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ABSTRACT

Energy market participants’ optimal bidding strategies and profit maximization

is built upon accurate locational marginal price (LMP) predictions. In wholesale

electricity markets, LMPs are strongly spatio-temporal correlated. Without access to

confidential information on system topology, model parameters, or market operation

conditions, market participants can only accept data-driven methods to utilize pub-

licly available market data to predict LMPs. Most previous data-driven studies on

LMP forecasting only leveraged temporal correlations among historical LMPs, and

very few of them learned the spatial correlations to improve forecasting accuracy. In

this dissertation, unsupervised data-driven approaches are proposed to predict LMPs

in real-world energy markets from market participants’ perspective. To take advan-

tage of the spatio-temporal correlations, a general data structure is introduced to

organize system-wide heterogeneous market data streams into the format of market

data 2-dimensional (2D) arrays and 3-dimensional (3D) tensors. The system-wide

LMP prediction problem is formulated as a sequence prediction problem. A gen-

erative adversarial network (GAN) based prediction model is adopted to learn the

spatio-temporal correlations among historical LMPs preserved in the market data 3D

tensors, then predict future system-wide LMPs. Multi-loss functions are introduced

to assist the adversarial training procedure. A convolutional long-short-term memory

(CLSTM)-based GAN is developed to improve forecasting accuracy.

All LMP price components are jointly determined by the interactions between the

market clearing process and the generator bidding process. The market participants’

LMP forecasting problem can be formulated as a sequential decision-making model

considering the interactive market clearing and generation bidding decision-making

processes. The spatio-temporal decision transformer is proposed to learn the underly-

ing sequential decision-making model from historical spatio-temporal market data and

i



forecast LMPs as the future actions of these interactive decision-making processes. A

two-stage approach is proposed to incorporate historical generation bids into energy

price prediction from market participants’ perspective. Historical generation bids are

taken as the first stage’s output and the second stage’s input in the training process.

The implicit correlation among locational bids, demands, and energy prices is learned

to improve price forecasting accuracy. The proposed approaches are verified through

case studies using both real-world and simulated data.
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Chapter 1

INTRODUCTION

1.1 Background

Driven by the increasing fuel price and rapid growth of renewable energy gen-

eration, electricity price is becoming more difficult to be forecasted accurately by

market participants. The volatility of electricity prices comes from the uncertainties

of demands and the strategic bidding behavior of generators. After the deregulation

of the electricity market and the introduction of competitive markets, the tradition-

ally monopolistic and government-controlled electricity markets have been reshaped.

In the United States, most electricity is traded in electricity markets run by regional

transmission organizations (RTO) or independent system operators (ISO) under com-

petitive market mechanisms using spot and forward contracts [7; 8]. There are seven

RTOs and ISOs operating in the United States, serving two-thirds of the population:

PJM Interconnection (PJM), Midcontinent ISO (MISO), Electric Reliability Coun-

cil of Texas (ERCOT), California ISO (CAISO), Southwest Power Pool (SPP), New

York ISO (NYISO), and New England ISO (ISO-NE).

All RTO and ISO electricity markets are designed as a multi-settlement system

with day-ahead (DA) markets and real-time (RT) markets. The DA markets are

cleared before the operating day as a forward market to produce stable prices, whereas

the RT markets (also called the balancing market) are cleared on the operating day as

a spot market to reconcile any differences between the schedule in the DA market and

the RT load. The DA market is responsible for providing generators and load-serving

entities a means for scheduling their activities sufficiently prior to their operations,
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based on a forecast of their needs and consistent with their business strategies. Gen-

eration and demand bids scheduled by the DA market are settled by the DA market

prices. Because of weather and demand uncertainties, there are always deviations

between the scheduled amount of electricity based on the DA forecast and the ac-

tual RT load. Therefore, the RT market is cleared to serve the difference between

scheduled and actual RT demand and keep the system’s reliability. Additional energy

offers provided by generators and megawatts over or under-produced relative to the

DA commitments are settled at RT prices.

Due to demand uncertainty, transmission congestion, generator forced outages,

and other unforeseen events, electricity prices in RT markets are more volatile than

the electricity prices in DA markets. Without considering these events, the DA mar-

ket is usually settled at stable prices with fewer fluctuations and spikes. However,

renewable penetration and energy storage encourage energy market participants to

schedule and manipulate their generation and demand strategically, which increases

the uncertainties and volatility for both DA market prices and RT market prices.

Price prediction is critical for energy market participants to develop optimal bidding

strategies and maximize their profits. The increasing price volatility caused by the

increasing integration of renewable resources makes price prediction more difficult for

market participants. Unlike system operators, market participants have no access to

confidential market information, such as power grid parameters, topology, and op-

erating conditions, which are essential for precise price prediction. The lack of such

confidential market information leads to more challenges for market participants to

predict the highly volatile electricity prices. The updated publicly available market

data provided by RTOs and ISOs include historical DA prices, RT prices, demands,

and partial generation information, such as generation mix data. These data are

usually visualized by the colored maps as shown in Fig. 1.1 for each operating time
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interval. Fig. 1.1a shows a zonal price map from PJM interconnection, where the

color in each zone represents the zonal price for this price zone. Fig. 1.1b shows a

nodal price map from Southwest Power Pool (SPP), where the color in each node

represents the nodal price for this price node. These price maps are updated for each

operating time interval. The spatio-temporal correlations among the public market

data are represented by a time series of visualized price maps, with can be utilized to

predict future prices from market participants’ perspective.

(a) Zonal locational marginal price map [2]. (b) Nodal locational marginal price map [4].

Figure 1.1: Colored Price Data Map.

1.2 Locational Marginal Price

In the United States, most electricity markets adopt the concept of locational

marginal price (LMP) for both the DA market and the RT market. LMPs for energy

cleared in the DA market are calculated on a day-ahead basis for each hour as day-

ahead locational marginal prices (DALMP); LMP for the energy cleared in the RT

market is calculated every five minutes or fifteen minutes during the operating day as

real-time locational marginal prices (RTLMP). The hourly RTLMP is the weighted

average of RTLMPs calculated within one hour. Both RTLMP and DALMP are

calculated at nodes, load zones, and hubs; LMPs of load zones and hubs are calculated

based on a weighted average of nodal LMPs in their area.
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DALMPs for all nodes (locations) in the market are determined by the system op-

erator based on the unit commitment and economic dispatch and the prices of energy

offers and bids. DALMPs are calculated by applying an optimization to minimize

energy cost, given scheduled system conditions, scheduled transmission outages, and

any transmission limitations that may exist. To implement this optimization, the

system operator estimates the system conditions based on the expected transmission

system configuration and the set of offers and bids submitted by market participants.

After solving the optimization problem, the cost of serving an increment of load at

each node is calculated, including three components: (1) the energy price at which

the market participant has offered to supply or consume an additional increment of

energy from the resource; (2) the congestion price associated with increasing the out-

put of the resource or reducing consumption of the resource when there is not enough

transmission capacity for all of the least-cost generators to be selected; (3) the losses

price associated with transmission losses caused by the increment of load and supply.

The energy prices for all nodes in the same market are identical, and the losses prices

wouldn’t vary too much across the market footprint. When there are transmission

constraints or congestion, LMPs may vary significantly across the market footprint,

which causes the spatial difference of LMPs among the price nodes in the market.

RTLMPs of electricity for all price nodes (locations) in the market are determined

by the system operator based on the system conditions described by the power flow

solution produced by the state estimator for the pricing interval. RTLMPs are cal-

culated by applying an optimization method to minimize energy cost, given actual

system conditions, a set of energy offers and bids, and any binding transmission con-

straints that may exist. Similar to DALMPs, RTLMPs consist of three components:

(1) the energy price; (2) the congestion price; (3) the losses price. During the oper-

ating day, the RTLMP calculation is performed every five-minute or fifteen-minute
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interval, producing a set of nodal RTLMPs based on system conditions during the

pricing interval. Then, the RTLMPs produced at pricing intervals during an hour

are integrated to determine the nodal RTLMPs for that hour. The RT market will

clear the difference between DA commitments and the actual RT demand based on

separate, second RTLMPs, which are either paid or charged to participants in the

DA market for demand or generation that deviates from the DA commitments [9; 10].

Compared to the DA market, the RT market has a smaller market volume. There is

an increased likelihood of supply and demand imbalances in the RT market, which

lead to both positive and negative price movements. Therefore, RTLMPs have more

volatility and more spikes and are more difficult to predict.

For a fixed RT electricity market, the RTLMP uncertainties are caused both

by demand uncertainties and supply uncertainties. In the following subsections, we

demonstrate these uncertainties by outlining the basic concepts of LMPs with the

DC optimal power flow (DCOPF) formulation.

1.3 Spatio-Temporal Correlations and Uncertainties of LMPs

LMPs are dual variables derived from solving the optimal power flow problem. In

general, a DCOPF [11; 12] is widely used by system operators to calculate LMPs,

which can be formulated as the following optimization problem:

minimize
P

N∑
i=1

aiP
2
i + biPi + ci (1.1a)

subject to
N∑
i=1

Pi −
N∑
i=1

Li = 0 : λ, (1.1b)

P− ≤ P ≤ P+ : σ−, σ+, (1.1c)

F− ≤ T(P− L) ≤ F+ : µ−, µ+. (1.1d)
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where P, L are the vectors of active power generations and loads at N buses, respec-

tively. Pi, Li are ith elements in P and L, respectively. P−, P+, F− and F+ are

the vectors of upper and lower limits for power generations P and transmission line

flows F = T(P−L), respectively. T is the power transfer distribution factor (PTDF)

matrix. λ, σ−, σ+, µ− and µ+ are the Lagrange multipliers of the corresponding con-

straints. For each generation cost function Ci = aiP
2
i + biPi + ci, ai, bi and ci ∈ R are

the generation bidding variables submitted by the generator owner at bus i. These

generation bidding variables may vary frequently instead of being constant.

In (1.1d), with the PTDF matrix T commonly used in commercial DCOPF soft-

ware, the active power flows over transmission lines are represented as a linear combi-

nation of nodal power injections. The PTDF matrix T describes this linear mapping,

and can be written as [11]:

T = [0DAB−1] (1.2)

where matrices D, A, B describe power grid topological and physical properties [11].

Given this DCOPF formulation, the vector of nodal LMPs, LMP, can be represented

as [11]:

LMP =
∂L
∂L

= λ1 + TT (µ− − µ+) (1.3)

where ∂L
∂L

is the partial derivative of the DCOPF’s Lagrangian function L. Assuming

constant grid topology and physical properties in T, LMPs are the linear combination

of Lagrange multipliers λ, µ− and µ+. λ is associated with the supply-demand equal-

ity constraint in (1.1b). µ+ and µ− are associated with line flow limit constraints

in (1.1d). It is clear that λ is determined by the total load
∑n

i=1 L and the bidding

variables submitted by generators spatially dispersed across the grid. Given total

load
∑n

i=1 L, µ+ and µ− are determined by geographical distributions of loads across

the grid. Therefore, LMPs across the grid are spatially correlated through the PTDF

6



matrix and temporally correlated through hourly load/generation variations. Conse-

quently, the spatio-temporal uncertainties in both demands and supplies will lead to

LMP uncertainties.

1.4 Report Organization

The rest of the report is organized as follows: Chapter 2 provides a literature

review of the existing works on electricity price prediction, including model-based

approaches and model-free approaches.

Chapter 3 describes a general data structure, including daily and hourly struc-

tures, for market data 2D matrices (images) and market data 3D tensors (videos)

and a formulation of the price prediction problem. The system-wide spatio-temporal

correlated market data is organized into a 3D tensor. The historical market data

tensor stores spatio-temporal correlations among system-wide LMPs. The next time

step LMP prediction problem is formulated as a problem of generating a future 2D

array, given a historical 3D tensor.

Chapter 4 introduces a convolutional generative adversarial network (GAN)-based

prediction model for both day-ahead and hour-ahead forecasts of system-wide LMPs.

The proposed GAN-based model is trained using multiple loss functions during the

adversarial training procedure. The feature selection and calibration models are im-

plemented to improve price prediction accuracy.

Chapter 5 introduces a convolutional long short-term memory (CLSTM)- based

GAN model. The LMP prediction problem is formulated as a spatio-temporal sequence-

to-sequence forecasting problem. The previous GAN model in Chapter 4 is updated

by replacing the convolutional networks with CLSTM networks.

Chapter 6 introduces a stacked decision transformer-based approach for the spatio-

temporal forecasting of RTLMPs. The RTLMP forecasting problem is formulated as
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learning the implicit sequential decision making process of generator bidding and RT

market clearing without any knowledge of generators’ bidding strategies or system op-

erators’ OPF model. The sequential decision making process is learned using limited

public market data.

Chapter 7 introduces a two-stage approach to incorporate historical generation

bids into energy price prediction from market participants’ perspective. The implicit

correlation of locational bids, demands, and energy prices is learned to improve price

forecasting accuracy.

Chapter 8 concludes this report and provides the potential for the future work of

this study.
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Chapter 2

LITERATURE SURVEY

Existing LMP prediction methods include two groups: (1) forecasting from sys-

tem operators’ perspective; (2) forecasting from market participants’ perspective. All

these LMP forecasting methods can be classified into five main categories: simula-

tion models, gaming theory models, statistical models, machine learning models, and

hybrid models.

2.1 Simulation Models

Simulation methods predict energy prices by simulating the operation of power

systems based on the generation models and transmission models [13; 14]. The actual

generation dispatch with system topology, network parameters, and operating condi-

tions are taken into consideration by simulation methods from the system operators’

perspective. With full knowledge of detailed system operation data and power net-

work models, the mathematical model is established to solve the security-constrained

optimal power flow (SCOPF) in order to generate LMP forecasts for every price node

across the entire system.

Market assessment and portfolio strategies (MAPS) algorithm developed by GE

Power Systems Energy Consulting [14] is used to predict the hour-by-hour market

dynamics while simulating the transmission constraints in the power system. MAPS

takes the detailed load, transmission, and generation units’ data as input to generate

complete unit dispatch, LMPs at all generation and load buses, and power flow in

each transmission line as outputs. UPLAN software [15], developed by LCG consult-

ing, solves multi-commodity, multi-area optimal power flow (MMOPF) and performs
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Monte Carlo simulation to forecast electricity prices. It simulates the participants’

bidding strategy in different markets, such as the energy market, ancillary service mar-

ket, and emission allowance market. Compared to the MAPS model, UPLAN takes

additional information of price drivers as input, such as hydrological conditions, fuel

prices, and competitive bidding behaviors, to forecast the probabilistic price distri-

bution across different energy markets. Both these two methods are complicated to

implement, and the computational cost is very high.

To reduce the computational cost, multiparametric programming-based simulation

method [16] and online simulation method [17] are applied to forecasting LMP from

the operators’ perspective. The multiparametric programming [16] is formulated

based on the conditional probability mass function of the RTLMPs estimated by

Monte Carlo simulation. This methodology incorporates uncertainty models such as

load and stochastic generation forecast and system contingency models. The online

simulation method in [17] solves multiparametric programming with the inputs of

power flows, dispatch levels, and system states at the time of forecasting based on

online dictionary learning.

All these simulation-based methods require perfect knowledge of system models,

such as system topology and physical properties described in PTDF matrix T, which

is not shared with market participants. Market participants cannot take advantage

of the above simulation approaches without confidential system model information

and market data.

2.2 Game Theory Models

The simulation models mentioned above usually do not consider market partici-

pants’ bidding variants. In reality, market participants in the energy market intend

to adjust their bidding curves from the actual marginal costs of their generation to
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maximize their revenue. The second group of LMP prediction models is game theory

models, which are utilized to model the strategic bidding of market participants and

find the solution for the game [18]. This group of models does not require any his-

torical market data. The strategic market equilibrium analysis is the key point for

gaming theory models.

In [19; 20], Nash-Cournot models of imperfect competition among electricity pro-

ducers are formulated as mixed linear complementarity problems (LCP) with and

without arbitrage on a linearized DC network with affine price functions. The pro-

posed models calculate a market equilibrium (Nash-Cournot equilibrium) for gener-

ation and transmission. A market equilibrium is defined as a set of prices, generator

outputs, transmission flows, and consumption that satisfy each market participant’s

first-order conditions for maximization of its profit while clearing the market. Two

types of arbitrage are considered in [20]. In the first type of arbitrage, the mar-

ket participants owning the generator anticipate the effect of arbitrage upon prices

at different locations (Stackelberg assumption). In the second type of arbitrage, the

market participants take the arbitrage quantities as inputs in their problems (Cournot

assumption), and the arbitrager solves a separate profit maximization problem that

takes the electricity prices and the transmission costs as inputs.

Considering strategic bidding and load elasticity, [21] presents a fundamental bid-

based stochastic model forecasting hourly prices and average prices over a specified

time interval. Taking the uncertainty of the unit availability and demand into con-

sideration, this model captures both the economic and physical aspects of the pricing

process based on Bertrand, Cournot and supply function equilibrium (SFE). In [21],

the model can capture the stochastic dependence of the price on costs, load, reliabil-

ity, and bidding strategies. However, the factors related to transmission congestion,

transmission outages, and unit commitment are ignored by this model, which makes
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it focus more on qualitative rather than quantitative results. [21] concludes that there

will remain no alternative other than using Monte Carlo methods if unit commitment

and transmission constraints are included in the system model.

2.3 Statistical Models

Statistical models employ a mathematical combination to forecast the prices using

previous prices and/or previous or current values of exogenous factors, especially

demand, generation, and weather variables. Statistical models are widely accepted

because it is easier for engineers and system operators to understand their behavior

by attaching some physical interpretation to their components [7].

2.3.1 Similar-Day Methods

Similar-day method (Naive method) is a very popular benchmark in the price fore-

cast area because of the simple implementation and good performance in industries.

To forecast the current day’s prices, it searches historical data for days with charac-

teristics similar to the target day and considers those historical values or the average

value of prices in previous similar-days as forecasts of future prices [22; 23; 24]. The

similarity between the target forecast day and previous days is evaluated by Euclidean

norm with weighted factors. The drawback of similar-day methods is that forecasting

procedures without careful calibration fail to pass the ’Naive test’ surprisingly often,

leading to low accuracy when large variations exist in prices.

2.3.2 Exponential Smoothing Methods (ESM)

ESM is another simple benchmark in the price forecasting area. The forecast is

constructed based on an exponentially weighted average of past observations [25; 26;
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27]:

st = αxt + (1− α)st−1 = α

t∑
j=0

(1− α)jxt−j, t>0 (2.1)

where α(0<α<1) is the smoothing factor, xt is the observation at time t, st is the

smoothed forecast calculated by the weighted average of the current observation xt,

and the previous smoothed statistic st−1. As shown in equation 2.1, the weights

decrease exponentially depending on the value of smoothing factor α. A further com-

plex model has been developed with the independent trend and seasonal component

added. The drawback of the ESM method is that the smoothing factors, such as α,

are usually difficult to determine or estimate.

2.3.3 Regression Models

Regression is very popular and well-developed in statistical analysis. Multiple

regression focuses on learning the relationship between several independent or pre-

dictor variables and a dependent or criterion variable. The regression model is fitted

by minimizing the sum-of-squares of the differences between observed and predicted

values. The basic regression formulation is shown:

Pt = BXt + εt = b1X
(1)
t + · · ·+ bkX

(k)
t + εt (2.2)

where B is a 1×k vector of constant coefficients, Xt is the 1×k vector of regressors and

εt is an error term. This standard formulation is estimated by performing maximum

likelihood methods to learn the correlations between price Pt and regressors. Several

types of data can be taken as regressors for multiple regression methods, such as

prices, available nuclear capacity, temperatures, and rainfall in. In the time-varying

regression (TVR) model, the constant coefficients vector B is replaced by 1× k time-

varying coefficients vector Bt as shown in equation 2.3:

Pt = BtXt + εt = b1,tX
(1)
t + · · ·+ bk,tX

(k)
t + εt (2.3)
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Parameters in the TVR model are estimated by performing state space methods, and

the Kalman filter [28].

2.3.4 Time Series Models

Time series statistical models, including auto-regression (AR), moving average

(MA), autoregression moving average (ARMA) [29], autoregressive integrated mov-

ing average (ARIMA) models [30], and generalized autoregressive conditional het-

eroskedastic (GARCH) [7; 31; 32; 33; 34; 35; 36], are widely accepted in price forecast

of the electricity market.

AR model calculates the forecasted price as the sum of the stochastic error and the

linear combination of the historical prices. MA model calculates the forecasted price

as the sum of the average value and the moving average value of the white noise in

the price series. ARMA model is a combination of AR and MA, which assumes that

the time series to learn is weakly stationary. ARMA(p,q) model calculates forecasted

price as a linear combination of its p past values(AR part) and q previous values of

the noise (MA part):

φ(B)Xt = θ(B)εt (2.4)

where B is the backward shift operator, εt is i.i.d. noise with zero mean and finite

variance. φ(B) and θ(B) are defined as follow:

φ(B) = 1− φ1B − · · · − φpBp (2.5)

where φ1, · · · , φp are the coefficients of AR polynomials.

θ(B) = 1 + θ1B + · · ·+ θqB
q (2.6)

where θ1, · · · , θq are the coefficients of MA polynomials.
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The ARIMA model is a generalization of an ARMA model. ARIMA(p,d,q) con-

sists of three types of parameters:

φ(B)∇dXt = θ(B)εt (2.7)

where ∇dxt ≡ (1 − Bd)xt ≡ xt − xt−h is the lag-d differential operator. In [37], the

standard seasonal ARMAX time-series model is generalized to the L2 Hilbert space to

model complex time dependencies of a time series of electricity prices. The proposed

model also allows the inclusion of explanatory variables, such as weather data, which

are important drivers of electricity price time series.

By adding the moving average of past conditional variances to an autoregressive

process, the GARCH is obtained:

Xt = εtσt (2.8)

σ2
t = α0 +

q∑
i=1

αih
2
t−i +

p∑
j=1

βjσ
2
t−j (2.9)

where σ2
t is the conditional heteroscedasticity, αi and βi are the coefficients (αi, βi ≥

0, α0>0). The GARCH model can be combined with other time series models, such

as ARIMA-GARCH [38] and ARMAX-GARCH [39].

In [40], a multivariate LASSO statistical model is developed to forecast the elec-

tricity prices of eleven European datasets. This method only accounts for the statis-

tical relationship among prices without considering the actual spatio-temporal uncer-

tainties of demands and supply bids.

All the traditional time series models mentioned above can only capture the lin-

ear pattern of time series data because they only forecast the price changes from

the sequence itself without taking the impact of the market and other environmen-

tal factors into consideration. In the real-world electricity markets, especially in RT
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markets, there are a large number of rapid variations and high-frequency changes,

which cannot be successfully captured by this type of model. Therefore, this type of

model is more suitable for DA market forecasts with strong low-frequency patterns.

Poor performance of spikes prediction is a common problem faced by most statistical

methods, especially for price-only models. A lot of spike detection methods, such

as recursive filters [41; 42], variable price thresholds [43], fixed price change thresh-

olds [44], regime-switching classification [45], and wavelet filtering [46], have been

proposed.

2.4 Machine Learning Models

Data-driven machine learning approaches, such as nearest neighbor models, sup-

port vector machines (SVM), and neural networks (NN), have been developed to learn

the nonlinear relationship between LMPs and other market factors.

2.4.1 Support Vector Machine

SVM is employed to determine the decision boundaries to classify observed data

points into different groups [47]. Once the state space is partitioned by these decision

boundaries, the future data points can be classified and predicted. Usually, the ob-

served data points in the original state space can not be separated by a single linear

function. Therefore, SVM either performs a non-linear mapping of the data points

in the original space into a high-dimensional space or uses a set of hyperplanes to

construct nonlinear boundaries. [48] investigates the LMP-Load coupling in security-

constrained economic dispatch (SCED). This unique one-to-one mapping is depicted

by the concept of system pattern region (SPR) which can be partitioned by SVM.

Without knowledge of confidential system information, such as network topology and

operating conditions, SPRs can solely be estimated by SVM from historical LMP and
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load data. However, this method only predicts future LMP ranges instead of specific

LMP values. Moreover, this SPR-based method requires predicted nodal load data

as inputs for accurate LMP prediction, which is not always available to the public. A

holistic approach [1] is deployed to forecast LMPs from market participants’ perspec-

tive. The holistic approach in [1] can identify grid operating regimes by learning the

relationship between generation mix and zonal demand on one hand and RTLMPs

on the other hand. Both the SPR-based approach and the identification of grid op-

erating regimes expect to learn a unique mapping from locational loads to LMPs.

However, this unique mapping only holds under the assumption of fixed generation

bids and operating conditions. In a real-world system with time-varying operating

conditions, generators always change their bids strategically. The unique mapping

learned by the SRP-based methods can not be guaranteed. With the assumption of

no variation of generation bids, SPR-based forecasting methods cannot capture the

temporal correlations among historical LMPs. Indeed, these methods are only tested

in simulated markets without any generation bidding variations.

2.4.2 Neural Networks

Different types of artificial neural networks (ANN) have been applied to electric-

ity price forecasts, such as feed-forward neural network [49], recurrent neural network

(RNN) [50], fuzzy neural network [51] and cascaded neural network [52; 53]. In ma-

chine learning, neural networks are utilized to learn the nonlinear relationship between

the input and the output variables. Therefore, the nonlinear relationship between the

price to forecast and the historical data can be captured by the neural network. RNN

is designed to learn the dependencies among input time series. RNNs read in the data

at one time step every time and extract the dependence between the input data and a

hidden state from the last time step. A set of ’context units’ in RNN are responsible
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for dependency in the historical time series [54]. The extracted dependency will be

passed to the next step of the RNN operation as a time-dependent hidden state, which

is the internal representation of past events. There are connections from the hidden

(middle) layer to these context units; they have fixed weights and do not have to be

updated during training. In the general RNN structure, the outputs of all neurons

are connected recurrently to all neurons in the network. However, RNN has difficulty

in grasping this dependency over long time periods. This limitation is resolved by the

long short-term memory (LSTM) network [55], which is recently utilized to improve

electricity price forecasting performance. Based on RNN, LSTM is designed to take

advantage of an additional hidden state as a memory to keep long-term dependencies

from past inputs. LSTM is widely combined with other models to improve electricity

price forecasting accuracy. In [56], a hybrid LSTM-deep NN (DNN) structure is pro-

posed to accurately model complex nonlinear electricity price sequences. In [57], an

optimized heterogeneous structure LSTM network is constructed to improve the accu-

racy and stability of the general LSTM model in electricity price forecasting. Before

feeding into the LSTM model, the electricity price sequence is decomposed based on

the characteristics of non-linear, non-stationary, and multi-frequency superposition

of electricity price. Individual LSTM networks are trained based on the non-linearity

of high and low-frequency sequences, respectively. In general, these LSTM models

have a better performance in forecasting the nonlinearity of electricity prices. How-

ever, they ignore the spatial correlations among historical LMPs and demands, which

should also be a major concern of LMP forecasting.

The major advantage of data-driven machine learning approaches is their ability

to handle complexity and non-linearity. The machine learning methods are better at

modeling these nonlinear features of electricity prices than the statistical techniques

discussed above. However, the drawbacks of existing machine learning-based ap-
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proaches are obvious; the data-driven approaches are difficult to interpret physically

as most of them are black-box models.

2.5 Hybrid Models

It is impossible to find a universal single method that performs best for all the

circumstances [58]. Recently, hybrid models combining two or more existing forecast-

ing methods become popular. The hybrid models can exhibit individual techniques’

advantages and significantly improve prediction accuracy. For example, up to 22%

overall improvement of forecasting performance by combining methods from different

domains has been found in [59]. Machine learning methods and time series statisti-

cal forecasting methods are often combined to form effective methods, such as Fuzzy

+ ARIMA + ANN [60], ARIMA + SVM [61], singular spectrum analysis (SSA) +

modified wavelet neural network (WNN) [62], etc.

In [63], a feature selection technique is proposed to improve the accuracy of short-

term price forecasting for neural network-based prediction models. In [64; 65; 66],

multi-neural network-based models are implemented in price forecasting. The com-

binatorial neural network [65] is trained by a stochastic search method, and a sliding

window is used to incorporate previously predicted values for a multi-period forecast.

References [64; 66] focus on forecasting components of LMPs. The final LMP predic-

tion includes individual predicted energy price, congestion price, and loss price. These

methods mainly capture the temporal correlations between LMPs and demands, with-

out considering the spatial correlations among system-wide LMPs.
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Chapter 3

DATA DESCRIPTION AND PROBLEM FORMULATION

3.1 Data Description

All RTOs and ISOs in the U.S. publish their market data and operation reports for

both the DA market and the RT market, which can be utilized in price prediction.

These reports include both nodal market data and zonal market data. Publicly

available market data provided by PJM, ISO-New England, MISO, and SPP are

included in this chapter.

3.1.1 PJM Market Data

PJM includes 38164 price nodes located in 20 different load zones. For each price

node, the zip code is provided by PJM based on geographical data. PJM shows a zonal

LMP map updated every five minutes, as shown in Fig. 3.1. In Fig. 3.1, each zone

is filled with one color determined by its zonal price at that moment. Besides LMP

data, load data and generation-related data on the operating day are also provided.

The publicly available data is summarized in Table. 3.1.

3.1.2 ISO-New England Market Data

ISO-NE market includes 1199 price nodes located in 8 different load zones. Similar

to PJM, ISO-NE shows a zonal LMP updating every five minutes, as shown in Fig. 3.2.

Besides LMP data, load data, dispatch fuel mix data, and temperature data on an

operating day are also provided by ISO-NE. The generation bid data received by the

ISO-NE from participants in the DA energy market and during the re-offer period for
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Figure 3.1: PJM LMP Map [2].

consideration in the RT energy market is published monthly on the first day of the

fourth month following the operating month, per the FERC-ordered lag period. The

publicly available data is summarized in Table. 3.2.

3.1.3 SPP Market Data

SPP market includes 2863 price nodes located in 16 different load zones. Unlike

PJM and ISO-NE, SPP shows nodal LMP map updating every five minutes as shown

in Fig. 3.3. In Fig. 3.3, the color of every point is determined by the price node’s

value at that location for that moment.

Besides LMP data, load data and generation mix data in an operating day are

also provided by SPP. The publicly available data is summarized in Table. 3.3.
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Table 3.1: Public Market Data During an Operating Day in PJM

Data type Market Time interval Level

LMP RT, DA five minutes, hourly zonal, nodal

System energy price RT, DA five minutes, hourly zonal, nodal

Congestion price RT, DA five minutes, hourly zonal, nodal

Marginal Loss Price RT, DA five minutes, hourly zonal, nodal

Load RT hourly zonal

Generation by fuel type RT hourly system

Solar generation RT hourly zonal

Wind generation RT hourly zonal

Figure 3.2: ISO-NE LMP Map [3].

3.1.4 MISO Market Data

The MISO market includes 12 cost allocation zones and 10 local resource zones.

MISO reports prices for between 1800 and 2000 nodes. Similar to SPP, MISO provides

nodal LMP contour map updating every five minutes as shown in Fig. 3.4.

Besides LMP data, load data, generation mix, and generation bid data in an
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Table 3.2: Public Market Data During an Operating Day in ISO-NE

Data type Market Time interval Level

LMP RT, DA five minutes, hourly zonal, nodal

System energy price RT, DA five minutes, hourly zonal, nodal

Congestion price RT, DA five minutes, hourly zonal, nodal

Marginal Loss Price RT, DA five minutes, hourly zonal, nodal

Load RT, DA hourly zonal

Dispatch fuel mix RT varying length system

Dry bulb temperature RT hourly zonal

Dew point temperature RT hourly zonal

Generation bid RT, DA hourly nodal

Figure 3.3: SPP LMP Map [4].

operating day are also provided by SPP. The publicly available data is summarized

in Table. 3.4.
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Table 3.3: Public Market Data During an Operating Day in SPP

Data type Market Time interval Level

LMP RT, DA five minutes, hourly zonal, nodal

System energy price RT, DA five minutes, hourly zonal, nodal

Congestion price RT, DA five minutes, hourly zonal, nodal

Marginal Loss Price RT, DA five minutes, hourly zonal, nodal

Load RT, DA hourly zonal

Generation mix RT hourly system

Figure 3.4: MISO LMP Map [5]

3.1.5 Data Summary

Almost all markets provide hourly LMP data (system energy price, congestion

price, marginal loss price), load data, and generation by fuel type data in an operating

day, which can be utilized by a universal prediction approach. Some system operators

also publish hourly generation bid data in both the RT market and the DA market,
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Table 3.4: Public Market Data During an Operating Day in MISO

Data type Market Time interval Level

LMP RT, DA five minutes, hourly zonal, nodal

System energy price RT, DA five minutes, hourly zonal, nodal

Congestion price RT, DA five minutes, hourly zonal, nodal

Marginal Loss Price RT, DA five minutes, hourly zonal, nodal

Load RT, DA hourly zonal

Generation mix RT hourly system

Generation bid RT, DA hourly nodal

with 3 months delay.

3.2 Data Preprocessing

As shown above, all market operators visualize either zonal or nodal price data us-

ing a map for each interval. In the LMP maps, system-wide LMPs are demonstrated

using color-coded values according to their geographical locations. Therefore, the

LMP maps store spatial correlations among the LMPs at different locations. Consid-

ering each LMP map as an LMP image, a series of time-stamped LMP images can be

concatenated to form an LMP video. This LMP video stores both spatial and tem-

poral correlations among LMPs in the market. With these representations, the LMP

prediction problem can be formulated as a problem of predicting the future frame of

the LMP video. Then, the state-of-art video prediction approaches can be applied to

predict LMPs by learning the spatio-temporal correlations among historical data.
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3.2.1 The Motivating Example: Visualizing LMPs as Images and Videos

Visualization generated using RTLMPs (from 1:00 AM to 11:00 AM on 5/15/2019)

obtained from 56 price nodes within the territory of Atlantic Electric Power Company

(i.e., the AECO price zone) in PJM Interconnection [2] is shown in Fig. 3.5.

Figure 3.5: RTLMP Rtlmp Visualization of AECO Price Zone in PJM Market from

1:00 AM to 11:00 AM on May 15, 2019.

In Fig. 3.5, eight price nodes are explicitly identified on the image at 1:00 AM with

their RTLMP values and corresponding zip codes. The coordinates of the price nodes

represent their geographical locations in the system. At the bottom of Fig. 3.5, six

images are generated using system-wide RTLMPs at six different hours. The colors on
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these six images vary both spatially (within the same image) and temporally (between

consecutive images), indicating the spatio-temporal variations of RTLMPs. This ex-

ample clearly shows the spatio-temporal correlations among system-wide RTLMPs

can be captured by the spatio-temporal color variations across a series of time-

stamped images. This series of time-stamped images then form a video consisting

of the above RTLMP visualizations.

The smooth RTLMP visualizations in Fig. 3.5 are generated using biharmonic

spline interpolation [67]. It’s an intuitive example to show the capability that LMP

images and LMP videos can store the spatio-temporal correlations among LMPs.

However, in the RTLMP image, the color of 56 points is determined directly by

the RTLMP values. The color of the rest area in Fig. 3.5 is determined by the

interpolation function which has no physical representation. In Fig. 3.6, two different

interpolation techniques (biharmonic spline interpolation for Fig. 3.6(a) and nearest-

neighbor interpolation for Fig. 3.6(b)) are applied to an identical dataset (RTLMPs at

56 price nodes at 1:00 AM on 5/15/2019, in AECO price node). The nearest neighbor

interpolation results in a less smooth RTLMP visualization with exactly 56 different

color zones. Each color zone corresponds to the RTLMP value of a particular price

node. These 56 color zones in Fig. 3.6(b) are then re-organized to generate the image

in Fig. 3.6(c), with 56 colored squares of the same size. The color of each square is

fully determined by the RTLMP value at the corresponding price zone. These colored

squares represent pixels in a colored digital image, which are the smallest addressable

element in an image. A full comparison between three visualization methods is shown

in Fig. 3.7.

Compared with smooth RTLMP visualization in Fig. 3.5, the colored digital im-

ages and digital videos consisting of digital images in Fig. 3.6(c) keep the same spatio-

temporal correlations among LMPs as while as reduce the computational requirement
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Figure 3.6: Comparison Between RTLMP Visualizations Generated Using Different

Interpolation Techniques.

due to their small size. In the following section, we formally define data structures

for colored digital pixels (data points), images (2D arrays), and videos (3D tensors).

Figure 3.7: Full Comparison Between RTLMP Visualizations Generated Using Dif-

ferent Interpolation Techniques.

3.2.2 Data Structure for Digital Images and Videos

Consider a set of publicly available historical hourly market data collected from

N = h×w different price nodes (locations) for T consecutive hours. There areM types

of historical market data for each price location (i.e., the RTLMPs, the DALMPs,
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the local demand, the distributed energy resources outputs, etc.). All these locational

market data can be organized into a 3D tensor as shown in Fig. 3.8.

Definition 1 Let xti,j represent a historical market data point collected from kth price

node at time t, where k = h× (i− 1) + j, k ∈ [1, N ]. This market data point includes

M channels. For example, when M = 3, xti,j = {xt−rtlmpi,j , xt−dalmpi,j , xt−demandi,j } with

the RTLMP, DALMP, and demand data channels, respectively.

Definition 2 At each time t, N historical market data points collected over the mar-

ket are arranged into a 2D array X t ∈ Rh×w. The positions of each market data point

in the 2D array are fixed and determined according to their geographical location in

the electricity market footprint.

Definition 3 Let a 3D tensor X ∈ Rh×w×T represent the set of publicly available

historical hourly market data. This tensor X is comprised of T 2D arrays X t, where

t ∈ [1, T ].

Figure 3.8: Historical Market Data Structure.

As shown from right to left in Fig. 3.8, different types of market data collected

from the same location at one timestamp are organized into one historical market
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data point with different data channels. Then, the historical market data points of

all locations at the same time step are organized into one 2D array. Finally, a series

of time-stamped 2D arrays are organized into a 3D tensor. The above definitions

introduce a general market data structure to conveniently store the spatio-temporal

correlations among historical market data in the inter-dependencies along multiple

dimensions of the 3D tensor. For example, the correlations among different positions

in one 2D array X t, such as xti−1,j, x
t
i,j and xti,j−1, represent spatial correlations among

historical market data collected from different price nodes (locations) at time t; the

correlations among the same positions obtained at different times, such as xt−1i,j , xti,j,

xt+1
i,j , represent temporal correlations among historical market data collected from the

same price node (location) at different hours.

In Definition 2, each 2D array consists of market data collected at one time

(hour). Therefore, the third dimension of the tensor in Definition 3 represents hours.

It can also be modified to represent days. Consider the same set of publicly available

historical hourly market data collected from N = h×w price nodes (locations) for D

days. Within each day, we have 24 consecutive 2D arrays (X1 to X24) as defined in

Definition 2. They can be reorganized into an enlarged 2D array Xd
Day ∈ R4h×6w,

where d ∈ [1, D]. In this way, the hourly tensor X is reshaped to a daily tensor

XDay ∈ R4h×6w×D, as shown in Fig. 3.9. In this daily tensor, the spatio-temporal

correlations among hourly market data within the same day are stored in each day’s

2D array Xd
Day. The daily market pattern is represented by the correlations among

different daily 2D arrays in one daily 3D tensor.

The daily and hourly tensor structures can be adapted to perform day-ahead and

hour-ahead predictions of system-wide LMPs, respectively. In the rest of this paper,

the hourly tensor structure in Definition 3 is mainly used to present the prediction

approach. In the case studies, both hourly and daily tensor structures are utilized in
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Figure 3.9: The Daily Tensor Structure Reshaped from the Hourly Tensor.

developing the hour-ahead and day-ahead LMP predictors.

3.2.3 Normalization of Historical Market Data

Because each data point in tensor X contains M channels. The units and scales of

these M channels are different. Even for the same channel, the statistics of historical

market data may differ year by year. Therefore, all historical data are preprocessed

to the range of -1 and 1 by normalization.

After organizing historical locational market data into tensor X , each value xt−chi,j

of the channel ch is normalized as:

xt−ch
norm

i,j =
ln(xt−ch

+

i,j )− ln(max(X ch+))/2

ln(max(X ch+))/2
(3.1)

where

xt−ch
+

i,j = xt−chi,j −min(X ch) + 1 (3.2)

X ch+ = {X1−ch+ , · · · , X t−ch+ · · · , XT−ch+} (3.3)

where xt−ch
norm

i,j is the normalized value of xt−chi,j in channel ch; xt−ch
+

i,j denotes (i, j)th

element of X t−ch+ ; X t−ch+ is tth 2D array in tensor X ch+ ; X ch is the channel ch

of tensor X ; max(X ch+) is the largest element in X ch+; min(X ch) is the smallest

element of channel ch in tensor X . After normalization, values in the normalized
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tensor X norm, such as normalized prices and demands, lie within -1 and 1. Equations

(3.1)-(3.3) define an one-to-one mapping between X and X norm.

3.2.4 Market Data Images and Videos

Consider a wholesale electricity market with m×n price nodes. A set of his-

torical market data of various types (such as RTLMPs, DALMPs, demands, gen-

erations, temperatures, etc.) can be collected at each price node. Let xnormi,j (t) =

[vnorm−1i,j (t), vnorm−2i,j (t), vnorm−3i,j (t)] be a 1×3 vector containing three types of normal-

ized market data obtained from the (i, j)th price node at time t. Let Xnorm(t) be a

m×n matrix whose (i, j)th element is xnormi,j (t). According to the data structures de-

fined for images and videos, Xnorm(t) can be viewed as a colored digital image with a

resolution of m×n, and xnormi,j (t) can be viewed as the (i, j)th pixel of this colored dig-

ital image. By concatenating a series of such market data images, we obtain a tensor

X norm = {Xnorm(1), · · · , Xnorm(t), · · · , Xnorm(T )}, which can be viewed as a colored

digital video containing three different types of historical market data obtained at

m×n different price nodes for time interval [1, T ].

Fig. 3.10 shows a market data video consisting of 24 hourly market data im-

ages/frames generated using historical data from 56 (7×8) price nodes in the AECO

price zone on May 15th, 2019. Each square in Fig. 3.10 represents a pixel whose

red, green, and blue color codes take the value of normalized RTLMP, real power

demand, and temperature at the corresponding price node, respectively. The color of

each pixel is fully determined by the corresponding market data values (after normal-

ization) as shown in Fig. 3.11. It is clear the spatio-temporal variations of the pixel

colors represent the spatio-temporal variations of RTLMPs, real power demands, and

temperatures during these 24 hours across the AECO price zone. If a learning model

is trained to learn the spatio-temporal color variations in the historical market data
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video, this model could then be applied for system-wide LMP predictions.

Figure 3.10: Colored Digital Market Data Video of AECO Price Zone in PJM Market.

Figure 3.11: Detailed Information Stored in Colored Digital Market Data Video of

AECO Price Zone in PJM Market.

Although in the above discussion, the market data pixel xnormi,j (t) is represented

using three types of market data (such as RTLMP, real power demand, and tem-

perature in Fig. 3.10 and Fig. 3.11), this concept of market data pixel can be easily
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extended to representing l different types of market data, where l is a positive inte-

ger. In chapter 4.3, a feature selection process is introduced to identify the l types of

market data which contribute the most to the LMP prediction problem.

3.3 Formulation of The RTLMP Prediction Problem

The normalized historical market data across the system for T hours are or-

ganized into a normalized historical market data tensor X norm = {X1−norm, · · · ,

X t−norm, · · · , XT−norm}. The spatio-temporal correlations among values in the RTLMP

channel are determined by the unknown PTDF matrix T and uncertainties of other

market data channels. Thus, a predictor should be employed to learn the implicit

relationships stored in this historical market data tensor X norm and estimate a reason-

able 2D array X̂(T+1)−norm for next time T + 1. The estimated 2D array X̂(T+1)−norm

contains predicted RTLMPs for the next time step.

The RTLMP prediction problem is formulated as a 2D array prediction problem.

Given a historical market data tensor as input, the objective of the desired predictor

is to generate a future 2D array X̂(T+1)−norm, such that the predicted X̂(T+1)−norm

is close to the ground truth X(T+1)−norm. Meanwhile, spatio-temporal correlations

in X̂ norm = {X1−norm, · · · , X t−norm, · · · , XT−norm, X̂(T+1)−norm} is similar to those in

the ground truth X norm = {X1−norm, · · · , X t−norm, · · · , XT−norm, X(T+1)−norm}. This

is achieved by maximizing the conditional probability p(X̂(T+1)−norm|X norm) using

the proposed predictors.

3.3.1 One-Hour Ahead LMP Prediction

As shown in Fig. 3.12, the input of one-hour ahead LMP predictor is a tensor con-

sisting of several hours’ historical market data (X = {X1, X2, X3, X4, X5, X6, X7}).

The output of the predictor is the forecast of the next hour’s frame (X̂8). The objec-
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Figure 3.12: Example of One-hour Ahead LMP Prediction.

tive is to maximize the conditional probability p(X̂T+1|X ) (i.e. p(X̂8|X ) in Fig. 3.12)

or minimize the distance between forecast X̂T+1 and the ground truth XT+1 (i.e. the

distance between X̂8 and X8 in Fig. 3.12).

3.3.2 Day-Ahead RTLMP Prediction

The input of the one-day ahead LMP predictor is a tensor consisting of several

days’ historical market data (XDay = {X1, · · · , Xd, · · · , XD}). The output of the

predictor is the forecast of the next day’s frame X̂D+1. The objective is to maximize

the conditional probability p(X̂D+1|XDay) or minimize the distance between forecast

X̂D+1 and the ground truth XD+1.
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Chapter 4

GENERATIVE ADVERSARIAL NETWORK-BASED PREDICTION

A deep convolutional generative adversarial network (GAN) model is proposed to

solve the LMP prediction problem. The convolutional GAN model is trained using

multiple loss functions that can capture spatio-temporal correlations among system-

wide historical market data.

4.1 Convolutional Generative Adversarial Network

4.1.1 Convolutional Neural Network

The convolutional neural network (CNN) is one of the main techniques designed

for image recognition, image classification, and image generation. The general struc-

ture of CNN includes convolutional layers, activation units, pooling layers, and fully

connected layers as shown in Fig. 4.1.

Figure 4.1: General CNN Structure [6].

Convolutional layers serve as the primary components within CNNs. These layers

are composed of learnable filters, also known as kernels. Each filter is spatially com-

pact, spanning only a small width and height, yet it covers the entire depth of the
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input volume. By employing convolution operation, the correlation between pixels

is preserved, allowing the filters to learn image features effectively. A convolution

operation between an image and a filter(kernel) can be mathematically expressed as:

C[m][n] =
∑
u

∑
v

(I[m+ u][n+ v] ·K[u][v]) (4.1)

where I is the image, K is the kernel of size u × v. The result C of a convolution

is a feature map of the original image I filtered by kernel K, as the example shown

in Fig. 4.2. Intuitively, the value in a feature map represents how much the kernel

Figure 4.2: Example of Convolution.

captures the correlation in the patch of the original image.

In addition to convolutions, pooling operations make up another important build-

ing block in CNNs. Pooling operations reduce the size of feature maps by using

some function to summarize subregions, such as taking the average or the maximum

value. Padding ways and stride size also impact the size of feature maps. A guide to

convolution arithmetic can be found in [68].

In CNN, the convolutional layers are followed by fully connected layers, as shown

in Fig. 4.3.
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Figure 4.3: Fully Connected Layers.

Each node in Fig. 4.3 represents a neuron unit:

ath =
I∑

h′=1

wh′hb
t−1
h′ (4.2)

bth = θh(a
t
h) (4.3)

where, wh′h are the weights between neuron h′ in layer t− 1 and neuron h in layer t;

I is the total number of neurons in layer t−1; ath is the weighted sum from last layer;

θh is the nonlinear activation function for neuron h; bth is the output of neuron h in

layer t and input to layer t + 1. The neuron mathematical representation is shown

in Fig. 4.4. Similar to convolutional layers, fully connected layers are also capable of

abstracting features from their input.

4.1.2 Generative Model G

We propose a convolutional generative model as a solution to capture correlations

among pixels in input images using filters (kernels). This model, referred to as the

generator (G) and illustrated in Fig. 4.5, is designed to generate future images based

on a sequence of historical frames. Through training, the convolutional generative

38



Figure 4.4: Neuron Mathematical Representation.

model learns to predict the succeeding frame. This convolutional generative model

Figure 4.5: A Basic next Frame Generative Model G

G consists of several convolution layers followed by nonlinear activation functions.

Rectified linear units (ReLU) are employed after each convolution layer, except for

the last one. Since pixel values are expected to fall within the range of [-1, 1], the

output of the final convolution layer is passed through the hyperbolic tangent function

(Tanh) to ensure the desired range of pixel values.

As shown in Fig. 4.5, the generator G’s input X = {X1, · · · , Xn} denotes the 3D

tensor (video) consisting series of matrices (images) with normalized historical market
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data (at different price nodes/locations) at n consecutive time instants, X⊂X norm; Ŷ

denotes the generated 2D array (image) with forecasted normalized LMPs for time

n+ 1, i.e., Ŷ is the forecast of Y . Y denotes the ground truth 2D array (image) with

normalized historical LMPs at time n+ 1 to forecast, i.e., Y = Xn+1∈X norm; Unlike

traditional CNN, the output of G has to be of the same resolution as the input.

The pooling layers, which reduce the size of images, are removed, and transposed

convolution layers with padding are accepted to keep the image resolution.

Intuitively, the generator G takes historical market data in a 3D tensor X =

{X1, · · · , Xn} as inputs and is trained to generate the next frame Ŷ = G(X ) of

the given tensor, such that a distance between the forecast Ŷ and ground truth Y is

minimized. The distance between two 2D arrays can be measured by p-norm distance

`p:

Lp(X , Y ) = `p(G(X ), Y ) = `p(Ŷ , Y ) = ‖G(X )− Y ‖pp (4.4)

where ‖·‖p denotes the entry-wise p-norm of a particular matrix. When p = 2, the

above loss function measures the Euclidean distance between Ŷ and Y ; when p = 1,

the loss function measures the Manhattan distance between Ŷ and Y .

During the training process, this loss function forces the generator G to generate

the next-hour market data 2D array Ŷ that is close to the corresponding ground-truth

Y by minimizing the p-norm distance between Y and Ŷ .

However, predicting RTLMPs only with such normal CNN-based G has two draw-

backs:

1. Using p-norm loss may lead to loss of spatial correlations. In actual energy

markets, congestion only happens in limited lines. Because the PTDF matrix

T in (1.3) is very sparse, most price nodes have pretty similar LMPs, which

are close to the marginal energy price λ. In the training process, minimizing
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p-norm loss over the historical dataset may result in constant RTLMPs for all

price nodes and loss of spatial correlations.

2. Using p-norm loss may lead to blurry predictions [69]. According to equation

(1.3), it is evident that LMPs can vary even when considering the same PTDF

matrix and identical supply-demand scenarios. LMPs can vary depending on

the bidding variables provided by generator owners. Consequently, the prob-

ability distributions of LMPs are influenced by the corresponding probability

distributions of bidding strategies. Suppose generator owners have two equally

likely strategies s1 and s2, with probability p(s1) = p(s2), the corresponding

LMP at one price node has two values xs1 and xs2 with same probabilities

p(xs1) = p(xs2) over the dataset. During the training process, minimizing p-

norm loss over the dataset will lead to the blurry prediction xavg = (xs1 +xs2)/2,

even if the probability p(xavg) is very low in the historical dataset.

To address the issue of blurriness, we utilize an additional adversarial model to

maximize the conditional probability P (Ŷ |X ). This enables us to capture the spatio-

temporal correlations among various frames within a single 3D tensor. Furthermore,

we incorporate several supplementary losses into the overall multi-loss function to

enhance the learning process and account for these correlations.

4.1.3 Discriminative Model D

To introduce an adversarial loss, we incorporate a discriminative model, referred

to as the discriminator (denoted as D). The purpose of the discriminator is to max-

imize the conditional probability P (Ŷ |X ). The architecture of the discriminator, as

depicted in Fig. 4.6, is based on a CNN design.

The discriminator D is incorporated in the adversarial training process to avoid
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Figure 4.6: A Basic Discriminative Model D.

blurry predictions by learning the spatio-temporal correlations among historical mar-

ket data. {X , Y } is a constructed tensor including X and Y , representing the ground

truth tensor; {X , Ŷ } is a constructed tensor including X and Ŷ , representing the

generated tensor (with the generated 2D array Ŷ concatenated after the ground-

truth historical tensor X ). D takes {X , Y } or {X , Ŷ } as input, and outputs a scalar

D({X , ·})∈[0, 1] to indicate the probability of the input {X , ·} being the ground-truth.

During training, the target of D({X , Y }) is class 1; the target of D({X , Ŷ }) is class

0.

To gain a better understanding of the concept, we can consider the same example

we discussed earlier. For example, given a historical tensor X in the dataset, the

probability distribution for the next frame has two equally likely values Ys1 and Ys2

(P (Y = Ys1|X )=P (Y = Ys2|X )). As discussed above, G trained with p-norm loss

will result in the blurry prediction Ŷ = Yavg = (Ys1 + Ys2)/2. However, as the input

of D, the concatenated tensor {X , Yavg} is not an equally likely tensor to {X , Ys1}

and {X , Ys2} in the same dataset. Therefore, D can easily discriminate them and

penalize the blurry predictions. The only tensors the discriminator D will not be

able to classify as fake are {X , Ys1} and {X , Ys2}. Thus the objective of D is to

42



minimizing a loss function to classify the input {X , Y } into class 1 (i.e., Y is classified

as the ground-truth 2D array) and the input {X , Ŷ } = {X , G(X )} into class 0 (i.e.,

Ŷ = G(X ) is classified as the generated fake 2D array). Then the output of D can be

utilized to penalize G with blurry predictions. We will talk about the loss functions

and adversarial training procedure in the following sections.

4.1.4 Multi-Loss Function

With the objective discussed above, we define the loss function for discriminator

D and generator G respectively.

Loss function for training D

The adversary loss function for discriminator D is defined as:

LDadv(X , Y ) = Lbce(D({X , Y }), 1) + Lbce(D({X , G(X )}), 0) (4.5)

where Lbce is the following binary cross-entropy:

Lbce(k, s) = −[slog(k) + (1− s)log(1− k)] (4.6)

where, k ∈ [0, 1] and s ∈ {0, 1}. The binary cross-entropy measures the probability

distribution distance between the discriminator outputs K = D({X , ·}) and the as-

sociated labels S (Si = 1 and Si = 0 for real and generated 2D arrays, respectively).

These S labels are attached in the training process based on the learning algorithm,

instead of given with the training dataset, therefore the proposed approach is unsu-

pervised.

With this adversary loss function, the discriminator D forces its output scalar

D({X , Y }) to 1, and D({X , Ŷ }) = D({X , G(X)}) to 0. Note the difference between

input tensor {X , Y } and input tensor {X , Ŷ } is only the last 2D array in the third
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dimension which represents the temporal correlation of market data between the

last timestamp and previous timestamp. In this way, the discriminator D takes

advantage of learning the temporal correlations in the historical ground-truth tensors

and discriminates the ground-truth 2D array Y from the fake 2D array Ŷ = G(X )

generated by the generator G, given the input historical market data 3D tensor X =

{X1, · · · , Xn}.

Loss function for training G

To fully learn the spatio-temporal correlations among historical market data tensor

and reduce blurry predictions, a multi-loss function is adopted for the generator G.

This multi-loss function includes four terms from [70; 71] to quantify the distances

between Ŷ and Y from various perspectives, as while as penalize blurry predictions:

LG(X , Y ) = λadvLGadv(X , Y ) + λ`pLp(X , Y ) + λgdlLgdl(X , Y ) + λdclLdcl(X , Y ) (4.7)

where LG(X , Y ) denotes the overall weighted loss function for training G; LGadv(X , Y ),

Lp(X , Y ), Lgdl(X , Y ), and Ldcl(X , Y ) denote the four individual loss function terms

(introduced separately in the following sections); λadv, λ`p , λgdl, and λdcl denote the

hyperparameters (weights) for adjusting the tradeoffs among these loss terms.

1. The p-norm Loss Function Lp(X , Y ): The first loss function is the p-norm

loss function measuring the entry-wise distance between the generated and

ground-truth market data images Ŷ = G(X ) and Y :

Lp(X , Y ) = `p(G(X ), Y ) = ‖G(X)− Y ‖pp (4.8)

As shown in the example in Fig. 4.7, the p-norm loss function accumulates

the Euclidean distance or Manhattan distance between each pair of pixels in

the same location of G(X ) and Y for the whole images. During the training
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Figure 4.7: A Representation of Lp(X , Y ).

process, this loss function forces the generator G to generate the future market

data 2D array Ŷ that is close to the corresponding ground-truth 2D array Y by

minimizing the difference between Y and Ŷ .

2. The Adversarial Loss Function LGadv(X , Y ): According to the above dis-

cussion, we know the p-norm loss will cause blurry predictions which can be

easily identified by D. Therefore, we can take advantage of the outputs from D

to penalize these blurry predictions during the training process. The following

adversarial loss function LGadv(X , Y ) is adopted to penalize the G by learning

the temporal correlations among historical market data:

LGadv(X , Y ) = Lbce(D({X , G(X )}), 1) (4.9)

During the training process, the adversarial loss function forces the generator

G to generate the future market data 2D array Ŷ that is temporally coherent

with the input historical market data tensor X , such that the generated tensor

{X , Ŷ } is realistic enough to confuse the discriminator D. This is achieved

by minimizing Lbce(D({X , Ŷ }), 1), which measures the probability distribution
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distance between the discriminator output for the generated market data tensor

and the label for real market data tensor. Penalized by this loss factor, G tends

to generate 2D arrays that are temporally coherent with the historical 2D arrays

in the ground-truth tensor.

3. The Gradient Difference Loss Function Lgdl(X , Y ): The following loss

function is adopted to further capture the spatial correlations among historical

market data:

Lgdl(X , Y ) = Lgdl(Ŷ , Y )

=
∑
i,j

||Yi,j − Yi−1,j| − |Ŷi,j − Ŷi−1,j||α

+ ||Yi,j−1 − Yi,j| − |Ŷi,j−1 − Ŷi,j||α

(4.10)

where α ≥ 1, α ∈ Z; Yi,j and Ŷi,j denote (i, j)th elements in the ground-truth

and generated market data 2D array Y and Ŷ = G(X ) as shown in Fig.4.8, re-

spectively. During the training process, this loss function forces the generator G

Figure 4.8: A Representation of Lgdl(X , Y ).

to generate the future market data 2D array Ŷ that has similar locational gradi-

ent difference information compared to the ground-truth 2D array Y . Since the
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locational gradient difference information captures the spatial variations of his-

torical market data, this minimization ensures the generated market data fully

captures the spatial correlations among system-wide historical market data.

4. The Direction Changing Loss Function Ldcl(X , Y ) Unlike classical video

prediction problems, we would like to correctly predict whether LMPs will in-

crease or decrease in the next market clearing interval. The following loss func-

tion is introduced to capture the changing directions of market data at specific

locations over time:

Ldcl(X , Y ) =
∑
i,j

|sgn(Ŷi,j − xti,j)− sgn(Yi,j − xti,j)| (4.11)

where Yi,j, Ŷi,j and xti,j are the (i, j)th elements in the ground-truth 2D array,

forecasted 2D array and the last frame of given historical tensor as shown in

Fig. 4.9, respectively sgn(·) is the sign function:

sgn(x) =


−1 if x ≤ 0

0 if x = 0

1 if x ≥ 0

(4.12)

During the training process, this loss function forces the generated market data

tensor {X , Ŷ } to correctly follow the pixel changing directions in the ground-

truth tensor {X, Y } by penalizing incorrect prediction of market data trend

over time.

4.1.5 Adversarial Training

The GAN-based RTLMP prediction model is trained through the adversarial

training procedure in Fig. 4.10. Algorithm 1 summarizes the training algorithm.
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Figure 4.9: A Representation of Ldcl(X , Y ).

The generator G and discriminator D are trained simultaneously, with their model

weights, WG and WD, updated iteratively. The stochastic gradient descent (SGD)

minimization is adopted to obtain optimal model weights. In each training iteration,

a new batch of M training data samples (i.e., M historical market data videos) are

obtained for updating WG and WD. More precisely, in discriminator iteration, let

(X , Y ) be a sample of M videos with their next frame from the dataset. Then, we

perform one SGD update of D while keeping the weights of G fixed. Then, let (X , Y )

be a different data sample of M videos with their next frame from the dataset in the
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following generator iteration. One SGD update of G is performed while keeping the

weights of D fixed. Upon convergence, the generator G is trained to generate Ŷ as

realistic as possible, such that the discriminator D cannot confidently classify {X, Ŷ }

into 0 as a generated video.

Figure 4.10: The Training Procedure of the GAN-based LMP Prediction Model.

During training, the appropriate values of 4 hyperparameters λadv, λ`p , λgdl, and

λdcl are selected by the following 2-step tuning procedure:

1. Rough selection: The hyperparameters λadv and λ`p are first determined in

the rough selection step. These two hyperparameters are associated with the

basic loss functions of classic GANs. Therefore, without appropriate selec-

tion of λadv and λ`p , the GAN training may encounter convergence issues. In

this step, λ`p is set at 1; λgdl, and λdcl are set at 0; the range of λadv is set

between 0 and 0.5 with a step size of 0.05. The learning rates are set as

{0.00005, 0.0005, 0.005, 0.05, 0.5}. The hyperparameter λadv is selected by grid

search [72].

2. Fine-tuning : After the rough selection step, λadv, λ`p and the learning rates are

fixed. Then, λgdl, and λdcl are determined by fine tuning.

The initial guess of these parameters is from [69]. The final hyperparameters are
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Algorithm 1 Training generative adversarial networks for RTLMP prediction

Require: set the learning rates ρD and ρG, loss hyperparameters λadv, λ`p , λgdl, λdcl,

and minibatch size M

Require: initial discriminative model weights WD and generative model weights WG

while not converged do

Update the discriminator D:

Get a batch of M data samples from the training dataset, (X , Y ) =

(X (1), Y (1)), · · · , (X (M), Y (M))

Do one SGD update step

WD = WD − ρD
∑M

i=1

∂LDadv(X
(i),Y (i))

∂WD

Update the generator G:

Get a new batch of M data samples from the training dataset, (X , Y ) =

(X (1), Y (1)), · · · , (X (M), Y (M))

Do one SGD update step

WG = WG − ρG
∑M

i=1(λadv
∂LGadv(X

(i),Y (i))

∂WG
+ λ`p

∂L`p (X (i),Y (i))

∂WG
+ λgdl

∂Lgdl(X (i),Y (i))

∂WG
+

λdcl
∂Ldcl(X (i),Y (i))

∂WG
)

end while

determined through the above tuning procedure to obtain the best performance.

4.2 Calibration

The GAN model described in Chapter 4.1 is trained using year-long historical

market data and applied to perform RTLMP predictions step by step for the fol-

lowing year. Due to fuel price fluctuation, load growth, and generation/transmission

systems upgrade, the market data statistics may vary year by year. This may cause

deviations between the ground truth and predicted RTLMPs, as the generator G
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is trained using market data from previous years. Fig. 4.11 shows the comparison

among hourly RTLMP histograms from 2012 to 2018 in ISO-New England market.

It is clear that although RTLMPs obtained during different years for the same mar-

ket follow similar probability distributions, there exist discrepancies between RTLMP

distributions during different years. These statistical discrepancies may decrease the

RTLMP prediction accuracy if the prediction model is trained only using historical

data. The result in Chapter 4.4 shows that RTLMPs prediction generated directly

from G trained by historical data will have biases from the ground-truth RTLMPs.

To compensate for these deviations and further improve the forecasting accuracy,

two calibration methods can be applied to the outputs of G: (1) moving average

calibration (MA); (2) autoregressive moving average calibration (ARMA).

4.2.1 Moving Average Calibration

In the cases studied in Chapter 4.4, the generative model G is trained to generate

the next frame Ŷ , given a historical market data tensor consisting of 4 consecutive

frames X = {X t−3, X t−2, X t−1, X t}. The following moving average (MA) approach

is used to calibrate the prediction:

Ỹ t+1 = Ŷ t+1 −
∑t

i=t−3(Ŷ
i − Y i)

4
(4.13)

where Y i denotes the 2D array with ground-truth RTLMPs at time i; Ỹ t+1 denotes the

calibrated 2D array with forecasted RTLMPs at time t+ 1; Ŷ i denotes the 2D array

generated by the generator G at time i. Using (4.13), we calibrate the forecasted

RTLMPs for the next interval with the average difference between the RTLMPs

generated by G and the ground-truth RTLMPs over the past four intervals, which

are exactly the length of input tensor of G. The framework for RTLMPs prediction

is shown in Fig. 4.12.

51



Figure 4.11: Comparison among Hourly RTLMP Distribution from 2012 to 2018 in

ISO-NE.

4.2.2 Autoregressive Moving Average Calibration

MA calibration accounts for short-term dependency over the past several time

steps. A series of deviations between the ground-truth 2D arrays and the generated
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Figure 4.12: The Framework for RTLMPs Prediction with MA Calibration.

2D arrays can be denoted as:

∆Y i = Y i − Ŷ i (4.14)

where Y i denotes the ground-truth 2D array at time i; Ŷ i denotes the generated

RTLMP 2D array from generator G for time i; ∆Y i denotes the deviation between the

generated 2D array and ground-truth 2D array. For instance, we use the market data

of 2017 in ISO-NE to train the GAN model, then predict the RTLMPs of 2018 hour

by hour using the trained G. The stationarity of ∆Y = {Y i−t, Y i−t+1, · · · , Y i−1, Y i}

of 2018 for ISO-NE prediction model is demonstrated by the sample autocorrelation

function (ACF) shown in Fig. 4.13. Because ACF shown in Fig. 4.13 decays quickly,

the sequence of ∆Y is appropriate to fit in an ARMA model.

For better prediction accuracy, the RTLMPs generated by GAN are calibrated by

estimating their deviations from the ground truth:

ỹ(i+ 1) = ŷ(i+ 1) + ∆ŷ(i+ 1) (4.15)

where

∆ŷ(i+ 1) = y(i+ 1)− ŷ(i+ 1) + e(i+ 1) (4.16)
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Figure 4.13: ACF Plots of ∆Y for ISO-NE RTLMP Prediction in 2018.

where y(i+ 1), ŷ(i+ 1), and ỹ(i+ 1) denote the ground-truth RTLMP, the RTLMP

generated by G, and the RTLMP after calibration at time i+ 1 for a particular price

node, respectively; ∆ŷ(i + 1) denotes the estimated difference between y(i + 1) and

ŷ(i+ 1); e(i+ 1) denotes the estimation error.

The ARMA model below is applied to estimate ∆ŷ(i+ 1):

∆ŷ(i+ 1) =µ+

p∑
k=1

φk∆ŷ(i− k + 1)

+

q∑
k=1

θkε(i− k + 1) + ε(i+ 1)

(4.17)

where µ denotes the expectation of ∆ŷ(i+ 1), φk and θk are the autoregressive (AR)

and MA parameters of the ARMA model, respectively; ε(i) represents the white noise

54



error terms at time i; p and q denote the orders of the AR and MA terms of the ARMA

model, respectively. Appropriate values of p, q, µ, φk, θk, and the variance of the

white noise series ε(i) are identified using long-term historical data [73; 74; 75].

The overall framework of the proposed design for RTLMP prediction is shown in

Fig. 4.14. The proposed RTLMP prediction framework includes the following steps:

1. Data normalization and organization. Historical public data streams are orga-

nized into a time series of 2D arrays (i.e., the 3D tensor).

2. RTLMP predictions are generated from the GAN-based predictor G for the next

hour and several past hours.

3. RTLMP predictions for the next hour are calibrated through an ARMA model

using generated RTLMPs and the ground truth of historical data.

Figure 4.14: The Framework of GAN-based Approach with ARMA Calibrator for

LMP Prediction.
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4.3 Feature Selection

Based on the data structure defined previously, each market data pixel in the

GAN prediction model may contain M different types of market data points (after

normalization). This section identifies the following four types of market data that

are highly related to the RTLMP prediction problem and are publicly available in

many US electricity markets.

4.3.1 RTLMP

To learn the spatio-temporal correlations among historical RTLMPs, the proposed

prediction model is trained using historical RTLMPs. As discussed in Chapter 4.2,

the historical RTLMPs in the same market obtained from different years follow similar

probability distributions with discrepancies. They also follow similar daily, weekly,

and seasonal characteristic which is the temporal correlations to learn by the pre-

diction model. Besides temporal correlations, RTLMPs collected from different price

nodes in the same market tend to have similar spatial correlations over different years.

For example, Fig. 4.15 demonstrates RTLMPs’ spatial correlation coefficients among

9 price zones in ISO-NE (8 price zones and one system price) over three years. It

Figure 4.15: The Spatial Correlation Coefficients Matrix Heatmap Generated using

2016 RTLMPs (Left), 2017 RTLMPs (Central), and 2017 RTLMPs Rright) in ISO-

NE.
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is clear that the RTLMPs follow similar spatial characteristics over the years, which

makes it possible the GAN model can learn spatial correlations from the historical

training dataset.

4.3.2 DALMP

RTLMPs tend to be strongly correlated with DALMPs, since generators com-

mitted in the day-ahead market may affect the total generation capacity and overall

energy price in the real-time market. As an example, the correlation coefficient be-

tween DALMPs and RTLMPs in ISO-NE is 66.38% in 2018 [3]. Fig. 4.16 shows clearly

that RTLMPs and DALMPs are highly correlated with each other, they follow similar

daily, weekly and seasonal characteristics. Therefore, historical DALMPs are adopted

as training inputs for the GAN model.

Figure 4.16: The System RTLMPs and DALMPs of ISO-NE in 2018.
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4.3.3 Demand

System demand patterns and uncertainties could significantly affect RTLMPs and

DALMPs. As an example, the correlation coefficient between zonal DALMPs and

Demands in ISO-NE is 51.35% in 2018 [3]. Since locational demand data is public

in many electricity markets, these historical demands are included as training inputs

for our GAN model.

4.3.4 Generation

Generation price and quantity offers play critical roles in the LMP formation

process. Therefore, historical generation offer data contains important information for

predicting RTLMPs. However, in most electricity markets, system-wide generation

offer details are published with 3 months of delays, and therefore cannot be fully

utilized by market participants for their price prediction problem. To resolve this

issue, we adopt historical hourly generation mix data that is publicly available in

some markets as additional inputs in training our GAN model. Table 4.1 shows

the correlation coefficients calculated between SPP’s historical generation mix (i.e.,

percentage generation by fuel type) data and historical RTLMP data [4]. It is clear

that the percentage generations of certain generation types are highly correlated with

RTLMPs in SPP. Therefore, historical hourly generation mix data is adopted in

training the RTLMP prediction model for SPP. Some markets, such as PJM shown in

Table. 3.1, provide locational wind and solar generation data. These renewable energy

generations impact LMP significantly since they typically serve as marginal units in

the electricity markets. Thus, these public locational renewable energy generation

data can be taken as additional inputs.
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Table 4.1: Correlations Between Generation Mix and the RTLMPs in SPP

Generation Type Correlation Coefficient

Coal market 17.83%

Coal self 22.72%

Diesel fuel oil -5.26%

Hydro 19.73%

Wind -37.93%

Natural gas 36.25%

Nuclear -29.34%

Solar 17.20%

Waste disposal -14.83%

4.4 Case Studies

The GAN-based prediction method is tested using historical market data from

ISO-NE, SPP, and MISO. Two GAN models are built using Tensorflow 2.0 [76]: (1)

one-hour ahead GAN prediction model (Model 1); (2) one-day ahead GAN prediction

model (Model 2). Model 1 is tested to predict hourly RTLMPs one-hour ahead for

ISO-NE and SPP, and hourly DALMPs one-hour ahead for MISO. Model 2 is tested

in SPP to predict hourly RTLMPs one-day ahead.

4.4.1 Neural Network Architecture and Configuration

Both the generative and discriminative models are deep convolutional neural net-

works without any pooling/subsampling layers. In the generative models, all the

transpose convolutional (Conv2DTranspose) layers are followed by the batch normal-

ization layers and ReLU units. The outputs of the generative model are normalized
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by a hyperbolic tangent (Tanh) function. In the discriminative model, except for the

output layer, all the convolutional (Conv2D) layers and fully-connected (Dense) lay-

ers are followed by the batch normalization layers, Leaky-ReLU units, and dropout

layers.

All the convolutional (Conv2D) and transpose convolutional (Conv2DTranspose)

layers in model 1 are with kernel size of 3 × 3 and stride size of 1 × 1. All the

convolutional (Conv2D) and transpose convolutional (Conv2DTranspose) layers in

model 2 are with kernel size of 6 × 6 and stride size of 6 × 6. The transpose con-

volutional (Conv2DTranspose) layers in the generative models are padded, and the

convolutional (Conv2D) layers in discriminative models are not padded. In the dis-

criminative models, the dropout rates are set to 0.3, the small gradients are set to 0.2

when Leaky-ReLU is not active. All the neural networks are trained using a standard

SGD optimizer with a minibatch size of 4, i.e., M = 4 in Algorithm 1. The learning

rates ρG and ρD for model 1 are set to 0.0005, without decay and momentum. The

learning rates ρG and ρD for model 2 are set to 0.000005 and 0.00001, without decay

and momentum. The loss functions for model 1 in (4.7)-(4.11) are implemented with

the following parameteres: λadv = λdcl = 0.2 (in (4.7)), λ`p = λgdl = 1 (in (4.7)),

p = 2 (in (4.8)), and α = 1 (in (4.11)). The loss functions for model 2 in (4.7)-(4.11)

are implemented with the following parameteres: λadv = 0.2 (in (4.7)), λ`p = λgdl = 1,

λdcl = 0 (in (4.7)), p = 2 (in (4.8)), and α = 1 (in (4.11)).

Summaries of the neural network architecture are listed in Table 4.2 and Table 4.3.

4.4.2 Test Case Description

The proposed approach is applied to predict zonal-level RTLMPs in ISO-NE [3],

SPP [4] and MISO [5]. For both markets, historical market data from nine price

zones are organized into 3× 3 hourly market data 2D array X and 3D tensor X . For
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Table 4.2: Neural Network Architecture Details of Model 1

Model 1 Generator G Discriminator D

(Layer Type, Feature Map) (Layer Type, Feature Map)

Input 3× 3× 14 3× 3× 5

Layer 1 Conv2DTranspose, 64 Conv2D, 64

Layer 2 Concatenate, 1216 Concatenate, 320

Layer 3 Conv2DTranspose, 1024 Dense, 1024

Layer 4 Conv2DTranspose, 512 Dense, 512

Layer 5 Conv2DTranspose, 64 Dense, 256

Output 3× 3× 1 scalar∈ [0, 1]

Table 4.3: Neural Network Architecture Details of Model 2

Model 2 Generator G Discriminator D

(Layer Type, Feature Map) (Layer Type, Feature Map)

Input 12× 18× 14 12× 18× 5

Layer 1 Conv2DTranspose, 64 Conv2D, 64

Layer 2 Concatenate, 1216 Concatenate, 320

Layer 3 Conv2DTranspose, 256 Dense, 1024

Layer 4 Conv2DTranspose, 128 Dense, 512

Layer 5 Conv2DTranspose, 64 Dense, 256

Output 12× 18× 1 scalar∈ [0, 1]

the SPP market, the same data are also organized into 12× 18 daily market data 2D

array Xd and 3D tensor XDay. The test case data is described as follows.
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Case 1

The training data set contains three types of hourly ISO-NE market data (zonal

RTLMPs, DALMPs, demands) from 1/1/2017 to 12/31/2017. The trained model is

tested by predicting ISO-NE RTLMPs hour by hour in 2018.

Case 2

The training data set contains three types of hourly ISO-NE market data (zonal

RTLMPs, DALMPs, demands) from 1/1/2016 to 12/31/2017. The trained model is

tested by predicting ISO-NE RTLMPs hour by hour in 2018.

Case 3

The training data set contains four types of hourly SPP market data (zonal RTLMPs,

DALMPs, demands, and generation mix data) from 6/1/2016 to 7/30/2017. The

model is tested by predicting SPP RTLMPs hour by hour in the following four periods:

7/31/2017-8/13/2017, 8/21/2017-9/3/2017, 9/18/2017-10/1/2017, and 10/2/2017-

10/15/2017.

Case 4

The training data set contains four types of hourly SPP market data (zonal RTLMPs,

DALMPs, demands, and generation mix data) from 6/1/2016 to 7/30/2017. The

model is tested by predicting SPP RTLMPs day by day in the following four periods:

7/31/2017-8/13/2017, 8/21/2017-9/3/2017, 9/18/2017-10/1/2017, and 10/2/2017-

10/15/2017.
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Case 5

The training data set [77] contains three types of hourly MISO market data (zonal

DALMPs, demands, and wind generation) from January 2012 to November 2014.

The trained model is tested by predicting MISO DALMPs hour by hour in an hour-

ahead manner on several representative days selected in [77], for NPPD, Arkansas,

Louisiana, and Texas hubs.

Case 6

The training data set [77] contains three types of hourly MISO market data (zonal

DALMPs, demands, and wind generation) from January 2012 to November 2014. The

trained model is tested by predicting MISO DALMPs hour by hour in a day-ahead

manner on several representative days selected in [77], for the Indiana hub.

The test cases are summarized in Table. 4.4.

4.4.3 Results and Performance Analysis

Table 4.5 lists the results of hyperparameter selection in Case 5. After this two-

step hyperparameter tuning procedure, appropriate hyperparameters with the lowest

MAPE are adopted in the GAN-based price prediction model. Table 4.5 also indicates

the GAN-based predictor with multiple loss functions and adversarial training (with

non-zero values for all the 4 hyperparameters) has much higher prediction accuracy

(lower MAPE) compared to the CNN-based predictor without adversarial training

(with λadv = λgdl = λdcl = 0) or with only a subset of the 4 loss functions (with zero

values for certain hyperparameters).

The RTLMP prediction accuracy is quantified by the mean absolute percentage

error (MAPE). Table 4.6 shows the RTLMP prediction accuracy of our proposed

approach in Case 1-2. For the ISO-NE test Case 1, the annual MAPEs in 2018 is
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Table 4.4: Test Case Summary

Case

#

Market Time

horizon

Training

data

Test data Resolution

1 ISO-NE one-hour

ahead

1/1/2017-

12/31/2017

1/1/2018-12/31/2018 3× 3

2 ISO-NE one-hour

ahead

1/1/2016-

12/31/2017

1/1/2018-12/31/2018 3× 3

3 SPP one-hour

ahead

6/1/2016-

7/30/2017

7/31/2017-8/13/2017,

8/21/2017-9/3/2017,

9/18/2017-10/1/2017,

10/2/2017-10/15/2017

3× 3

4 SPP one-day

ahead

6/1/2016-

7/30/2017

7/31/2017-8/13/2017,

8/21/2017-9/3/2017,

9/18/2017-10/1/2017,

10/2/2017-10/15/2017

12× 18

5 MISO one-hour

ahead

1/1/2016-

8/30/2014

9/1/2014, 10/12/2014 3× 3

6 MISO one-day

ahead

1/1/2016-

8/30/2014

9/1/2014, 10/12/2014 12× 18

around 15% for all nine price zones. With the same GAN model but a longer training

dataset in Case 2, the annual MAPEs in 2018 is around 11% for all the nine price

zones. Since the proposed price prediction approach is a data-driven approach, a

longer training dataset can apparently improve prediction accuracy.

There are other studies predicting RTLMPs in ISO-NE [78; 79]. In [78], a weekly
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Table 4.5: MAPEs (%) for Different Hyperparameter Selections in Case 5

λ`p λadv λgdl λdcl MAPE

Rough 1 0 0 0 6.51

Selection 1 0.2 0 0 5.14

Fine 1 0.2 1 0 4.73

Tuning 1 0.2 0 0.2 4.67

1 0.2 1 0.2 4.38

MAPE of 10.87% is achieved by predicting daily average on-peak-hour prices in ISO-

NE. Since the daily average on-peak-hour price is the daily averaged price from hour 8

to hour 23, this averaged price is expected to have much smoother behavior and fewer

spikes compared to the hourly RTLMPs in our test case. When tested on raw hourly

RTLMPs for an entire year without averaging/smoothing over the testing data, our

approach can achieve reasonable accuracy compared to [78]. When tested on raw

hourly RTLMPs obtained for the same week as [78] at a different year, our approach

achieves a weekly MAPE of 9.08%, which outperforms the work in [78] using averaged

prices. In [79], an average MAPE of 10.81% is achieved by predicting ISO-NE prices

at four test weeks in March, June, September, and December. However, the testing

data in [79] is generated through simulations. The simulation rules assume all possible

explicit price-responsive behavior is known, which is not practical in real-world price

prediction. Our proposed approach, when tested using year-long actual market data,

has very similar MAPEs compared to [79].

In [80; 81] similar hour-by-hour price prediction approaches are tested using public

data from Japan market (with a price prediction MAPE of 14.28%) and the Spanish

market (with a price prediction MAPE of 15.83%), respectively. Our approach has
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Table 4.6: Zonal RTLMP Prediction Accuracy in Case 1-2

Case # Zone MAPE

Case 1 VT 15.80%

HN 15.91%

ME 16.55%

WCMA 15.82%

System 15.72%

NEMA 15.69%

CT 15.91%

RI 15.78%

SEMA 15.72%

Case 2 VT 11.03%

HN 11.25%

ME 11.82%

WCMA 10.99%

System 11.06%

NEMA 11.05%

CT 11.04%

RI 11.01%

SEMA 11.05%

much lower MAPEs compared to these works.

Fig. 4.17 shows the ground truth and predicted RTLMPs for VT price zone in

ISO-NE during the entire year of 2018. It is clear our predicted RTLMPs closely

follow the overall trends of the ground-truth RTLMPs, and successfully capture most
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price spikes in the testing window.
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Figure 4.17: Ground-truth and Predicted RTLMPs for VT Price Zone in Case 1.

In Case 3, the same GAN model is trained and tested using SPP data. Table 4.7

shows the RTLMP prediction accuracy in Case 3. It is worth mentioning that the

prediction accuracies in Case 3 (SPP) are lower than those in Case 1 and Case 2 (ISO-

NE). This is because SPP has a larger market territory and more market participants

compared to ISO-NE. These facts lead to more complex and harder-to-predict market

dynamics in SPP.

In Case 4, a GAN model with a larger resolution is trained by the same SPP data as

in Case 3 and tested by predicting the next day’s hourly RTLMPs. Table 4.8 shows the

RTLMP forecast accuracy of the proposed method in Case 3, Case 4, and the MAPEs

obtained by implementing of two benchmark approaches in [1] using the same testing

data at the south hub and north hub in SPP real-time market. ALG+M̂ , Genscape

and Case 4 forecast hourly RTLMPs with one-day ahead; Case 3 forecasts hourly

RTLMPs with one-hour ahead. ALG+M̂ [1], Case 3 and Case 4 predict LMPs using

only publicly available data; Genscape incorporates richer and proprietary data which

are confidential to market participants. We observe that the proposed approach has

comparable performance to the state-of-art industry benchmark Genscape, using only
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Table 4.7: Zonal RTLMP Prediction Accuracy in Case 3

Case # Zone MAPE

Case 3 Nhub 18.90%

NPPD 19.26%

OPPD 18.22%

LES 18.59%

CSWS 17.40%

GRDA 17.64%

WFEC 17.97%

OKGE 17.68%

SHub 16.94%

limited data. Our GAN-based forecast model performs remarkably better than the

existing approach in [1], using the same public market data. The ALG+M̂ method

proposed in [1] does not utilize DALMP data in RTLMP forecasting. For a fair

comparison, an additional GAN-based model is trained without DALMPs in Case 4.

These approaches are tested using the identical testing dataset from SPP’s SHub and

North Hub (NHub) zones.

Fig. 4.18 compares the ground-truth RTLMPs, the forecasted RTLMPs without

moving average calibration, and the forecasted RTLMPs with moving average cali-

bration at the south hub over the whole testing period in Case 3. Fig. 4.18 shows

that without the moving average calibration, the RTLMPs forecasted by the proposed

GAN model can successfully capture the temporal correlations in the ground-truth

RTLMPs. However, there exists a constant bias between the ground-truth RTLMPs

and the RTLMPs forecasted without calibration. After applying the moving aver-
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Table 4.8: RTLMP Prediction Accuracy in Case 3-4 and [1]

Approach MAPE (%) for SHub

Price Zone

MAPE (%) for NHub

Price Zone

ALG+M̂1 25.4 36.9

Genscape2 21.7 28.2

Case 3 16.9 18.9

Case 4 22.1 23.8

Case 4 without

DALMPs

23.5 25.4

1 The proposed method with the best performance in [1]

2 State of art baseline prediction from Genscape [1]

age calibration, this bias is corrected and the forecasting accuracy is improved. It’s

clear that the forecasted RTLMPs after calibration closely follow the overall trends of

the ground-truth RTLMPs, agree with the temporal characteristics, and successfully

capture several price spikes.
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Figure 4.18: Ground-truth and Forecasted RTLMPs (with and Without Calibration)

at South Hub in Case 3.
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In the testing window of 8/21/2017-9/3/2017 of Case 3, as shown in Fig. 4.19,

the proposed GAN model successfully captures price spikes on Aug 21, Aug 29, Aug

30, and Sep 2 at different locations. Spatial characteristic is well learned by the

proposed model. On Aug 21, the local spike appearing only at CSWS is precisely

captured by our approach. This local spike prediction could be utilized by local

market participants to develop their risk-averse trading strategies and save significant

losses caused by price spikes.

To further demonstrate the capability of learning spatio-temporal correlations,

Fig. 4.20 compares the spatial correlations obtained using predicted RTLMPs with

those obtained using ground-truth RTLMPs in Case 3. Each 9 × 9 heatmap matrix

in Fig. 4.20 visualizes the spatial correlation coefficients among 9 price zones in SPP.

It is clear our RTLMP prediction model successfully captures the spatial correlations

across SPP market.

In Case 5, the MAPEs of the representative days for Louisiana and Texas hubs

are computed and compared with benchmarking models in Table 4.9, in which the

SDA and RS-SDA prediction models are proposed by [77]; The ETs prediction model

is proposed by [64]. In [77], SDA and RS-SDA are tested on the same case using

the same data. The results of SDA and RS-SDA directly come from [77]. The ETs

model includes three individual ET regressors for LMP components prediction and

one meta-regressor for the final summation of LMPs. In Case 5, the regressors of

the ETs model are trained using historical energy prices, congestion prices, and loss

prices. Only the final LMP prediction results of the ETs model are listed in Table 4.9.

Table 4.9 demonstrates the proposed GAN prediction model outperforms all the

other benchmarking models for hour-ahead DALMP prediction in all the testing sce-

narios.

Fig. 4.21 shows the testing results for hour-ahead DALMP prediction in Case 5
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Figure 4.19: Ground-truth and Forecasted RTLMPs at NHub, SHub, and CSWS in

Case 3.

on one representative day. It is observed the GAN-based model successfully captures

different daily price characteristics for different locations.

To further evaluate the effectiveness of the gradient difference loss function Lgdl(·)

and the direction changing loss function Ldcl(·) for penalizing incorrect spatial corre-

lation predictions, two additional metrics, the spatial prediction accuracy (SPA) and

the spatial mean absolute percentage error (SMAPE), are defined below to quantify

71



Figure 4.20: The Spatial Correlation Coefficients Matrix Heatmap Generated using

Predicted RTLMPs (Left) and Ground-truth RTLMPs (Right) in Case 3.

Table 4.9: MAPE (%) for Hour-Ahead Forecasting in Case 5

Model Naive(A) Naive(B) NN MARS SVM LASSO

Texas 31.45 5.4 6.19 6.54 7.34 7.88

Louisiana 27.34 9.15 6.19 6.28 6.14 7.70

Model ARMA ETs SDA RS-SDA GAN

Texas 7.02 6.43 5.42 5.16 4.83

Louisiana 6.84 6.09 4.66 4.51 4.13

the spatial correlation prediction accuracy/error at a price node n.

SPA(n) = 1−
∑N

i=1 |sgn(Yn − Yi)− sgn(Ŷn − Ŷi)|/2
N − 1

(4.18)

SMAPE(n) =

∑N
i=1 |(Yn − Yi)− (Ŷn − Ŷi)|∑N

i=1 |(Yn − Yi)|
(4.19)

where N represents the total number of price nodes; Yi represents the ground truth

LMP at node i (i 6= n); Ŷi represents the predicted LMP at node i (i 6= n); sgn(·)

is the sign function in (4.12). SPA(n) measures the average prediction accuracy for

the price increasing or decreasing directions between node n and all other nodes.
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SMAPE(n) measures the average prediction error for the price differences between

node n and all other nodes. In this report, higher SPA and lower SMAPE indicate

better prediction accuracy of spatial correlations.

Table 4.10 compares the SPA and SMAPE metrics for the Texas hub in Case

5, which indicates the GAN-based model outperforms other models in forecasting

spatial correlations among DALMPs for the Texas hub.
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Figure 4.21: Ground-truth and Forecasted DALMPs for Hour-ahead Forecasting in

Case 5.

Table 4.10: Average SMAPE (%) for Texas Hub in Case 5

Model Naive

(A)

NN SVM ARMA GAN

SPA 0.53 0.67 0.59 0.69 0.78

SMAPE (%) 85 54 31 43 28

In Case 6, the effectiveness of the GAN-based model in day-ahead DALMP fore-
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casting is evaluated by monthly MAPE (MAPEmonth) [77]. January and July are

selected (in [77]) to evaluate the forecasting results. The MAPEmonth of day-ahead

DALMP forecasting obtained by different methods are listed in Table 4.11, which in-

dicates the proposed GAN-based model outperforms all the other methods. Overall,

The DALMP forecasting accuracy in January is low due to significant price spikes

frequently seen in January. Compared to the second-best-performed method RS-SDA

in [77], our proposed GAN model reduces the monthly MAPE in January by 6.02%.

Moreover, the RS-SDA model is updated daily with the latest market data to main-

tain effectiveness [77]. In contrast, the proposed model does not require a daily model

update, resulting in much less computational burden compared to RS-SDA.

Table 4.11: MAPEmonth (%) for Day-ahead Forecasting in Case 6

Model Naive NN MARS SVM LASSO SDA RS-SDA GAN

January 75.65 40.47 46.35 49.64 37.46 31.80 29.78 23.76

July 53.01 12.00 20.79 23.20 11.91 10.04 8.97 8.13

4.5 Conclusion

In this Chapter, a GAN-based approach is proposed to predict system-wide RTLMP.

The proposed approach performs well across different types of price forecasting prob-

lems for various market participants. Historical public market data are organized into

a general 3D tensor data structure, which stores the spatio-temporal correlations of

the market data. The RTLMP prediction problem is then formulated as a 2D array

prediction problem and solved using the proposed deep convolutional GAN model

with multiple loss functions. The prediction accuracy is improved by an ARMA cali-

bration approach to mitigate deviations caused by variation/uncertainty of generator
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bids. Case studies using real-world historical market data from ISO-NE, MISO, and

SPP verify the performance of the proposed approach for both point-by-point price

prediction accuracy and accuracy of capturing spatial correlations among prices at

different locations.
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Chapter 5

CONVOLUTIONAL LONG SHORT-TERM MEMORY-BASED GENERATIVE

ADVERSARIAL NETWORK

In the wholesale electricity markets, LMPs are strongly spatio-temporal corre-

lated. Most previous data-driven studies on LMP forecasting only leveraged tem-

poral correlations among historical LMPs, and very few of them learned the spatial

correlations to improve forecasting accuracy. This chapter proposes a convolutional

long-short term memory (CLSTM)-based GAN to forecast LMPs from market partic-

ipants’ perspective. Historical LMPs of different price nodes are organized into a 3D

tensor which stores the spatio-temporal correlations among LMPs. The LMP fore-

casting problem is formulated as a spatio-temporal sequence-to-sequence forecasting

problem. The proposed approach is verified through case studies using public histor-

ical LMPs from MISO and ISO-NE, in comparison with other state-of-the-art LMP

prediction approaches.

5.1 Introduction

Accurate price forecasting is crucial for market participants to make informed

trading decisions in the wholesale electricity markets. Simultaneously, it is important

to acknowledge that the strategic behaviors of market participants themselves directly

influence electricity prices. The commonly accepted electricity pricing mechanism in

the U.S. is the LMP, which is the dual variable derived in solving the DCOPF.

During operations, LMPs are calculated by system operators based on the network

topology, operation parameters, generation bids, and system demands. Given explicit

knowledge of network topology and other system parameters, [12; 11] prove that
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LMPs are a linear mapping of demands based on fixed generation cost functions.

Therefore, LMPs at different price nodes are spatially correlated based on the grid

topology and system-wide demand distributions. However, in real-world markets,

generation cost functions are not fixed. Both generation bids and demands vary

over time. Uncertainties in the time-varying generation bids (with bid-in values for

generation cost functions) and demands jointly determine the temporal correlations

among LMPs.

Nonetheless, it is worth noting that market participants do not have access to

explicit information regarding physical network models or generation bids. In order

to forecast locational marginal prices (LMPs) from the perspective of market par-

ticipants, statistical approaches and data-driven methodologies that rely solely on

publicly available market data have emerged as the primary candidate solutions.

Time-series-based statistical models are widely accepted to learn linear relation-

ships in historical LMPs. The ARMAX model [37], ARIMA model [30], and AGARCH

model [38] are applied to forecast LMPs for individual price nodes. These time-series-

based statistical models completely ignore spatial correlations among historical LMPs.

Many data-driven LMP forecasting methods are developed based on learning SPR

[82]. In [83; 48], various SPR-based approaches are applied to forecast LMPs using

only publicly available historical market data. The LMP forecasting accuracy of these

SPR-based approaches highly depends upon the nodal load forecasting accuracy and

the assumption of fixed bidding strategies for all the generators. However, these

conditions do not hold in real-world markets.

Machine learning methods, such as NNs [77; 84], LASSO [85], and long-short term

memory (LSTM) [86; 87] are popular in LMP forecasting. In [86; 87], LSTM is shown

to perform LMP forecasting effectively. However, this naive LSTM approach is only

trained by learning temporal correlations. The forecasting accuracy can be further
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improved by considering advanced NN structures.

This chapter proposes a convolutional LSTM (CLSTM) based GAN to forecast

system-wide LMPs from market participants’ perspective, without power grid mod-

els and generator bidding details. The LMP forecasting problem is formulated as a

sequence-to-sequence forecasting problem, and the LMP spatio-temporal correlations

are learned by the CLSTM network during adversarial training. The proposed ap-

proach is trained to forecast the most likely future LMP sequences, which maximize

the conditional probability given historical LMPs. Although the proposed CLSTM-

based GAN model is applied to forecast system-wide LMPs, this model offers a general

NN structure that can be utilized for other spatio-temporal forecasting problems in

power systems, such as system-wide demand and wind/solar generation forecasting.

In general, the LMP forecasting problem is more challenging than other power sys-

tem forecasting problems (such as demand forecasting), since LMPs are highly volatile

with price spikes. When conventional forecasting techniques are applied to LMP and

demand forecasting problems, the typical forecasting errors could reach beyond 20%

for LMP forecasting but around 2% for demand forecasting [88].

The rest of this chapter is organized as follows. Section 5.2 illustrates the sequence-

to-sequence prediction formulation and the CLSTM-based predictor for LMP fore-

casting. Section 5.3 presents the GAN training procedure. Section 5.4 evaluates the

proposed model through case studies with historical LMPs from MISO and ISO-NE.

Section 5.5 concludes this chapter.

5.2 Sequence-to-Sequence LMP Forecasting

This section follows the general data structure we proposed in Chapter 3.2 to

organize the historical LMPs into a 3D tensor. With this data structure, the CLSTM

predictor in [89] is adopted to solve this spatio-temporal sequence LMP forecasting
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problem.

5.2.1 Data Structure and Normalization

Suppose historical hourly LMPs are collected over a geographical region repre-

sented by N = m × n price nodes for T consecutive hours. Following the general

spatio-temporal data structure and normalization defined in Chapter 3.2, we prepro-

cess and organize these historical data into a 3D tensor X ∈ Rm×n×T . The values of

all elements in X are normalized to fall between -1 and 1. X consists of a sequence of

2D arrays, X = {X1, X2, · · · , XT}. Each 2D array, X t, contains system-wide LMPs

from N = m× n price nodes at hour t.

5.2.2 Formulation of Sequence-to-Sequence Forecasting

The objective of LMP forecasting is to use historical LMP tensor to generate a

forecasted tensor Ŷ ∈ Rm×n×K , which consists of a sequence of forecasted 2D arrays

Ŷ = {Ŷ T+1, Ŷ T+2, · · · , Ŷ T+K}. Ŷ contains the predicted LMPs at the same N price

nodes for the following K hours. Let Ỹ = {XT+1, XT+2, · · · , XT+K} denote the

ground truth. A suitable predictor should generate/determine the most likely future

LMP tensor given the historical LMP tensor X , which can maximize the conditional

probability below:

Ŷ = arg max
Y

p(Y|X ) (5.1)

5.2.3 Convolutional Long-short Term Memory Network

To obtain the LMP predictor satisfying (5.1), the CLSTM network in [89] is

adopted to build the structure of the LMP predictor. This CLSTM network is a

multi-layer NN with many learnable parameters. During the training process using

historical LMP data, these learnable parameters are optimally adjusted such that
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upon training convergence, the CLSTM network with the learned optimal parameters

can generate the most likely future LMP tensors satisfying (5.1).

The CLSTM network is adopted for LMP forecasting since: 1) the CLSTM net-

work is designed for general spatio-temporal sequence forecasting problems whose

inputs and outputs are both spatio-temporal sequences/tensors, and the LMP fore-

casting problem (whose inputs and outputs are historical and future LMP tensors)

falls within this general formulation; 2) the major advantage of the CLSTM network is

that, compared to the classic LSTM network [55] which is widely acknowledged to be

effective in time series forecasting (by learning temporal characteristics from histori-

cal datasets), the CLSTM network replaces the fully connected structures within the

classic LSTM network by convolution operators (which are commonly used for learn-

ing spatial characteristics from historical datasets), enabling the CLSTM network

for effectively capturing spatio-temporal correlations in historical LMPs. In [89], the

CLSTM network solves a similar spatio-temporal precipitation sequence prediction

problem over a geographic region.

Figure 5.1: The Structure of the CLSTM-based LMP Predictor.

Our predictor architecture consists of two CLSTM networks, namely CLSTM 1

80



and CLSTM 2, with many learnable parameters, as shown in Fig. 5.1. The CLSTM 1

network runs T times to read in the input sequences. It extracts the spatio-temporal

features of historical LMPs by transitioning the 3D input historical LMP tensor X =

{X1, X2, · · · , XT} to the 3D hidden state (intermediate) tensor {H1,H2, · · · ,HT}

and the corresponding 3D output tensor {C1, C2, · · · , CT}. This output tensor contains

the extracted spatio-temporal features of historical LMPs. In the tth(t ≥ 2) step,

CLSTM 1 network takes two sets of inputs: 1) the 2D input historical LMP array

X t; 2) the 2D hidden state arrayHt−1 and the 2D output array Ct−1 from the previous

step. The CLSTM 2 network runs K times. It generates the forecasted LMP tensor

Ŷ = {Ŷ T+1, Ŷ T+2, · · · , Ŷ T+K} following spatio-temporal features extracted by the

CLSTM 1 network. In the tth(t ≥ 2) step, CLSTM 2 network (for LMP prediction),

takes two sets of inputs: 1) the 2D forecasted LMP array Ŷ t−1; 2) the 2D hidden state

array Ht−1 and the 2D output array Ct−1 from the previous step. In each running

step, the CLSTM cell performs the following operations:

it = σ(Wxi ∗ Zt +Whi ∗ Ht−1 +Wci ◦ Ct−1 + bi) (5.2)

ft = σ(Wxf ∗ Zt +Whf ∗ Ht−1 +Wcf ◦ Ct−1 + bf ) (5.3)

ot = σ(Wxo ∗ Zt +Who ∗ Ht−1 +Wco ◦ Ct−1 + bo) (5.4)

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Zt +Whc ∗ Ht−1 + bc) (5.5)

Ht = ot ◦ tanh(Ct) (5.6)

where Zt = X t and Zt = Ŷ t−1 for CLSTM 1 and CLSTM 2 networks, respectively;

∗, ◦, σ(·) are the convolution operator, Hadamard product, and sigmoid activation

function, respectively; it, ft, ot are internal structures for each CLSTM network (the

input, forget, and output gates, respectively); the weight matrices Wxj and biases bj

(with j ∈ {i, f, c, o}) are learnable parameters of the two CLSTM networks. In (5.5)-

(5.6), for tth step, the historical LMP array Zt = X t in the CLSTM 1 network and
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the forecasted LMP array Zt = Ŷ t−1 (generated from (t− 1)th step) in the CLSTM 2

network are transitioned to the hidden state array Ht and output array Ct, through

nonlinear operations in (5.2)-(5.6).

Within the aforementioned CLSTM networks, the consecutive 2D arrays are se-

quentially inputted and processed. Through this iterative process, the networks learn

and capture the temporal correlations present in the data. Simultaneously, the spatial

correlations within each iteration are captured through the inner convolution opera-

tions performed within the CLSTM networks. The internal structure details of the

CLSTM cell are in [89].

As Fig. 5.1 shows, consecutive 2D arrays in the forecasted LMP tensor Ŷ are

generated one by one, conditioned on the forecasted LMP arrays from the previous

steps. Therefore, the conditional probability in (5.1) can be rewritten as the product

of a series of conditional probabilities:

p(Y|X ) = p(Y T+1|X )
T+K∏
i=T+2

p(Y i|X , Y T+1, · · · , Y i−1) (5.7)

During the training process, all learnable parameters of the two CLSTM networks,

including the weight matrices Wxj and biases bj (with j ∈ {i, f, c, o}) in (5.2)-(5.6), are

optimized by minimizing the Euclidean distance between the forecasted and ground-

truth 2D LMP arrays, Ŷ t and Ỹ t, using 2-norm loss:

L2(Ŷ , Ỹ ) = `2(Ŷ , Ỹ ) =
∥∥∥Ŷ − Ỹ ∥∥∥2

2
(5.8)

where ‖·‖2 denotes the entry-wise 2-norm of a 2D array.

When training the CLSTM networks, simply minimizing the Euclidean distance

(the 2-norm loss) over the dataset may lead to blurry prediction results which cannot

maximize the conditional probability in (5.7), as discussed in [69]. Moreover, the

2-norm loss fails to consider the temporal correlations between consecutive forecasted

2D arrays Ŷ t and Ŷ t+1, which could adversely affect the forecasting accuracy.
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Figure 5.2: Architecture for Training the CLSTM-based GAN Model.

To solve these major drawbacks, the GAN model with multiple loss functions in

Chapter 4.1 is adopted to train the predictor.

5.3 GAN Model for Sequence-to-Sequence Forecasting

In Chapter 4.1, an effective GAN model for price forecasting is proposed and

evaluated. We take advantage of this GAN model and replace the original generator

and discriminator with the CLSTM networks introduced above.

5.3.1 Sequence-to-Sequence Forecasting Model with GAN

The architecture for training the sequence-to-sequence predictor through the GAN

model is shown in Fig. 5.2. In this architecture, the CLSTM-based predictor in

Fig. 5.1 is employed as generator G; another CLSTM-based neural network is em-

ployed as discriminator D.

The generator G takes a sequence of 2D LMP arrays stored in tensor X as inputs,

and generates a sequence of forecasted 2D LMP arrays as tensor Ŷ . G is trained to

maximize the conditional probability in (5.7), such that the forecasted tensor Ŷ is

83



statistically similar to the ground-truth tensor Ỹ .

The discriminator D takes sequences {X , Ŷ} or {X , Ỹ} as the input. D is trained

to classify {X , Ŷ} as fake and {X , Ỹ} as real. The output of D is a scalar between 0

and 1, indicating the probability of the input tensor being the ground truth.

The discriminator D and generator G are trained simultaneously; the weight ma-

trices of D and G are updated iteratively, following the same training algorithm in

Algorithm 1. The changes we make to D and G are described below, the rest of the

details can be found in Chapter 4.1.

5.3.2 The Discriminator D

The discriminator D is a stacked CLSTM network followed by fully connected

layers. The objective of D is to classify the input sequence {X , Ỹ} into class 1

(i.e., Ỹ is classified as the ground-truth sequence) and the input sequence {X , Ŷ} =

{X , G(X )} into class 0 (i.e., Ŷ = G(X ) is classified as the generated fake sequence).

The discriminator D is trained by minimizing the following distance function (loss

function):

LDadv(X , Ỹ) = Lbce(D({X , Ỹ}), 1) + Lbce(D({X , G(X )}), 0) (5.9)

where Lbce is the following binary cross-entropy:

Lbce(k, s) = −[slog(k) + (1− s)log(1− k)] (5.10)

where k ∈ [0, 1] and s ∈ {0, 1}.

5.3.3 The Generator G

The generator G is a sequence-to-sequence predictor consisting of two CLSTMs

as shown in Fig. 5.1. The input of G is a sequence of 2D LMP arrays for T hours; the
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output of G is a sequence of forecasted 2D LMP arrays for future K hours. During

training process, the generator G is trained to minimize a certain distance between

generated sequence Ŷ and the ground-truth sequence Ỹ by the multi-loss function in

(5.11), such that the conditional probability in (5.7) is maximized:

LG(X , Ỹ) = λadvLGadv(X , Ỹ) + λ`2L2(X , Ỹ) + λgdlLgdl(X , Ỹ) + λdclLdcl(X , Ỹ) (5.11)

where LG(X , Ỹ) denotes the weighted multi-loss function for training G; LGadv(X , Ỹ),

L2(X , Ỹ), Lgdl(X , Ỹ) and Ldcl(X , Ỹ) denote four terms for this loss function (with

the first and third terms explained separately in Chapter 4.1, the second term given

in (5.8), and the last term explained in the following section); λadv, λ`2 , λgdl, λgdl

denote hyperparameters for adjusting the weights of the four loss terms.

Ldcl(X , Ỹ) is the updated direction changing loss function added to LG(X , Ỹ) to

solve temporal correlation mismatches:

Ldcl(X , Ỹ) =
T+K∑
t=T+1

∑
i,j

|sgn(Ŷ t
i,j −X t−1

i,j )− sgn(Ỹ t
i,j −X t−1

i,j )| (5.12)

where sgn(·) is the sign function:

sgn(z) =


−1 if z ≤ 0

0 if z = 0

1 if z ≥ 0

(5.13)

This direction changing loss function penalizes incorrect temporal correlations in

the forecasted sequences during the training process, such that the correct temporal

correlations are learned by G. This direction changing loss function along with other

loss terms can effectively resolve the blurry prediction issues caused by using only the

2-norm loss function in (5.8).
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5.4 Case Study

The proposed CLSTM-GAN model is tested using real-world LMP data from

MISO [5] and ISO-NE [3]. The classic LSTM model in [86; 87] and other data-driven

models, such as stacked denoising autoencoders (SDA) [77], standard neural network

(NN), SVM, and Lasso are implemented as benchmark LMP forecasting models. The

model performance is evaluated by calculating the mean absolute percentage error

(MAPE) of the LMP forecasts. Because the proposed approach is a sequence-to-

sequence forecasting method, it can be applied to forecast LMPs for different horizons.

In this section, we will show 2 cases including both online forecasting and day-ahead

forecasting.

Case 1

The training dataset contains hourly ISO-NE real-time LMP data of 9 price nodes in

2016 and 2017. The testing data is hourly ISO-NE real-time LMP data of the same

price nodes in 2018. In Case 1(A), the proposed CLSTM-GAN model takes the tensor

X ∈ R3×3×6 for the past 6-hour LMPs to forecast the next hour’s LMPs as Ŷ ∈ R3×3×1.

In Case 1(B), the proposed CLSTM-GAN model inputs the tensor X ∈ R3×3×24 for

the past 24-hour LMPs to forecast the next day’s LMPs as Ŷ ∈ R3×3×24.

Case 2

The training and testing dataset contains hourly MISO day-ahead LMP data of 9

price nodes from January 2012 to November 2014 (CLSTM-GAN is trained using

data in 2012 and 2013). To compare with the benchmark models in [77], the testing

dates used in [77] (1st, 10th, and 30th days in January, April, and August of 2014)

are selected to demonstrate the forecasting accuracy. The proposed CLSTM-GAN
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model takes the tensor X ∈ R3×3×24 for the past 24-hour LMPs as input to perform

day-ahead forecasting.

5.4.1 Neural Network Architecture and Configurations

The proposed CLSTM-GAN model is implemented with Tensorflow [76] and trained

on Google Colab using online GPU for acceleration. Table 5.1 lists the architecture

details for G and D, where ‘ConvLSTM2D’ denotes the convolutional layer with

CLSTM cells; ‘Conv3DTranspose’ denotes the convolutional transpose layer, and

‘Dense’ denotes the fully connected layer. In both cases, the generator G consists

of 4 stacked ‘ConvLSTM2D’ layers (2 for CLSTM 1 and 2 for CLSTM 2); the dis-

criminator D consists of 2 stacked ‘ConvLSTM2D’ layers and 3 ‘Dense’ layers.

All the ‘ConvLSTM2D’ and ‘Conv3DTranspose’ layers in G are followed by batch

normalization layers and ReLU units, while the ‘ConvLSTM2D’ and ‘Dense’ layers in

D are followed by batch normalization layers, Leaky-ReLU units, and dropout layers.

In all the cells of the ‘ConvLSTM2D’ layers, the recurrent activation functions are

set as sigmoid function.

In G, the kernel size of all CLSTM cells is 3×3, the stride size of all CLSTM cells

is 1×1; the kernel size of all ‘Conv3DTranspose’ layers is 1×3×3, the stride size of all

‘Conv3DTranspose’ layers is 1×1×1; all the ‘ConvLSTM2D’ and ‘Conv3DTranspose’

layers are padded. In D, the kernel size and stride size are the same as those used in

G, but all the ’ConvLSTM2D’ layers are not padded; the dropout rates are set to 0.3,

the small gradients are set to 0.2 when the Leaky-ReLU is not active. In all models,

a standard SGD optimizer is utilized for adversarial training. In the training process,

the minibatch size is set to 4 for all models. In Case 1(A), the learning rates for G

and D are 0.005 and 0.001, respectively. In Case 1(B) and Case 2, learning rates

for G and D are 0.0005 and 0.0001, respectively. For all CLSTM-GAN models, the
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Table 5.1: Neural Network Architecture Details

Case 1 (A) Generator G Discriminator D

(Layer Type, Feature Map) (Layer Type, Feature Map)

Input 3× 3× 6 3× 3× 7

Layer 1 ConvLSTM2D, 64 ConvLSTM2D, 64

Layer 2 ConvLSTM2D, 256 ConvLSTM2D, 256

Layer 3 ConvLSTM2D, 128 Dense, 1024

Layer 4 ConvLSTM2D, 64 Dense, 512

Layer 5 Conv3DTranspose, 1 Dense, 256

Output 3× 3× 1 scalar∈ [0, 1]

Case 1 (B) Generator G Discriminator D

Case 2 (Layer Type, Feature Map) (Layer Type, Feature Map)

Input 3× 3× 24 3× 3× 48

Layer 1 ConvLSTM2D, 64 ConvLSTM2D, 64

Layer 2 ConvLSTM2D, 128 ConvLSTM2D, 256

Layer 3 ConvLSTM2D, 256 Dense, 1024

Layer 4 ConvLSTM2D, 64 Dense, 512

Layer 5 Conv3DTranspose, 1 Dense, 256

Output 3× 3× 24 scalar∈ [0, 1]

hyperparameters in (5.11) are set to λadv = λdcl = 0.2, λ`2 = λgdl = 1. More details

on the model structures, the adversarial training algorithm, and the parameters not

listed in this section are given in Chapter 4.1.
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5.4.2 Case Study Results

In Case 1(A) and Case 1(B), the trained CLSTM-based generator G, the naive

CLSTM model, and the classic LSTM model are employed to perform online fore-

casting (Case 1(A)) and day-ahead forecasting (Case 1(B)), respectively, for ISO-NE’s

hourly LMPs in 2018. Fig. 5.3 shows the LMPs forecasted by G and the ground-truth

LMPs at ISO-NE’s VT price node in 2018 for Case 1(A). Fig. 5.3 demonstrates the

Figure 5.3: Ground-truth and Forecasted LMPs at the VT Price Node in ISO-NE for

Case 1(A).

forecasted LMPs successfully capture the temporal characteristics among LMPs of

ISO-NE in 2018. The MAPEs of both online forecasting and day-ahead forecasting

are computed and compared in Table 5.2. Table 5.2 demonstrates that the proposed

CLSTM-GAN model generally has better forecasting performance compared to the

classic LSTM model and the naive CLSTM model for both online forecasting and day-

ahead forecasting. In day-ahead forecasting, the LMPs in the forecasted tensor are

jointly conditioned on the historical input LMP tensor and the previously forecasted

LMP arrays. This will cause the forecasting errors to be accumulated during the

day-ahead forecasting process, leading to larger MAPEs in the day-ahead forecasting
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results compared to MAPEs in the online forecasting results, as shown in Table 5.2.

Table 5.2: LMP Forecasting Errors in Case 1

Case GLSTM-GAN GLSTM LSTM

MAPE (%) in Case 1(A) 10.23 12.35 13.82

MAPE (%) in Case 1(B) 15.07 23.79 27.41

To further evaluate the proposed CLSTM-GAN model, the state-of-the-art SDA

and RS-SDA [77] models and other popular data-driven approaches are included as

benchmark models in Case 2. All models are evaluated with LMPs from the Indiana

Hub in MISO. Table 5.3 shows day-ahead forecasting MAPEs obtained using different

approaches on the same testing dataset.

Table 5.3: LMP Forecasting Errors in Case 2

Case LSTM NN MARS SVM Lasso SDA RS-

SDA

CLSTM-

GAN

MAPE(%) 18.03 18.65 25.59 20.47 21.63 12.87 12.18 11.53

In Table 5.3, the proposed CLSTM-GAN model (with a MAPE of 11.53%) outper-

forms the state-of-the-art RS-SDA forecasting model (with a MAPE of 12.18%) and all

the other benchmark models. The RS-SDA model in [77] has the second-best perfor-

mance. However, this RS-SDA model needs to be updated/re-trained daily, causing a

significant computational/training burden. Besides, each well-trained RS-SDA model

can only forecast LMPs for one price node. Therefore, forecasting system-wide LMPs

requires a large number of RS-SDA models. Compared to the RS-SDA model, our

CLSTM-GAN model can forecast system-wide LMPs for a long time period without

daily updates, which is much more efficient.
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5.5 Conclusion

This chapter proposes a CLSTM-GAN approach to forecast system-wide LMPs

from market participants’ perspective in online and day-ahead manners. Spatio-

temporal correlations among historical LMPs are learned by the CLSTM network

during adversarial training. In case studies using ISO-NE’s and MISO’s public data,

the proposed method outperforms the state-of-the-art benchmarks and other data-

driven approaches.
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Chapter 6

DECISION TRANSFORMER BASED SPATIOTEMPORAL FORECASTING

System-wide LMPs are jointly determined by the interactions between the mar-

ket clearing process and the generator bidding process. These two processes involve

sequential decision-making, with the objective of achieving optimal market clearing

decisions and strategic bidding decisions. The market clearing process determines

the allocation of electricity supply and demand at specific locational nodes, while the

generator bidding process involves the strategic submission of bids by generators to

maximize their profits. The outcome of these sequential decision-making processes

directly influences the system-wide LMPs. In this chapter, the problem of forecasting

market participants’ RTLMPs is formulated by considering the interactive market

clearing and generation bidding decision-making processes as a sequential decision-

making model. A special NN model, named the spatio-temporal decision transformer

(ST-DT), is proposed to learn the underlying sequential decision-making model from

historical spatio-temporal market data (including locational demands, LMPs, and fuel

prices) and forecast RTLMPs as the future actions of these interactive decision-making

processes. This spatio-temporal decision transformer is constructed using stacked

spatio-temporal multi-head self-attention mechanisms (ST-MHSA). This architecture

provides flexibility in addressing a wide range of sequential decision-making problems

by enabling selective attention to different data at various locations and timestamps.

This algorithm can also be applied to other data-driven sequential decision-making

problems in power systems, which are originally solved by offline reinforcement learn-

ing (RL) with high computation complexity in training. Case studies on the data

sets from SPP and ISO-NE, verify that the proposed approach can forecast LMPs
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and learn the spatio-temporal correlations accurately.

6.1 Introduction

In the U.S. electricity markets, LMPs are settled twice in the DA and RT mar-

kets [9; 90]. In each market, system operators will collect locational generation bids

from generators and locational demands from market participants as inputs to run

OPF, and calculate LMPs. As a forward market, DA market is cleared based on DA

generation bids and DA demand forecast before the operating day, and the DALMP

will be published one day before the operating day. As a spot market, the RT market

will clear the difference between DA commitments and the actual RT demand based

on separate, second RTLMPs, which are either paid or charged to participants in

the DA market for demand or generation that deviates from the DA commitments

[9; 10]. To maximize their profits, generators will decide their RT bids based on both

DA market data and RT market data. This generator RT bidding process can be

considered a decision making procedure. Considering the DA market data as the

previous states and RT demand data as the current states, the generator RT bid is

the decision made based on previous states and current states. Once the generator

bids are determined and submitted to the RT market, RTLMPs can be computed as

the dual variables derived from solving the deterministic OPF in RT market [11; 12],

which is the decision making process for optimal RT market clearing. Therefore, the

RTLMPs can be viewed as the consequence of the interactive decision making process

of generator bidding and RT market clearing (with deterministic OPF).

One drawback of the above machine learning (ML)-based forecasting approaches

[55; 56; 57; 91; 92; 93] is the slow training speed and difficulty of convergence. For

example, LSTM-based approaches have to read in the input sequence step by step,

process, and pass the hidden state one by one. GAN-based approaches indeed come
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with their challenges during the training process and often require careful tuning to

achieve desirable results. The training of GANs involves finding a balance between the

generator and discriminator networks, ensuring that both networks learn effectively

without one overpowering the other. Issues such as mode collapse, instability, and

vanishing gradients can arise and hinder the training process. Proper network archi-

tecture design, selection of loss functions, learning rate scheduling, and regularization

techniques are crucial for successful training of GANs. Additionally, hyperparameter

tuning and extensive experimentation might be necessary to optimize the performance

of GAN-based approaches. Recently, the attention mechanism-based approach [94] is

proved powerful in processing sequence data with better interpretability. Compared

with conventional sequence models, such as RNN and LSTM, the attention mecha-

nism can process all the time steps of the input sequence simultaneously. The parallel

operation can speed up the computation significantly. In [95], an attention temporal

convolutional network is proposed by combining CNN with an attention mechanism

to extract spatio-temporal renewable generation features from neighboring sites. This

architecture is implemented for the ultra-short-term spatio-temporal forecasting of re-

newable resources. Besides forecasting renewable generation, the self-attention (SA)

mechanism is combined with LSTM to forecast LMPs on a day-ahead basis in [96; 97].

Working as encoders, LSTM models in [96; 97] generate a representation of the input

sequence as the input of the following attention mechanism. These attention LSTM

approaches only account for temporal correlation. They ignore spatial dependencies

of LMPs caused by the uncertainties of locational supply and locational demand.

For market participants who trade electricity over multiple price nodes (loca-

tions), an ideal RTLMP predictor should accurately predict prices at different nodes

over a wide area. The spatio-temporal correlations among RTLMPs are expected to

be captured by a data-driven approach. Previous approaches usually ignore spatial
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dependencies among locational demands and locational supplies or make improper

assumptions by ignoring generator bid variations. The example in [98] demonstrates

that even a slight variation of either the load distribution or bidding strategy will cause

significant changes in LMP components. We believe that the variation of generator

bids should be taken into consideration to account for the spatio-temporal dependen-

cies in prediction. However, in most electricity markets, generation bidding data are

confidential or published with several months’ delay [9; 90]. To properly incorporate

the implicit bid variation, the natural gas price is considered as a rough representa-

tion of generator bids in the overall decision making process of generator bidding and

market clearing. Organizing all the public market data as a market data sequence,

this chapter proposes a generic forecasting approach to learn the spatio-temporal

dependencies among market data sequences and forecast RTLMPs accurately.

The rest of the chapter is organized as follows. Section II defines the multi-

channel market data sequence, and formulates the RTLMP forecasting as a sequence

modeling problem; Section III proposes the ST-DT-based RTLMP prediction model,

consisting of stacked multiple multi-head attention mechanisms; Section IV presents

case studies and compares the performance of the proposed approach with several

benchmark methods; Section V concludes this chapter.

6.2 Problem Formulation

Consider a set of publicly available historical hourly market data published by the

system operator for N nodes and T consecutive hours. These market data include

demand data, LMP data, and generation bid data for both the RT market and the

DA market.

Definition 4 Let Dt,n
DA, Dt,n

RT , LMP t,n
DA, LMP t,n

RT , Bt,n
DA, Bt,n

RT , represent the historical

DA demand data point, RT demand data point, DALMP data point, RTLMP data
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point, DA bid data point and RT bid data point collected from node n ∈ {1, 2, · · · , N}

at time t ∈ {1, 2, · · · , T}, respectively. These spatio-temporal historical market data

points are also called tokens in this paper.

Definition 5 At each time t, the market is described by several states, Dt
DA =

{Dt,1
DA, D

t,2
DA, · · ·D

t,N
DA} ∈ RN , Dt

RT = {Dt,1
RT , D

t,2
RT , · · ·D

t,N
RT } ∈ RN , LMP t

DA = {LMP t,1
DA,

LMP t,2
DA, · · ·LMP t,N

DA} ∈ RN , and Bt
DA = {Bt,1

DA, B
t,2
DA, · · ·B

t,N
DA} ∈ RN . These states

contain DA demands, RT demands, DALMPs, and DA bids across multiple nodes,

respectively. In the RT generator bidding decision making process, the actions of

generators across multiple nodes at each time t are the RT bid decisions Bt
RT =

{Bt,1
RT , B

t,2
RT , · · ·B

t,N
RT } ∈ RN .

Definition 6 The RT OPF process can be represented by a function whose output

LMP T
RT is the RTLMP:

LMP T
RT = OPF (DT

RT , B
T
RT ) (6.1)

This equation indicates the OPF process defines an implicit mapping (DT
RT , B

T
RT ) →

LMP T
RT = {LMP T,1

RT , LMP T,2
RT , · · · LMP T,N

RT } ∈ RN , which represents the market

clearing decision making process at time T , based on the inputs of RT demands and

bids. The output LMP T
RT contains system-wide RTLMPs at time T , which can be

considered as the action out of this decision-making process. Such action should be

forecasted at time T from the market participants’ perspective.

Consider the generator bidding strategies in RT market as a sequential decision

making process described by the tuple (DDA,BDA,LMPDA,DRT ,BRT ), whereDDA =

{D1
DA, D

2
DA, · · ·DT

DA}, BDA = {B1
DA, B

2
DA, · · ·BT

DA}, LMPDA = {LMP 1
DA, LMP 2

DA,

· · ·LMP T
DA}, DDA = {D1

RT , D
2
RT , · · ·DT

RT}, BRT = {B1
RT , B

2
RT , · · ·BT

RT}. The de-

cision process consists of previous states Dt
DA ∈ DDA (DA demands), LMP t

DA ∈

96



LMPDA (DALMPs), Bt
DA ∈ BDA (DA bids), current states DT

RT ∈ DRT (RT de-

mands), and actions BT
RT ∈ BRT (RT bids), where t ∈ {1, 2, · · · , T}.

In this sequential decision-making process, generators across the market decide

the RT bids based on states and actions of previous T hours. Because the latest

bidding information BT
RT is not available, market participants have to estimate gen-

erators’ implicit decision-making process for RT bids by maximizing the conditional

probability:

B̂T
RT = arg max

B̃T
RT

p(B̃T
RT = BT

RT |D1∼T
DA , B

1∼T
DA , D

1∼T
RT , B1∼T−1

RT ) (6.2)

From market participants’ perspective, the latest system-wide bidding information

in the transition dynamics in (6.2) is not publicly available. Most system operators

publish this information with months of delays [9; 90]. During market participants’

RT bidding decision-making process, this information can be replaced by system-wide

public LMP information, which is an explicit representation of bidding information as

shown by the inverse process of (6.1). Substituting historical bidding data B1∼T
DA and

B1∼T−1
RT with historical LMP data LMP 1∼T

DA and LMP 1∼T−1
RT , Equation (6.2) becomes:

B̂T
RT = arg max

B̃T
RT

p(B̃T
RT = BT

RT |D1∼T
DA , LMP 1∼T

DA , D1∼T
RT , LMP 1∼T−1

RT ) (6.3)

Equation (6.3) represents the market participants’ RT bidding decision-making

process which determines the proper RT bids at time T based on system-wide his-

torical RT and DA demands and LMPs. Substituting the ground-truth BT
RT in (6.1)

with the estimated B̂T
RT in (6.3), the RTLMP forecasting problem can be formulated

as a combination of both the OPF-based market clearing decision marking process

and the market participants’ RT bidding decision-making process. Since the RT bid-

ding decisions B̂T
RT are actions of the sequential decision-making process in (6.3),

the RTLMPs at time T in (6.1) can then be viewed as the outputs/actions of two
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interactive sequential decision-making process in (6.1) and (6.3), given the histori-

cal states of RT demands, DA demands, RTLMPs, and DALMPs in (6.1) and (6.3).

Therefore, the market participants’ learning goal for RTLMP forecasting is to learn

the meaningful pattern of the following trajectory representation:

τ =(D1
DA, LMP 1

DA, D
1
RT , LMP 1

RT , D
2
DA, LMP 2

DA,

D2
RT , LMP 2

RT , · · · , DT
DA, LMP T

DA, D
T
RT , LMP T

RT )

(6.4)

where τ is an ordered market data sequence, which can be considered a sequential

decision-making process for the interactive RT bidding and market clearing problems.

LMP T
RT is the action to be forecasted based on the states prior to its time step. In the

sequential decision making process, τ , historical states Dt,n
DA, Dt,n

RT , LMP t,n
DA, LMP t,n

RT

at different time steps t and different nodes n contribute differently to the action

LMP T
RT . The state’s position in the sequence τ should be utilized as conditional

information for learning. The generator’s bidding strategies Bt
RT and Bt

DA are also

highly related to fuel prices [10]. Therefore, both the position information and fuel

price information should be properly encoded and embedded into sequence τ . Fig. 6.1

shows the overall decision-making process of the wholesale electricity market. This

overall decision-making process consists of bidding decision process (BDP in Fig. 6.1)

and market clearing process (OPF Fig. 6.1). A well-trained LMP predictor should

learn the underlying model for this sequential decision-making process from the his-

torical state-action trajectory, such that the learned decision-making model can accu-

rately predict the next action (system-wide LMPs) in the sequential decision-making

process, which minimizes the distance between the predicted LMPs and actual LMPs.

This sequential decision-making forecasts the next action by maximizing conditional

probability p( ˆLMP
T

RT = LMP T
RT |τ ′), where historical market data sequence τ ′ is the

ordered sequence τ excluding LMP T
RT .
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Figure 6.1: Overall Decision-making Process of the Wholesale Electricity Market.

6.3 Spatio-Temporal Decision Transformer

Built upon the above sequential decision-making formulation using system-wide

state-action trajectory with spatio-temporal market data, a DT-based predictor is

adopted to learn the underlying system-wide decision marking model by 1) extracting

the spatio-temporal dependencies of the state-action trajectory; and 2) assigning

different weights to the historical market data tokens, which are spatio-temporal

correlated, to determine the mapping R(4T−1)×N → R1×N to predict next action

(system-wide LMPs) across the market.

The transformer NN architecture is initially proposed to efficiently model sequence

data [94]. The transformer NN is further modified to decision transformer NN to per-

form data-driven sequential decision making. In [99], the decision transformer NN

is proposed to solve the data-driven sequential decision-making problem (formulated

as an offline RL problem) via conditional sequence modeling. Without the need for

dynamic programming (the foundation of RL), decision transformer NN can model

data sequence to perform policy optimization of decision-making problems on offline
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RL benchmarks. This allows the decision transformer to take advantage of parallel

processing to achieve less training time and better convergence. However, the original

decision transformer is only designed to process sequential information, ignoring spa-

tial information processing. This limits its applications toward solving system-wide

sequential decision-making problems (such as system-wide LMP forecasting) which

require both sequential and spatial information processing. In [95], CNN is combined

with the attention mechanism to extract spatial features before learning the temporal

correlations. This attention convolutional network will affect the parallel processing

and the convergence of the attention network. In this section, we propose an ST-DT

network as shown in Fig. 6.2, consisting of input encoder, temporal multi-head self-

attention (T-MHSA) network, spatial multi-head self-attention (S-MHSA) network,

and output decoder, to learn spatio-temporal correlations among input tokens and

solve the system-wide RTLMP forecasting problem which is formulated as a data-

driven sequential decision making problem in the previous section. This allows us

to leverage the simplicity and scalability of the decision transformer NN architecture

to reduce training time and complexity without degrading the RTLMP forecasting

accuracy.

6.3.1 Input Encoder Neural Network

The inputs of the proposed ST-DT are first processed and mapped to an embedded

sequence τ by an input encoder, as shown in Fig. 6.2, including input embedding and

timestamp encoding. In Fig. 6.2, the red box represents adding embedded fuel price

tokens to the embedded input sequence; the blue box represents adding embedded

timestamp information to the embedded input sequence. Then, the sequence τ is

divided into N locational sequences τn, ∀n ∈ {1, · · · , N}.
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Figure 6.2: Illustration of the Processing of Spatio-temporal Correlated Input Se-

quences in the Spatio-temporal Decision Transformer.

Input Embedding

The decision transformer takes 5 sequences as input: DA demand sequence D1∼T
DA ∈

RT×N , DALMP sequence LMP 1∼T
DA ∈ RT×N , RT demand sequence D1∼T

RT ∈ RT×N ,

RTLMP sequence LMP 1∼T−1
RT ∈ R(T−1)×N , fuel price sequence FP ∈ RT×1. The

corresponding tokens LMP t,n
DA, LMP t,n

RT , Dt,n
DA, Dt,n

RT , FP t in the input sequences are

not within the same ranges and dimensions. Each input token is projected to the

same dimension M and range [−1, 1] via the input embedding model: LMP t,n
(·)e =

EmbeddingLMP (LMP t,n
(·) ) ∈ RM , Dt,n

(·)e = EmbeddingD(Dt,n
(·) ) ∈ RM , FP t

e =

EmbeddingFP (FP t) ∈ RM , where (·) = DA orRT , EmbeddingLMP (), EmbeddingD(),

EmbeddingFP () are the learnable projection models built upon fully connected (FC)
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NNs.

The embedded input sequence of market data tokens (LMP t
(·)e, D

t
(·)e) are organized

into an embedded sequence following the order of trajectory representation in (6.4).

At each time step t, the embedded fuel price token FP t
e is added to the corresponding

LMP tokens in the embedded sequence: LMP t,n
(·)ep = LMP t,n

(·)e + FP t
e .

Timestamp Encoding

Because the proposed model processes the sequence parallelly, there is no recurrence

or convolution operation to account for sequential information in the input sequence.

To make use of the sequential order of the sequence, time step information is added

to the embedded input sequence via timestamp encoding. The encoded time step

information TE(t) ∈ RM has the same dimension M , therefore it can be added

to the corresponding embedded input tokens, where TE() is the learned timestamp

embedding function in [99]. In this paper, we use sine and cosine functions for TE(),

which are also known as positional encoding functions. More details on these encoding

functions can be found in [94].

The output is a data sequence containing sequential market information of all

nodes:

τe =(D1
DAet, LMP 1

DAet, D
1
RTet, LMP 1

RTet, D
2
DAet, LMP 2

DAet, D
2
RTet, LMP 2

RTet,

· · · , DT
DAet, LMP T

DAet, D
T
RTet)

(6.5)

where τe ∈ R(4T−1)×N×M ; Dt
(·)et = {Dt,1

(·)e, · · · , D
t,N
(·)e} + TE(t), LMP t

(·)et = {LMP t,1
(·)ep,

· · · , LMP t,N
(·)ep}+ TE(t), (·) = DA or RT .
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Locational Sequence

The overall encoded market data sequence τe is reorganized into N locational se-

quences as the ultimate output of the input encoder:

τn =(D1,n
DAet, LMP 1,n

DAet, D
1,n
RTet, LMP 1,n

RTet, D
2,n
DAet, LMP 2,n

DAet, D
2,n
RTet, LMP 2,n

RTet,

· · · , DT,n
DAet, LMP T,n

DAet, D
T,n
RTet)

(6.6)

Each of these locational sequences will be taken as the input of a T-MHSA, as

shown in Fig. 6.3, to extract temporal features for the corresponding node.
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Figure 6.3: Overview of the Proposed Spatio-temporal Forecasting Method. The Left

Column Is the Overall Architecture of the Stacked Decision Transformer-based Ap-

proach. The Right Column Demonstrates the Inner Details of the Spatio-temporal

Multi-head Self-attention Mechanism. The ST-MHSA Consists of a Series of Paral-

lel T-MHSAs Followed by an S-MHSA. The Temporal Correlation among Historical

States Is Learned by T-MHSAs, and the Spatial Correlation among Learned Hidden

States from T-MHSAs Is Captured by S-MHSAs.
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6.3.2 Spatio-Temporal Multi-Head Self-Attention Neural Network

The traditional decision transformer is built upon multi-head self-attention (MHSA)

mechanism, which cannot process spatial information effectively. All spatial features

at the same time step are assigned the same weight by the traditional MHSA. The

Spatial correlations hidden in the input data are ignored by MHSA. We construct an

ST-MHSA network, consisting of a series of T-MHSAs followed by an S-MHSA, to

process both temporal and spatial information of the input sequences, as shown in

Fig. 6.3. Both T-MHSA and S-MHSA are designed to learn the correlations among

input sequential states. In our design, as shown in Fig. 6.3, the correlation among T-

MHSA’s input sequential states contains temporal information; the correlation among

S-MHSA’s input sequential states contains spatial information. Overall, the proposed

ST-MHSA network is more effective and flexible in learning the spatio-temporal cor-

related data.

Multi-Head Self-Attention Neural Network

The MHSA network is the core architecture of T-MHSA and S-MHSA. MHSA net-

work reads in the embedded input sequence and generates an output sequence. The

MHSA’s output is a combination of data points in its input sequence. The weights

of the learned combination are determined by the importance of each token in the

sequence to the last token. These learnable weights represent the different strengths

of the sequential correlations (temporal correlations for T-MHSA and spatial correla-

tions for S-MHSA) between various historical market data and the forecasted prices.

Because the attention mechanism is powerful in processing sequence data simultane-

ously, the MHSA network is applied to conduct parallel operation to speed up the

computation of weights and reduce the training time significantly. Let X ∈ RL×F be
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the input sequence of an MHSA network, where L is the length of this sequence, F

is the feature dimension. The input sequence X is projected to three new represen-

tations via three independent learnable linear transformation matrices [94]:

Q = X ·WQ (6.7)

K = X ·WK (6.8)

V = X ·WV (6.9)

where Q,K, V ∈ RL×d are also known as Query, Key and Value [94], respectively;

WQ,WK ,WV ∈ RF×d are the learnable transformation matrices. The SA mechanism

generates a new sequence Ŷ , in which each token is the weighted combination of all

tokens of the input sequence X [94]:

Ŷ = SA(Q,K, V ) = softmax(Q ·KT )V (6.10)

where Ŷ ∈ RL×d; softmax(Q · KT ) is the attention matrix, whose elements are

attention scores. These attention scores are the learned weights of the combination

on the values in V , and represent the corresponding importance of input tokens to

the output.

To enhance the performance of SA, multiple SAs are stacked to an MHSA by

concatenating the output of each SA to calculate an aggregated result:

MHSA(Q,K, V ) = Concat(head1, · · · , headh)WO (6.11)

where,

headi = SA(Qi, Ki, V i),∀i ∈ {1, · · · , h} (6.12)

where, Qi, Ki and V i are projected by (6.7)-(6.9) via corresponding transformation

matrices W i
Q, W i

K and W i
V , respectively; h is the number of attention heads; WO ∈

R(h·d)×F is the matrix with learnable weights for the MHSA. Concat() function [94; 76]

combine h attention heads in the second axis: RL×d → RL×(h·d).
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Temporal MHSA

N T-MHSAs are employed to read in N locational sequences τn from the input en-

coder, and process temporal data for each node independently. Each T-MHSA will

generate a new sequence for the corresponding node:

τnew−Tn = MHSA(Qn, Kn, Vn) (6.13)

where τnew−Tn ∈ R(4T−1)×d; Qn, Kn, Vn are projected from τn via corresponding trans-

formation matrices as shown from (6.6)-(6.11). The last tokens τnew−Tn (4T − 1) in

each sequence τnew−Tn are weighted combinations of previous tokens and are organized

into a sequence τT as the output of T-MHSAs:

τT = (τnew−T1 (4T − 1), τnew−T2 (4T − 1), · · · , τnew−TN (4T − 1)) (6.14)

where τT ∈ RN×d. This sequence has N generated tokens for N nodes; each token

τnew−Tn (4T −1) only contains the temporal feature extracted from historical temporal

data at node n. To share spatial information among different nodes, τT will be further

processed by the following S-MHSA.

Spatial MHSA

S-MHSA reads in the sequence τT from T-MHSAs, and generates the following output

to the decoder:

τnew−S = MHSA(QS, KS, VS) (6.15)

where τnew−S ∈ RN×d; QS, KS, VS are projected from τT via corresponding trans-

formation matrices as shown from (6.7)-(6.11). This S-MHSA is designed to extract

spatial correlations from the input sequence τT , which contains tokens generated for

N different nodes across the market. For each token in this generated sequence,
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spatio-temporal correlated market data in all nodes at all time steps contribute dif-

ferently. The spatio-temporal correlations among input sequential market data can

be learned effectively and flexibly by the ST-MHSA network.

6.3.3 Output Decoder Neural Network

The decoder takes the sequence τnew−S generated from ST-MHSA, which repre-

sents the hidden state parametrized by prior states of all nodes/locations and all time

steps, to predict future action token in the sequential decision making process. The

generated token is transformed to the forecasted RTLMPs for time step T via the

projection of the output decoder, which is the inverse process of the input encoder:

LMP T
RT = Decoder(τnew−S) (6.16)

where Decoder() is the learnable projection model built upon FC NNs.

In training, the learnable weights/models in the input encoder are learned to

optimally represent the mapping between historical market data input and embedded

sequence in (6.5); the learnable weights/models in ST-MHSA network are learned

to optimally represent the spatio-temporal correlations among different tokens/data

in embedded sequence in (6.6) which represent spatio-temporal correlations among

different historical market data; the learnable weights/models in the output decoder

are learned to optimally represent the mapping between the hidden state predicted

by ST-MHSA network and the forecasted market price. Minibatches of sequences

(D1
DA, D2

DA, · · · , DT
DA), (D1

RT , D2
RT , · · · , DT

RT ), (LMP 1
DA, LMP 2

DA, · · · , LMP T
DA),

(LMP 1
RT , LMP 2

RT , · · · , LMP T−1
RT ) and (FP 1, FP 2, · · · , FP T ) are sampled in each

episode. The stacked decision transformer is trained to predict LMP T
RT with mean-

squared error. The overall structure of the proposed model and pseudocode are in

Fig. 6.3 and Algorithm 2.
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Algorithm 2 Stacked Decision Transformer Pseudocode

# D1, D2, L1, L2, F, t, n: DA demands, RT demands, DA LMPs, RT LMPs, fuel

prices, time steps, nodes

# T: length of input sequence to Decision Transformer

# N: number of market nodes

# T-MHSA n: T-MHSAs for each node

# S-MHSA: S-MHSA

# embed D, embed L, embed F: linear embedding layers

# embed t: learned timestep embedding

# pred L: fully connected RTLMP prediction layer

# main model

def DecisionTransformer(D1,D2,L1,L2,F):

# compute embeddings for tokens

F emb=embed F(F)

t emb=embed t(t) # per-timestep (not per-token)

D1 embedding = embed D(D1) + t emb

D2 embedding = embed D(D2) + t emb

L1 embedding = embed L(L1) + F emb + t emb

L2 embedding = embed L(L2) + F emb + t emb

# interleave tokens as (D1 1, L1 1, D2 1, L2 2, · · · , D1 T, L1 T, D2 T)

input embeds = stack(D1 embedding, L1 embedding,

D2 embedding, L2 embedding)

# reorganize sequence to locational sequences

for n in N:
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input embeds n=unstack(input embeds).n

# use T-MHSAs to get temporal hidden states

for n in N:

hidden states n = T-MHSA n(input embeds n)

# interleave hidden state tokens of T as (1,2,3, · · · N)

hidden states N=stack(hidden states 1 T, hidden states 2 T,

hidden states 3 T, · · · , hidden states N T)

# use S-MHSAs to get spatio-temporal hidden states

hidden states ST = S-MHSA(hidden states N)

# predict RTLMP

return pred L(hidden states ST)

# training loop

for (D1, D2, L1, L2, F) in dataloader:

L2 preds = DecisionTransformer (D1, D2, L1, L2, F)

loss = mean((L2 preds-L2)∗∗2)

optimizer.SGD(); loss.backward(); optimizer.step()

6.4 Case Studies

The proposed RTLMP forecasting approach is tested using real-world public mar-

ket data from SPP [4] and ISO-NE [3]. The proposed stacked decision transformer

model is implemented with Tensorflow [76] and trained on Google Colab using online

GPU for acceleration.
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6.4.1 Performance Evaluation Metrices

In the case studies, the point-by-point LMP prediction accuracy is evaluated by

the mean absolute percentage error (MAPE) [77]. The spatial correlation prediction

is evaluated by the spatial prediction accuracy (SPA) and the spatial mean absolute

percentage error (SMAPE) metrics [100]:

SPA(n) = 1−
∑N

i=1 |sgn(Yn − Yi)− sgn(Ŷn − Ŷi)|/2
N − 1

(6.17)

SMAPE(n) =

∑N
i=1 |(Yn − Yi)− (Ŷn − Ŷi)|∑N

i=1 |(Yn − Yi)|
(6.18)

where Yi represents the ground truth RTLMP at node i (i 6= n); Ŷi represents the

predicted RTLMP at node i (i 6= n); sgn(·) is the sign function in (6.19),

sgn(z) =


−1 if z<0

0 if z = 0

1 if z>0

(6.19)

SPA and SMAPE are adopted to quantify the spatial correlation prediction ac-

curacy and error, respectively. Accurate prediction of spatial correlations among

RTLMPs is expected to have higher SPA and lower SMAPE.

6.4.2 Test Case Description

The proposed spatio-temporal forecasting approach is implemented to forecast

zonal and nodal RTLMPs in SPP and ISO-NE. For SPP market, historical market

data of 16 price zones are collected; for ISO-NE, the historical market data of 9 price

zones are collected. To make a fair comparison, a holistic prediction approach in [1] us-

ing the same SPP dataset is used as the evaluation benchmark. The componential and

ensemble approach in [64], which consists of three individual extremely randomized
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tree (ET) regressors, is used as the evaluation benchmark for the ISO-NE case. The

MAPEs obtained from the proposed approach are also compared with classical data-

driven approaches, including standard NN, multivariate adaptive regression splines

(MARS), pure ARMA model, and SVM. To demonstrate the proposed approach’s

capability of fast convergence and better spatial learning, the proposed approach is

compared with our previous sequence prediction approach GAN, LSTM-GAN, and a

naive DT NN.

Case 1

The RTLMP forecasting models are trained on SPP dataset, which contains hourly

zonal DA demands, RT demands, DALMPs, and RTLMPs from June 2016 to July

2017, and historical natural gas price data. Additional historical generation mix

data is incorporated in the benchmark models ALG+ M̂ proposed in [1] and a com-

mercial price prediction product Genscape [1] (for comparison purposes). In Case

1(A), all models are tested to forecast hourly SPP RTLMPs of South Hub (Shub)

and North Hub (Nhub) price nodes for 4 testing windows (07/31/2017-8/13/2017,

8/21/2017-9/3/2017, 9/18/2017-10/1/2017, and 10/2/2017-10/15/2017), in an hour-

ahead manner. In Case 1(B), all models are tested to forecast hourly SPP RTLMPs

in a day-ahead manner. The spatio-temporal decision transformer (ST-DT) model

forecasts the next day’s hourly RTLMPs step by step. In each step, the forecasted

RTLMPs from the last time step are fed back into the ST-DT model along with RT

demand forecast to conduct day-ahead forecast of RTLMPs.

Case 2

The RTLMP forecasting models are trained on ISO-NE dataset, which contains hourly

zonal DA and RT market data from January 2019 to September 2019, and the corre-

112



sponding historical natural gas price dataset. All models are tested to predict ISO-NE

RTLMPs hour by hour from October 2019 to December 2019. All models are tested

using input sequences with different lengths: (A) using past 12-hour historical data;

(B) using past 24-hour historical data; (C) using past 48-hour historical data.

Case 3

The RTLMP forecasting models are trained on the SPP dataset to forecast nodal

prices. The training dataset includes hourly nodal RTLMPs and DALMPs, hourly

zonal DA demands and RT demands, and historical natural gas price data and gener-

ation mix data over two years (2016 and 2017). The models are tested to predict one

year’s SPP RTLMPs hour by hour from January 1, 2018, to December 31, 2018. All

models are tested using an input sequence length of 24 hours. The training dataset

includes 973 price nodes. In the testing, all models are tested to predict LMPs for

100 price nodes in SPP.

6.4.3 Model Construction and Configurations

For all decision transformers, the dimension of embedded input tokens is set to

M = 64, M = 32, and M = 128 for case 1, case 2, and case 3, respectively; the

projected queries Q, keys K and values V share the same dimension in each case;

the numbers of attention heads h(T ) and h(S) are set based on the input sequence

length and number of market nodes. The setting details are listed in Table 6.1.

In Table 6.1, parameters T , N , M , and d are total historical time steps, number

of nodes/locations, dimension size of embedded input tokens, and dimension size of

transformation matrices, respectively. All embedding layers are constructed with fully

connected layers followed by batch normalization layers. The decoder consists of 2

layers of stacked fully connected networks. In the training process, the minibatch size
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is set to 8 for all models; a standard SGD optimizer is adopted.

Table 6.1: Spatio-Temporal Decision Transformer Setting

Case T N M d h(T ) h(S)

1(A) 24 16 64 64 20 20

1(B) 24 16 64 64 20 20

2(A) 12 9 32 32 10 20

2(B) 24 9 32 32 20 20

2(C) 48 9 32 32 30 20

3 24 973 128 128 20 256

6.4.4 Performance Analysis

Case 1

The performance of the proposed ST-DT is compared with the standard fully con-

nected NN, classic SA model, MARS, pure ARMA model, SVM model, GAN model,

and CLSTM-GAN model.

Fig. 6.4 shows the ground-truth RTLMPs and forecasted RTLMPs at Shub price

node over the testing period in Case 1(A). Fig. 6.4 demonstrates the proposed model’s

capability to capture the temporal dependencies of the ground-truth RTLMPs at Shub

price node over the testing window. Table 6.2 lists and compares the mean absolute

percentage errors (MAPEs) obtained using the proposed approach in Case 1(B) and

other benchmark models. These approaches are tested using an identical SPP dataset.

The ALG+M̂ method proposed in [1] does not utilize DALMP data. Genscape [1] is

a commercial product, which incorporates richer and proprietary confidential market

data to forecast RTLMPs. Other benchmark models do not incorporate fuel price into
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Figure 6.4: Ground-truth and Forecasted RTLMPs at SPP South Hub (SHub) Price

Node in Case 1(A).

prediction. To make a fair comparison, an additional ST-DT is trained without using

natural gas prices. The proposed approach outperforms the benchmark models in

Case 1(B). Compared to state-of-the-art commercial RTLMP forecast product Gen-

scape, the MAPEs of the proposed decision transformer model decrease by 10.1% and

25.2% for Shub and Nhub, respectively. Without using natural gas price information,

the decision transformer can still achieve comparable performance to the industry

benchmark Genscape, which uses confidential market data. Incorporating natural

gas price data into the ST-DT approach can increase forecast accuracy significantly

(decreasing MAPEs by 9.3% and 4.5% for Shub and Nhub, respectively).

Table 6.3 compares the spatial metrics SPA and SMAPE for the proposed ST-DT

and several benchmark approaches in Case 1(A). Compared to the conventional SA

and other sequential prediction approaches, which are not designed to capture spatial

information, the proposed ST-DT has much better performance on spatial prediction.

Our previous work GAN [100] is designed to learn spati-temporal correlated infor-
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Table 6.2: RTLMP Forecasting Accuracy in Case 1 (B)

Approach MAPE(%) for

Shub

MAPE(%) for

Nhub

NN 59.2 61.7

MARS 51.8 50.6

ARMA 37.4 39.2

SVM 40.9 40.8

SA 26.1 27.3

ALG+M̂1 25.4 36.9

Genscape2 21.7 28.2

GAN 22.1 23.8

Case 1 (B) 19.5 21.1

Case 1 (B) without

natural gas price

21.5 22.1

1 The proposed method with the best performance in [1]

2 State-of-the-art baseline prediction from Genscape[1]

mation in the electricity market. The proposed ST-DT approach has comparable

performance to GAN. However, the GAN model requires a much longer training time

and can easily diverge, while the proposed ST-DT approach has much less training

time and much better convergence performance. The training times for SA, GAN,

and ST-DT in Case 1 are 56 minutes, 583 minutes, and 71 minutes, respectively. The

proposed ST-DT model can speed up the training significantly via parallel processing

and obtain comparably high spatio-temporal prediction accuracy.
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Table 6.3: Average SPA and SMAPE(%) in Case 1(A)

Model NN ARMA SVM SA GAN ST-DT

SPA 0.61 0.59 0.53 0.57 0.79 0.82

SMAPE 56 49 51 48 26 28

Case 2

Fig. 6.5 shows the ground-truth RTLMPs and forecasted RTLMPs at the ME price

zone over one week in Case 2(B). The forecasted results in Fig. 6.5 indicate that

the proposed ST-DT model successfully captures the temporal correlations of the

ground-truth RTLMPs.

Figure 6.5: Ground-truth and Forecasted RTLMPs at ME Price Zone in ISO-NE in

Case 2(B).

Table 6.4 compares next-hour forecasting MAPEs obtained for ISO-NE using dif-

ferent approaches on the same testing dataset in Case 2(A), 2(B), and 2(C). In Ta-

ble 6.4, the ST-DT model outperforms all benchmark models. Compared to the

MAPE in Case 2(A), increasing the length of the historical input sequence from 12
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hours to 24 hours can improve the prediction accuracy by 16% for the decision trans-

former predictor. The CLSTM-GAN model has the second-best performance. Both

the CLSTM-GAN model and the decision transformer model are sequence models.

However, the CLSTM cells need to read in the time-series input data one by one.

The decision transformer can read in and process the time-series input data paral-

lelly. Therefore, the training time of the ST-DT model (59 minutes for Case 2(B))

is much less than the training time of CLSTM-GAN (614 minutes). Compared to

the adversarial training procedure, the training procedure of the ST-DT model has

better convergence performance.

Table 6.4: RTLMP Forecasting Accuracy in Case 2

Approach MAPE (%) MAPE (%) MAPE (%)

in Case 2(A) in Case 2(B) in Case 2(C)

NN 37.2 34.8 33.1

ARMA 30.7 25.1 26.3

SVM 27.7 25.2 25.6

CLSTM-GAN 15.4 12.09 13.1

ST-DT 11.9 10.3 10.1

Case 3

The long-time (one year) performance of the proposed ST-DT is compared with the

standard fully connected NN, CLSTM model, classic SA model, MARS, and SVM

model for different seasons. Table 6.5 lists and compares the MAPEs of different

seasons (spring: March, April, May; summer: June, July, August; fall: September,

October, November; winter: December, January, February) obtained using the pro-

posed approach and other benchmark models. The proposed ST-DT outperforms all
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other benchmark models in Case 3. The results and comparison in Table 6.5 demon-

strate ST-DT’s capability to forecast LMPs for a large number of nodes in different

seasons.

Table 6.5: RTLMP Forecasting Accuracy in Case 3

Approach MAPE (%) MAPE (%) MAPE (%) MAPE (%)

in spring in summer in fall in winter

NN 35.3 36.7 32.5 33.8

CLSTM 27.8 28.1 26.7 28.0

MARS 30.9 30.7 31.5 31.3

SVM 25.1 26.3 25.2 26.7

SA 19.3 20.1 19.4 19.6

ST-DT 14.8 15.2 14.7 15.5

To demonstrate the ST-DT’s spatial-aware capacity, Table 6.6 and Table 6.7 com-

pare the spatial metrics SPA and SMAPE for the proposed ST-DT and other models.

For all seasons, the proposed ST-DT has a much better performance on spatial pre-

diction. CLSTM is designed to learn spatio-temporal correlated sequences and has

the second-best performance. However, the CLSTM model requires a much longer

training time and more parameters for a large system, while the proposed ST-DT

approach has much less training time. The training times for CLSTM and ST-DT

in Case 3 are 489 minutes, and 77 minutes, respectively. Compared to other spatial

sequence learning approaches, the proposed ST-DT model can speed up the train-

ing significantly via parallel processing. Compared to the ST-DT model in Case 3,

a larger ST-DT model to learn more nodes will not need much more training time

because of the parallel processing.
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Table 6.6: Average SPA in Case 3

Approach SPA SPA SPA SPA

in spring in summer in fall in winter

NN 0.57 0.52 0.53 0.51

CLSTM 0.67 0.63 0.64 0.63

MARS 0.55 0.56 0.51 0.56

SVM 0.42 0.47 0.49 0.49

SA 0.53 0.57 0.53 0.56

ST-DT 0.84 0.87 0.86 0.81

Table 6.7: SMAPE(%) in Case 3

Approach SPA SPA SPA SPA

in spring in summer in fall in winter

NN 40 42 41 42

CLSTM 36 37 35 40

MARS 47 49 44 46

SVM 49 42 43 45

SA 55 57 54 53

ST-DT 24 29 25 30

6.5 Conclusions and Future Work

This chapter proposes a stacked decision transformer-based approach for spatio-

temporal forecast of RTLMPs, from market participants’ perspective. The proposed

approach performs well with different input horizons in online and day-ahead price

120



forecasting problems for various market participants. The historical public market

data are organized into a general decision marking sequence, which stores the spatio-

temporal correlations of the market data. The RTLMP prediction problem is then

formulated as a sequential decision-making problem and solved using the proposed

spatio-temporal forecasting model ST-DT. The ST-DT consists of FC encoder, de-

coder, and ST-MHSA, which process the sequential data parallelly. Natural gas price

data is embedded to improve prediction accuracy. Case studies using real-world his-

torical market data from SPP and ISO-NE verify the performance of the proposed

approach for both point-by-point price prediction accuracy and the accuracy of cap-

turing spatial correlations among prices at different nodes. The proposed spatio-

temporal forecasting approach can be directly applied to predicting both zonal and

nodal LMPs.
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Chapter 7

ENERGY PRICE PREDICTION CONSIDERING GENERATION BIDS

VARIATION

LMP is composed of energy, congestion, and loss price components. All these

price components are comprehensively determined by locational demands and loca-

tional generation bids. Due to difficulties in accessing updated generation bid in-

formation, previous price predictions from market participants’ perspective focused

only on learning the spatio-temporal correlations among historical price and load data

without using generation bid information. The last chapter considered the generation

bidding’s effect on the market decision-making process. However, the historical bid-

ding data published with delays can still not be utilized to improve LMP prediction

accuracy. In this chapter, a two-stage CLSTM approach is proposed to incorporate

historical generation bids into energy price prediction from market participants’ per-

spective. Historical generation bids are organized into a 3D tensor and taken as the

output of the first stage and input of the second stage in the training process. The

implicit correlation among locational bids, demands, and energy prices is learned to

improve price forecasting accuracy. Verification of the proposed approach is performed

on the IEEE 30-bus system with publicly available historical market data from ISO-

NE. Comparisons between the proposed approach and other state-of-art prediction

approaches are conducted to demonstrate the improvement of the two-stage CLSTM
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approach.

7.1 Introduction

LMP is a common wholesale electricity pricing mechanism. As part of the stan-

dard market design promoted by the US Federal Energy Regulatory Commission

(FERC), LMP at a node is defined as the cost increment for supplying one more MW

demand at this node [9; 101]. As dual variables, LMPs are derived from solving an

optimal power flow (OPF) problem by the system operator. The OPF formulation

explicitly considers the locational demands, locational generation bids, and system

network characteristics [101]. In most electricity markets, demand data and price

data are always publicly available. System operating states and network character-

istics are always confidential to market participants. Generation bidding data are

usually published with several months’ delay.

Without access to confidential network characteristics and latest generation bid-

ding information, statistical methods and data-driven approaches using historical de-

mand and price data are widely accepted to predict prices from market participants’

perspective. Time-series-based statistical approaches, such as ARMAX model [37],

and ARIMA model [30], are commonly utilized to learn correlations among histor-

ical LMPs. Correlations among locational demands, locational bids, and prices are

ignored by these statistical approaches.

Assuming constant generation bidding, data-driven models are proposed to predict

prices by learning SPRs [82]. In [83; 102], SPR-based approaches are developed to

forecast prices using historical demand and price data, without considering generation

bidding variations. However, different generation bids in real-world markets will lead

to different SPRs. Fig. 7.1 shows 5 strategic bidding scenarios (10-block bids) of one

generator from ISO-NE, which shows a generator’s bids are not constant. Even within
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one operating day, a generator’s hourly bids may vary significantly. Once generation

bids change, identical load scenarios may point to different SPRs representing different

prices. It is impractical to predict prices using SPR-based approaches (which ignore

generation bidding variations) in real-world markets.
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Figure 7.1: Bidding Curves of a Generator from ISO-NE in 2019.

With varying generation bids and demands, references [101] prove that all three

components of LMP (energy, congestion, and loss prices) are jointly determined by the

locational demands and locational generation bids. Even for the same total demand

and same generation bids, the uncertainties of their distribution will affect the price

components significantly.

The impact of locational demand and locational bids on the prices can be illus-

trated using the 6-bus test system built in Matpower. The 6-bus system has three

generators (at Bus 1, 2, 3) and three loads (at Bus 4, 5, 6). All generators are allowed

to submit 5-block bids for every hour. For the basic bidding strategy, the quantity

offer for each block is 20 MW; the price offers of five blocks are 10, 15, 20, 25, 30

$/MWh.
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Table 7.1: Price Components ($/MWh) in 6-Bus Example

Case

No.

Bus 1 Bus 2 Bus 3 Bus 4 Bus 5 Bus 6

Energy price Congestion price

1) 25 -0.91 -0.63 1.11 -0.30 -0.65

2) 29.47 0.58 -27.89 0.17 -1.13 25.92

3) 35 -22.71 -15.71 27.64 -7.38 -16.10

Consider the following 3 scenarios (Scenarios 2 and 3 are modified based on Sce-

nario 1): 1) each load is 70 MW, and each generator has the same basic bidding

strategy; 2) loads at Bus 4 and Bus 5 are 60 MW, and load at Bus 6 is 90 MW;

3) generator at Bus 1 increases the price offers of the 4th block and 5th block to 35

$/MWh and 45 $/MWh, respectively.

In a system, the energy price components for all nodes are identical [9; 101]; the

loss price components are usually much lower compared with the energy and con-

gestion price components. Table 7.1 shows the energy price at Bus 1 (reference bus,

congestion prices are zero) and congestion prices at all the other buses. Table 7.1

shows a slight variation of either the load distribution or bidding strategy can cause

significant variation in LMP components. Therefore, using partial market data with-

out generation bids or improper assumption of fixed bidding behavior is a main source

of price prediction errors.

Chapter 4 and Chapter 5 studied the spatio-temporal correlations among his-

torical LMPs, using the latest public market data. Chapter 5 shows the CLSTM

network’s capability to capture spatial correlations among LMPs, which are highly

related to predicting congestion prices. To further improve price prediction accuracy,

this chapter proposes a two-stage CLSTM approach to learn the implicit correlation
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among energy prices, locational demands, and locational generation bids using his-

torical generation bid data (with several months’ publication delay) during training.

The rest of this chapter is organized as follows. Section II introduces the data

structure for locational market data; Section III proposes the two-stage CLSTM

model for energy price prediction; Section IV verifies the performance of the pro-

posed approach using a 30-bus system and real market data from ISO-NE; Section V

concludes this chapter.

7.2 Market Data Structure

In this section, the general 3-dimensional (3D) data structure proposed in Chap-

ter 4.1 is directly applied to organize historical demand data and price data. The

historical monotonically increasing step-wise bid curves (such as Fig. 7.1) are also

transformed into a similar 3D tensor structure.

7.2.1 Multi-Channel 3D Tensor of Demands and LMPs

Consider a set of publicly available locational demand data and LMP data col-

lected fromN = m×n price nodes for T consecutive hours. According to the historical

market data tensor definition, the historical data set of locational demand and LMP

is organized into a two-channel 3D tensor X ∈ Rm×n×T . Each element xti,j in this

tensor X contains two channels storing demand data and LMP data. X consists of a

sequence of 2D arrays, X = {X1, X2, · · · , XT}.

7.2.2 Multi-Channel 3D Tensor of Generation Bids

Consider a set of locational monotonically increasing step-wise generation bid

curve data collected from M = h×w different price nodes at one hour. Each generator

is allowed to submit b blocks of bids. Let Pk = {p1k, p2k, · · · , pbk} be generation prices
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(in $/MWh) of a generator’s bid, where k ∈ [1,M ], p1k ≤ p2k ≤ · · · ≤ pbk. Let

Qk = {q1k, q2k, · · · , qbk} be generation quantities (in MW) of a generator’s bid. The

locational generation bid data Pk and Qk are published by the system operator with

delay and can be organized into a 3D tensor Y ∈ Rh×w×b as shown in Fig. 7.2.

Figure 7.2: Generation Bids Data Structure.

Each element yvi,j in tensor Y , contains two channels storing price and quan-

tity data and represents vth generation bid block of kth generator (yvi,j = (pvk, q
v
k)),

where v ∈ [1, b]; k = h × (i − 1) + j. Y consists of a sequence of 2D arrays,

Y = {Y 1, Y 2, · · · , Y b}. The correlations among different positions in one 2D ar-

ray Y v, such as yvi−1,j, y
v
i,j and yvi,j−1 in Fig. 7.2, represent the bidding differences

among different generators. The correlations among the same positions at different

2D arrays, such as yv−1i,j , yvi,j and yv+1
i,j in Fig. 7.2, represent bidding strategy of one gen-

erator. The correlations among the same positions at different 3D tensors represent

the bidding strategy differences of one generator at different hours.

7.3 Two-Stage CLSTM Network

Even though published with several months’ delay, bidding characteristics can still

be learned and leveraged to improve price prediction accuracy. This section proposes
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a two-stage CLSTM approach that takes advantage of historical bid data (not up-

to-date due to publication delay) to estimate generation bidding strategies in offline

training and utilizes the trained prediction model with learned generation bidding

strategies to predict energy prices online with the latest public market data.

7.3.1 Formulation of Energy Price Prediction

From the market participants’ perspective, the traditional objective of energy

price prediction is to use available inputs of the OPF model to estimate the outputs

without knowing the characteristics of the OPF model. Let X represent available

historical demand and price data; Let Ẑ and Z denote the predicted energy price and

the ground truth at time step T + 1, respectively. The well-trained predictor should

generate the most likely future price given historical data X , which can maximize

conditional probability as:

Ẑ = arg max
Z̃

p(Z̃ = Z|X ) (7.1)

However, the conditional probability in (7.1) cannot reflect the actual OPF prob-

lem. Let Y(T + 1) in Section II.B denote the ground-truth generation bid data.

According to the formulation of OPF, the predicted price should maximize the fol-

lowing joint conditional probability:

Ẑ = arg max
Z̃

p(Z̃ = Z|XT+1,Y(T + 1)) (7.2)

For example, let a market participant predict the next hour’s prices. The OPF

model is always implicit to the market participant. A well-trained neural network

is desired to mimic the OPF process to maximize conditional probability in (7.2),

working as a black box. This pure data-driven predictor does not require any con-

fidential model information or explore any specific OPF constraints, which are not
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available to market participants. However, system operators can always incorporate

OPF constraints as needed to improve prediction accuracy further. In our proposed

approach, a CLSTM(S2) network is employed to estimate prices based on demands

and bids. According to the market timeline in Fig. 7.3, the latest generation bid

information Y(T + 1) is unknown to market participants in actual prediction (due to

publication delay). Therefore, another well-trained neural network is desired to guess

the potential bids based on historical data. A CLSTM(S1) network is employed to

estimate Ŷ(T + 1) by learning historical bidding characteristics and the correlations

among available historical market data. The most likely bidding strategy estimated

by CLSTM(S1) should maximize following conditional probability, where Y(T + 1)

denotes the ground truth of Ŷ(T + 1):

Ŷ(T + 1) = arg max
Ỹ(T+1)

p(Ỹ(T + 1) = Y(T + 1)|X ) (7.3)

Substituting (7.3) into (7.2), the joint conditional probability maximized in (7.2)

Figure 7.3: Market Timeline and the Overall Framework of Two-stage CLSTM Pre-

diction Approach.
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should be represented as:

p(Z̃|XT+1,X ) = p(Z̃|XT+1, Ŷ(T + 1))p(Ŷ(T + 1)|X ) (7.4)

As shown in Fig. 7.3, during training, all historical market data including demands,

bids, and prices are explicit. The CLSTM(S1) is trained to generate the most likely

estimation of bidding strategy satisfying (7.3); the 2nd-stage network CLSTM(S2)

is trained to generate the most likely prediction of energy price satisfying (7.2). In

actual prediction, the latest historical demands and prices are explicit; the latest

historical bids are implicit to market participants. The CLSTM(S1) takes the past

day’s demand and price data as inputs, and generates an estimated bidding strategy

as output; CLSTM(S2) takes the bidding strategy estimation from the first stage

(output of CLSTM(S1)) and the demand data as inputs to predict future prices, which

maximize the joint conditional probability in (7.4). This offline training approach

allows the predictor to extract bidding strategies from historical generation bidding

data. These learned strategies are utilized in online price prediction to substitute the

latest bidding data which is unavailable.

7.3.2 Convolutional Long Short-Term Memory Network

The CLSTM cell in [89] is adopted for CLSTM(S1); The CLSTM cell is modified

to a conditional cell for CLSTM(S2). Three advantages make CLSTM and condi-

tional CLSTM networks ideal for electricity price prediction: 1) LSTM structure is

designed to learn temporal correlations for sequence forecasting with sequence data

inputs, and the input market data structures in our price prediction are sequences

of 2D arrays as shown in Section II; 2) both demand and generation bid data are

locational data whose spatial correlations should be learned, and the CLSTM net-

work replaces fully connected structures in classical LSTM networks (effective for
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learning temporal characteristics) with convolution operators (effective for learning

spatial characteristics), allowing CLSTM to capture spatio-temporal correlations in

historical data; 3) to mimic OPF process, CLSTM(S2) should take a sequence of bid

data conditioned on one hour’s locational demands, which falls within the general

formulation of conditional CLSTM.

As shown in Fig. 7.4, the CLSTM(S1) runs 24 times to read the past day’s mar-

ket data X = {XT−23, XT−22, · · · , XT−1, XT}. The output of CLSTM(S1) is the

estimated generation bidding strategy Ŷ(T + 1) = {Ŷ 1, Ŷ 2, · · · , Ŷ b}. The internal

structure details of the CLSTM cell are in [89]. CLSTM(S2) contains conditional

Figure 7.4: The Structure of Two-stage CLSTM Predictor.

CLSTM cell as shown in Fig. 7.5 and fully connected layers. The conditional CLSTM

cell runs b times to read bidding strategy Ŷ(T + 1) or Y(T + 1) conditioned on the

locational demands (demand forecast) XT+1 (XT+1 is a single channel 2D array stor-

ing only demand data). The output of CLSTM(S2) is the predicted energy price. In

each running step t (t ≥ 2), conditional CLSTM cell performs following operation:

it = σ(Wxi ∗ Y t +Whi ∗ Ht−1 +Wci ◦ Ct−1 +Wbi ∗XT+1) (7.5)

ft = σ(Wxf ∗ Y t +Whf ∗ Ht−1 +Wcf ◦ Ct−1 +Wbf ∗XT+1) (7.6)

ot = σ(Wxo ∗ Y t +Who ∗ Ht−1 +Wco ◦ Ct−1 +Wbo ∗XT+1) (7.7)
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Figure 7.5: Conditional CLSTM Cell.

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Y t +Whc ∗ Ht−1 +Wbc ∗XT+1) (7.8)

Ht = ot ◦ tanh(Ct) (7.9)

where ∗, ◦, σ(·) denotes the convolution operator, Hadamard product, and sigmoid

activation function, respectively; it, ft, ot are internal gates for CLSTM cell; the

weight matrices Wxj, Whj, Wbj (with j ∈ {i, f, c, o}), Wcj (with j ∈ {i, f, o}) are

learnable parameters to be optimized in training. As shown in Figure ??, in the

vth(v ≥ 2) step, CLSTM(S2) takes three sets of inputs: 1) the 2D estimated locational

bids of vth block, Ŷ v; 2) the hidden state array Hv−1 and output array Cv−1 from

previous step; 3) locational demand data. The convolution operations Wbj ∗ XT+1

(with j ∈ {i, f, c, o}) in (7.5)-(7.8) make CLSTM(S2) conditioned on the demand

data in each step.
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7.3.3 Loss Functions

During batch training, learnable parameters in CLSTM(S2) are optimized by mini-

mizing mean absolute percentage error (MAPE) [103] as MAPE = 1
M

∑M
i=1(
∣∣∣Pi−P̂i

Pi

∣∣∣),
where M is the batch size, P̂i denotes the predicted price; Pi denotes the ground

truth. The CLSTM(S1) is trained through minimizing the following loss function:

L2(Ŷ ,Y) = 1
b

∑b
i=1

∥∥∥Ŷ i − Y i
∥∥∥2
2
, where ‖·‖2 denotes the entry-wise 2-norm of a 2D

array. The selection of loss function in training will significantly affect the final pre-

diction accuracy of spatial-temporal correlated data. In Chapter 4.1, a multi-loss

function is designed for the learning of spatial-temporal correlated data, and will be

applied to the proposed model in future work.

7.4 Case Study

The proposed model is verified on an IEEE 30-bus system. To illustrate the

proposed approach’s capability to learn the correlations among prices, locational de-

mands, and locational generation bids in the real-world market, the training and

testing data are mapped from historical market data in ISO-NE.

7.4.1 30-bus System

System Configuration

Most of the system settings, such as bus and branch parameters, load locations,

generator locations, and limits, follow the 30-bus system in [104].

Generation

6 generators are located at 6 buses, with a total generation capacity of 335MW.

Since ISO-NE allows each generator to submit hourly 10-block generation bids, the
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generation costs in this system are set as 10-step piece-wise linear functions, linearly

mapped from historical bid data of 6 generators from ISO-NE real-time market in

2019.

Load

In this system, there are 20 fixed loads, with a total system load of 189.2 MW in

the benchmark load profile. An hourly locational load profile including 20 locational

demands from ISO-NE real-time and day-ahead markets in 2019, is used to map

the benchmark load profile to a one-year hourly real-time locational load profile as

follows,

L̃i(t) =
Li(t)

LT (t)
[0.5 + (

LT (t)− Lmin
Lmax − Lmin

)(1.5− 0.5)]× 189.2MW (7.10)

where L̃i(t) (with i ∈ [1, 20], t ∈ [1, 8760]) denotes the ith load at hour t of the

30-bus system; Li(t) denotes the ith load at hour t collected from ISO-NE; LT (t) =∑20
i=1 Li(t); Lmin = min(LT (t)),∀t ∈ [1, 8760]; Lmax = max(LT (t)),∀t ∈ [1, 8760].

OPF Simulation

With hourly real-time generation cost and load profile, Matpower solves OPF to

derive hourly real-time LMPs at all buses. LMPs are decomposed into energy price,

congestion price, and loss price components based on reference Bus 1.

7.4.2 Test Case Description

Historical generation bids, locational demands, and corresponding prices are di-

vided into training and testing data sets by a ratio of 8 : 2. In training, CLSTM(S1)

takes historical 2-channel 3D tensor X ∈ R4×5×24 of past 24-hour market data

to estimate next-hour generation bids Ŷ ∈ R2×3×10; CLSTM(S2) takes 3D tensor

Y ∈ R2×3×10 conditioned on 2D array of locational demands X ∈ R4×5 to predict
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the next-hour energy price. In testing, CLSTM(S2) takes Ŷ ∈ R2×3×10 estimated

by CLSTM(S1) to predict future energy price. The classic CLSTM model and other

popular data-driven approaches, such as standard fully connected neural network

(FCNN), SVM, and SDA [77], are implemented as benchmark models. Because all

these benchmark models are designed to predict LMPs without considering incorpo-

rating historical generation bid data, they only take historical prices and locational

demands as inputs. To make a fair comparison, a two-stage fully connected neu-

ral network (2SFCNN) is implemented. The 2SFCNN model replaces the CLSTM

structures in the proposed approach with two fully connected neural networks. The

2SFCNN and our proposed model take identical training inputs including historical

generation bids.

7.4.3 Neural Network Architecture and Configurations

The proposed model is implemented with Tensorflow 2.0 [76] and trained using

online GPU on Google Colaboratory [105]. The architecture details of CLSTM(S1)

and CLSTM(S2) are listed in Table 7.2, where ‘ConvLSTM2D’ denotes the con-

volutional layer with CLSTM cells; ‘Conv3DTranspose’ denotes the convolutional

transpose layer; ‘Conv3D’ denotes the convolutional layer; ‘Flatten’ denotes the op-

eration of flatting the input, and ‘Dense’ denotes the fully connected layer. The

‘ConvLSTM2D’ layers in CLSTM(S2) are customized with a standard convolutional

layer with CLSTM cells, and extra convolutional operations, such that the condi-

tional CLSTM operations in (7.5)-(7.9) are implemented. All the ‘ConvLSTM2D’,

‘Conv3D’, and ‘Conv3DTranspose’ layers are followed by batch normalization lay-

ers and ReLU units. All ‘ConvLSTM2D’ layers accept channel − last data format

and sigmoid recurrent activation functions. The standard stochastic gradient descent

(SGD) optimizer is utilized for the training of CLSTM(S1) and CLSTM(S2). In the
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Table 7.2: Neural Network Architecture Details

Layers CLSTM(S1) CLSTM(S2)

(Layer Type, Feature Map) (Layer Type, Feature Map)

Input 24× 4× 5 2× 3× 10, 4× 5

Layer 1 ConvLSTM2D, 128 ConvLSTM2D, 128

Layer 2 ConvLSTM2D, 256 Conv3DTranspose, 256

Layer 3 Conv3D, 128 Flatten

Layer 4 Conv3DTranspose, 64 Dense, 512

Layer 5 Conv3DTranspose, 10 Dense, 1

Output 2× 3× 10 Predicted energy price

training process, the minibatch size is 4 for both CLSTM(S1) and CLSTM(S2).

7.4.4 Case Study Results

The proposed two-stage CLSTM model and all other benchmark models are tested

on the same data set including only historical demand and price data (without the

delayed bidding data). Fig. 7.6 shows hourly energy prices predicted by the two-

stage CLSTM model and the ground truth during one week. The predicted energy

prices successfully follow the actual prices. The proposed approach is able to accu-

rately estimate generator bidding behavior using historical market data and mimic

the OPF solutions. However, there is still an obvious mismatch of the price spike in

Fig. 7.6. This is caused by an estimation mismatch of unusual bidding strategies. In

operating days with contingencies or extreme weather, market participants intend to

arbitrage by manipulating real-time generation bids, which are difficult to estimate

using historical data.
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Figure 7.6: Ground-truth and Predicted Energy Price of One Week.

The MAPEs of all tested models are compared in Table 7.3. The proposed model

(with a MAPE of 8.03%) outperforms the state-of-the-art SDA forecasting model

(with a MAPE of 11.15%) and all other benchmark models. Utilizing historical bid

data (with publication delay) in training, the two-stage CLSTM model can improve

prediction accuracy significantly. Compared with the FCNN model without using

historical generation bid data in training, the 2SFCNN model achieves limited im-

provement (6.9%) by incorporating historical generation bid data. Following the same

workflow, the proposed model improves accuracy by 39.7% compared to the MAPE of

2SFCNN, which demonstrates the conditional CLSTM’s capability to learn sequen-

tial locational market data. The prediction accuracy of CLSTM(S2) depends on the

accuracy of bidding strategy estimation from CLSTM(S1). Let CLSTM(S2) predict

energy prices using ground-truth bids, instead of estimations made by CLSTM(S1),

the prediction accuracy is 6.09% (improved by 24.16% compared to MAPE of 8.03%

in Table 7.3).
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Table 7.3: Energy Price Prediction Errors

Model Classic

CLSTM

FCNN SVM SDA 2SFCNN Two-stage

CLSTM

MAPE(%) 12.23 14.29 15.61 11.15 13.31 8.03

7.5 Conclusions

This chapter proposes a two-stage CLSTM approach to predict energy prices from

market participants’ perspective. This approach takes advantage of historical gener-

ation bid data published with months’ delay in the training process to learn implicit

correlations among prices, demands, and bids. The well-trained model predicts energy

prices accurately using only the latest available market data. In the case study using

the IEEE 30-bus system and ISO-NE’s historical market data, the proposed model

successfully captures weekly energy price characteristics and outperforms other ap-

proaches.
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Chapter 8

CONCLUSION AND FUTURE WORK

This dissertation proposes a general 3D tensor structure to organize system-wide het-

erogeneous market data streams, which store the spatio-temporal correlations. This

general data structure is flexible for prediction problems with different time horizons.

Data-driven LMP prediction approaches are developed from the market participants’

perspective. A GAN-based approach is proposed to predict system-wide LMPs. The

RTLMP prediction problem is formulated as a 2D array prediction problem and

solved using the proposed deep convolutional GAN model with multiple loss func-

tions. The prediction accuracy is improved by an ARMA calibration approach to

mitigate deviations caused by variation/uncertainty of generation bids. To further

improve forecasting accuracy, a CLSTM-based GAN is proposed to forecast LMPs

from market participants’ perspective. The LMP forecasting problem is formulated as

a spatio-temporal sequence-to-sequence forecasting problem. Considering the gener-

ation bidding’s effect on the market clearing process, an ST-DT approach is proposed

to learn the sequential decision-making and forecast RTLMPs. To incorporate his-

torical generation bids into price prediction from market participants’ perspective,

a two-stage CLSTM approach is proposed. Historical generation bids are organized

into a 3D tensor and taken as the output of the first stage and input of the sec-

ond stage in the training process. The implicit correlation among locational bids,

demands, and energy prices is learned to improve price forecasting accuracy. Case

studies using real-world historical market data from ISO-NE, SPP, and MISO verify

the performance of the proposed data-driven approaches for both point-by-point price

prediction accuracy and accuracy of capturing spatial correlations among prices at
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different locations.

Even though the proposed prediction approaches have comparable performance

compared to the state-of-the-art industrial benchmark, and have significant improve-

ment compared to the existing prediction methods which also use public market data

only, the prediction error should be reduced further. As shown in the study cases,

several spikes are missed, which contribute most to the prediction errors. Future work

could focus on price spikes prediction by incorporating additional public contingency

data and market participants’ strategic behaviors. One potential area of exploration

includes predicting the energy price component of LMP by learning the total supply-

demand balance. The congestion price component and loss price component may be

predicted by other spatial learning methods. The final spatio-temporal correlated

nodal LMPs can be assembled based on these three individual price components. Be-

cause the LMPs are a consequence of generators’ strategic bidding behaviors, which

are considered the result of a decision-making process based on the knowledge of his-

torical market data and current fuel prices, another potential area of exploration is

to construct the two-stage approach using two decision transformers. The first stage

decision transformer could be responsible for the generator’s strategic bidding behav-

ior learning. The second stage decision transformer could be responsible for learning

the approximation of an optimization problem.
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