HUMAN

ROBOT TEAMING

As intelligent robots become more prevalent in our lives, the interaction of such AI

agents with humans becomes more frequent and essential. One of the most important

aspects of human-robot interaction is for the robotic agent to provide explanations

to support the rationale behind its decision or behavior Lombrozo (2006). An expla-

nation provides justifications for the robot, which helps the human maintain trust

of the robotic peer as well as a shared situation awareness Endsley (1988); Cooke

(2015). Prior work on explanation generation, however, often ignores the underlying

requirements of the human recipient to understand an explanation Göbelbecker et al.

(2010); Hanheide et al. (2017); Sohrabi et al. (2011). A good explanation should

be generated in a lucid fashion from the recipient’s perspective Chakraborti et al.

(2017b); Miller (2018), so that it is understood.

To address this problem, a key consideration is that the human recipient (ex-

plainee) may interpret an explanation differently from the robot (explainer) due to a

different understanding of the domain. In our prior work Chakraborti et al. (2017b),

we refer to such differences as model differences. The robotic agent, as a result, must

ensure that the explanation makes sense in the human’s model, which generates the

human’s expectation of the robot, so that the robot’s behavior matches with the hu-

man’s expectation. An explanation can then be considered as a request to change

the human’s model to reduce the model differences so that the robot’s behavior is

consistent with the updated human model. The decision-making process (including

explanation generation discussed herein) in the presence of such model differences is
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more generally referred to as model reconciliation Chakraborti et al. (2017b); Zhang

et al. (2017).

One remaining challenge, however, is the consideration of the mental demand of

the human to understand an explanation. In most prior work on explanation gener-

ation, the human is expected to understand an explanation regardless of how much

information it contains. Little discussion has been given on the ways of presenting

such information. In this work, we argue that explanations, especially complex ones,

should be provided in an online fashion, such that each explanation is broken into

multiple parts, which are then communicated separately and intertwined with plan

execution. Communicating an explanation in such a manner is expected to result in

less mental workload for cognitively demanding tasks since the information is spread

out so that the interpretation process becomes incremental, which is known to benefit

understanding Fischer and Fischer (1979). One of the main challenges here is that

the different parts of an explanation could be dependent on each other, which must

be taken into account when generating online explanations. Our online explanation

generation process spreads out the information while ensuring that the different parts

do not introduce cognitive dissonance so that they are always perceived in a cohesive

fashion.

3.0.1 Motivating Example

Let us illustrate the motivation of online explanation generation via a familiar

situation involving a daily routine. Mark works at a company and has a voice assistant

helping him get ready for work everyday. Usually Mark wakes up, drinks a freshly

made coffee, enjoys a filling breakfast, dresses for work, and then drives to work.

However, today, Mark has a meeting scheduled in the early morning so Mark needs

to arrive at work earlier, a presentation at near lunch time, his car is broken, and

31



there is no coffee beans for fresh coffee. The voice assistant knows that Mark must

be reminded of these changes. However, explaining all the changes at the same

time may result in unnecessary strain on Mark. In contrast, the robot first suggests

Mark to prepare an instant coffee,, explaining that there is no coffee beans left. As

Mark is enjoying his coffee, it reminds him to cook a light breakfast since there is an

important meeting scheduled early today. As Mark is enjoying his breakfast, the voice

assistant advises Mark to prepare a lunch box, since there is a presentation at near

lunch time so that Mark may not have time to eat outside. After Mark is done with

the lunch box, it asks Mark to call the taxi company since his car is broken. After

breakfast, the assistant mentions that Mark needs to dress up today for work. When

the taxi arrives, the voice assistant asks Mark to take the lunch box. Comparing

the voice assistant’s strategy to share all of the information at the beginning, we can

see that conveying the information in an online fashion is more cognitively friendly

(i.e., involving less information at a time) and hence helps with reducing strain and

cognitive load Kahneman (2011); Cowan (2008). These effects are highly desirable

for tasks that are cognitively demanding for humans.

In this chapter, we develop a general formulation of online explanation generation

by breaking an explanation up into multiple parts to be communicated at different

times during plan execution. We develop three variations of online explanation gen-

eration methods with each satisfying different “online” requirements. In the first

method, the focus is for a robot to explain only plan prefixes. This is in contrast

to prior offline methods where the entire plan must be explained, which allows us to

break an explanation up into multiple parts with each explaining only a part of the

plan. We use a model search method to ensure that the earlier parts communicated

do not affect the latter parts of an explanation. In the second method, we further

relax the online requirement by requiring only the very next action to be explained
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(if needed). The assumption here is that the actions already occurred do not affect

the understanding of the robot’s future actions, which holds in situations where each

action is viewed independently or the human has a short cognitive span (such as

in highly demanding tasks). In the third method, we relax the assumption of the

uniqueness of the human’s interpretation of a plan and the robot is only required

to explain with respect to any such interpretation. A compilation method is devel-

oped that converts this problem into one that requires solving two planning problems.

Our methods are evaluated both synthetically and with human subjects in standard

planning domains. Results strongly suggest that our methods not only generate ex-

planations that are perceived as less cognitively demanding and much preferred over

the baselines but also are computationally efficient.

3.1 Related Work

The advancement of AI and its numerous applications have provided astounding

benefits in many areas such as transportation, medicine, finance, education, and

entertainment. And yet AI agents have thus far been limited in their ability to operate

as a teammate. To be considered a teammate, an AI agent must not only achieve

a given task, but also provide a level of transparency about itself to other members

of the team Cooke (2015). One way to achieve this is to enable AI agents to be

self-explanatory in their behaviors. Recently, the explainable AI paradigm Gunning

(2017) rises as one essential constituent of AI systems. Explainable AI maintains a

shared situation awareness by facilitating the human’s understanding of the AI agent,

which also improves the human’s trust.

The effectiveness of explainable agency Langley et al. (2017) depends on the

agent’s ability to model the human’s interpretation of its behavior. While there

exists prior work that focuses on aligning the values Brewka (1996) or goals An-
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dersen et al. (2016); Dragan et al. (2013), the interpretation also depends on the

domain model Gong and Zhang (2020). This means that an explainable AI agent

must not only model the domain, but also the human’s interpretation of the do-

main Chakraborti et al. (2017a), which may be quite different. This interpretation

model of the human enables the AI agent to infer about the human’s expectation of

itself. Using such a model, an agent can generate explicable plans Zhang et al. (2017);

Zakershahrak et al. (2018); Fox et al. (2017), assistive actions Reddy et al. (2018),

etc., to facilitate fluent human-robot interactions. In these methods, the AI agent

substitutes a cost metric with a new metric that simultaneously considers the cost

and a distance metric between the robot’s behavior and the human’s expectation of

it. Optimizing this new metric often leads to a trade-off between the plan cost and

plan interpretability.

Another way to use the human’s interpretation of the domain model requires

explicit communication, which has the benefit of maintaining cost optimality. The

model can be used to infer about which actions in an optimal robot plan are likely

to introduce misinterpretations. In some cases, simply providing the future context

for those actions is sufficient Gong and Zhang (2018) to make them interpretable.

Methods for analyzing the domain to identify the “causes” of the robot’s plan (or its

failures) have been studied before Göbelbecker et al. (2010); Hanheide et al. (2017);

Sohrabi et al. (2011). These methods however assume no differences between the

robot’s and human’s models. More recently, research work has been proposed to

specifically address this issue by considering their differences and generating explana-

tions to reduce them Chakraborti et al. (2017b); Miller (2018). However, all research

above has been focused on generating the “right” explanation while ignoring the cog-

nitive requirement of the human for understanding the explanation. In our prior work,

we have studied how the ordering for presenting the information of an explanation

34



may influence its interpretation Zhang and Zakershahrak (2019). In this work, we

further argue that an explanation should be made in an online fashion for cognitively

demanding tasks.

3.2 Explanation Generation as Model Reconciliation

We consider the explanation generation problem in a model reconciliation setting

first introduced in our recent work Chakraborti et al. (2017b). The reason for this

choice is that it represents a more general setting for explanation generation than

those used in the previous work, which considers both the robot’s (explainer) and

human’s (explainee) models as discussed in the related work. An illustration of the

model reconciliation setting is presented in Fig. 3.1. Next, we provide a brief review

of the formulations used in our setting.

Model reconciliation defines a planning setting. A planning problem is defined as a

tuple (F,A, I,G) using PDDL Fox and Long (2003), which is similar to STRIPS Fikes

and Nilsson (1971). M = (F,A) is also referred to as the model in this work, where

F is the set of predicates used to specify the state and A the set of actions used to

update the state. Actions are associated with a set of preconditions, add and delete

effects. I,G are the initial and goal states, respectively.

Definition 3.2.1 (Model Reconciliation Chakraborti et al. (2017b)). A model recon-

ciliation setting is a tuple (π∗I,G, 〈MR,MH〉) (MR 6= MH) under a given I,G, where

π∗I,G corresponds to πMR in Fig. 3.1 and represents the robot’s behavior (plan) to be

explained.

Assuming rational agents, the π∗I,G above must satisfy cost(π∗I,G,M
R) = cost∗MR(I,G),

where cost(π,M) returns the cost of a plan π under the model M , and cost∗M(I,G)

returns the cost of the optimal plan for the given initial and goal states under M .
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Figure 3.1: The model reconciliation setting first introduced in Chakraborti et al.

(2017b). MR represents the robot’s model and MH the human’s interpretation model

of the robot’s behavior. Using MH , the human obtains his expectation of the robot’s

behavior πMH . Whenever that is inconsistent with the robot’s actual behavior πMR

(generated by MR), the robot explains by generating an explanation to reconcile the

two models.

In other words, the robot’s plan to be explained must be optimal under MR. It is

assumed that the human obtains his expectation of the robot using MH . Hence,

when the robot’s behavior does not match with the human’s expectation, explana-

tions must be made. The goal of model reconciliation is to make the robot’s plan π∗I,G

also interpretable under the human’s model MH (i.e., generable by MH) by reducing

the differences between MH and MR.

To define model differences, a mapping function Γ was defined in Chakraborti

et al. (2017b) to convert a planning problem into a set of features that fully spec-

ify the given problem. For simplicity, we modify the function here to remove the

consideration of differences in the initial and goal states. As such, Γ maps any plan-

ning problem from its model space M to the power set of its feature space F (i.e.,

Γ :M 7−→ 2F) as follows:
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τ(f) =



a− has− precondition− f, if f ∈ pre(a), a ∈ A.

a− has− add− effect− f, if f ∈ eff+(a), a ∈ A.

a− has− del − effect− f, if f ∈ eff−(a), a ∈ A.

a− has− cost− f, if f = ca, a ∈ A.

Γ(M = (F,A)) = {τ(f)|
⋃
a∈A

{f |f ∈ {ca} ∪ pre(a)∪

eff+(a) ∪ eff−(a)}}

Definition 3.2.2 (Explanation Generation Chakraborti et al. (2017b)). An explana-

tion in a model reconciliation setting (π∗I,G, 〈MR,MH〉), is a set of unit feature changes

∆ to MH such that 1) ∆ = Γ(M̂H) \ Γ(MH) ⊆ Γ(MR), and 2) cost(π∗I,G, M̂
H) −

cost∗
M̂H

(I,G) < cost(π∗I,G,M
H) − cost∗MH (I,G), where M̂H is the model after the

changes.

An explanation hence reconciles MR and MH by reducing their differences and

making the cost difference between the human’s expected plan cost∗
M̂H

(I,G) and the

robot’s plan cost(π∗I,G, M̂
H) smaller after the model updates. When the cost difference

becomes 0, the robot’s plan becomes optimal (and hence aligned with that) in the

human’s model.

Definition 3.2.3 (Complete Explanation Chakraborti et al. (2017b)). An explana-

tion is complete if it satisfies cost(π∗I,G, M̂
H) = cost∗

M̂H
(I,G).

A minimal complete explanation (MCE) Chakraborti et al. (2017b) is defined as

a complete explanation that contains the minimum number of unit feature changes.
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3.3 Online Explanation Generation (OEG)

Prior work on explanation generation (including Chakraborti et al. (2017b)) fo-

cuses on providing the rationale behind the robot’s decision making. It is often as-

sumed that the explanation is provided in its entirety before the execution. As such,

the cognitive requirement of the human for understanding the explanation is largely

ignored: when complex explanations are involved (such as in cognitively demanding

tasks), communicating all information at the beginning becomes impractical. In such

cases, it is desirable to communicate explanations in an incremental fashion. In this

chapter, we introduce online explanation generation to address the above issue. The

key idea here is to break up an explanation into multiple parts while ensuring con-

sistency for interpretation, and communicate them separately during plan execution.

Each part of an explanation is referred to as a sub-explanation. A key observation

that allows us to break up an explanation is that only a part of the robot’s plan

needs to be explained by each sub-explanation given at a specific time step. Next,

we discuss three variations of OEG methods.

3.3.1 OEG for Matching Plan Prefix (OEG-PP)

In this variation, each sub-explanation is required to explain a prefix of the robot’s

plan, such that it is consistent with the prefix of the human’s expectation of the

robot’s plan. The sub-explanations are made incrementally in the sense that each

sub-explanation, when combined with the previous ones, explains a longer prefix of

the robot’s plan. The implication here is that the human’s expected plan after all

the sub-explanations will necessarily be the same as the robot’s plan, which is the

longest prefix of itself.

Definition 3.3.1 (OEG-PP). An online explanation for matching plan prefix is a
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set of sub-explanations in the form of 〈ek, tk〉, where ek represents the set of unit

feature changes to be made as the kth sub-explanation before executing step tk (the

tkth action) of the plan, such that the following holds:

∀k > 0,Prefix(π∗I,G, tk − 1) = Prefix(πHEk−1
, tk − 1)

s.t. Γ(MH
Ek−1

) = Γ(MH) ∪ Ek−1,

Ek−1 =
k−1⋃

1

ei, and Ek−1 ⊆ Γ(MR) (3.1)

where Prefix (π, t) returns the prefix of a plan π up to step t (inclusive). Ek

represents the union of all sub-explanations up to the kth sub-explanation and πHEk

the optimal plan created under MH
Ek

, which denotes MH after incorporating all the

changes from e1 to ek. More intuitively, at any step k − 1, the corresponding sub-

explanation ek−1 is only responsible to explain the actions from tk−1 and onward until

tk − 1 in the robot’s plan.

To generate each 〈ek, tk〉, the search process must consider how the sequence of

model changes as a result of each sub-explanation would result in the change of

the human’s expectation. This allows us to convert the problem of online expla-

nation generation to the problem of model space search as in Chakraborti et al.

(2017b). The challenge here is that the model changes are not independent, i.e.,

future sub-explanations may have violated the condition in Eq. (3.1) for the earlier

sub-explanations. In such cases, an online explanation may become undesirable since

the human may question the robot’s earlier actions at a later stage, even though they

appeared reasonable. This situation would introduce cognitive dissonance that may

affect the human’s understanding of the robot’s plan.

To address this issue, it must be ensured that the model changes in the sub-

explanations ek and onward, would not change the plan prefix that is already estab-

lished up to plan step tk − 1. This can be achieved by searching backward from MR
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to MH . More specifically, given the model reconciliation setting for an explanation

generation problem (π∗I,G, 〈MR,MH〉), the following process can be performed recur-

sively to determine each sub-explanation. First, we compute the human’s expected

plan using MH , which is denoted as πH . Denote the index of the first action where

π∗I,G and πH differ as t1, which is the timing for the first sub-explanation. To de-

termine e1, our search starts from MR. It finds the largest set of model changes to

MR, denoted as e1, such that Prefix(π∗I,G, t1) = Prefix(πHM , t1) under any M that lies

in between MR \ e1 and MR (i.e., Γ(MR) \ e1 ⊆ Γ(M) ⊆ MR). In this way, we

guarantee that no change in e1 can violate the condition in Eq. (3.1) once all the

feature changes in e1 are explained, which is exactly what we strive for! e1 is then

computed as the complement of e1, or e1 = Γ(MR) \ (Γ(MH) ∪ e1). Now that we

have found 〈e1, t1〉, we can set MH to be Γ(MR)\e1, or equivalently Γ(MH)∪e1 (i.e.,

MH
E1

), to determine the next sub-explanation in a recursive manner. The recursion

stops when the human’s expected plan under Γ(MH) ∪
⋃k
i=1 ei (i.e., MH

Ek
) matches

with π∗I,G for the first time, where ek becomes the last sub-explanation.

The model space search in OEG-PP for determining the kth sub-explanation is il-

lustrated in Fig. 3.2. In practice, this search is computationally expensive. Hence, we

implement an approximate method that searches forward from MH
Ek−1

for the kth sub-

explanation. The search is stopped when the smallest ek that satisfies Prefix(π∗I,G, tk)

= Prefix(πHEk
, tk) is found. This approach is more efficient but comes with the cost

that no guarantee can be made regarding the latter sub-explanations–they may intro-

duce violations to the condition in Eq. (3.1) for the earlier steps. If this happens, we

backtrack. The implication here is that this method can no longer be used as an online

planning method (i.e., computing the ek’s online): even though the sub-explanations

are communicated online, they must be created offline.
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Figure 3.2: The model space search process for the kth sub-explanation in OEG-

PP. The search starts from MR (similar to that used for MCE in Chakraborti et al.

(2017b)) until finding the largest set of ek (or smallest ek) that satisfies Prefix(π∗I,G, tk)

= Prefix(πHEk
, tk), under any M that is in between MR \ ek and MR. Each node

represents a candidate model and each edge a unit feature change. The gray nodes

are nodes that are not expanded in the search.

3.3.2 OEG for Matching Next Action (OEG-NA)

In this variation, we relax the requirement in Eq. (3.1) by requiring only the very

next action to be interpretable at any step. The assumption here is that the human

would not evaluate the robot’s behavior retrospectively (or that its influence is min-

imal), which is reasonable in cognitively demanding tasks where humans must focus

more on the current situation due to a very limited cognitive span in such cases Paas

et al. (2003). It is also worth noting that OEG-PP and OEG-NA represent the two

ends of the spectrum for online explanation generation where OEG-PP considers all

actions occurred previously while OEG-NA ignores them all. It is expected that some

method in between may work the best. Such analysis will be performed in our future

work.

Definition 3.3.2 (OEG-NA). An online explanation for matching next action is a

set of sub-explanations in the form of 〈ek, tk〉 such that the following is satisfied:

∀k > 0, π∗I,G[tk−1 : tk − 1] = πHEk−1
[tk−1 : tk − 1]

s.t. Γ(MH
Ek−1

) = Γ(MH) ∪ Ek−1,

Ek−1 =
k−1⋃

1

ei, and Ek−1 ⊆ Γ(MR) (3.2)

The search for OEG-NA naturally starts from MH
Ek−1

for 〈ek, tk〉 since we no longer

worry about matching the prefix.
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3.3.3 OEG for Matching Any Prefix (OEG-AP)

One assumption made in both OEG-PP and OEG-NA is that the optimal plan

for a given I,G pair is always unique. When we estimate the human’s expected

plan under a candidate model MH
Ek

while searching for the kth sub-explanation, this

assumption allows us to use the plan πHEk
returned by any optimal planner, since they

will always be the same. πHEk
is then compared against π∗I,G to determine whether the

ek (incorporated into MH
Ek

) satisfies the requirements of OEG. When multiple optimal

plans are present, the above check only needs to work for one of those plans. In this

variation, we relax the uniqueness assumption of the optimal plans.

Definition 3.3.3 (OEG-AP). An online explanation for matching any prefix is a set

of sub-explanations in the form of 〈ek, tk〉 such that the following is satisfied:

∃πHEk−1
∈ ΠH

Ek−1

∀k > 0,Prefix(π∗I,G, tk − 1) = Prefix(πHEk−1
, tk − 1)

s.t. Γ(MH
Ek−1

) = Γ(MH) ∪ Ek−1,

Ek−1 =
k−1⋃

1

ei, and Ek−1 ⊆ Γ(MR) (3.3)

where ΠH
Ek−1

represents the set of all optimal plans under MH
Ek−1

. A similar defi-

nition can be provided for OEG-NA after removing the uniqueness assumption.

To check for a candidate ek, according to our previous discussion, we need to search

for the largest set of model changes to MR, denoted as ek, such that Prefix(π∗I,G, tk)

= Prefix(πHEk
, tk). An obvious solution to OEG-AP is to obtain ΠH

Ek
by computing all

the optimal plans under MH
Ek

. This approach however is computationally expensive.

Instead, we implement a compilation approach. In this approach, to check the above

condition, we only need to solve two planning problems. The first planning problem

is simple: finding an optimal plan MH
Ek

under the given I,G. We denote the returned
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plan by any optimal planner as πHEk
as usual. The second one is trickier in which

we need to obtain a problem under MH
Ek

such that any optimal plan would have to

satisfy the condition Prefix(π∗I,G, tk) = Prefix(πHEk
, tk). We denote the plan returned

as π̂HEk
. Now, we know that if the cost of π̂HEk

is equal to that of πHEk
, there must exist

an optimal plan in the human’s model that matches the prefix of the robot’s plan.

Otherwise, no such plan exists and a sub-explanation must be made. Hence, the key

here is to ensure that a given plan prefix is always satisfied in a compiled model.

It turns out that this is not difficult to achieve. For all ai, ai+1 ∈ Prefix(π∗I,G, tk),

where ai, ai+1 are two consecutive actions in π∗I,G, the compilation can be achieved

by adding a predicate pi to ai as an effect, which is also added as a precondition for

ai+1. ai+1, in its turn, adds pi+1 as an effect which is a precondition for ai+2, etc. The

search process is the same as that described in OEG-PP. The search stops when any

optimal plan in the human’s updated model matches the robot’s plan. In contrast to

OEG-PP, the plan that is returned by an optimal planner under the human’s model

after an OEG-AP may not be exactly the robot’s plan.

3.4 Evaluation

We evaluate our methods for online explanation generation both synthetically and

in simulation with human subjects, and compare them with variations of minimally

complete explanations (MCE) Chakraborti et al. (2017b) as baselines. For the syn-

thetic evaluation, our aim is to show how online explanations differ from MCEs. We

evaluate our methods and MCE on 10 different problems across the IPC Rover and

Barman domains IPC (2019). For human subject study, our aim is to verify the

following:

• Online explanations reduce mental workload and improve task performance.
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Pr. OEG-PP OEG-NA OEG-AP MCE∑
ek/|ek| Time

∑
ek/|ek| Dist. Time

∑
ek/|ek| Dist. Time |E| Time

Rover

P1 3/1.5 8.9 7/1.2 0.40 17.9 2/1.0 0.40 6.9 3 28.9

P2 5/1.7 22.3 7/1.4 0.11 42.6 3/1.0 0.11 18.3 5 150.5

P3 6/1.5 18.7 8/1.1 0.07 21.3 3/1.0 0.07 1.6 5 176.2

P4 6/1.5 51.0 8/1.3 0.13 94.8 5/1.3 0.13 45.4 6 314.2

P5 5/1.7 54.8 8/1.3 0.14 106.7 3/1.5 0.14 50.4 4 272.8

Barman

P1 5/1.3 43.0 5/1.3 0.91 59.9 2/1.0 0.94 24.4 5 180.0

P2 5/1.0 36.2 5/1.0 1.00 33.0 3/1.0 0.90 9.4 5 38.9

P3 5/1.3 36.8 5/1.0 0.90 46.8 3/1.5 0.71 9.7 5 51.8

P4 5/1.3 78.4 5/1.0 0.84 69.0 4/1.0 0.56 20.4 5 61.9

P5 5/1.7 41.9 5/1.0 0.89 54.7 3/1.5 0.56 10.2 5 61.5

Table 3.1: Comparison of explanation size, average sub-explanation size (for online

only), plan distance between πHEk
and π∗I,G (when applicable) and time (in seconds)

using the different methods for the IPC Rover and Barman domains.
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A modified rover domain (Sec. 3.4.2) is used. In all evaluations, MR is the true

domain model, and MH is created by removing model features from MR. All results

are collected on a 2.2 GHz quad core Macbook Pro with 16 GB RAM.

3.4.1 Simulation Results

Table 3.1 presents the simulation results comparing OEG-PP, OEG-NA and OEG-

AP with MCE. The benefits of online explanations are clear: the average size of sub-

explanations is significantly smaller than the size of MCE, although the sum of their

sizes is generally larger than the size of MCE. This shows that most explanations can

indeed be broken up and communicated incrementally while subject to the require-

ments of online explanations! The effect of OEG-AP on the size of explanations is

interesting, which suggests that removing the uniqueness assumption of the optimal

plan has a positive impact on explanation generation: the sum of sub-explanations

has a size that is smaller than MCE. This intuitively makes sense since not all the

sub-explanations in MCE may be required as long as the robot’s plan is optimal in

the updated human’s model (but differs from the plan found there by an optimal

planner). To see the influence of removing the uniqueness assumption from another

angle, for both OEG-NA and OEG-AP, we evaluate how the human’s expected plan

(πHEk
) after the explanation (returned by an optimal planner) may be different from

π∗I,G using action plan distance, which has a value between 0 (no difference) and 1

(maximum difference). For OEG-NA, this distance is generally non-zero since only

the very next action is considered when making a sub-explanation. For OEG-AP,

the distance is also non-zero in general but due to the non-uniqueness of the optimal

plan. Computationally, OEG methods are generally a bit faster than MCE which may

appear to be surprising. Some analysis reveals that this is due to the fact that the

incremental search in online explanation generation in fact reduces the search space
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by removing candidate features to be added to MH for later searches. For OEG-NA

and OEG-AP, this may also be due in part to the fact that they often terminate

earlier and before πHEk
becomes exactly π∗I,G.

3.4.2 Human Study

To test our hypothesis, we compare the explanations created by our methods with

variations of MCE methods in a modified rover domain. The task is for the rover to

collect and analyze soil and rock samples, take pictures of targets, and send them to

the lander. To ensure that the performance difference is not solely due to breaking up

the information, we implement another baseline that randomly breaks up an MCE

into multiple parts and communicates each part separately so that they are uniformly

distributed through the plan execution (referred to as MCE-R).

We conducted our experiment using Amazon Mechanical Turk (MTurk) with a

3D simulation of the rover domain (see Fig. 3.3). The subjects were first given an

introduction to the rover domain and the task they were supposed to help with. In

the experiment, we deliberately removed certain information from the introduction.

In particular, we did not inform them that the storage space and memory of the rover

is limited, the camera must be calibrated, and calibrated with respect to the target

before taking an image. These introduced the differences between MH and MR.

Each subject was given a 30-minute limit to finish the task. Explanations were

provided using plain English language and the rover actions were depicted using GIF

images in the 3D simulation as the rover executed the plan. The human subject

acted as the rover’s supervisor, and was asked to determine whether each of the

rover’s action was questionable or not. Random actions were added into the plan

to make sure that the subject must question some actions to perform well. Each

subject was only allowed to perform the task for one setting (OEG-PP, OEG-NA,
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Figure 3.3: The 3D visualization of the modified rover domain. There are four robots

on Mars, each has a different camera resolution and sampling equipment. The mission

is to sample soil, rock and take images at different locations and communicate it to

the lander shown on the right side of the picture.

OEG-AP, MCE, or MCE-R) to reduce the influence of learning from repeated runs.

To simulate highly demanding tasks, we have incorporated three spatial puzzles as

secondary tasks. At the end of the study, the subjects were provided the NASA TLX

to evaluate the workload NASA (2019) under several categories Tsang and Velazquez

(1996).

Results : We created the surveys using Qualtrics and recruited 150 human sub-

jects on MTurk, with 30 subjects for each setting. To improve the quality of the

responses, we set the criteria that the worker’s HIT acceptance rate must be greater

than 98%. After filtering out invalid responses (that failed to identify the 2 purposely

inserted random actions out of a total of 30 actions in the plan), we obtained 94 valid

responses in total: 19 for each of MCE-R and MCE, 20 for OEG-PP, and 18 for each

of OEG-NA and OEG-AP. Their ages ranged from 18 to 70, and 29.8% of them were
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MCE-R MCE OEG-PP OEG-NA OEG-AP Ground Truth

Accuracy 0.746 0.804 0.858 0.852 0.872

# Actions 8.789 7.263 5.250 5.330 4.940 2.0/30

Table 3.2: The accuracy and number of questionable actions based on the subjects’

feedback for the five settings.

Figure 3.4: Comparison of TLX categories for the five settings.

female.

The results show that OEGs in general performed significantly better than the

baselines in both objective (Table 3.2) and subjective measures (Fig. 3.4). Table

3.2 shows that the numbers of questionable actions are significantly lower for OEGs

than MCEs (with p-values < 0.001). This indicates that the subjects had more trust

towards robots in the OEG settings. The accuracy for identifying the correct actions

(questionable vs. non-questionable) is also higher for OEGs (with p-values < 0.001).

Among the three OEG methods, OEG-AP performed the best but no significant

differences were observed in either the objective or subjective measures. This seems

to suggest that the performances were dominated mainly by the average size of sub-

explanations, which did not vary much among the OEGs (i.e.,
∑

ek
/|ek|: OEG-PP

6/1.5, OEG-NA 5/1.25, OEG-AP 3/1.0, MCE 5/NA, MCE-R 5/1.0).

48



Figure 3.5: p-values for the weighted sum of the subjective measures, with weights

1.0 for all TLX categories.

It is worth noting that MCE-R performed worse than MCE objectively with p-

values 0.043 and 0.028 respectively for the two measures in Table 3.2, which suggests

that the performance difference was unlikely due to simply breaking up the informa-

tion, thus confirming the usefulness of OEGs. The subjective measures in Fig. 3.4 for

the most part reaffirm the conclusions. Due to intertwining explanations with plan

execution, OEGs are expected to create more temporal demand. The p-values for

the subjective measures are presented in Fig. 3.5. The results indicate statistically

significant differences between OEGs and MCEs. The group-wise p-value is 0.0068

between OEGs and MCEs.

3.5 Conclusions

In this chapter, we introduced a novel formulation for explanation generation

that was focused on reducing the mental workload for the human to interpret an

explanations. We took a step further from prior work, which considered only the

correct explanations, by proposing explanations that were also easily understandable.

We provided three methods and evaluated them both in simulation and with human

subjects. Results confirmed that they improved task performance and reduced mental
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workload.
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Chapter 4

ORDER MATTERS: GENERATING PROGRESSIVE EXPLANATIONS FOR

PLANNING TASKS IN HUMAN-ROBOT TEAMING

As robots start to benefit a diverse set of domains, human-robot interaction has

evolved to be an increasingly important subject. In human-robot teaming, in partic-

ular, it is desired that the interaction occurs in a coherent manner that is observed

in human-human teaming Chakraborti et al. (2017a); Cooke (2015). Similar to a

human teammate, a robotic agent is required to not only understand its human part-

ners, but also explain its own decisions or behaviors when necessary. Explanations in

a teaming context provide the rationale behind an individual agent’s decision making

Lombrozo (2006), and help with building a shared situation awareness and maintain-

ing trust between teammates Endsley (1988); Cooke (2015). Although there exists

prior work on generating explanations, the focus has been on generating the right

explanations from the explainer’s perspective rather than good explanations for the

explainee Göbelbecker et al. (2010); Hanheide et al. (2017); Sohrabi et al. (2011).

Unsurprisingly, the right explanation may not necessarily be a good explanation–

anyone with teaching or mentoring experience would share the sympathy. Such disso-

nance between the explainer and explainee may be a result of various inconsistencies,

such as information asymmetry or different cognitive capabilities, just to name a

few. These inconsistencies may be summarized as model differences–the differences

between the cognitive models that govern the generation and interpretation of an

explanation, respectively, for the explainer and explainee Chakraborti et al. (2019).

When these two models are the same, as is assumed in most prior works, an ex-

planation from the perspective of the explainer would be not only correct but also
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perfectly understandable to the explainee, that is, as if the explanation were made to

the explainer himself. The more general case when the models differ has also been

investigated Chakraborti et al. (2017c); Zakershahrak et al. (2019) under the model

reconciliation setting, where the focus is on explaining domain model differences such

that the two models become more compatible. One remaining challenge in explana-

tion generation, however, is to account for the differences in the cognitive capabilities

to understand an explanation.

In this work, we take a step further by generating explanations while considering

the differences between the cognitive capabilities of the explainer and explainee. This

is especially relevant to human-robot teaming since robots are frequently deployed to

situations that require high cognitive and computational abilities that we do not have.

To accommodate this, the motivation here is to generate explanations that reduce the

cognitive effort required to understand them for the explainee. In this work, we fo-

cus on the influence of the order of information. In a moderately complex domain,

making an explanation is not an instantaneous effort; instead, information must be

conveyed in small parts sequentially. Our proposal in studying the order of informa-

tion is inspired by studies in psychology and education on the limitations of human

cognitive systems Ericsson and Smith (1991); Kahneman (2011) and progression in

learning Schwarz et al. (2009). Consequently, we term our approach progressive ex-

planation generation. Consider the following example of a conversation between two

friends, which illustrates the importance of providing information in a proper order

when making an explanation:

Amy: Let’s go to the outlet today.

Monica: My car is ready.

Amy: Great!

Monica: The rain will stop soon.
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Amy: Wonderful!

Monica: By the way, today is a holiday

(shops closed).

Amy: You are telling me now!

Monica: Let us go to the central park!

Amy: ...

Such cognitive dissonance illustrated above occurs frequently in our lives and it is

our aim in this work to avoid similar situations when a robot is making an explana-

tion to you. The challenge lies in modeling the humans’ preferences for information

order in receiving such explanations to assist understanding. To this end, a general

formulation based on goal-based Markov Decision Processes for generating progres-

sive explanation is presented given the sequential information communication in an

explanation. We propose to learn a quantification of the cognitive effort for each step

as a reward function in an inverse reinforcement framework Ng and Russell (2000);

Abbeel and Ng (2004); Ziebart et al. (2008). We set out to validate the following

hypothesis:

• H1. Our learning method can learn about the humans’ preferences in receiving

explanations.

Both domain-dependent and domain-independent features are used in learning

based on explanations provided via human subject studies. We evaluated first on a

scavenger-hunt domain. Upon analyzing the results, however, it revealed something

more fundamental: the preferences arise strongly from both domain dependent and

independence features. The correlation with domain independent features pushed us

to verify this result further in an escape room domain. The strong weights on domain

independent features, which capture plan changes during the explanation process,
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implies that understanding an explanation is a dynamical process:

• H2. Humans replan dynamically to understand during an explanation instead

of after an explanation for moderately and highly complex tasks.

Results confirmed our hypothesis that the process of understanding an explanation

was a dynamic process. The human preference that reflected this aspect corresponded

exactly to the progression for knowledge assimilation hidden deeper in our cognitive

process. Our results will benefit the design of robots that make explanations across

various domains since such a preference is domain independent. The last hypothesis

is about the effectiveness of progressive explanations:

• H3: Progressive explanations reduces cognitive load and improves task perfor-

mance.

Comparison with two baseline methods validated H3. We showed that the pro-

gressiveness in explanations corresponded well to the “progressiveness” of the curve

on domain independent features.

4.1 Related Work

Explainable AI Gunning (2017) is increasingly considered to be an important

paradigm for designing future intelligent agents, especially as such systems begin to

constitute an important part of our lives. The key requirement of explainable agency

Langley et al. (2017) is to be “explainable” to the human partners. To be explainable,

an agent must not only provide a solution to achieve a goal, but also make sure that

the solution is perceived as such by its human peers. A determinant here is the

human’s interpretation of the agent’s behavior. It is critical to take careful steps to

avoid situations where the agent’s assistance would be interpreted as no more than
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an interruption, which resulted in the pitfall of earlier effort in designing intelligent

assistants, such as the loss of situation awareness and trust Endsley (2016); Langfred

(2004).

The key challenge to explainable agency hence is the ability to model the hu-

man cognitive model that is responsible for interpreting the behaviors of other agents

Chakraborti et al. (2017a). With such a model, there are different ways to make the

robot’s behavior explainable. One way is to bias the robot’s behavior towards the

human’s expectation of it based on the human’s cognitive model. Under this frame-

work, a robot can generate legible motions Dragan and Srinivasa (2013) or explicable

plans Zhang et al. (2017); Zakershahrak et al. (2018). Essentially, the robot sacri-

fices the plan quality to respect the human’s expectation–the resulting plan is often

a more costly plan. Another way is to provide a forewarning of the robot’s intention

before execution, such as for persuasion Petty and Cacioppo (1979). In Gong and

Zhang (2018), the approach there is to provide additional context to help explain the

robot’s decision. The third way, which is the most relevant to ours, is for the robot

to explain its decision via explanations Göbelbecker et al. (2010); Hanheide et al.

(2017); Sohrabi et al. (2011). The benefit of generating explanations, compared to

generating explainable plans, is that the robot can keep its original (and optimal)

plan. However, as mentioned earlier, the focus there is often on providing the ra-

tionale behind the explainer’s decision making, while largely ignoring the explainee.

In Chakraborti et al. (2017c), this gap is addressed by considering explanation gen-

eration as a model reconciliation problem, which takes into account the explainee’s

model. Although the cognitive requirement is implicitly considered, the aim there is

to reconcile (i.e., reduce) the differences in domain models, so that the robot’s plan

would be interpretable also in the model of the explainee.

The idea of progressive explanation generation is connected to heuristics in the
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planning literature for reducing replanning effort Fox et al. (2006). However, the

focus there is on system effort Likhachev et al. (2005). Our results, however, suggest

that these heuristics may have a deeper connection to the human cognitive process in

decision-making domains. The idea in generating progressive explanations to be less

intrusive bears some similarities to the idea of nudging the human towards a new path

Lien et al. (2004) or providing constant and non-intrusive reminders for performing

various tasks Maxwell et al. (1999). The general idea is to facilitate “smooth” or

socially acceptable Miller (2018) interactions, whether physical or cognitive. We

implement a similar idea here for explanation generation by reducing the cumulative

cognitive effort required. We learn a quantification of the cognitive effort required at

each step of an explanation in an inverse reinforcement learning framework. based on

both domain-independent and domain-dependent features, whose weights are learned

in an inverse reinforcement learning framework Ng and Russell (2000); Abbeel and

Ng (2004); Ziebart et al. (2008).

4.2 Model Reconciliation

We base our work on a general model reconciliation setting for explanation genera-

tion that considers both the models of the explainer and explainee, which is introduced

in Chakraborti et al. (2017c). As shown in Fig. 4.1, the human uses MH to generate

her expectation of the robot’s behavior, while the robot’s actual behavior is being

created using the robot’s model MR, which is different from MH . Therefore, πMR ,

which is the plan created from MR, could also be different with πMH , which is the

plan created from MH . Whenever these two plans differ, the robot’s plan must be

explained.

Definition 1 (Model Reconciliation Chakraborti et al. (2017c)). A model reconcili-

ation setting is a tuple (π∗I,G, 〈MR,MH〉), where cost(π∗I,G,M
R) = cost∗MR(I,G).
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Figure 4.1: Explanation generation as model reconciliation Chakraborti et al. (2017c).

MR denotes the robot model and MH denotes the human model that is used to

generate her expectation of the robot’s behavior (πMH ). When the expectation does

not match the robot’s behavior, πMR , explanations must be generated.

where π∗I,G is the robot’s optimal plan to be explained. cost(π∗I,G,M
R) is the cost

of the robot’s plan under the model MR. cost∗MR(I,G) returns the optimal plan

given the initial state and goal state pair using MR. Therefore, the constraint in the

Definition 1 ensures that the robot’s plan is optimal in its own model.

In this setting, the robot must generate an explanation to modify the human’s

model MH such that π∗I,G becomes explainable in the human’s modified model (de-

noted as M̂H) after the reconciliation. As a result, an explanation for a model recon-

ciliation setting can be considered as requesting changes to the model of the human.

Note that making an explanation may also lead to an error report if it is identified

that the robot’s model was incorrect.

To capture the model changes, a model function Γ :M→ 2F is defined to convert

a model to a set of model features Chakraborti et al. (2017c), whereM is the model

space and F the feature space. In this way, one model can be updated to another
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model with editing functions that change one feature at a time. The set of feature

changes is denoted as ∆(M1,M2) and the distance between two models as the number

of such feature changes is denoted as δ(M1,M2). In this work, we assume that the

model is defined in PDDL Fox and Long (2003), an extension of STRIPS Fikes and

Nilsson (1971), where a model is specified as a tuple M = (D, I,G). The domain

D = (F,A) is comprised of a set of predicates, F , and a set of actions, A. F is

used to specify the state of the world. Each action a ∈ A changes the state of the

world by adding or deleting predicates. Therefore, an action can be represented as

a = (pre(a), eff+(a), eff−(a), ca); where pre(a) denotes the preconditions of the

action a, and eff+(a), eff−(a) indicate add and delete effects, respectively, and ca is

the cost of the action. For example, a very simple model for Amy in our motivating

example would be:

Initial state: not-holiday

Goal state: happy

Actions:

OUTLET-SHOPPING

pre: not-holiday (car-ready is-sunny)

eff+: happy

VISIT-PARK

pre: (car-ready is-sunny)

eff+: happy

For simplicity, we use only boolean variables above. The variables in parenthesis

are optional predicates that are preferred but not required. The goal is to achieve the

effect of happy. In this example, the model, denoted as MAmy, will be converted by

the model function Γ to:

Γ(M Amy) = {
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init-has-not-holiday,

goal-has-happy,

OS-has-precondition-not-holiday,

OS-has-add-effect-happy, ...}

where OS above is short for OUTLET-SHOPPING. The function essentially turns

a model into a set of features that fully specifies the model. Hence, changing the set

of features will also change the model.

Definition 2 (Explanation Generation). The explanation generation Chakraborti

et al. (2017c) problem is a tuple (π∗I,G, 〈MR, MH〉) where an explanation is a subset

of ∆(MR,MH) such that:

1) Γ(M̂H) \ Γ(MH) ⊆ Γ(MR), and

2) cost(π∗I,G, M̂
H)− cost∗

M̂H
(I,G) < cost(π∗I,G,M

H)− cost∗MH (I,G).

where M̂H denotes the model after the changes. The first condition requires the

changes to the human’s model to be consistent with the robot’s model. The second

condition states that the robot’s plan must be closer (in terms of cost) to the optimal

plan after the model changes than the situation before–an explanation should have

the effect of moving the expected plan closer to the robot’s optimal plan.

Definition 3 (Complete Explanation). A complete explanation Chakraborti et al.

(2017c) is an explanation that additionally satisfies cost(π∗I,G, M̂
H) = cost∗

M̂H
(I,G).

A complete explanation requires the model changes to make the robot’s plan also

optimal in the changed human model, so that the robot’s plan becomes interpretable

in the human’s model as well. A minimally complete explanation (MCE) is also

defined in Chakraborti et al. (2017c), which is a complete explanation with the min-

imum number of unit feature changes. An example of M̂Amy (corresponds to M̂H)

after a minimally complete explanation is:
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Initial state:

not-holiday car-ready (+) is-sunny (+)

Goal state: happy

Actions:

OUTLET-SHOPPING

pre: not-holiday (car-ready is-sunny)

eff+: happy

VISIT-PARK

pre: (car-ready is-sunny)

eff+: happy

where the strikeout denotes the feature removed and +’s denote additions. These

changes correspond to the explanation made in our motivating example. In this

case, the robot model, MR, corresponds to MMonica, is the same as M̂Amy after the

explanation (with the model changes incorporated).

4.3 Progressive Explanation Generation

In progressive explanation generation, our focus is on how the ordering of present-

ing information in an explanation may affect its understanding. An explanation in

our setting is naturally specified as a sequence of feature changes. Since we process

information as it is received, the cumulative cognitive effort can then be considered

as the sum of effort associated with understanding each feature change in a sequential

order. We couple the cognitive effort for each change with a model distance metric,

denoted as ρ(Mi,Mi+1) for the ith feature change, where Mi is the model before the

i-th feature change and Mi+1 is the model after that change. Thereby, progressive

explanation generation can be defined as the following optimization problem:

Definition 4 (Progressive Explanation Generation (PEG)). A progressive explana-
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tion is a complete explanation with an ordered sequence of unit feature changes that

minimize the sum of the model distance metric: arg min
∆(M̂H ,MH)

∑
fi∈〈∆(M̂H ,MH)〉 ρi,

where ρi is short for ρ(Mi,Mi+1), i is the index of unit feature changes, and fi denotes

the i-th unit feature change.

The angle brackets above convert a set to an ordered set and the summation is

over every unit feature change in an explanation, which is computed for before and

after each unit feature change is made in a progressive fashion. The goal of PEG is to

minimize the cumulative model distance metric, and thereby minimize the cognitive

effort required from the explainee to understand the explanation.

4.3.1 PEG with Different Distance Heuristics

Depending on how the model-plan distance metric is defined, different explanation

may be resulted. Next, we look at a few options for defining this distance, which

intuitively have an impact on cognition. Search methods based on these options are

provided afterwards.

Problem 1 : Progressive explanation generation with

ρi = |cost∗Mi−1
(I,G)− cost∗Mi

(I,G)| (4.1)

In this case, the distance at each step is characterized by the cost difference of the

plans in the two models adjacent to a unit feature change, respectively. The search

problem is in the model space and is expensive to solve. Here, we can take advantage

of the following equation, which follows from basic arithmetic:∑
i

ρi ≥ |cost∗MH (I,G)− cost∗
M̂H

(I,G)| (4.2)

The equality above holds if and only if the changes in plan cost are monotonic with

respect to the index i. This also reflects the progressive nature of such explanations.
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This observation leads to an efficient heuristic, where

h(Mi) = |cost∗Mi
(I,G)− cost(π∗I,G, M̂H)| (4.3)

Additionally, without the loss of generality, assuming that cost∗MH (I,G) ≤ cost∗
M̂H

(I,G) =

cost(π∗I,G, M̂H) is satisfied, the search process could first check adding preconditions,

removing add effects, adding delete effects, or increasing action costs. Since these

changes will increase the cost of the plan, they will more likely lead to faster search

process.

Theorem 1 : The heuristic described above is admissible and consistent for prob-

lem 4.1.

Proof : It can be easily verified that h(Mi) = |cost∗Mi
(I,G) − cost(π∗I,G,MH)| ≤∑

k>i ρk. Hence, the heuristic above is admissible. For consistency, notice that

|cost∗Mi−1
(I,G)−cost(π∗I,G, M̂H)| = h(Mi−1) ≤ ρi+h(Mi) = |cost∗Mi−1

(I,G)−cost∗Mi
(I,G)|+

|cost∗Mi
(I,G)− cost(π∗I,G, M̂H)|. Problem 2 : Progressive explanation generation with

ρi = d(π∗Mi−1
(I,G), π∗Mi

(I,G)) (4.4)

where d(π∗Mi−1
(I,G), π∗Mi

(I,G)) denotes the minimum editing distance between

the two optimal plans that are created in Mi−1 and Mi, respectively. Note that

π = π∗(I,G), which is the robot plan to be explained. Similarly, we can apply the

following heuristic:

h(Mi) = d(π∗Mi
(I,G), π∗I,G) (4.5)

Theorem 2 : The heuristic described above is admissible and consistent for prob-

lem 4.4. Proof : The plan editing distance clearly satisfies
∑

i di ≥ d(π∗Mi
(I,G), π∗I,G),

since the distance metric is positive and symmetric. A similar proof follows from
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Theorem 4.1.

There are many other ways such model-plan distances maybe defined. For ex-

ample, one may prefer more significant changes to the model at the beginning than

later in the explanation. Also, instead of plan editing distance, you may consider

other common plan distance metrics, such as action,state, and causal link distances

[9]. Another interesting consideration is the influence of plan hierarchies [7], [25]. For

example, one may consider aggregating similar feature changes into the same expla-

nation step, which introduce similar changes to the plan. The focus could also be on

the changes to plan hierarchies.

Given the heuristics, the planning methods can be implemented as standard A∗

searches. At each step, the search algorithm can choose a unit feature change from

all possible changes that satisfy condition 1 in Definition 2. As discussed, we may

choose to first consider the changes that are more promising. The search can easily

incorporate other considerations such as conciseness. This is especially useful for

cases when some feature changes do not affect the plans generated or their costs. In

such cases, progressive explanations may include those unnecessary changes. This

can be addressed by adding to the g value a small cost per every change made. This

approach is tested on five IPC rover domain problems for each problem and results

of this section is presented in Table 4.1 using an intel processor 2.7 GHz, Quad-Core

i7 and 16 GB of RAM.

4.3.2 Learning the Model Distance Metric

In the previous section, we introduced different distant-metrics for the model-

plan to provide the explanations. In this section, we want to extend our approach

further, by learning a distance metric for PEG based on the human preferences in a

human-robot teaming scheme.
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Pr.
Total Features

(# Missing Features) PEG Size
∑

i ρi Time(s)

P1 75(8) 4 71 5.37

P2 75(6) 1 64 4.13

P3 75(6) 3 27 3.56

P4 75(5) 3 64 12.25

P5 75(10) 3 484 103.92

P1 75(8) 2 16 3.24

P2 75(8) 3 8 4.09

P3 75(6) 5 21 3.35

P4 75(6) 3 10 2.72

P5 75(5) 5 22 12.45

Table 4.1: Simulation results using heuristics of Problem 1 and 2 over five scenarios

of IPC rover domain.

To learn the model distance metric for PEG, we formulate the problem as an

inverse reinforcement learning (IRL) Ng and Russell (2000); Abbeel and Ng (2004);

Ziebart et al. (2008) framework, where we assume the task of generating explanations

can be expressed as a goal-based Markov Decision Processes (MDP). A goal-based

MDP is defined by a 6-element tuple (S,A, T,R, γ,G), where S is the state space and

A is the action space. The domain dynamics is represented as the transition function

T that determines the probability of transitioning into state s′ when taking an action

a in state s (i.e., P (s′|s, a)). R is the reward function and the goal of the agent is to

maximize the expected cumulative reward. γ is the discount factor that encodes the

agent’s preference of current rewards over future rewards. G is a set of goal states
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Figure 4.2: Illustration of the MDP that underlies PEG. At each time step, the

human’s model Mi serves as the state. When the robot provides a unit feature

change fi (as part of the explanation) to the human, the model changes according

to fi to be the next state, Mi+1. The model distance metric ρi, which is short for

ρ(Mi,Mi+1), captures the cognitive effort required to understand fi.

where for each g ∈ G, T (g, a, g) = 1,∀a ∈ A. We chose goal-based MDP since in each

scenario, although the start state could be the same, the goal could be different and

therefore the policy would be different.

Fig. 4.2 demonstrates the MDP that underlies PEG. In our work, the state space

S is the set of all possible human models and the action space A is the set of all

possible unit feature changes. The transition function T captures the probability

that the human model would be updated to M ′ when the human model is M and the

robot explains f to her (i.e., P (M ′|M, f)). The model distance metric ρ serves as the

reward function, which depends on both the current and updated human models.

4.3.3 Applying IRL

Following prior work on IRL Ng and Russell (2000); Abbeel and Ng (2004); Ziebart

et al. (2008), we define the distance metric as a linear combination of a set of weighted
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features:

ρ(M,M ′) =
∑
i

θi · ψi(M,M ′) = ΘTΨ(M,M ′)

where Ψ = {ψ1, ψ2, . . . , ψk} is the set of features with respect to state pair (M,M ′).

Θ = {θ1, θ2, . . . , θk} is the set of weights corresponding to the features.

Given a set of traces in a domain as a set of explanations (each is a sequence

of unit features changes), which are obtained from human subjects, our goal is to

learn the model distance metric ρ, which in turn requires us to learn the weights Θ

given a set of features. Since noise is expected in the traces, we learn the weights by

maximizing the likelihood of the traces using MaxEnt-IRL Ziebart et al. (2008) as

follows:

Θ∗ = arg max
Θ

L(D) = arg max
Θ

1

|D|
logP (D|Θ)

= arg max
Θ

1

|D|
∑
G∈G

∑
ζ̂G∈DG

logP (ζ̂G|Θ)
(4.6)

where D is the training data set, G the collection of goal sets G for different

scenarios. ζ̂G = (M0, f1,M1, . . . , fn,Mn) is an explanation for achieving G with

ordered feature changes provided by human subjects in a subset DG. It consists of

the initial human model (i.e., M0 = MH), unit feature change and the updated model

at each time step. To mitigate the ambiguity that the distribution of the traces may

introduce preference for some traces over others, the principle of maximum entropy

Ziebart et al. (2008) is employed to define the distribution over all the possible traces

for a specific goal (i.e., G):

P (ζG|Θ) =
eρ(ζG)∑
ζG
eρ(ζG)

(4.7)

where

ρ(ζG) = ΘTΨ(ζG) =
∑

(M,M ′)∈ζG

ΘTΨ(M,M ′)
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Take Equation 4.7 into Equation 4.6, the optimization becomes:

Θ∗ = arg max
Θ

1

|D|
∑
G∈G

∑
ζ̂G∈DG

(
ΘTΨ(ζ̂G)− log

∑
ζG

eΘT Ψ(ζG)
)

(4.8)

Note that ζ̂G ∈ DG in the first term above represents a trace in the training data set

while ζG in the second term above refers to any possible trace of the domain. Since

Equation 4.8 is convex, we use a gradient-based method to learn Θ and divide the

traces into pairs of human models as in Ziebart et al. (2008):

∇ΘL =
1

|D|
∑
G∈G

(∑
(M,M ′)∈DG

Ψ(M,M ′)−
∑

(M,M ′)∈DG

P (M,M ′|θ)Ψ(M,M ′)
)

Different from traditional applications of MaxEnt-IRL Ziebart et al. (2008), the model

distance metric in our work depends on both the current and next human model. As

a result, P (M,M ′|Θ) above represents the model pair occurrence frequency (MPOF)

for a pair (M,M ′), which can be computed using dynamic programming. If we

denote the probability of occurrence of (M,M ′) at time t as µt(M,M ′), we then have

P (M,M ′|Θ) =
∑

t µt(M,M ′). The updating rules for µt is as follows:

µ1(M,M ′) = P
(

(M1,M2) = (M,M ′)
)

µt+1(M,M ′) =
∑
f

∑
M ′′

µt(M
′′,M)P (f |M)P (M ′|M, f)

The values for µ1 are initialized to the probability of the state pair (M,M ′) being the

first pair of a trace. The probability of the occurrence of (M,M ′) at a certain time

step then is calculated based on the occurrence frequency of the previous state pair,

which has M as the second entry in the pair, any unit feature change f that the robot

would explain to the human while in state M (i.e., according to a stochastic policy),

and the probability that the human model would end up in M ′ when explaining f in

state M (i.e., the transition function).

The stochastic policy P (f |M) specifies the probability of explaining f when the

human model is M , which is computed as P (f |M) = P (M,f)
P (M)

. Similarly, they can be
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calculated using dynamic programming as in Ziebart et al. (2008). µ1(M,M ′) can

then be approximated using sampled traces generated by the stochastic policy and

transition function in each iteration. After learning the parameters for the model

distance metric, we utilize uniform cost search for a specific goal to retrieve the best

sequence of fi from a common initial state by maximizing the reward of each state:

ζ∗G = arg max
ζG

∑
(M,M ′)∈ζG

ΘTΨ(M,M ′) (4.9)

4.3.4 Features Selection

The features used in our learning algorithm for the model distance metric belong

in general to two categories: domain dependent and domain independent features.

The domain dependent features in our study are chosen to be the ones that we

consider to have an impact on the cognitive load. These features should be fully

specifiable by M and M ′ only given our IRL formulation. Although this imposes a

restriction on the set features we can select, it still allows for a rich set of possibilities

for any given domain. In our future work, we will further investigate the impact of

this restriction on the learned model distance metric.

Domain independent features are chosen to reflect replanning cost. We consider

two types of domain independent features: (1) action distance Fox et al. (2006), and

(2) cost distance. Each of them represents a type of plan distances. The motivation

to use plan distances is that, as the information is communicated progressively for an

explanation (as unit model changes), humans process it as it is received (i.e., replan

based on the current information). Intuitively, the effort involved in the replanning

process is correlated to how many changes must be made to a plan, which is often

captured by a distance metric. For any model Mi, we denote the plan as πi. The

following distance metrics are considered:

Action Distance: The action distance feature represents the distance between

68



two plans πi and πj obtained from states Mi and Mj respectively, as distance(πi, πj) =∑n
k=1 |C(aki)− C(akj)|

max(cost(πi), cost(πj))
. Where n = |πi∪πj| and C(aki) is the number of occurrences

of action ak in plan πi, and cost(πi) is the cost of plan πi.

Cost Distance: Similarly, the cost distance is the difference between the cost of

plans πi and πj obtained from Mi and Mj respectively: C(πi, πj) = |cost∗Mi
(I,G) −

cost∗Mj
(I,G)|.

Levenshtein Distance: The Levenshtein distance Levenshtein (1966) is the min-

imum editing distance between plans πi and πj obtained from Mi and Mj. The larger

the minimum editing distance, the more different the plans are. The equation below

provides the mathematical definition used to calculate the Levenshtein distance:

lavπi,πj (m,n) =



max(m,n) if min(m,n) = 0,

min



lavπi,πj (m− 1, n) + 1

lavπi,πj (m,n− 1) + 1 otherwise.

lavπi,πj (m− 1, n− 1) + 1πi(m) 6=πj(n)

where lavπi,πj(m,n) is the distance between the first m actions in πi and first n

actions in πj. 1πi(m) 6=πj(n) returns 0 when πi(m) = πj(n) and returns 1 otherwise.

4.4 Evaluation

We evaluated our approach by conducting human-subject studies using Amazon

Mechanical Turk (MTurk) in two different domains: scavenger-hunt and escape-room.

These domains were designed to expose the subjects to moderately complex situations

that required a non-trivial amount of cognitive effort in a short amount of time.
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4.4.1 Scavenger-Hunt

The task is situated in a damaged office building after an earthquake, portrayed

by a floor-plan in Fig. 4.3. Normally, the human uses the doors connecting the rooms

to exit the building via the elevator (bottom right corner) from his office (bottom left

corner). However, an earthquake may interrupt the human’s original path in different

ways. The goal of the participant, as a member of the first response team, is to help

the trapped human navigate through the building. At any step, the participant can

explain one of the changes illustrated in a red box, such as a fire blocking the door

or a power outage. The participants are given a map that contains all the possible

changes. These are also shown on the right side of Fig. 4.3. There are a total of 10

possible changes that may have changed the plan of the trapped human. However,

for any given scenario, only a few selected changes will be present.

Here, the communication bandwidth is limited, and the external agent can only

convey one obstacle requirement at a time (e.g., you need a password to deactivate

the lock on the second room). The unit feature changes in this domain modeled as 10

different contingencies. Consequently, since the domain dependent features, i.e. the

presence of the damage-related issues are binary, we used one hot vector encoding to

represent these categorical features as shown in Fig. 4.4. Furthermore, as we encoded

these boolean features, it allows our IRL model to learn the actual importance of each

categorical feature rather than assuming a natural ordering among them which can be

resulted based on the subject’s responses. Here, we run the value iteration algorithm

instead of the uniform cost search since the initial state and the goal state differ based

on the issues present in the scenario.
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Figure 4.3: Illustration of the scavenger-hunt domain.

Experiment Design

We first explained domain to the participants and emphasized that whether the

trapped person understood their explanations determined the life or death of that

person. This was meant to encourage the participants to clearly explain the situation

in a way to be understood. We then asked the participants to explain the situation

to help the trapped human escape the building while playing the role of a member on

the first response team. To ensure the quality of the data, We implemented a sanity

check question to make sure the participants understood the task. We removed the

responses with wrong answers to the sanity questions or if it took them over 3 minutes

to finish the task.
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Figure 4.4: Normalized feature weights for the scavenger-hunt domain. The domain

dependent features are one hot vector encoding for the state-pairs.

Results & Analysis

We conducted a survey using Qualtrics and recruited 122 human subjects using

Mturk, with HIT acceptance rate of 99%. After sifting through the responses as

described in the previous section, we used 93 responses, out of which 66 responses

were over 5 training scenarios and 27 responses were over 3 testing scenarios. The aim

of this evaluation was to analyze if we could learn the human preferences from training

scenarios and apply them to testing scenarios (H1). We compared the outputs of our

explanation generation algorithm based on the reward function learned by IRL with

the subjects’ responses for the testing scenarios. The accuracy of our method was

85.2%: our approach successfully matched 23 out of the 27 human responses across

3 testing scenarios. This result showed that humans indeed had certain preferences
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for information order in such situations and that our method could capture these

preferences.

Fig. 4.4 shows the weights learned by IRL for both domain dependent and domain

independent features. As Fig. 4.4 suggests, the domain independent features seem

to have played an important role. This result inspired us further to verify since the

significant weights on domain independent features, which captured plan changes

during the explanation process, suggested that the understanding an explanation was

a dynamics process. Consequently, we created another domain to verify this result

and investigate further. This domain was introduced to impose similar preferences

on different domain changes to minimize the influence of semantics (e.g., explaining

a fire event could be naturally associated with a higher preference than obtaining a

computer passcode).

Figure 4.5: Illustration of the escape-room domain.
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4.4.2 Escape Room

The task is situated in a damaged nuclear plant represented as a maze-like envi-

ronment in Fig. 4.5. The goal of the human inside is to navigate from the starting

location S to the goal location G as fast as as possible without going through dan-

gerous locations. The set of actions in this domain are going to each of gateway cells

from S, and then to G from. For instance, go to cell E from S, go to G from E, as-

suming cell E is not a dangerous passage. Some of the marked locations (see Fig. 4.5)

may be affected by the disaster, and become dangerous. Similarly, the participant

played an external agent here to inform the internal person about which locations

were dangerous. The external agent could only convey one piece of information at

a time (e.g., D is a danger zone). The states of the 7 marked locations correspond

to 7 contingencies (modeled as unit feature changes in the domain) that may have

affected the human’s plan.

Experimental Design

We designed 8 different scenarios for the escape-room domain. We used 5 scenarios

for training and 3 for testing. Each scenario involves a different set of contingencies

and we ensure that there are contingencies in the testing scenarios that did not appear

in the training scenarios. During training, the participants are at first introduced to

the domain and informed that they are supposed to act as the external agent to com-

municate the contingencies to the internal person in the scenario. They are explained

that the internal person is desperate to escape soon to give them a sense of urgency

as well as an incentive to elucidate the situation. We also asked the participants at

the beginning about what path the internal person would take assuming no marked

locations are dangerous. We use the answer to this question later to sift the data.
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Figure 4.6: NASA TLX results for testing.

In this domain, we further introduced a testing phase for evaluating the effective-

ness of PEG. In this phase, new participants played the role of the internal agent. We

tested the subject performance with our progressive explanation generation method

and two baselines. In particular, we provided the subjects the contingencies that

were ordered by 1) our method, 2) a random order, and 3) the Manhattan distance

(of the contingency) relative to the starting location S. To create a highly cogni-

tive demanding situation, the subjects were pushed to complete the task within 4

minutes. Responses that failed the sanity check question or ran over 4 minutes were

not used. After the task, the subjects were provided the NASA Task Load standard

questionnaire (TLX) NASA (2019) to evaluate the efficiency of the different methods.
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Results & Analysis

To improve the quality of the responses, we set the criteria that the worker’s HIT

acceptance rate must be greater than 99% and has been granted MTurk Masters. In

the training phase, we created the surveys using Qualtrics and recruited 35 human

subjects on MTurk, out of which 21 responses were used. For testing, we have re-

cruited 163 human subjects out of which 87 responses were used. 58 of our subjects

were male and 29 were female. The average of age of our subjects was 38.17 with

a standard deviation of 11.13. For domain dependent features, we chose 4 features

related to relative position of the contingency being explained with respect to the

contingencies that have already been explained. We refer to these features as xmin,

xmax, ymax, and ymin. Table 4.2 shows the normalized weights Θ for each feature

after learning via IRL as explained in Sec. 4.3.3. Interestingly, the action distance

and Levenshtein distance maintained high weights, which was aligned with our prior

results and further validated H2. Simultaneously, however, the weight for the plan

cost distance dropped significantly. We attributed this “anomaly” to the simple cost

structure in the escape-room domain since the increasing of plan cost does not nec-

essarily increase the cognitive effort there.

Feature Category Feature Name Weights

Domain independent

Action Distance 0.44

Cost Distance 0.04

Levenshtein Distance 0.46

Domain dependent
xmin, ymin 0.38, 0.41

xmax, ymax 0.35, 0.39

Table 4.2: Normalized feature weights for escape-room domain
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Figure 4.7: Changes of action distance per explanation step for escape-room domain

The subjective results for testing are presented in Fig. 4.6. We can see that

our method (PEG) performs better than the baselines for all NASA TLX metrics, a

statistically significant difference was observed between PEG and other methods for

a weighted sum of TLX metrics, as shown in Table 4.3. Objective metrics further

confirmed that our method improved task performance as presented in Table 4.4

which represents the percentage in which the participants came up with the correct

plan after the respective explanations. This result verifies H3.

Fig. 4.7 shows the action distance per explanation step for one of the testing

scenarios, which is very similar to the Levenshtein distance in this domain. An

interesting observation is that the curve of PEG is smoother, i.e., it is missing the

oscillation seen in other methods. This intuitively illustrates the progressiveness

of explanation enabled by our method, which suggests that the progressiveness of

explanations is correlated with the progressiveness of these features.
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Performance Effort Frustration

WT TLX

Mental Temporal (exc

Demand Demand Perf)

Random 63.10 61.96 89.06 59.04 33.96 52.47

PEG 56.19 55.37 90.74 54.11 25.89 41.93

Manhattan 57.43 69.93 85.00 66.86 43.93 58.35

Table 4.3: Subjective results for each NASA TLX category

Random PEG Manhattan

Accuracy 85.4 (41/48) 96.3 (26/27) 66.7 (8/12)

Table 4.4: Objective performance in terms of task accuracy

4.5 Conclusions

In this chapter, we studied the problem of PEG. We took a step further from

the prior work by considering not only the right explanation for the explainee, but

also the underlying cognitive effort required to understand the explanation from the

explainee’s perspective, resulting in a general framework for PEG. To address the

challenge with modeling human preferences of the information order, we adopted the

formulation of a goal-based MDP and applied IRL to learn the reward function based

on traces. Our first contribution is that we show that humans indeed demonstrate

preferences for the information order in explanations and we can indeed learn about

such preferences using our framework. This verified H1. Upon analyzing the data,

we noted strong weights for domain independent features, which suggested that the

cognitive process for understanding an explanation is dynamic. This was validated

in another domain. Together, results from these two domains validated H2. Finally,

we showed that PEG did improve task performance and reduce cognitive load.
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Many future direction are possible. One interesting direction is to investigate sub-

explanations as more than one unit feature change. This means that the robot may

be allowed to explain multiple aspects at the same time. One may anticipate that

this would be useful for aspects that are highly correlated. Another possible direction

is to generalize the MDP model to remove the Markov assumption, which is quite

restrictive for modeling human cognition.
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Chapter 5

TOWARDS HUMAN MACHINE SYMBIOSIS: DESIGN FOR EFFECTIVE AI

FACILITATION

As Artificial Intelligent (AI) applications increase their influence in technology, in-

telligent agents advance their presence in our lives. Human-AI teaming facilitates

applications where the task is cognitively demanding for human-level cognition or

safety is a concern to humans such as military operations, search and rescue scenar-

ios, and space robotics Pérez-D’Arpino et al. (2020). As a result, Human-AI planning

is becoming a critical capability. Thus, a robotic teammate expects to act and explain

the rationale behind its decision making, if necessary, compatible with a human peer

Cooke (2015); Lombrozo (2006).

Explainable AI (XAI) Gunning (2017) is increasingly considered an essential

paradigm for a new warfighting concept, where it requires new approaches to military

planning and fast convergence of capabilities across various domains. Although XAI

approaches continuously contribute to the scope and efficiency of planning Human-AI

planning problems, many problems remain unaddressed. The critical requirement of

explainable agency Langley et al. (2017) is to be “explainable” to the human part-

ners while developing a deep understanding of machine-computed plans. This ability

leads to trust in machine planners and effectively synthesizes insights from multiple

human planners and automated planners. However, although AI planners can lever-

age data at an astounding speed and provide reasoning for their decision-making, they

also make sure their human peers perceive the solution. Therefore, AI agents can-

not perceive the situation that human experts may recognize using their background

knowledge. Moreover, AI planners are deterministic, given the planning domain,
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limiting their utility in adversarial settings. Further, AI planners are too data de-

manding while focusing on specific aspects of the planning. Consequently, the human

remains an essential element for planning, especially when the problem’s constraints

are difficult to express for an agent in a dynamic setting.

As AI breakthroughs gain momentum, intelligent machines are increasingly taking

on more crucial roles in human-robot teams. The human teammate must understand

the decision-making process of the agent. On the other hand, the validity of intelligent

machines is constrained by their ability to explain their decision-making processes.

As a result, explainable Human-AI planning is an essential paradigm that requires

new approaches for fast convergence of capabilities across various domains such as

the military.

In this chapter, I explore how explainable agency develops a deep understanding

of machine-computed plans, concentrating on the following question: how to effec-

tively facilitate the decision-making process of a human-AI team? The answer to

this question requires exploring new methods of human-AI collaboration on complex

planning tasks. The main factors to be considered for facilitation in this study are:

• The novelty of information shares from one teammate to another

• The required level of engagement

• The activity context, or task complexity

• Known characteristics of the teammate (agent persona)

Humans are known to have limited computational and working memory abilities

compared to a machine. Therefore, to maintain collaborative engagement or cognitive

readiness for collaborative planning tasks, I introduce a new role in the team: the

facilitator.
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In previous chapters, different model-based approaches are developed to predict

where the human teammate would misunderstand the plan and therefore generate

an explanation accordingly. The robot’s generated explanation or interactive expli-

cable behavior maintains the human teammate’s cognitive workload and increases

the overall team situation awareness throughout human-robot interaction. In this

chapter, I focus on a rule-based approach to preserve the collaborative engagement of

the team by exploring essential aspects of the facilitator agent design. In addition to

recognizing wherein the plan might be discrepancies, focusing on the decision-making

process provides insight into the reason behind the conflict between the human and

the robot. Also, employing a rule-based framework, I shift the focus from assisting

an individual (human) teammate to helping the team interactively by focusing on the

team decision processes.

The results suggest that the facilitation behavior has an impact on increasing

the decision quality (Hypothesis 1). Further, results indicate that the facilitation

interventions will increase the planning outcome score, and the decision quality (Hy-

pothesis 2). Finally, according the results, the facilitation interventions will result in

higher team collaboration and teamwork (Hypothesis 3).

The facilitation agent will be a resource to the team lead and propose/deliver

interventions that will mitigate the team’s tendency to rely on previous, successful

operation plans. It will ultimately ensure that any good ideas get fair consideration

with a more accurate risk analysis. It will support a planning team that has decided

to include an AI agent on its planning team, which is being used to propose alternative

missions and ensure that those alternatives will also get fair consideration.

Throughout a collaborative planning task, because it is a cognitively demanding

task, the facilitator’s role is helpful towards goal alignment, planning strategies, and

bias mitigation. The facilitator helps the planning team effectively communicate to
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share [relevant] information to produce an efficient plan.

This chapter takes a step further from previous explanation generation research

by developing a planning framework where the Human and Robot cooperate on a

collaborative task. I create a facilitation framework to find equilibrium for the human-

robot interaction in a performance/practice scenario. The main objectives of this

framework are:

• Developing an AI facilitator to provide collaborative, agile decision making in

complex planning tasks

• AI facilitated collaborative decision making by diverse, virtual, elastic teams

(DVET) of humans Decisions: e.g., plan option generation, analysis, assessment;

prioritization

• Human-AI symbiosis in planning tasks using rule-based facilitation intervention

To study facilitation behavior as explanation generation on team cognition, I cre-

ated a collaborative setting where teammates share their unique knowledge of the

task and take responsibility on different planning tasks to fulfill the main objective.

The team may consist of a planning agent. The facilitator shares insight based on

observed collaborative behavior of the team and influences the decision-making pro-

cess. The framework created for this study is depicted in Figure 5.1. At different

study steps, the facilitator provides priorities, new information to each planner or the

whole team. The scenario for this study is elaborated in Section 5.2.

In this framework, the facilitator implicitly affects decision-making by providing

insights (facilitation behavior) to increase the plan quality. The facilitation behavior

consists of onboarding, mitigating information pooling bias, and debriefing. These

notions are defined in Section 5.1.1.
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Figure 5.1: The framework for Human-AI teaming utilizing facilitator

5.0.1 Challenges

The following are challenges of intelligent agent architecture designed to account

for humans in the loop, categorized based on different aspects:

1. Human-aware planning/decision making challenges

• Tracking mental models of the humans in the loop using the catalyze/syn-

thesize/harmonize concepts

• Intention and plan recognition; designing environments for easy goal recog-

nition

• Joint planning for human-machine collaboration

• Learning the mental models

2. Evaluation-related challenges

• Measuring trust between human and AI systems
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• Ethical aspects of human-aware AI systems—in particular, the possibil-

ity of manipulating humans by leveraging the knowledge of their mental

models

3. Facilitation intervention challenges

• Generating legible/explicable facilitation behavior for every team member

• Provide interventions in the absence of any shared vocabulary

• Communication between human and AI systems: natural language; aug-

mented

I address the challenges above by providing facilitation interventions while the

human planners are in charge of planning. This approach aims to provide a unique

insight into facilitation and team collaboration, which leads to Human-AI symbiosis.

5.1 Towards Human Machine Symbiosis

Our Human-AI symbiosis system leads to robustness, scalability, and efficiency

in dynamic missions involving multi-modal resources, constraints, and executives.

Without the team performance to suffer in this framework, new human and machine

planners can be added or removed from the planning team to address the recently

added dimension of objectives. Therefore, incorporating an AI agent as a collabora-

tion planning facilitator is one approach to enable effective Human-AI planning.

The facilitation agent can ask questions, or probes related to the planning task,

interface, given information, or teamwork flow throughout the mission. These fa-

cilitation actions help planning team members adapt their decision-making to their

dynamic planning team’s capabilities and constraints.
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5.1.1 Definitions

I utilize these definitions for our hypotheses and further develop metrics:

1. Onboarding new team members (Harmonize decision team): keep the

evolving/elastic team on the same page.

2. Catalyze decision making: keep the team moving forward (e.g., collaborative

exploration of option space)

3. Synthesize decision rationale: continually capture decisions, alternatives,

justification, and collective activity to structure collaboration, guide its inter-

pretation and inform downstream decision making (e.g., detailed planning)

Because I am focused on how biases affect teaming cognition, I elaborate on

harmonizing the decision team and catalyze the decision making progress:

I elaborate these metrics above by determining the facilitation actions throughout

the collaboration task:

1. Harmonize Decision Team: Probe and align shared understanding across

the team of problem/decision and emerging decision processes.

2. Catalyze Decision-Making Process:

• Stimulate team collaboration on the decision-making process.

• Capture the team information pooling bias and mitigate it by providing

alternative rationale and collaboration activities

• Abstraction: Integrates feedback from downstream decision making

3. Synthesize: Debrief the mission the team had finished and discuss identified

teaming issues and opportunities.
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5.1.2 Research Questions and Hypotheses

My research, in this chapter, focuses on answering the following question: Will

effective use of a rule-based facilitation agent result in (near) optimal plans with a

deeper understanding of the decisions by the hybrid planning team? This analysis

effort intends to create curves that relate some measure of technical performance to

mission effectiveness utilizing the decision quality defined in Section 5.4.1. Although

somewhat speculative, this effort provides a new framework and a set of assumptions

that could be useful for shaping a more extensive research effort. Accordingly, I aim

to test the following hypotheses:

• Hypothesis 1. The facilitation interventions will result, in robust complex

plans that increase the overall decision quality.

• Hypothesis 2. The facilitation interventions will increase the planning out-

come score due to the higher-level collaboration of the hybrid planning team.

These interventions will be provided online and delivered based on which part

of the planning task they decide.

• Hypothesis 3. The facilitation interventions will result in superior team col-

laboration/teamwork.

To test these hypotheses, each team will randomly attend one of these three

collaboration conditions described as below:

1. No Facilitator: Participants collaborate to plan for a logistic relief task.

2. Agent Facilitator: Participants collaborate to plan + an agent facilitates their

decision-making process. The agent is Wizard of Oz and has rule-based scripts

for interventions.
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3. Human Facilitator: Participants collaborate to plan + a human facilitates their

decision-making process. The human facilitator has rule-based scripts + uses

informal language to facilitate the process.

5.1.3 Bias

To better understand the effect of facilitation behavior on collaborative planning

and team cognition I induced three biases in different conditions:

• Information pooling bias: The tendency to discuss/share common information

and omit unique information Stasser and Titus (1985); Rajivan et al. (2013);

Rajivan and Cooke (2018). Each team member has some information shared by

all team members and some that are unique to them. The bias is one in which

people tend to discuss standard details and fail to share unique.

• Anchoring bias: “The tendency to rely too heavily or overly restrict one’s at-

tention to one trait or piece of information when making judgments. The in-

formation in question can be relevant or irrelevant to the target decision and

numerical or non-numerical. Includes focalism or the focusing illusion” Tversky

and Kahneman (1974). The group sees salient information and anchors or gets

stuck on it. The first piece of information presented at the very beginning while

the rest of it will be provided with delay.

• Groupthink (Bandwagon) Bias: Groupthink is the team version of the above

bias. This bias plays on our need to “fit in” and conform to social norms.

An individual’s perspective can be steered toward a group’s plan, even if that

individual disagrees with the group’s beliefs. The fear of being the odd-one-out

and ridiculed coupled with the idea that others are smarter than us leads us to

doubt ourselves and favor the collective response. This is the bias that prevents
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an individual from speaking up and expressing an alternative view Kahneman

et al. (1982); Tsintsadze-Maass and Maass (2014).

5.2 Experimental Setup

I evaluate the introduced approach by conducting a human-subject study using

a web based framework in a disaster response domain. This domain is designed

to expose the subjects to complex teaming collaboration situations that required a

non-trivial amount of cognitive effort in a short amount of time.

To adjust the study design, I have benefited from pilot studies analysis. I analyzed

part of the data as it is being collected to fine-tune the experimental design and ensure

that sufficient data is collected. Additionally, I explored the pilot data further to

inform the experimental design and my operational analysis. The pilot study results

are only used for design purposes and are excluded from the study results.

5.2.1 The Disaster Response Domain

To test the significance of the facilitator and its effect on the team, I have designed

a collaborative disaster relief planning task. I designed the domain as a collaboration

task on an island, where a disaster happened, and the participants collaborated to

solve the problem.

In this task, four warehouse managers have to collaboratively devise a plan to

respond to a disaster that happened on a fictional island. There is an urge to com-

municate and converge capabilities across various domains fastly.

To address the situation, the participants have to work within a team and move

supply materials from one safe location to an affected area to assist the population

recover from a natural disaster. Their task is to provide five decisions based on the

planning interface and the brief mission document provided to them:
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• Deciding on the destination priorities

• Assigning the destinations (disaster relief focuses) to warehouse managers

• Assigning truck

• Choosing the best route to get to the goals

• Distributing supplies between warehouses

To simulate an actual situation, there is different information provided to each

warehouse manager, categorized as common/uncommon to other team members and

relevant/irrelevant to the task. Moreover, to better understand human-AI teaming,

one warehouse manager is operated by a (wizard of Oz) planning agent. The planning

agent script is written specifically to provide it with a persona, induce biases, and

represent a less cooperative agent. This automated warehouse communicates with

others using the Text to Speech software and has a robotic voice. The agent is:

• Not transparent

• Reactive

• Does not share information until asked

• Does not initiate collaboration

The agent responds to the other teammates’ questions or the facilitator’s interven-

tions but does not volunteer to share the information. As a result, throughout the

collaboration, the team could easily exclude the agent, and therefore, the agent would

withhold the critical information needed to plan the tasks accurately.

90



5.3 Evaluation

As mentioned in Section 5.1.2, three different conditions for the designated exper-

iment have been conducted. For all three conditions, I have the same initial state for

all the warehouse managers and the requirement of the damaged areas. In each con-

dition, I conducted two missions: in the first mission, the participants have enough

resources to fulfill their task. However, in the second mission, there are not sufficient

resources to accomplish the collaborative planning task.

The facilitator has access to the exact requirements of each disaster focus and to

each participant’s current supply and the state of the main decisions at all times.

Figure 5.4 shows the facilitator view.

The participants are recruited from a North American university. The participants

are put randomly in a team for the study. Each unit consists of three participants,

the automated warehouse manager, called the planning agent, and on conditions two

& three, a facilitator. Each team went through a training mission to learn the inter-

face basics and get familiar with the study. Then, the team will start to collaborate

on two tasks. First, the experimenter introduce the participants to the domain by

online training (http://charttask.com/training1.html). During the train-

ing, they learn about the details of the interface they are about to use, the map, and

how to utilize the information that the facilitator might provide. Figure 5.2 shows

the map.

Each human subject assigned a role on the task. As Figure 5.3 illustrates, the

participant’s main task is shown using the color green. Therefore, each player must

collaborate with other teammates to understand the best assignment for the desig-

nated task. As explained briefly in Section 5.2, each subject has limited information

about the resources available to herself and a range of requirements needed for each
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(a) Route 1 (b) Route 2

(c) Route 3 (d) Route 4

Figure 5.2: The map of the island where the natural disaster happened. The players

have access to the map and its relevant information at all times during the planning

task. The route information is shown as presented in the interface for the first mission

in figures 5.2a, 5.2b, 5.2c, 5.2d.
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Figure 5.3: Player’s dashboard view for the disaster response domain
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disaster focuses.

The facilitator starts each mission, and the participants have 25 minutes to col-

laborate and fulfill each task. During each mission, the facilitator provides three

categories of intervention based on the definitions in Section 5.1.1.

• Harmonize: Onboarding new agent planner; introducing new member and its

capabilities; The facilitator, at the beginning of the first mission, mentions

that the warehouse manager Alpha is being called on an emergency and being

replaced by her assistant. The assistant is an AI planning agent familiar with

the planning task and can communicate with the participants.

• Catalyze: The AI agent is withholding the unique information about the task,

creating an information pooling bias situation because this information is re-

quired to make a good plan. The facilitator then prompts the team or an

individual to share what they perceive as relevant information to other team

members. The planning agent starts to share information at this point.

• Synthesize: At the end of the mission, the facilitator debriefs the planning team

and provides the score and summary of their collaboration. The facilitator asks

the team to answer on: (1) What went well during the first mission. (2) What

didn’t go well? (3) Discuss what needs to be improved.

5.4 Measures

To measure the effectiveness of the facilitation behavior over the collaborative

planning task, I have defined three sets of measures: decision quality and planning

outcome score, which is categorized as objective, and collaboration score, which is

classified as subjective. The measurement definition is provided in the following

subsections.
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Figure 5.4: Facilitator’s dashboard view for the disaster response domain. Compare

the table of the resources in the middle to the Player’s view of Figure 5.3.
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5.4.1 Decision Quality

The score reflects how I judge the relevance of a plan by considering a different

aspect of the plan. Here, I consider two approaches for plan evaluation: utility based,

and planning outcome based. For utility-based, I assign a score to the plan based

on a set of features and predict how likely this plan will succeed in execution on a

scale (range). The feature is comprised of three categories: (1) Plan efficacy: The

competence of the plan based on the selection of priorities, destinations, trucks, and

routes (2) Plan cost: Number of resource moves (3) Plan bonuses: The distance

of the created plan with the optimal plan. This distance is calculated using the

constraint set from the problem. This is a measurement of how much they would be

penalized if they ignored the constraints. A plan is considered better if and only if

it has a higher score. The designed experiment provides insight into how teams of

humans and machines can be more effective as a planning team with a Collaboration

Facilitation Agent (CFA).

The score is color-coded and presented in Figure 5.5. I use three different cat-

egories for the score for the debrief session: below average (< 50) shown in red,

moderate (< 50 < 70) shown in yellow, and high (< 70) shown in green. The de-

tailed score is only presented to the facilitator. The facilitator decides how to use the

score information in the debrief session as explained in Session 5.2.

5.4.2 Planning Outcome Score

For planning outcome, I focus on how well the plan would carry out practically

based on the objectives and constraints set for each scenario. Here, I answer whether

the plan devised by the team would fulfill the defined problem if it would be put

to action. More specifically, I make sure that the created plan will accomplish the
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Figure 5.5: The color-coded decision quality was calculated based on the sub-tasks

defined in the experiment out of 100. For each category, the score is calculated out

of 10 using a similarity comparison function between the ideal decisions and actual

decisions.
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goal set at the beginning for the team if unfolded and executed. Finally, an objective

follow-up metric is to check if the created plan will address the priorities in the same

order that the team set as the first sub-task.

Figure 5.7a and Figure 5.7b illustrate the calculation of the planning outcome

score. The top table (Figure 5.7a) illustrates the type of a decision, what is decided,

the number of supply moves, as well as the truck, destination, and route selection with

their score. Figure 5.7a first shows the initial situation for Alpha, Bravo, Charlie, and

Delta and the requirement for each of the destinations to be fulfilled. Each row shows

the source and destination warehouse manager in a supply distribution move and the

offered amount. The red value shows the moved resource being deducted from the

source warehouse, and the green value shows the added to the destination warehouse.

Finally, the destination location main column shows the assigned destination that

the warehouse that received the offer is responsible for. A negative number means

the number of resources needed to fulfill that task under the illustrated category.

Similarly, the positive number represents the surplus of the displayed type for that

warehouse. For instance, the 11th row in this table shows Alpha; Bravo; food; 5; 20

(in red); 25 (in green); Center; -15; 0; -15; 15. This means Alpha offered five food

to Bravo. The remaining food for Alpha is 20, and the updated food for Bravo is

25. Bravo is responsible for the distribution center and needs 15 more units of food,

and 15 more medicine units, while it does not need water and has 15 surpluses of

construction supplies.

5.4.3 Team Process Score (TPS)

To calculate the subjective score of team process score, I have created software

shown in Figure 5.6 to label the team interactions. The experimenter labels the

interaction between teammates and between the facilitator and the teammates, as
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Figure 5.6: Team Process Score. For simplicity, the software has three sections,

categorized for participant, Facilitator, and planning agent (automated warehouse).

See Table 5.1, Table 5.2, and Table 5.3 for the definition of each of the measures.

well as the team decision making, whether they planned based on a consensus or not,

how effectively they shared information, etc.

The definition for each of the measures in the TPS software is provided in Table

5.1, Table 5.2, and Table 5.3.

5.5 Results

To measure the facilitator’s impact, I used the metrics tied to the plan’s quality

and practicality of the generated plan.

Table 5.4 shows overall decision quality for different conditions, which illustrates

the facilitator’s effectiveness for decision quality. I have utilized the score calculations

discussed in Section 5.4 to evaluate the effect of the facilitator across three different

conditions mentioned in Section 5.3. Furthermore, Table 5.5 provides the decision
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Participants Definition

Passing info. The participant shares information regarding

the mission to the team

Asking Info. Participant requests info.

Suggesting/negotiating Proposes a course of action for a priority, also

the inverse, a counteroffer.

Team Consensus Group agrees on a course of action (order of priority task,

prioritizing who trades 1st) when making a small decision

(hospital should be first) or large one (order of all priorities).

Only select once per decision, not for every person.

After 1 agreement silence is compliance.

Anchoring Bias If participants base their decision for their destination

on highest supplies (or otherwise focus on supplies).

Information Pooling Bias When participant neglects to share unique information.

Groupthink When a participant gives a suggestion (that is incorrect)

and participants agree with it with no further discussion

or deliberation.

Table 5.1: Participant Labeling definitions for TPS
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(a)

(b) The planning outcome of the supply distributions with respect to the decided priorities.
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Facilitator Definition

Question Facilitator The facilitator is asked a question directly by one

of the participants.

Facilitator Probe (Question) An intervention were the facilitator request

the participants to think deeper about there decision

making to see if there is a better solution available

Suggestion to improving task work Intervention that focuses on the task the is currently

being completed (route selection, trading resources).

Suggestion to improving teamwork Intervention that focuses on how the team

collaborates

Response to facilitator feedback Anytime there is a direct response to facilitator.

Mostly be used after the mission.

Table 5.2: Facilitator Labeling definitions for TPS

quality results for the mission 1 and mission 2 across different conditions.

I used a 3 (condition) × 2 (mission) split-plot analysis of variance (ANOVA)

to analyze the teams’ decision quality. There were significant condition, F (2, 30) =

21.22, p < 0.001, and mission main effects, F (1, 30) = 19.95, p < 0.001. However, the

condition by mission interaction effect was not significant, F (2, 30) = 1.17, p = 0.328.

Based on the significant condition main effect, pairwise comparisons (Least Significant

Difference-LSD) indicate that teams in the human facilitator condition had a higher

decision-quality than those in both the agent facilitator and no facilitator conditions

(p < 0.001). The agent facilitator condition was also higher than the no facilitator

condition (p < 0.001; see Figure 5.8 ). This finding supports the hypothesis (H1)

that the facilitator affects the quality of communication, leading to the teams better
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Agent Definition

Anchoring Bias If Alpha is able to induce bias. Alpha bases destination

decision on highest supplies available.

Information Pooling Bias When Alpha does not share unique information.

This will be selected if Alpha is not asked to share information.

Groupthink When Alpha introduces a suggestion and participants

agree without exploring other alternatives.

Agent Asked When participants ask Alpha for information or

to confirm a decision.

Agent Requesting When Alpha states its needs for supply redistribution.

Agent Supplies When Alpha shares unique information

(according to the script).

Table 5.3: Agent Labeling definitions for TPS

identifying the relevant and unique information provided to them. Significant mission

main effects show that the decision quality significantly increased from Mission 1 to

Mission 2 (p < 0.001). This shows that the participants are required to communicate

even more effectively in mission 2 compared to mission one to recognize and fulfill

the top priorities because there are not enough resources to fulfill the second mission.

Also, the increased score is partially due to the learning effect that results from gaining

more experience by spending more time with the environment. Furthermore, while

the learning effect exists similarly for all of the conditions when going from Mission

1 to Mission 2, the lack of a mission × condition interaction suggests that learning

occurs equally for all conditions, but that decision quality is further impacted by the

presence of a facilitator.
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(a)
(b)

Figure 5.8: Decision quality score (a) across the conditions and (b) across the missions

(Error Bars indicate that Standard Error (SE)of the mean).

I used another 3 (condition) × 2 (mission) split-plot analysis of variance (ANOVA)

to analyze the teams’ outcome score. There were significant condition, F (2, 30) =

31.51, p < 0.001, and mission main effects, F (1, 30) = 20.24, p < 0.001. However,

the condition by mission interaction effect was not significant, F (2, 30) = 0.247, p

= 0.782. Based on the significant condition main effect, pairwise comparisons (Least

Significant Difference-LSD) indicate that teams in the human facilitator condition

had a significantly higher outcome score than those in both the agent facilitator

and no facilitator conditions (p < 0.001). The agent facilitator outcome score was

also significantly higher than the no facilitator condition (p < 0.001). This finding

supports the hypothesis (H2) that the facilitator interventions affect the outcome

score. This represents that the facilitator positively affects the interaction quality

of the team which leads to the teams better identifying the relevant and unique

information provided to them. Significant mission main effects show that the outcome

score significantly increased from Mission 1 to Mission 2 (p < 0.001). This shows that

the participants are better perceiving the agent’s persona as well as mitigating the

induced biases better. However, while the learning effect exists similarly for all of
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the conditions when going from Mission 1 to Mission 2, the significant increase in the

outcome score in the facilitator conditions, compared to no facilitator, suggests that

the learning does play a critical role for all, but facilitator condition matters on top

of that.

The experimental design allows us to speculate on how the CFA technical ca-

pability will impact joint forces’ ability to implement the concept of Multi-Domain

Operations effectively. As part of this effort, I include an analysis effort focused on

extrapolating the experimental results and insights into a framework for discussing

Measures of Effectiveness for multi-domain operations. Figure 5.10 and Figure 5.11

show the sub-tasks decision quality across the three conditions. The results illustrate

that the human facilitator performs significantly better from the first mission to the

second mission that may be attributed to the human facilitator. Most importantly,

the AI facilitator does not seem as effective as the human facilitator. This observa-

tion is also verified with the Table 5.5. Particularly, the human facilitator performs

better in helping the participants route selection sub-task. Another interesting as-

pect is that the priority score across all conditions declined from the first mission to

the second. This is due to the fact that in the second mission there are not enough

resources to fulfill the task which puts a lot of calculation overload on the team. The

destination assignment improves from mission one to mission two, as the team learns

to communicate better. The truck selection shows a significant improvement from the

first mission to the second mission for facilitator conditions compared to no facilitator

condition. These results with the Table 5.4 results suggest that the facilitator helps

mitigating the biases better.
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Conditions Overall (Average) Decision Quality

No Facilitator 44.38

Agent Facilitator 52.44

Human Facilitator 62.81

Table 5.4: Overall decision quality across conditions

Mission Average Decision Quality

No Facilitator 1 41.67

No Facilitator 2 47.22

Agent Facilitator 1 46.25

Agent Facilitator 2 58.63

Human Facilitator 1 55

Human Facilitator 2 70.63

Table 5.5: Overall decision quality across missions and conditions

5.5.1 When Does Facilitation Matter?

Following the discussion provided, one crucial question that needs an answer is

to explore what situation needs facilitation and which type of facilitation (agent or

human) would be appropriate.

The first part of the answer is to analyze further the planning outcome score

shown in the Table 5.6. The results suggest that cognitive demand may be the same

across conditions, but that the presence of a facilitator mitigates the demand. These

results verify H2. Table 5.7 provides average and standard deviation for outcome
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Figure 5.9: The decision quality for different sub-tasks across different conditions

No Facilitator Agent Facilitator Human Facilitator

Planning outcome Score (out of 1000) 789.25 867.95 912.78

Table 5.6: The planning outcome score across the three conditions

score across different conditions and missions.

To analyze the TPS, I classified it into three different categories: (1) Team process

communication score: pass information, ask for information, suggest negotiate, agent

asked, agent requests, agent supplies unique information; (2) Facilitator measures;

(3) Team process bias score: anchoring bias, information pooling bias, groupthink

bias (see Table 5.1, Table 5.2, and Table 5.3). For each of these categories, I summed

the average number of occurrences of each factor across each mission and condition.

I used another 3 (condition) × 2 (mission) split-plot analysis of variance (ANOVA)

to analyze the team process communication score. There was a significant condition
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Figure 5.10: The decision quality for different sub-tasks in mission 1 across different condi-

tions

Mission 1 Mission 2

No Facilitator 245.5 (12.12) 176 (50.71)

Agent Facilitator 155.6 (68.89) 108.5 (54.83)

Human Facilitator 108.89 (39.07) 65.56 (68.63)

Table 5.7: The planning outcome average and standard deviation in parenthesis across

the three conditions and two missions
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Figure 5.11: The decision quality for different sub-tasks in mission 2 across different condi-

tions

effect, F (2, 30) = 11.56, p < 0.001, and the condition by mission interaction effect

F (2, 30) = 3.64, p < 0.05. However, there was no significant mission main effect,

F (1, 30) = 0.91, p = 0.347. Based on the significant condition main effect, pairwise

comparisons (Least Significant Difference-LSD) indicate that team process communi-

cation score was significantly higher in the human facilitator condition than the agent

facilitator condition, and it was significantly higher in the agent facilitator condition

than no facilitator condition (p < 0.001; See Figure 5.12). This finding shows that

the facilitator affects the team communication positively. As a result, the team asked

the agent for more unique information, asked each other more for information, and

negotiated more on the best strategies to approach the planning task in the facilitator

conditions.

I used another 3 (condition) × 2 (mission) split-plot analysis of variance (ANOVA)
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Figure 5.12: Team process communication score across the three conditions

to analyze the TPS facilitator measure. There were significant mission, F (1, 30) =

26.20, p < 0.001 and condition main effects F (2, 30) = 37, 80, p < 0.001, and condi-

tion by mission interaction effect F (2, 30) = 7.03, p < 0.05. Based on the significant

mission main effect, pairwise comparisons (Least Significant Difference-LSD) indicate

that facilitator interaction score was significantly decreased from Mission 1 to Mission

2 (p < 0.001). Based on the significant condition main effect, only no facilitator con-

dition significantly differ than the other two conditions, but the other two conditions

were not significantly differ one from the other (p = 0.108; See Figure 5.13).

I used another 3 (condition) × 2 (mission) split-plot analysis of variance (ANOVA)

to analyze the team process bias score. There was a significant condition effect,

F (2, 30) = 6.87, p < 0.05. However, there were no significant mission main effect,

F (1, 30) = 0.51, p = 0.482, and no significant condition by mission interaction effect

F (2, 30) = 2.07, p = 0.144. Based on the significant condition main effect, pairwise

comparisons (Least Significant Difference-LSD) indicate that team process bias score

was significantly lower in human facilitator condition than the agent facilitator con-

dition, and it was significantly lower in agent facilitator condition than no facilitator
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Figure 5.13: Team process facilitator measure across the three conditions

Figure 5.14: Team process bias score across the three conditions

condition (p < 0.05; See Figure 5.14). This finding supports the hypothesis (H3) that

the facilitator interventions affect mitigating the three biases that is calculated in the

TPS participant score (the lower the score the lower the biases).

These results indicate that facilitation behavior affects the negotiation positively

and mitigates information pooling bias. Further, facilitation effect helps passing in-

formation and communication. These results, verify H3. Figures 5.15 and 5.16 show
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Figure 5.15: The Team Process Score (TPS) for the human participants in mission one

based on average number of occurrences for each factor

the TPS for the human participants across conditions for each mission.

Figures 5.17 and 5.18 illustrate the team interaction with the automated planning

agent across conditions for each mission. According to these results, the team asks

more questions from the agent in the facilitation conditions. Moreover, the human

facilitator effect is evident when the team asked the agent for unique information (See

“Agent supplies unique” bar in both Figure 5.17 and Figure 5.18 and compare it with

no facilitator condition). Finally, the facilitator, as seen before in outcome score and

decision quality, has a positive effect in mitigating the agent information pooling bias

due to a better communication of team with agent. These results, in part, verify H3.

To answer the second part of the question, I focus on human success in mitigating

the information pooling bias mostly at task 4, which is route selection. According

to the results, human facilitation is more suitable for mitigating information pooling

and anchoring bias. On the other hand, agent facilitation is more ideal for objective
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Figure 5.16: The Team Process Score (TPS) for the human participants in mission two

based on average number of occurrences for each factor

Figure 5.17: TPS for the automated planning agent in mission one based on average number

of occurrences for each factor
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Figure 5.18: TPS for the automated planning agent in mission two based on average number

of occurrences for each factor

metric calculation, such as time, distance, or the cost of the decisions.

The planning outcome and decision quality results suggest that Human teammates

set a lower error margin for AI facilitator than the human counterpart. One explana-

tion is that the human collaborators get annoyed faster by the AI facilitator and pay

less attention to its interventions and probes (See Figure 5.9 and compare the route

score in the human facilitator with the AI facilitator condition). Another explanation

is that Human teammates expect the AI facilitator to lower their cognitive load by

simulating their decisions.

On the other hand, focusing on TPSs analysis, the human facilitator focuses on

the tone and personalization of the interventions more than the process. The human

teammates perceive the human facilitator more as decision critique rather than pro-

cess critique. Consequently, this observation suggests that human teammates perceive

114



the human facilitator more as someone like them, while they perceive the AI facili-

tator as more functional. These results illustrate the importance of decision critique

vs. process critique and suggest that there should be an equilibrium between the two

to empower human decisions on such planning tasks. Together, the human and agent

facilitation working together would create more successful facilitation, resulting in a

deeper understanding of the task.

5.6 Discussion

In this chapter I stepped further from the previous research in human-robot team-

ing and introduced a new role, a facilitator. The facilitator can be viewed as a teacher,

or coach that helps the team to communicate better to create a plan while facing a

complex task in presence of different team biases. To better understand the facilitator

impact, I designed a multi-agent planning testbed with two different logistical plan-

ning scenarios in an environment, where three humans join an automated planning

agent (operated as the wizard of OZ) to provide a plan for the task. The result of

this chapter illustrates the facilitator impact on situation awareness, mitigating bi-

ases, decision quality, and outcome scores. Consequently, the teams that empowered

with a facilitator create a higher quality plan in terms of effectiveness (H1), as well as

the decision quality (H2) compared to no facilitator condition. The results also show

that facilitation influences the team communication quality, that result in superior

teamwork (H3).

The results of this study envision new methods of human-AI collaboration to

create effective human-AI teams. Consequently, to get to human-machine symbiosis

AI should take on the roles that humans do not want to take on, instead of replicating

humans.
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Chapter 6

CONCLUSION

This dissertation creates motivating approaches for human-agent team designs.

Throughout this dissertation, I have laid out different experiments to study the effect

of communication in human-robot teams, both in terms of explanation and facilitation

interventions. I have explored how to maintain collaboration engagement or cognitive

readiness for collaborative planning tasks.

In Chapter 2, I created a general method of generating explicable actions to make

explainable plans for human-robot teams, where the human is an active teammate.

To this end, I provided an optimization formula to consider the plan cost and the

preconceptions that the human may have about the robot. Therefore the robot actions

may incur a higher cost for the robot, while mostly understandable for humans. This

approach is generalizable to large teams learning about the human capability model.

As a result, the produced plans will be both explicable and predictable.

In Chapter 3, I introduced a novel formulation for explanation generation by

creating sub-explanations. This approach focused on reducing the mental workload

for the human to interpret a complex explanation. I have provided three different

methods and formulation. This method is evaluated both in simulations and with

human subjects while improved task performance and reduced mental workload.

In Chapter 4, I have created an Inverse Reinforcement Learning (IRL) method to

learn human preferences of the information order. I have adopted the IRL formula-

tion to learn the reward function of a goal-based MDP. I show that humans indeed

demonstrate preferences for the information order in explanations and employ the

theory of mind. We can learn the human desires and beliefs using our framework.
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Further, the results verified that the explanations generated by this approach improve

task performance and reduce cognitive load.

Chapter 5 provides a novel rule-based path to explore the design of an AI facilita-

tor. A facilitator helps a team collaborate on creating a plan in the presence of team

biases and ineffective communication, on naming a few. I study the importance of

the facilitator on the team outcome. Further, I provide a machine-learning approach

to learn the weights to evaluate plans based on their practicality and effectiveness.

This evaluation bridges between a rule-based model and the previous model-based

approaches.
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Chapter 7

FUTURE WORK

To better understand the facilitation impact on the planning and the human

perception of agent persona and abilities, further analysis and studies are required.

One direction is to find (if) there is a sweet spot to achieve the most desirable planning

outcome.

Sweet spot: A point, range, or particular set of constraints will achieve the most

desirable [or valuable] interaction for planning outcome.

Assuming there is a sweet spot, the goal is to find the optimal trade-off of cognitive

workload versus team performance based on various utility measurements. Hence,

one of the future directions of the proposed framework is to learn to interact with

autonomy (throughout practice) and increasing team performance.

Accordingly, for future studies, we aim to validate the following hypotheses:

• Hypothesis 1. There is a sweet spot to align the cognitive workload and team

performance.

• Hypothesis 2. The facilitation process needs to adapt to the extent of the

team’s cognitive workload (or the key individual in the group).

• Hypothesis 3. Onboarding a new member affects team collaboration. There-

fore, the facilitation threshold varies for different teams.

Moreover, creating a cloud-based framework for the AI facilitator that helps the

human facilitator is one of the most important future directions. Exploring ways to

engage the human facilitator to the machine suggestions will open up new intuitions
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for facilitation. Such framework will provide a closer insight on how different ideas

find their way from decision-making systems to impact our life when take effect in

a large scale, such as in societies. Lastly, by performing a proper learning on facili-

tation behavior, the embedded features in the task that affect ideal facilitation can

be extracted. These features can be used to transfer facilitation experience from one

domain to another, or to fine-tune the facilitation behavior on a specific task based

on a generalized model similar to Vaswani et al. (2017).
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