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ABSTRACT 

 This dissertation reports on three studies about students’ conceptions and learning 

of the idea of instantaneous rate of change. The first study investigated 25 students’ 

conceptions of the idea of instantaneous rate of change. The second study proposes a 

hypothetical learning trajectory, based on the literature and results from the first study, 

for learning the idea of instantaneous rate of change. The third study investigated two 

students’ thinking and learning in the context of a sequence of five exploratory teaching 

interviews. 

 The first paper reports on the results of conducting clinical interviews with 25 

students. The results revealed the diverse conceptions that Calculus students have about 

the value of a derivative at a given input value. The results also suggest that students’ 

interpretation of the value of a rate of change is related to their use of covariational 

reasoning when considering how two quantities’ values vary together. 

 The second paper presents a conceptual analysis on the ways of thinking needed 

to develop a productive understanding of instantaneous rate of change. This conceptual 

analysis includes an ordered list of understandings and reasoning abilities that I 

hypothesize to be essential for understanding the idea of instantaneous rate of change. 

This paper also includes a sequence of tasks and questions I designed to support students 

in developing the ways of thinking and meanings described in my conceptual analysis. 

 The third paper reports on the results of five exploratory teaching interviews that 

leveraged my hypothetical learning trajectory from the second paper. The results of this 

teaching experiment indicate that developing a coherent understanding of rate of change 

using quantitative reasoning can foster advances in students’ understanding of 
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instantaneous rate of change as a constant rate of change over an arbitrarily small input 

interval of a function’s domain. 
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CHAPTER 1 

INTRODUCTION & PROBLEM STATEMENT 

This manuscript reports on the results of three studies that investigated 

undergraduate students’ conceptions and learning of instantaneous rate of change in a 

Calculus course. The goals of these studies were to: (1) characterize students’ 

understandings of instantaneous rate of change; and (2) hypothesize a learning trajectory 

for student construction of a productive understanding of instantaneous rate of change. 

This study achieves these goals by employing clinical interviews (1) and a teaching 

experiment (2). 

Calculus is the mathematics of how quantities change. In particular, the main idea 

of Calculus 1 can be productively summed up as “You know how much of a quantity you 

have at all times and want to know how fast that quantity is changing at all times.” From 

as early as the ancient Egyptians (Kline, 1990) to Isaac Newton (one of the many people 

credited with inventing Calculus), philosophers struggled to comprehend the nature of 

motion. The idea of motion seemed like a paradox: if, at any particular moment, zero 

time elapses (and therefore, at any particular moment an object does not move), then how 

is motion possible? The creation of Calculus offered a set of tools for addressing this 

paradox by mathematizing continuous change. For Newton, he wanted to describe the 

speed of a falling object. However, he knew of no existing mathematical explanation for 

why a falling object’s speed increases every second. On his journey in formulating the 

laws of motion, Newton developed the idea of Calculus and its focus on rate of change 

(Calinger, 1999). 
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Since Newton’s time, Calculus’s applications have been integral in the realm of 

mathematics, physics, engineering, and more. Engineering draws heavily on Calculus 

because engineers need to model quantities and analyze how they change together. For 

example, civil engineers often deal with fluid mechanics that model how fluids behave in 

motion. Mechanical engineers often use Calculus via Newton’s law of cooling in HVAC 

design (Heating, ventilation, and air conditioning). In the social sciences, Calculus is used 

to make economic predictions, characterize trends in birth/death rates, and predict 

patterns in disease outbreaks. Many fields rely on Calculus as a tool for describing 

quantitative relationships between covarying quantities. As a result, Calculus is often 

characterized as a gateway to pursuing degrees in the sciences, making it crucial that 

Calculus is accessible and meaningful to students. 

Despite the importance of Calculus in STEM fields, researchers have shown that 

even high-performing students demonstrate impoverished understandings of key Calculus 

concepts (Selden et al., 2000; Carlson et al., 2002). Recent studies have shown that the 

workforce demand for STEM majors has been increasing since 1971, yet the number of 

STEM majors has not increased in response to the increase in demand (Carnevale et al., 

2011; Hurtado et al., 2010). Ellis et al. (2014) argue that a 10% increase in the current 

number of STEM majors is needed to meet the workforce demands; otherwise, there may 

be economic implications. According to the Higher Education Research Institute, less 

than 40% of STEM majors complete their degree (Hurtado et al., 2010), and Calculus is 

often cited as the reason for losing these STEM majors (Seymour & Hewitt, 1997; 

Seymour, 2006). This is not a new problem, as Calculus has long been cited as a filter 

course (Steen, 1988). In recent years, researchers have analyzed student demographics of 
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Calculus courses (Rasmussen et al., 2013; Ellis et al., 2013), the characteristics of 

successful Calculus Programs at universities across the United States (Törner et al., 2014; 

Bressoud et al., 2012; Bressoud et al., 2013; Bressoud et al., 2015; Apkarian et al., 2017), 

and effects of the composition of the faculty on student retention and classroom culture in 

Calculus courses (Reed-Rhoads et al., 2005; Robst et al., 1998; Bressoud et al., 2012). 

These studies reveal that many factors contribute to the success of a Calculus program, 

such as usage of active-learning strategies, coordination of instruction, having a diverse 

faculty, and engaging course content. The findings from these studies portray a holistic 

picture of the multi-faceted issues that impact Calculus education in the United States. 

The teaching of Calculus is also an often-cited reason for STEM majors switching 

out of their majors. Seymour and Hewitt (1997) found that students in the U.S. who left 

STEM degrees attribute their departure to the emphasis on rote memorization of 

procedures rather than conceptual understanding. A decade later, Seymour (2006) 

reported that students are continuing to leave STEM majors because of lackluster 

instruction in their mathematics courses, with Calculus as the main cited course. 

Rasmussen and Ellis (2013) extended this finding in their reporting that students’ 

decision to not move onto Calculus 2 was due to the difficulties and overall negative 

experiences they encountered when taking Calculus 1. Conversely, the authors reported 

that STEM Calculus students who experienced engaging pedagogy had better persistence 

through the Calculus sequence. The teaching of Calculus is not the only contributing 

factor to STEM persistence. Other studies have analyzed the effects of homework types 

(Ellis et al., 2015; Lenz, 2010; Halcrow & Dunnigan, 2012), the impact of Calculus 

course variation types (e.g., Calculus for Engineering, Brief Calculus, and Calculus with 
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Analytic Geometry) on DFW rates (“D,” “F,” and Withdrawal) (Rasmussen & Ellis, 

2013; Voigt et al., 2017), and student placement into mathematics courses (Rasmussen et 

al., 2014). 

Due to the staggering number of STEM majors dropping out and other findings 

that the learning of Calculus is complex, mathematics research educators have studied 

different aspects of the learning and teaching of Calculus to improve Calculus education. 

According to Rasmussen et al. (2014), research on Calculus has followed a pattern of (1) 

identifying student difficulties, (2) investigating how students learn particular concepts, 

(3) classroom studies that investigate the effects of curricular or pedagogical innovations 

on student learning and (4) research on teacher knowledge. According to the authors, no 

single research endeavor can be expected to solve Calculus education issues; instead, the 

authors suggest that research should build upon each other to build knowledge and 

inform practice. 

Following the research pattern identified by Rasmussen et al., this manuscript 

involves three papers focused on one topic of Calculus (instantaneous rate of change) by 

building upon existing work and addressing gaps in the research literature. These papers 

focus on the learning and teaching of derivative as instantaneous rate of change. 

Derivatives as instantaneous rate of change are a key concept in Calculus, yet the 

literature reveals that the learning of derivative is difficult (Zandieh, 2000; Oehrtman, 

2002; Monk, 1994; Park, 2013; Ubuz, 2007; Yu, 2020).  

A derivative in Calculus describes how one quantity changes with respect to 

another quantity [See CONCEPTUAL ANALYSIS for further explanation]. It then 

follows that the idea of derivative is relevant for STEM majors, particularly those 
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studying physics and engineering. Many physics applications require the use of the idea 

of derivative, including thermodynamics, electromagnetism, modeling vibrations for 

mechanics, and fluid dynamics. Since the derivative concept is used in so many diverse 

applications in mathematics, science, and engineering, it follows that building a 

productive meaning for derivative should be a primary concern. 

One of the seemingly paradoxical issues that students have to resolve is 

interpreting the derivative at a given input value (e.g., 𝑓′(3) = 7) as regarding a single 

instance (at the input of 3), yet derivatives are about change, so how can you talk about 

change if only one instance is involved? If Isaac Newton, one of the inventors of 

Calculus, struggled to comprehend how an object could be moving when no time was 

passing, then it is not surprising that students will also find this idea to be challenging. 

Furthermore, students are often introduced to function as a correspondence (Sfard, 1992) 

and see one input mapped to one output. It should be natural then that as this notion is 

rarely challenged, students’ conception of function has the property of being concerned 

with a single value. This conception of function is likely hindering students from 

conceptualizing a derivative function with an image of quantities changing dynamically. 

Typical teaching of derivative involves a sliding secant line receding to a tangent line. 

However, despite this imagery of motion, Zandieh and Knapp (2006) indicated that 

students tend to recall the finished static product of the tangent line rather than the 

dynamics of considering smaller and smaller input intervals. Zandieh (2000) also noted 

that students hold multiple disconnected meanings about the idea of derivative. For 

example, a student may say that a derivative is the slope of a tangent line or an 

instantaneous rate of change but may fail to see the connections between these ideas. 
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While students may associate the words “instantaneous rate of change” with 

derivative, researchers have shown that students have impoverished meanings for rate of 

change (Byerley et al., 2012; Thompson, 1994; Rasmussen & King, 2000; Castillo-

Garsow, 2010). Rate of change is a crucial topic in higher mathematical courses as well 

as engineering courses. However, researchers have observed that students are exiting 

Calculus with weak meanings for the idea of rate of change. Rasmussen and King (2000) 

reported that students in a differential equations course conflated the number of fish in a 

pond with the rate of change of the number of fish in the pond with respect to the time 

elapsed. Prince et al. (2012) reported that their engineering students struggled to 

distinguish a rate of heat transfer with an amount of heat transfer. Flynn et al. (2018) 

reported that their engineering students confused rate of change and accumulation 

processes when engaging in hydrology contexts. Ibrahim and Robello (2012) indicated 

that even when students demonstrated a strong understanding of rate of change in motion 

contexts, these understandings did not transfer in non-motion contexts such as work (The 

physics term of a measure of energy transfer). These studies reveal that having a robust 

understanding of rate of change is vital for STEM majors and that the current Calculus 

curriculum in the US is not effective in supporting students in building productive 

meanings for rate of change. 

With these concerns in mind, this manuscript reports on three studies organized 

around the learning and teaching of derivative as an instantaneous rate of change. The 

papers follow a logical progression that mimics the first two steps of the research pattern 

indicated by Rasmussen et al. (2014). First, I describe students’ current understandings of 

instantaneous rate of change and how they reason covariationally. Next, based on the first 
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study’s results and literature on the learning of derivative, I articulate a productive 

meaning for instantaneous rate of change by explaining the mathematical concepts and 

foundational ways of reasoning involved. Finally, I provide results from a teaching 

experiment (Steffe & Thompson, 2000) that describes how students’ understanding of 

rate of change shifted throughout the instructional sequence.  

The studies described in this manuscript differ from other existing studies by 

demonstrating the impact of students’ meanings for rate of change on how they reason 

covariationally and how that relates to students’ interpretation of the derivative at a given 

input value (Paper 1). The findings of the first paper indicate that the current 

covariational reasoning framework proposed by Carlson et al. (2002) does not fully 

capture the ways in which students imagine two quantities’ values as covarying, nor does 

it explain how a student might interpret the value of a rate of change. The first study's 

findings contribute to the field by providing new insights into students’ covariational 

reasoning and why individual students might reason at a particular level. 

The second study provides a Hypothetical Learning Trajectory on the idea of 

derivative as instantaneous rate of change, focusing on quantitative and covariational 

reasoning. This study differs from other teaching studies (e.g., Ely & Samuels, 2019; 

Soares & Borba, 2014; Jones & Watson, 2017) by supporting students in reasoning 

quantitatively about what a rate of change measures about a situation. The third study 

employs this Hypothetical Learning Trajectory in the context of a teaching experiment to 

track how individual students’ meaning for rate of change shift throughout each teaching 

session. The findings of this study provide qualitative data that support the claim that 

helping students build a coherent understand of rate of change is beneficial to developing 
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a meaning for derivative as instantaneous rate of change. Additionally, this study’s 

findings implicate that students engaging with an applet that can provide a visual 

demonstration of their mathematical symbolization can aid them in developing fluency in 

using mathematical symbols and operations to represent the quantities they imagine. 

Before addressing my research questions for each paper, I will describe my 

theoretical perspective and present my review of the current literature on the learning and 

teaching of derivative. 
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CHAPTER 2 

THEORETICAL PERSPECTIVE 

According to Cobb (2007), mathematics education can be productively interpreted 

“as a design science, the collective mission of which involves developing, testing, and 

revising conjectured designs for supporting envisioned learning processes” (p. 3). 

However, learning processes are not always concerned with just individual students. It 

could also concern classroom communities or school districts. Thompson (1991) argues 

then that a researcher’s choice of theory informs the grain size of analysis and the types 

of questions the researcher is interested in and is able to pursue. Therefore, making 

salient our theoretical perspective helps others understand the theories we put forth and 

the rationale of our choices. Differing perspectives offer different interests to those 

researching mathematics education. Cobb (2007) suggested that as researchers, we should 

become “pragmatic realists” and attend to the utility that each theoretical perspective 

offers rather than view them as superior to another. 

The studies presented in this manuscript focus on students’ meaning for and the 

learning of the idea of derivative, emphasizing individual students’ cognitive activity. 

Cobb (2007) explained that cognitive psychology theories account for differences in 

individual students’ reasoning and are used to model and explain students’ mathematical 

actions. This perspective places individuals’ reasoning as the focus rather than 

considering the collective of students and their social interactions. Taking a cognitive 

perspective then informs the researcher’s grain of analysis focuses on understanding an 

individual’s learning. As such, I adopt a cognitive perspective due to my research interest 

in individual student thinking and learning. 
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Radical Constructivism 

This section describes my theoretical perspective for this study, Radical 

Constructivism (Glasersfeld, 1995), and explains the theoretical assumptions that stem 

from this stance. Radical Constructivism is an epistemological theory that describes a 

way of knowing and learning based on Piaget’s (1971) Genetic Epistemology. In 

particular, Radical Constructivism articulates how an individual comes to know 

something and characterizes what that knowledge consists of. An individual’s knowledge 

does not consist of a direct representation of something called “Reality.” Instead, it is a 

set of schemes that become more viable through the individual’s experiences.  

Knowledge arises from a need for equilibration (Piaget & Inhelder, 1969), which 

is the self-regulatory process by which individuals adapt to external stimuli. One 

mechanism for this adaptation is called assimilation, which is the process in which an 

individual attempts to fit an experience by recognizing features that are analogous to 

previous experiences. Glasersfeld (1995) clarifies that assimilation is treating a new 

experience “as an instance of something known” (p. 62). 

Constructivists argue that individuals cannot come to know an objective 

“Reality”; instead, individuals construct their own reality through their experiences. 

Piaget (1971) posits that cognition is the tool for adaption in which an individual interacts 

with their conceptual model of reality by continually fitting stimulus to their previous 

experiences. For example, suppose an individual experiences something they may term as 

“eating a cherry pie.” In that case, it is because their mind has constructed knowledge 

about “eating a cherry pie” based on that individual’s previous experiences. It is only 

through the individual’s knowledge, perhaps supported by their sight, smell, and taste, 
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that what the individual is experiencing is consistent with previously perceived 

experiences of “eating a cherry pie.” 

Since Radical Constructivists take the stance that verifying an objective “Reality” 

is impossible, they instead characterize knowledge in terms of its viability (Glasersfeld, 

1995). We can evaluate knowledge as being more viable if the outcomes of the 

individual’s actions produce anticipated results. If an unanticipated outcome occurs, an 

individual has likely failed to assimilate an experience which would likely cause that 

individual to be in a state of disequilibrium. The individual can then reflect on their 

actions and the associated outcome and then adapt their knowledge to better match their 

experience, making their knowledge more viable. For example, if an individual perceived 

through their sight and smell that they were experiencing a “cherry pie,” they would 

expect to taste something that resembles their previous taste experiences. However, if 

they bite into the pie and taste something that they perceive to be an “apple,” the 

individual may adapt their perception of the “pie.” 

The tenet that knowledge lies in an individual’s mind rather than in the outside 

world has clear implications in the realm of mathematics education. One implication is 

that the words and symbols that an individual perceives do not inherently contain 

information. Instead, an individual attributes an interpretation based on their previous 

experiences. For example, one student may think about “multiplication” as a number of 

objects in equally sized groups such as “3 ∗ 4” as 3 groups of 4 (or vice versa). Another 

student may be thinking about “multiplication” as the relative size between 2 quantities 

such as “3 ∗ 4” as measuring out a unit of 3, 4 times such that the new quantity is 4 times 

as large as the unit of 3. 
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Choosing the Radical Constructivist perspective has clear implications on the 

researcher’s view of data collection and analysis and the researcher’s role in this process. 

Since knowledge is constructed in an individual’s mind, it cannot be directly accessed by 

another. If we could simply access someone else’s knowledge, there would be little need 

for research into how someone learns. Instead, researchers attempt to form an explanatory 

model of students’ thinking about mathematical ideas (Steffe & Thompson, 2000). The 

purpose of building the model is to explain why students produce the responses that they 

do. A model is considered viable when the student’s utterances, produced work, and 

actions are explained by the model. Additionally, these models can predict how a student 

may respond when given a situation and can reveal the difficulties that students face 

when learning a particular concept. By developing models of students’ mathematics, we 

can have in mind the potential ways that other students may be reasoning about a 

concept. These models can then serve as a guide for teaching or curricular design to help 

students construct productive meanings for a mathematical concept. 

Taking the Radical Constructivist stance also informs the types of research 

questions that I investigate for the learning and teaching of instantaneous rate of change. 

For example, Paper One investigates students’ interpretations of the derivative evaluated 

at a given input value. By taking the Radical Constructivist perspective, I assume that the 

understanding I have for derivative may differ from my subjects. Therefore my research 

goal is to characterize students’ interpretations by building models of their thinking. 

Further, analyzing my data would then involve testing and refining these models by 

analyzing students’ utterances and produced work. In each paper’s individual sections, I 
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will elucidate the methodology and data analysis informed by taking a Radical 

Constructivist perspective. 

In the following sections, I explain two other theoretical frameworks that have 

guided my thinking and framed how I analyzed my data. 

Quantitative Reasoning 

Smith and Thompson’s (2007) theory of quantitative reasoning examines the 

thinking involved in conceptualizing a situation and its quantities. Thompson (1990) 

defines quantitative reasoning as analyzing a situation in terms of quantities and the 

relationships among them. A quantity is a conceived attribute of an object that an 

individual envisions having a measurement. Thompson (2011) defines quantification as 

the process by which one assigns numerical values to an attribute they have 

conceptualized. Additionally, quantification entails a unit of measure and the attribute’s 

measure being in a proportional relationship with that unit. Thompson argues that for an 

individual to conceptualize a quantity, the individual must have an image of an object and 

attributes of the object that can be measured. 

I leverage quantitative reasoning to i) examine how students are reasoning about 

quantities changing (Paper 1), ii) describe a productive meaning for instantaneous rate of 

change in terms of reasoning about quantities varying (Paper 2), iii) to inform the design 

of an instructional intervention to support student learning about instantaneous rate of 

change (Paper 3). 

Piaget (1952) classifies two kinds of quantities, intensive and extensive. Nunes et 

al. (2003) elaborate on Piaget’s idea and define intensive quantities as “quantities that are 

measured by a relation between two variables” (p. 652). Extensive quantities are 
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measured by one number that expresses the number of times the measurement unit can be 

applied to the quantity. For example, when we say that a person is 5.7 feet tall, we mean 

that the unit of measurement, foot, can be applied 5.7 times to the person’s height. To 

Piaget (1952), this 5.7 feet would be the numerical value of the extensive quantity of 

height since it is a quantity that is “susceptible to actual addition.” By comparison, an 

intensive quantity usually measures the intensity of a relationship between 2 quantities. 

For example, if another person was 4.9 feet tall (another extensive quantity), we could 

measure the ratio between the 5.7-foot-tall person with the 4.9-foot-tall person and obtain 

a ratio of  
5.7

4.9
≈ 1.163. This ratio is an intensive quantity because it measures a 

relationship between 2 quantities and is not susceptible to addition. Adding two ratios 

together would not accurately yield a new third ratio. I hastily add that the criterion for an 

intensive quantity is not whether you can add quantities together; instead, the primary 

importance is that an intensive quantity is conceived by comparing 2 quantities. This 

notion of an intensive quantity is akin to what Thompson (1990) called a quantitative 

operation, which is the “conception of two quantities being taken to produce a new 

quantity” (p. 9). The distinction to note is that some quantities are conceived by 

considering a relationship between 2 quantities, such as a difference representing the 

additive comparison between 2 values of a quantity. Researchers have shown that 

conceiving of intensive quantities is difficult due to several factors, such as students 

relying on perceptual reasoning rather than actively comparing 2 quantities (Singer et al., 

1997) or the lack of classroom experiences to connect intensive quantities with numbers 

(Nunes et al., 2003).  



  15 

In particular to my research, derivatives are about rate of change which is a 

multiplicative comparison between 2 varying quantities. It should be clear then that a rate 

is an intensive quantity, and thus one of the potential issues in the learning of derivative 

may be due to students’ failure to conceive of a rate as a comparison of 2 quantities. 

Thus, each of the papers focuses on discussing rate of change as a multiplicative 

comparison as fundamental to learning derivative productively. 

Covariational Reasoning 

When conceptualizing a situation, a student may imagine the situation as 

composed of quantities, but they may also be attentive to how the quantities change 

together. A student may then coordinate the two quantities’ variations, which some 

researchers term as engaging in covariational reasoning. 

To be clear, I use the term “imagine” to mean more than having a visual image. 

Rather, when an individual “imagines” they engage in the act of re-presentation 

(Glasersfeld, 1991), where the individual recalls an experience which may include an 

image, thought, action, or interpretation. 

Covariational reasoning as a theoretical construct is used to explain how someone 

conceptualizes two quantities changing. However, there is some disagreement over what 

covariational reasoning entails. Confrey (1991,1992) characterized covariation as 

coordinating two variables’ values as they change. Confrey & Smith (1994) emphasized 

that covariation involved seeing a function as the juxtaposition of two sequences and 

generating a correspondence rule. Thompson (1993) characterized covariation as 

conceptualizing individual quantities’ values as varying and then conceptualizing two or 

more quantities as varying simultaneously. Thompson’s characterization was an 
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extension of his quantitative reasoning framework where he was concerned with ways 

students might conceive of situations as composed of quantities and relationships among 

quantities whose values vary and the ways students conceive of rate of change 

(Thompson, 1993). Carlson (1998) conducted a cross-sectional investigation of College 

Algebra and Calculus 2 students that included tasks prompting the students to construct a 

graph to represent how the values of two quantities change together in a dynamic event. 

From this, Carlson et al. (2002) developed a covariation framework that specified the 

mental actions and reasoning students used to make sense of how quantities change 

together in dynamic non-linear contexts. Unlike the Confrey and Thompson 

characterizations of covariation, the Carlson et al. (2002) framework characterized how 

students reasoned about the rate of change of one quantity with respect to another over 

successive fixed intervals of change in the independent variable. I leverage the Carlson 

and Thompson definition since it better aligns with the perspective of how someone is 

reasoning about quantities (Carlson et al., 2002; Thompson & Carlson, 2017). In 

particular, I will be using the Carlson et al., (2002) framework over the Thompson and 

Carlson (2017) framework since the former entails the mental actions an individual 

engages in rather than the how they envision how quantities change (if it is smooth or 

chunky). 

The beginnings of covariation reasoning first require the mental action of 

associating two quantities together. For example, an individual may note that in one 

instance, the height of water in a water bottle is 5 inches tall; they may also observe that 

in the same instance, the amount of water in the water bottle is 13 fluid ounces. To 

associate these two quantities together, the individual couples them as exemplified by the 
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statement, “When the water’s height is 5 inches tall, the amount of water in the water 

bottle is 13 fluid ounces”. When someone has linked together two attributes into a 

singular object, they have constructed a multiplicative object, an object that 

simultaneously combines the attributes of 2 conceived quantities (Saldanha & Thompson, 

1998; Thompson, 2011). An example of the construction of a multiplicative object in 

mathematics is when an individual perceives an ordered pair (𝑥, 𝑦) as a single object that 

simultaneously represents the values of the variables 𝑥 and 𝑦. Higher-level covariational 

reasoning involves linking two quantities as they continuously vary by coordinating how 

one quantity changes with continuous changes in another quantity. 

In Carlson et al.’s (2002) framework (Figure 1), the authors provide descriptions 

of the mental actions that students might evidence in coordinating how two quantities 

change. The top-level of this framework, Mental Action 5 (MA5), describes someone 

coordinating the instantaneous rate of change of a function with continuous changes in 

Figure 1: Carlson et al.'s Covariation Framework 
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the input variable. A student engaging in MA5 coordinates how two quantities change 

together, including an awareness that the instantaneous rate of change comes from 

choosing smaller and smaller intervals in calculating average rates of change around a 

particular input value. This way of thinking about instantaneous rate of change is similar 

to how students are often introduced to the derivative at a point through the limit 

definition of derivative with receding secants lines (whose slopes represent average rates 

of change). MA5 also describes how someone is coordinating changes in two quantities 

over a function’s domain and thus, students exhibiting this thinking can reason about 

inflection points and how/where the rate of change changes. 

One part that is absent in this framework is how students interpret the value of a 

rate of change. It is not abundantly apparent in Carlson et al.’s framework how a student 

would reason about what it means for a car’s speedometer to read 43 miles per hour at a 

particular time (instantaneous rate of change). In Carlson et al.’s study, one of the tasks 

the researchers used was the bottle problem (Figure 2), and a student exhibiting MA5 

would reason that in the bottom rounded half of the bottle, the rate at which the height 

Figure 2:The Bottle Problem 

Figure 3: The Bottle Problem Part 2 
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changes with respect to volume is decreasing. However, there was no discussion on how 

a student with MA5 (or any of the other mental actions) interprets the rate at a particular 

volume of water in this task. For example, in Figure 3, a student engaging in MA5 would 

reason that the rate at 𝑉1 is higher than the rate at 𝑉2 which is higher than the rate at 𝑉3, 

but it is unclear in the framework how someone thinks about quantities changing at the 

instance when the volume of the water is 𝑉1. 

Table 1 describes each level of the existing covariation framework and how a 

student reasoning at each level may interpret the value of an instantaneous rate of change. 

Table 1: Carlson et al.’s (2002) Covariation Framework and Derivative Examples 

Level Description Example of a student 

reasoning about  𝑓′(3) = 6  

Mental Action 1 (MA1) -

Coordinating Quantities 

The student coordinates the 

value of one quantity with 

changes in the other. 

The student may believe 

that the value of the output 

quantity changed by 6 and 

then subsequently that the 

value of the input quantity 

changed from 3 to 4. (The 

student is not describing 

how the input and output 

quantities change together; 

instead, they observe that 

both quantities changed) 

Mental Action 2 (MA2) - 

Directional Coordination 

of Values 

The student conceptualizes 

that one quantity varies as 

another quantity varies, but 

in a gross variation manner 

by not considering specific 

values. 

The student interprets that 

the output value is 

increasing as the input 

increases. 

Mental Action 3 (MA3) -

Coordination of Values 

The student coordinates the 

amount of change of one 

quantity with changes in 

the amount of the other 

quantity. 

A student may consider the 

current input and output 

values (3, 𝑓(3)) and 

anticipate that a change in 

the input (usually a 1-unit 

change), results in new 

values for the input 

quantity and output 

quantity, e.g., (4, 𝑓(4)). 
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Generally, a student 

interprets the value of 6 as 

the change in the output 

value for a 1-unit change in 

the input value, e.g., 

𝑓(4) = 𝑓(3) + 6.  

Mental Action 4 (MA4) – 

Coordinating Average 

Rates of Change 

The student coordinates the 

average rate of change of 

the function with uniform 

increments of change in the 

input variable. 

A student may consider the 

current values of the input 

and output quantities 

(3, 𝑓(3)) and anticipate 

that for some change in the 

input, ∆𝑥,  the output value 

will vary 6 times as much. 

However the student does 

not verbalize an awareness 

that the rate of change 

varies within this ∆𝑥 

interval. 

Mental Action 5 (MA5) – 

Coordinating 

Instantaneous Rate of 

Change 

The student coordinates the 

instantaneous rate of 

change of the function with 

continuous changes in the 

independent variable for 

the entire domain of the 

function. 

A student may consider the 

current values of the input 

and output quantities 

(3, 𝑓(3)) and anticipate 

that for some change in the 

input, ∆𝑥, the output will 

vary 6 times as much. The 

student verbalizes an 

awareness that the value of 

the rate of change will vary 

in this ∆𝑥 interval, but for 

small ∆𝑥 values, the actual 

change in the output will 

be essentially 6 times as 

large. A student may 

consider continuous 

changes in the independent 

variable and anticipate that 

the values of the associated 

changes in the dependent 

variable will vary. 
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The following example on linear approximation (Figure 4) illustrates how 

someone engaging in quantitative and covariational reasoning utilizes an instantaneous 

rate of change as the multiplicative relationship in varying quantities in an arbitrarily 

small input interval.1 

 First, it is essential to discuss what a productive way of processing the question 

entails. As a student reads the question, they should imagine the values of the quantities 

of the fish's age and the weight of the fish as varying. It is then helpful if a student 

interprets 𝑃(𝑡) as the coupling of these two quantities as well as interpreting 𝑃(3) = 15 

as “when the fish is three months old, the fish weighs 15 ounces.” Then a student should 

interpret 𝑃′(3) = 6 as the instantaneous rate of change of the fish’s weight with respect 

to the fish's age. This entails imagining that if the fish’s age were to vary a tiny bit from 

the age of 3 months, the variation in the fish's weight would essentially be six times as 

large (this is to say that the rate of change is 6 ounces per month). Lastly, the student 

interprets “estimate the value of 𝑃(3.05)” as approximating the fish’s weight at 3.05 

months. 

 The conceptualization of the problem is foundational to how a student engages in 

solving this task. One productive conceptualization of the situation and the associated 

mathematical symbolization is illustrated in Table 2. 

Conceptualized 

Quantity 

Unit of Measurement and 

Frame of Reference (if 

Symbolic 

Representation 
Relation to Other Quantities 

 
1 In this task, I am assuming that the function is continuous and differentiable. 

Let 𝑃(𝑡) represent the weight of a fish, in ounces, when the fish is 𝑡 months old. 

If 𝑃 (3)  =  15 and 𝑃’(3)  =  6 estimate the value of 𝑃 (3.05). 

 
Figure 4: The Fish Task - A Problem on Linear Approximation 
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none is stated, then it is 

from a numerical 0) 

The age of the fish  
Number of months since the 

fish was born 
𝑡  

The age of a fish at 

a particular instance 

Number of months since the 

fish was born at some 

instance 

𝑡1, 𝑡2, 𝑡3 …  

Weight of the fish 

(at a given time, 𝑡) 
Number of ounces  𝑃(𝑡) 

At a given time, 𝑡, there is an 

associated weight of the fish. 

Instantaneous Rate 

of Change of the 

fish (at a given 

time, 𝑡) 

Ounces per month 𝑃′(𝑡) 

Relates variations in the age of 

the fish, ∆𝑡, with variations in 

the weight of the fish. ∆𝑃(𝑡) 

Variation in the age 

of the fish 

Number of months (that 

have elapsed) since a 

chosen age value 

∆𝑡 

Variation in the age of a fish. 

 𝑡2 − 𝑡1 = ∆𝑡 

Or in this case 

𝑡1 + ∆𝑡 = 𝑡2 

Variation in the 

weight of a fish 

(between two 

times) 

Number of ounces (that 

changed) from a different 

weight value 

∆𝑃(𝑡) 

Variation in the weight of the 

fish.  

𝑃(𝑡2) − 𝑃(𝑡1) 

Table 2: A Conceptualization of Quantities in the Fish Task 

 In solving the fish task, a student needs to think about the fish’s age and weight 

varying from a particular reference point. In this case, at the age of 3 months, the fish 

already weighs 15 ounces. Then by using the value of the instantaneous rate of change, 

the student imagines that the variation in the fish’s weight will essentially be six times as 

large as the variation in the age of the fish (symbolized as ∆𝑃(𝑡) = 6 ∗ ∆𝑡). To calculate 

this, the student needs to measure the variation in the fish’s age as ∆𝑡 = 3.05 − 3. Then 

the student engages in multiplication [6 ∗ (3.05 − 3)] to determine the variation in the 

weight of the fish. Then the student adds the estimated variation in the fish’s weight of 

0.3 ounces with the current known weight of 15 ounces to produce an estimated weight at 

the age value of 3.05 months. Table 3 illustrates this productive way of thinking in 

solving the fish task. 
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𝑃(3) = 15 

The length of the green bar represents 

the fish’s age of 3 months. 

The length of the blue bar represents 

the fish’s weight of 15 ounces 

 

The length of the orange bar 

represents the variation of the fish’s 

age of 
(3.05 − 3) = 0.05 months 

 

The length of the purple bar 

represents the corresponding variation 

in the fish’s weight of 6 ∗ (3.05 −
3) = 0.3 ounces 

 

The purple bar's length measured by 

the length of the orange bar represents 

the relative size of the variation in the 

fish’s weight of 6 ∗ (3.05 − 3) as 

being 6 times as large as the variation 

in the fish’s age. 

 

The combined lengths of the blue and 

purple bar represent the fish’s 

estimated weight at 3.05 months of 

15 + 6(3.05 − 3)  

 
Table 3: Solving the Fish Task 



  24 

CHAPTER 3 

LITERATURE REVIEW 

 In this chapter, I discuss the existing literature on research in Calculus education. 

To align with the 3 papers, I organize the literature review in the following way. 

I. A general overview of what has been studied in Calculus education and 

Zandieh’s (2000) Derivative Framework. 

II. Literature on Students’ Understandings of the Idea of Derivative 

III. Literature on Pre-requisite Understandings of Derivative 

IV. Literature on the Teaching of Derivative 

General Overview 

Research on Calculus education has been extensive and covers a wide range of 

topics. On the one hand, much quantitative research (Rasmussen et al., 2013) has focused 

on Calculus curriculums, classroom settings, and student demographics. On the other 

side, a focus on particular topics of Calculus (Zandieh, 2000; Asiala et al., 1997; 

Aspinwall et al., 1997., Borji et al., 2018; Ubuz, 2007), prerequisite knowledge (Byerley 

et al., 2012; Carlson et al., 2015; Monk & Nemirovsky, 1994), teachers’ mathematical 

meanings (Eichler & Erens, 2014; Yoon, 2019), and teaching studies (Ely & Samuels, 

2019; Soares & Borba, 2014). 

 Since derivative is a central concept in Calculus, there is also a large body of 

research on the learning and teaching of derivatives that investigated the many issues and 

factors involved. Early research focused on students’ difficulties in understanding 

derivatives (Orton, 1983; Ferrini-Mundy & Graham, 1991; Monk, 1994). More recently, 

works have focused on different representations or aspects of derivative such as student 
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understandings of the derivative as a graph (Baker et al., 2000; Aspinwall et al., 1997; 

Asiala et al., 1997; Borgi et al., 2018; Ubuz, 2007), alternative instructional approaches 

to derivative (Tall, 2013; Ely & Samuels, 2019; Marrongelle et al., 2003, Thompson & 

Ashbrook, 2019; Dray & Manogue, 2010), or reasoning abilities of Calculus students 

(Oehrtman, 2009; Carlson et al., 2015; Petersen et al., 2014). 

Zandieh’s Derivative Framework 

One of the significant works that has impacted Calculus research was Zandieh’s 

(2000) theoretical framework for exploring student understanding of the derivative 

concept. Her framework provides an instrument to organize thinking on the teaching and 

learning of derivatives but does not describe how students might learn the idea of 

derivative. 

In examining the limit definition of derivative, 𝑓′(𝑥) = lim
∆𝑥→0

𝑓(𝑥+∆𝑥)−𝑓(𝑥)

(𝑥+∆𝑥)−(𝑥)
, 

Zandieh describes “the derivative of 𝑓, 𝑓′, is a function whose value at any point is 

defined as the limit of a ratio” (p. 106).  Zandieh identifies ratio, limit, and function as the 

three aspects of the limit definition of derivative as the three layers of her framework. In 

the formal definition of derivative, each aspect can be conceived in two ways: a dynamic 

process or a static object. Zandieh argues that the concept of derivative involves the three 

aspects as process-object pairs in a chain in the following manner: 

- The ratio process takes two differences and acts by division, then the result of 

this division is an object that is used by the limiting process 

- The limiting process iterates through infinitely many ratios to determine the 

limiting value. [The ratios here are objects since one is imagining the value of 

the ratio and not determining the value of the ratio by performing division] 
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- The value of the limit is treated as an object to define each value of the 

derivative function. 

- The derivative function involves the process of passing through many input 

values to determine an output given by the limit. 

- Lastly, the derivative function can be considered an object by thinking about 

an associated ordered pair rather than the process that produced the output 

value. 

Zandieh utilizes these process-object pairs to identify students’ understanding of 

derivative in each layer. For example, suppose a student describes the derivative function 

as a process that gives the speed at each point. In that case, the student understands the 

function as a process but is not engaged in the underlying limit or ratio processes used in 

producing the speed values. Zandieh’s framework is a valuable lens for identifying how 

individuals conceive each process-object pair in different contexts. The impact of 

Zandieh’s derivative framework can be seen in research that has leveraged her work to 

forward Calculus education research (e.g., Park, 2013; Petersen et al., 2014; Jones & 

Watson, 2017; Zandieh & Knapp, 2006). 

While Zandieh’s work has proven to be useful for other Calculus education 

researchers, one area that Zandieh states that her framework does not explain is “how or 

why students learn as they do, nor to predict a learning trajectory” (p. 103). Since one of 

my research goals is to conjecture how a student may come to construct a productive 

meaning for instantaneous rate of change, I deviate from her framework and focus on 

how students reason about quantities and how to leverage their meanings to support them 

in understanding instantaneous rate of change. This research interest aligns with the call 

made by Thompson and Harel (2021) that it would be profitable to research students’ 
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difficulties in Calculus due to their meanings and ways of thinking about variables, 

functions, and rates of change. 

Literature on Students’ Understandings of the Idea of Derivative 

Student Understandings of the Idea of Derivative as Ratio/Rate  

Students are often told that the derivative as a function is a “rate of change 

function”; therefore, students understanding of rate of change will likely impact the 

meaning they construct for derivative. It is not surprising then that many studies indicate 

that students’ ability to reason about dynamic relationships is fundamental for 

understanding Calculus’s major concepts (Carlson et al., 2003; Carlson et al., 2001; 

Cottrill et al., 1996; Kaput & West, 1994; Zandieh, 2000). However, investigations of 

students’ meanings for functions have revealed that students struggle with modeling 

function relationships involving rate of change of one quantity as it continuously varies 

with respect to another quantity (Byerley et al., 2012; Carlson, 1998; Monk & 

Nemirovsky, 1994; Thompson & Thompson, 1994). Hence it is essential to discuss the 

meanings and issues students have about rate of change because of how central the 

concept of rate of change is to the understanding of derivative that students construct. 

 Orton (1983) studied students’ understanding of differentiation by examining 

students’ responses to various tasks. He reported that in students’ responses in tasks that 

involved interpreting a rate of change, they confounded the output value of a function 

with the value of the rate of change. Additionally, he indicated that many students did not 

demonstrate a robust understanding of what composes the structure of a ratio. Many of 

his students expressed an average rate of change as either adding values (e.g., 
𝑦2+𝑦1

𝑥2+𝑥1
) or as 
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a singular value for the numerator or denominator (e.g., 
𝑦2−𝑦1

𝑥1
,

𝑦

𝑥
). Carlson et al. (2002) 

indicated that many high-performing Calculus students struggled with tasks involving 

average and instantaneous rate of change. These students described rates of change as 

additive changes in the output rather than expressing rates as a multiplicative comparison 

of changes in two quantities. These researchers indicate that many students’ 

understandings of ratio (and rate) as an object lack the underlying division process as the 

relative size measurement between two quantities’ values. 

Several researchers demonstrated that many undergraduate students confuse rate 

quantities with amount quantities (Byerley et al., 2012; Flynn et al., 2018; Castillo-

Garsow, 2010; Prince et al., 2012; Rasmussen & King, 2000; Rasmussen & Marrongelle, 

2006). Byerley et al. (2012) investigated calculus students’ understanding of division and 

found that many students employed additive reasoning when interpreting the value of a 

rate. The researchers reported that the students who engaged in additive reasoning 

described a constant rate of change as equally spaced intervals in the dependent quantity. 

Similarly, in another study, one student stated that if a rate function “was just 2, then 

you’d be saying that you only added 2 pounds of salt for the whole time” (Rasmussen & 

Marrongelle, 2006) (p. 408). Students in these studies communicated that they interpreted 

the value of a rate to be an amount to add instead of interpreting a rate as a multiplicative 

relationship between 2 varying quantities. Similarly, Thompson (1994) reported that 

students confused “changing” with “rate of change” and also “amount and change in the 

amount.” We can interpret from these studies that if students are reasoning additively 

about rates of change, this will be an obstacle to understanding derivative as a rate of 

change function. 
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Student Understandings of the Limit2 Aspect of Derivative 

 The process of evaluating a Limit entails examining the behavior of a multitude of 

values and determining what these values converge to. A student can also conceive of a 

Limit as an object as the result of the limiting process. For example, students are often 

introduced to the limit definition of derivative with a graphical depiction of receding 

secant lines that converge to a tangent line. The limit process involves examining the 

values of the slopes of the secant lines, whereas the end product is the value of the slope 

of the tangent line. 

Researchers have reported that the concept of limit is paramount in understanding 

calculus and developing rigorous mathematical thinking beyond calculus (Tall, 1992). 

Limit is central to many concepts such as derivative, integration, and infinite series, but 

studies have shown that many students have misconceptions about limits. Some issues 

occur because students consider a finite process to solve limit problems rather than 

conceive an infinite process. Thus, these students will often confuse the limit with the 

value of the function (Cottrill et al., 1996; Roh, 2008). Other issues about limits occur 

from seeing the limit as the infinite process rather than the result of the infinite process 

(Vinner, 2002). 

Roh (2008) classified different types of thinking about limit that students held 

when evaluating the limit of a sequence; limit as asymptote, limit as cluster points, and 

imaging true limit points. Limit as asymptote is a conception of limit where students 

believe the sequence will get close to but never attain the limit value. This type of 

 
2 For ‘Limit’ I will be including studies about infinitesimals, differentials, or some similar idea. The Limit 

portion of the limit definition of derivative entails the idea of infinitesimals or “picking a really small 

window” or being “essentially equal”. 
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reasoning explains why students believe that sequences can have more than one limit 

value since the sequence can be approaching two different values, e.g.: {𝑎𝑛} = (−1)𝑛 +

1

𝑛
 as approaching −1 and 1. Limit as cluster points is the type of thinking where students 

determine the limit value by noticing many output values within a reasonable margin 

around that limit value. This is another kind of thinking that could allow students to 

believe that a limit could have more than one value if they see two or more clusters of 

points. Unlike thinking about limit as asymptote, students who view limit as cluster 

points allow the sequence’s values to be the value of the limit. The last way of thinking is 

imagining true limit points where students consider both infinitely many points near or at 

the limit value and finitely many values outside of such a cluster. Students engaging in 

imaging true limit points do not believe there can be more than one limit value. 

Zandieh and Knapp’s (2006) work on metonymy with calculus students revealed 

that students often forget the dynamic imagery of receding secant lines and instead only 

recall the finished product of the tangent line. This is similar to the research conducted on 

student understanding of limits (Roh, 2008; Davis & Vinner, 1986; Cornu, 1991; 

Przenioslo, 2004), where students tend to fixate on a single value and forget the dynamic 

imagery of values converging (Williams, 1991). Research on student meanings for limit 

has shown that students think of the word “approaching” and “getting close to” as 

synonymous with “asymptotic,” where limiting values can get close to but not touch the 

limit value. This issue would potentially affect how students view the limit of the 

difference quotient, where the values of the average rates of change get close to the value 

of the instantaneous rate of change value but never the actual value of the instantaneous 

rate of change. If students do not have the dynamic imagery of values converging when 
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they work with limits, then when students are presented with receding secant lines, the 

tangent line as their finished product (Zandieh & Knapp, 2006) becomes a static image 

for their meaning for derivative. 

 In the context of a derivative, limits are about differentials since they indicate 

infinitesimally small changes. One issue with the teaching of differentials is the lack of 

agreement on what a differential is. McCarty and Sealey (2019) interviewed seven 

mathematicians about differential and reported no instances of total agreement, only 

common recurring themes. Even among researchers, there is disagreement about the 

definition of differential. Some descriptions of the idea of differential include; An 

arbitrarily small change or changes, a shorthand for limit, and an infinitesimal of the 

hyperreal numbers (Dray & Manogue, 2010). Nevertheless, many researchers argue that a 

productive way of learning Calculus entails discussing the idea of differential early on 

(Thompson & Dreyfus, 2016;  Dray & Manogue, 2010; Kouropatov & Dreyfus, 2013).  

 Thompson and Dreyfus (2016) argue that the current approaches to Calculus that 

utilize concepts of limits or differentials fail to address the issue that students tend to 

conceive of variables statically. Many researchers support this claim by attributing 

students’ weaknesses in modeling dynamic situations to their static conceptions of 

variables (Carlson et al., 2002; Moore & Carlson, 2012; Trigueros & Jacobs, 2008). 

Conversely, the benefits of employing differentials focusing on variables varying are 

present in the work of Thompson (2019), Ely and Samuels (2019), and Tall (2013). 

Student Understandings of the Derivative as a Function 

 Function as a process involves interpreting the function’s defining formula (in 

this case, the limit of the difference quotient) as describing how input values are used to 
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produce output values. Function as object focuses on the ordered pair, (𝑥, 𝑓′(𝑥)). 

Existing studies on derivative are more focused on this aspect since they investigate how 

students use derivatives in various contexts. 

 Some studies about the derivative as a function (as process) address the 

covariation of quantities involved. Oehrtman et al. (2008) argue that students need to go 

beyond viewing function as an entity that takes in an input to produce an output. Instead, 

the authors argue for moving to a function conception that enables reasoning about 

quantities varying.  

 Other studies investigated students’ understandings of a derivative as a graph 

(Baker et al., 2000; Aspinwall et al., 1997; Asiala et al., 1997; Borgi et al., 2018; Ubuz, 

2007). These researchers report that students have trouble relating the graph of the 

function with the graph of the derivative function. Aspinwall et al. (1997) argue that 

students’ graphical image of a function can prevent them from understanding derivative. 

In their study, they described a student’s image of a quadratic function as having vertical 

asymptotes. This student’s image led to them to reasoning that the function’s derivative is 

shaped like a cubic function. Similarly, Baker et al. (2000) reported that students 

consistently struggled with explaining a derivative when a function has a cusp, vertical 

tangent, or removable discontinuity. These interpretations and issues with graphs are 

consistent with Oehrtman et al.’s (2008) assertion that many students’ meaning for 

function lacks the imagery of variables varying. 

 Monk (1994) and Park (2013) explored students’ understanding of the derivative 

as a function versus their understanding of the derivative at a point. Monk (1994) noted 

that students coming into Calculus understood functions as if they were a table of values 



  33 

where they were associating particular values of the input to particular output values. 

Monk indicated that interpreting a function this way does not lend students to 

understanding the crucial issues of Calculus, such as: “How does change in one variable 

lead to change in others? How is the behavior of the output variables influenced by 

variation in the input variable?” In one example, students determined the correct shape of 

the graph of a function, 𝑓, given 𝑓’, but at the same time, they were unable to estimate the 

value of 𝑓’(2) or determine when 𝑓’(𝑥) = 0. Monk hypothesized that these students were 

likely memorizing a procedure instead of understanding the derivative as a function. 

Similarly, Park (2013) reported that students’ thinking about derivative as a function was 

not fully developed. Park noted that many of her students inconsistently mixed up the 

derivative function with the equation of a tangent line. 

 We can draw from these studies’ results that students tend to interpret a function 

as an object by thinking of ordered pairs or engaging in physical features of the graph of 

a function. These static interpretations lack the dynamic imagery of quantities changing 

and often result in students interpreting derivatives as tangent lines or the reading on a 

speedometer. 

Literature on Student Reasoning with Derivative 

 Several researchers investigated students' reasoning abilities when utilizing and 

interpreting derivatives (Oehrtman, 2009; Ubuz, 2007; Marongelle, 2004). Oehrtman 

(2009) investigated students’ use of metaphorical reasoning in understanding and 

resolving problematic situations. Metaphorical reasoning is similar to what Thompson et 

al. (2014) call a “way of thinking,” which is the “habitual anticipation of using specific 

meanings or ways of thinking in reasoning.” In the context of Calculus, Oehrtman (2002) 
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discusses that 
1

3
 of his students engaged in a collapsing metaphor to understand the limit 

definition of derivative. Students were reasoning in such a way that involved collapsing 

the difference in two values of the independent variable to 0. Ubuz (2007) also noted that 

students were using specific examples as ‘cognitive reference points’ to interpret new 

information and judge examples to see how they may (or may not) fit into these 

referential examples. These researchers claim that these ways of thinking implicate how 

Calculus concepts should be presented and that teachers should attend to how students 

are reasoning. Marongelle (2004) classified how some students utilized ideas of 

kinematics when reasoning about derivative. One classification was contextualizers who 

blended two contexts and thought of them as equivalent. Another was example-users who 

used kinematic examples to make sense of a problem, followed by removing the context 

to consider the mathematical ideas. Other students in the study either mixed physics and 

mathematics while problem-solving or did not use kinematics when reasoning about 

derivatives.  

 Overall, a survey of the literature indicates that students experience multiple 

obstacles in learning the idea of derivative. This is not surprising since understanding 

derivative relies on multiple ideas, including ideas of rate, limit, and function. With these 

issues in mind, I examined students’ understanding of derivative as a rate of a change 

function and kept in the background how students were interpreting the Ratio and Limit 

layers of the derivative. 

Literature on Pre-requisite Understandings of Derivative 

Thompson and Harel (2021) indicated that it would be beneficial for the research 

community to investigate students’ difficulties in calculus by examining their pre-
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requisite meanings for variable, function, and rate of change. Carlson (1998) and Frank 

and Thompson (2021) found that the US Pre-Calculus curricula fail to support students in 

developing robust meanings for variation, function notation, and average rate of change 

that would be productive for students in understanding the important ideas of Calculus. 

Similarly, Toh (2021) demonstrated that students experience a disconnect between their 

early mathematics and their Calculus learning. These findings indicate a need to study the 

pre-requisite ideas necessary for understanding derivatives. 

Since the idea of derivative can be interpreted as an instantaneous rate of change, 

a discussion on student understandings of rate pertains to the learning of derivative. Rate 

of change is not a concept that solely exists in the context of Calculus. Ideas of rate of 

change are utilized in Algebra classes when working with slope as a graphical 

representation of constant rate of change or comparing differences in tables (Confrey & 

Smith, 1995). Within the realm of mathematics education researchers, the definition of 

rate of change differs from researcher to researcher. For some, a rate of change can be a 

directly perceived quantity, such as your walking speed, or a mathematical relationship 

between 2 quantities (Noble et al., 2001). In my research, I define rate of change as the 

multiplicative relationship between changes in 2 varying quantities. I clarify this meaning 

in the following sections. 

Thompson and Thompson (1994) provided a conceptual curriculum for speed that 

I leverage to articulate the productive ways of thinking for rate of change (Figure 5). Put 

together in one statement, a rate of change quantifies a multiplicative relationship 

between 2 varying quantities. 
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Quantification of Variations 

A rate of change involves quantities varying, but what quantities are we talking 

about? If we examine a typical way that constant rate of change is presented (in the 

context of slope), 𝑚 =
𝑦2−𝑦1

𝑥2−𝑥1
, we notice that there is a difference in both the numerator 

and denominator. Thompson (1993) calls a “quantitative difference” to mean “a quantity 

constituted by an additive comparison of two quantities.” Thompson stressed that 

students need to conceive of a difference as a new quantity rather than just the result of 

subtraction. For example, if we imagine some quantity such as “the amount of water 

(measured in fluid ounces) in a water bottle,” we can define a variable to represent the 

value of a varying quantity, call it 𝑥, to represent the quantity's value at some particular 

moment. We can measure the value of the quantity at different moments, e.g.: 𝑥1 = 4, 

and 𝑥2 = 19. We can then find the difference in the amount of water between these two 

moments by making an additive comparison, 𝑥2 − 𝑥1 = 15. If we examine the value of 

this difference, 15, it is not the same as saying that 𝑥 = 15. Therefore, since this 15 is not 

“the amount of water in a water bottle,” it must represent another quantity in this 

situation, namely “the variation in the amount of water between two moments.” An 

individual must mentally distinguish that 15 measures a different quantity representing a 

relationship between 2 measurements of the initially conceived quantity. While this 

1. Rate of change is a quantification of variations 

2. Rate of change relates variations in two varying quantities 

3. Rate as a quantification of variations in two quantities is made by a 

multiplicative comparison of these variations 

4. To say that rate of change of quantity Y with respect to quantity X is “𝑚” is 

to mean that the variation in quantity Y (∆𝑦) is 𝑚 times as large as the 

variation in quantity X (∆𝑥), i.e., ∆𝑦 = 𝑚∆𝑥 

 
Figure 5: Productive Ways of Thinking for Rate of Change 
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distinction may seem trivial, researchers have shown that many students do not think 

about the expression 𝑥2 − 𝑥1 as representing a single quantity or “difference,” instead, 

they tend to think about “difference” as a subtraction symbol (Musgrave et al., 2015; 

Orton, 1983; Thompson, 1994). It is essential then that a student regards a variation in a 

quantity as a newly conceived quantity distinct from the initial quantity. If a student is 

conceiving of  𝑥2 − 𝑥1 as a variation, this will aid them in constructing a meaningful 

understanding that slope, 𝑚 =
𝑦2−𝑦1

𝑥2−𝑥1
, quantifies a ratio of variations in quantities rather 

than thinking of slope as “rise over run,” which may not have productive meanings for 

students (Nagle et al. 2013, Stanton & Moore-Russo 2012). 

Variables Vary 

 A rate of change is about quantities changing; in other words, the variables 

involved have to be varying! Thompson and Carlson (2017) explain that if students view 

variables statically, they cannot imagine expressions as representations of relationships 

among varying quantities (e.g., a rate). For a variable to vary, a student imagines that if 

the value of a variable changes from 𝑥 = 2 to 𝑥 = 3, then the variable smoothly changes 

by going through all the values between 2 and 3 instead of jumping from the value of 2 

directly to the value of 3. Videos 1 and 2 illustrate the differences between these two 

Video 2:Smoothly Changing from 2 to 3 Video 1 : Jumping from 1 Value to Another 

https://www.youtube.com/embed/c3RONGhEJDE?feature=oembed
https://www.youtube.com/embed/wEpGc4fHglM?feature=oembed
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conceptions. If students view variables statically, they will not interpret a rate of change 

with the imagery of two covarying quantities; instead, they still only consider the division 

operation on two static variations. 

Multiplicative Comparison 

 To calculate a constant rate of change (𝑚 =
𝑦2−𝑦1

𝑥2−𝑥1
), division is used on two 

variations to produce a value of 𝑚. Similar to subtraction, division is not just an operation 

used to calculate a value; rather, the result from dividing represents the measuring of the 

size of one variation (𝑦2 − 𝑦1) in terms of the size of another variation (𝑥2 − 𝑥1) 

(Thompson & Saldanha, 2003). Division as a quantitative operation quantifies the 

multiplicative relationship between 2 quantities. Understanding this relationship of 𝑚 =

𝑦2−𝑦1

𝑥2−𝑥1
 entails the following 

- 𝑦2 − 𝑦1 = 𝑚(𝑥2 − 𝑥1): “The variation in 𝑦 is 𝑚 times as large as the variation in 

𝑥” 

- (𝑥2 − 𝑥1) = (𝑦2 − 𝑦1) ∗
1

𝑚
: “The variation in 𝑥 is 

1

𝑚
 times as large as the variation 

in 𝑦” 

- 𝑚 =
𝑦2−𝑦1

𝑥2−𝑥1
: “The variation in 𝑦 measured in the size of the variation of 𝑥 is 𝑚” 

The ways of thinking involved with multiplication and division entail the relative 

size between 2 quantities’ values. In processing the statement of 𝑦2 − 𝑦1 = 𝑚(𝑥2 − 𝑥1), 

one productive way of imagining the multiplication involved (𝑚 ∗ (𝑥2 − 𝑥1)) involves 

picturing the size of the variation in 𝑥 (the value of (𝑥2 − 𝑥1)), measured out 𝑚 times. 

For division 
𝑦2−𝑦1

𝑥2−𝑥1
, the mental actions involved require determining the sizes of the 
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variations and then measuring the value of 𝑦2 − 𝑦1 using the value of 𝑥2 − 𝑥1 as a unit of 

measure. Video 3 illustrates the associated imagery. 

 

 

 

 

 

 

When an individual conceptualizes this relationship between the two variations 

for only the two moments that the quantities were measured (i.e., At one moment, the 

values of the quantities were 𝑥1 and 𝑦1, at the other moment, the values of the quantities 

were 𝑥2 and 𝑦2), we can say that the individual has a multiplicative understanding of 

ratio. Only when this ratio is generalized to represent the multiplicative relationship of 

the covarying quantities can we consider it to be an understanding of rate of change. 

Ratio versus Rate 

Since the idea of ratio is related to the idea of rate, how students conceive of ratio 

likely affects their construction of a rate of change. Among mathematics educators, there 

are two popular contrasting conceptions of ratio (Johnson, 2015): ratio as identical 

groups (Simon, 2006) and ratio as measure (Simon & Blume, 1994; Thompson & 

Thompson, 1994). Ratio as identical groups is when a ratio is conceived of as two 

quantities that are associated together. However, the ratio itself is not a single quantity 

that the student is conceiving. Ratio as measure is the conception that the ratio describes 

a relationship between the two quantities. For example, a student conceiving of ratio as 

Video 3:Measuring a Variation with another 

Variation 

https://www.youtube.com/embed/XYEHSj-qG4w?feature=oembed
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identical groups would likely interpret a ratio of 
1

4
 donuts per dollar as associating 1 

donut with 4 dollars. A student conceiving of ratio as measure would likely interpret the 

ratio of 
1

4
 donuts per dollar as the relationship between the number of donuts and the 

number of dollars, and it describes a whole set of covarying quantities. These two 

contrasting conceptions may explain why some students interpret the value of a rate as an 

amount to add because those students may have a conception of ratio as identical groups. 

These students may be thinking of the value of the rate as the amount of change for 1 

quantity for a 1-unit change in the other quantity (e.g.: 𝑓′(3) = 6 is interpreted as a 

change of 6 units in the output quantity for a 1-unit change in the input quantity).  

What distinguishes a rate from a ratio is that a ratio describes the multiplicative 

relationship in a static comparison. In contrast, a rate is a reconceived ratio that applies to 

an entire class of covarying quantities. To explain this, I use Lamon’s (2007) example on 

the understanding of a fraction as a number itself (rather than the numbers that compose 

the fraction). If we consider the fraction 
1

4
, this number refers to the same relevant amount 

in each of the pictures in Figure 6. This way of thinking about a fraction as a rational 

number is the same for interpreting the value of a rate of change. The value of a constant 

rate of change describes the invariant ratio between the variations in a dependent and 

independent quantity. The value of the rate is not just a ratio of a single situation (just like 

3

12
 might be for the top right picture in Figure 6), but instead, it describes a characteristic 

of a whole set of covarying quantities (Thompson, 1994).  
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To conceive of a constant rate of change entails understanding that the 

multiplicative relationship between the variations stays in constant ratio as the quantities 

covary. Another way of saying this is first discerning a multiplicative relationship 

between two quantities (a ratio) and then extending that relationship to other pairs (e.g.: 

𝑥4 − 𝑥3 and 𝑦4 − 𝑦3). Discerning the multiplicative relationship may usually begin with 

what we might term proportional correspondence, where a student is using the initial 

variations (𝑥2 − 𝑥1 and 𝑦2 − 𝑦1) as a reference when describing the proportionality 

between other pairs of quantities. For example, given the statement, “If Jack walks at a 

constant speed and walks 7 feet in 3 seconds”, a student may recognize that if Jack 

travels 4 feet, then he has traveled 
4

7
 of the 7 feet, so it will take him 

4

7
 of the 3 seconds. At 

this stage, the student recognizes a multiplicative relationship between the two quantities, 

but they have not yet determined that multiplicative relationship's numerical nature. 

Framing this in terms of quantitative reasoning, we can say this student has not yet 

Figure 6: Picture from Lamon (2007); 1/4 

as representing the relationship in each 

image. 
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conceived of this relationship as an attribute of something that can be measured. The next 

mental action involves extending this relationship to other pairs of quantities and 

anticipating that if you keep letting the quantities vary, the ratio is anticipated to be 

maintained. When a student utilizes the value of a constant rate of change (𝑚), they 

imagine the quantities covarying such that as the input quantity varies, the output quantity 

simultaneously varies 𝑚 times as much. Video 4 illustrates the associated imagery of this 

understanding of constant rate of change. 

 

Video 4:Rate of Change 

Literature on the Teaching of Derivative 

In many of the textbooks used in a standard Calculus 1 course (e.g., Stewart 

(2013) and Larson (2007)), the introduction to derivatives is through a “special type of 

limit” or as a slope of a tangent line (Figure 7). While there is mention of instantaneous 

rate of change, the descriptions in textbooks usually describe sliding a secant line to 

obtain the desired slope of the tangent line. Reading these standard texts reveals little 

attention to what a rate of change means and reasoning about how quantities change 

together. As a result, research has shown that Calculus students have difficulties 

https://www.youtube.com/embed/filnQyyarw4?feature=oembed
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interpreting the derivative as a rate of change function. Orton (1983) noticed that in tasks 

that involved interpreting a rate of change, students confounded the output value with the 

rate of change. Ferrini-Mundy and Graham (1991) reported that students struggled to 

make sense of a sliding secant line and its relationship to the rate of change on a small 

interval. Weber et al. (2012) propose that student issues with the sliding line stem from 

typical calculus textbook presentations of the limit definition of derivative, 

𝑓′(𝑥) = lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
, where 𝑥 is fixed, and ℎ varies to 0. They hypothesize that fixing 

𝑥 does not allow one to visualize the derivative function being generated for all the 

values of 𝑥. To put it in terms of Zandieh’s (2000) framework, this presentation of 

𝑓′(𝑥) = lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
 through the imagery of the sliding secant line does not seem to 

be effective in allowing students to conceptualize the limit as an object used to define 

each value of the derivative function. 

On the learning of derivative, many researchers agree that students should engage 

with the idea of derivative in multiple contexts (e.g., Graphical, symbolic, verbal, 

physical) (Jones & Watson, 2018; Roorda et al., 2009). The National Council of Teachers 

Figure 7: Stewart's (2013) Introduction to Derivatives 
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of Mathematics (2000) indicates that understanding the derivative concept involves a 

broad base of examples such as the average velocity of a car, the average air temperature 

over a day, or the average slope while climbing a hill. Jones and Watson (2018) 

demonstrated that students who worked with contexts that involved different aspects of 

the derivative concept (ratio, limit, and function) potentially allowed for better mapping 

to novel derivative contexts. One early example of the benefit of engaging in multiple 

contexts is the work done by Asiala et al. (1997). They offered a framework based in 

APOS theory of a genetic decomposition of the derivative. The framework explicated 

different kinds of constructions students might make for learning derivative. For 

example, the graphical path involved calculating the slopes of secant lines as the 2 points 

get closer and closer. An analytical path consists of calculating average rates of change 

over smaller and smaller intervals. Students in their study were reported to have had more 

success in constructing a graphical understanding of derivative than their traditional 

peers. 

Due to the relevance of derivative in the fields of science and engineering, a few 

Calculus researchers have studied how students comprehend and apply the derivative 

concepts to contexts outside of a pure mathematics setting (Jones, 2017; Roorda et al., 

2007, 2010). The majority of other Calculus researchers focus on derivative in the 

context of position, velocity, and acceleration. Jones (2017) argues that teaching 

derivative as velocity may not allow students to reason about rate of change since 

velocity can be an intuitive topic that students already understand. Petersen et al. (2014) 

study of Calculus students’ reasoning revealed that students could not effectively engage 

in ideas of velocity and instead utilized other ideas such as physical features of a graph to 
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reason about derivatives. However, other researchers have demonstrated the benefits of 

using examples involving velocity to develop deeper understandings of calculus 

concepts. Berry and Nyman (2003) utilized graphing calculators and Calculator Based 

Ranger (CBR) to have students develop their intuitive understanding of derivative. The 

CBR recorded the displacement of a student for pre-set intervals of time and this data was 

transferred to the calculator. Students in the study engaged in “CBR walks” to physically 

model motion and then subsequently reason about velocity graphs. These students 

demonstrated a stronger connection between a graphical representation of a function and 

its derivative. 

Some researchers argue for alternative ways to learn derivative over the standard 

limit approach used in typical U.S. classes. For example, Tall (2009, 2013) argued for a 

local linearity approach by having students zoom into a graph until it appeared linear. 

The slope of the supposed “line” that students saw could be considered the derivative 

value, and students could see that the slopes would be different for different input values. 

Ely and Samuels (2019) support Tall’s finding through their alternative teaching lessons 

that delay the teaching of limit and instead have students focus on zooming in until the 

function is essentially linear. When interviewed, these students actively recalled the 

process of these informal limit ideas when describing finding the slope of the line. We 

can infer from these findings that the current standard calculus curriculum focused on 

formal learning on limits and limit notation is not a prerequisite for understanding the 

derivative as the limit of average rates of change. 

Other researchers argue for a focus on a rate of change as conceptualizing the 

covariation between two varying quantities (Thompson et al., 2013; Carlson et al., 2002). 
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Thompson and Ashbrook (2019) developed a Calculus course that puts the Fundamental 

Theorem of Calculus as central in order to have students develop richly connected 

meanings for rate-of-change function and accumulation functions. This course was 

designed to support students in overcoming difficulties that were identified by research 

on students’ calculus learning, such as students thinking that variables do not vary, 

believing that Calculus is a set of rules and procedures, and a derivative is a slope of a 

tangent rather than about a rate of change (Thompson et al., 2013). Thompson (2019) 

compared students’ performance in this course with students in traditional Calculus 

courses using an 11-item Calculus 1 concept inventory focused on variation, covariation, 

and rate of change understandings.3 He reported that students who took his conceptual 

Calculus course scored higher on average than the other students (Table 4). I leverage 

Thompson’s work on a conceptual approach to Calculus to conjecture how a student in a 

standard Calculus 1 course can build productive meanings for instantaneous rate of 

change functions (derivatives). Carlson et al.’s (2001) study further evidence the benefits 

of focusing on covariational reasoning in a Calculus course. Carlson et al. investigated 

the effect of a covariational curriculum in developing ideas of limit and accumulation. 

The results of their study indicate that their students had developed flexible and 

productive covariational reasoning abilities and were able to apply this reasoning in limit 

and accumulation tasks. 

 
3 It should be noted that according to Thompson (2019), “a committee of five people, two teaching 

traditional Calculus 1, two teaching DIRACC Calculus 1, and the department’s director of STEM 

education, constructed” the concept inventory and that “no item was included without unanimous 

agreement that it assessed a central idea in Calculus and addressed it acceptably” (p. 10) 
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Both Thompson and Carlson’s studies demonstrate that a calculus curriculum 

focused on reasoning covariationally can help students understand the important ideas of 

Calculus. While Thompson has provided a conceptual analysis for the Fundamental 

Theorem of Calculus (1994) and quantitative data on the benefits of his conceptual 

calculus course (2019), what is currently absent in his work is qualitative data that 

describes how his students are building productive meanings for each Calculus topic. 

Carlson et al. (2001) provided some qualitative data on the learning of limit and 

accumulation. However, I know of no papers describing how a curriculum focused on 

reasoning covariationally aids students in building a productive meaning for 

instantaneous rate of change. The studies in this manuscript will add to Thompson and 

Carlson’s work by adding qualitative research on student learning of the idea of 

derivative as instantaneous rate of change. 

Table 4:Thompson's (2019) Pre-Post Comparison of Traditional versus his Conceptual 

Calculus (DIRACC). Possible total score of 11. 
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CHAPTER 4 

INTRODUCTION TO THE THREE PAPERS 

Zandieh’s (2000) study of calculus students’ understanding of derivative led to 

her developing a derivative framework that described the conceptual complexities of 

understanding the idea of derivative. She described students conceptualizing process-

object pairs on three layers of representation: ratio, limit, and rate. She further elaborates 

what a student might be conceptualizing as they progress through and move between the 

three layers. There is currently no research describing the interventions that are 

successful in supporting students in understanding the idea of instantaneous rate of 

change. This dissertation is a response to this gap in the literature by taking a multi-

pronged approach to researching and identifying students’ difficulties (Paper 1), 

elucidating a productive meaning for instantaneous rate of change (Paper 2), and 

investigating the mechanisms for supporting student learning on the idea of derivative 

(Paper 3). 

Paper One: What are Students’ Meanings for the Derivative at a Given Input 

Value? 

Research Question: How do students interpret the derivative at a specific input 

value in an instantaneous rate of change context? In this context, how do the students 

attend to quantities’ values changing? 

In order to support student learning on the idea of derivative, one has to first 

determine what ways of thinking and understandings students have about derivative and 

related ideas. This study explored Calculus 1 students’ meaning for the derivative at a 

specific value of a function’s input variable. The study engaged 25 students in individual 
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clinical interviews in which they were asked to explain their thinking when responding to 

tasks aimed at revealing their meaning for derivative. During these clinical interviews, I 

focused on how students attended to the values of the input and output quantities of a 

function as changing and any other quantity they may have described during the 

interview. This paper presents results from analyzing the clinical interview data and 

characterizes the thinking exhibited by students. 

Paper Two: A Productive Meaning for Instantaneous Rate of Change and 

Relevant Prerequisite Ideas 

Research Question: What is a productive meaning for instantaneous rate of 

change? What understandings are foundational for understanding the concept of 

derivative? 

While researchers (Zandieh, 2000) have presented the results of a mathematical 

analysis of the derivative concept, I know of no papers that attend to the mental actions 

involved in coordinating the values in two varying quantities when interpreting the value 

of an instantaneous rate of change. In this paper, I synthesize relevant literature about 

derivative, leverage the results from the clinical interviews described in the first study, 

and describe a hypothetical learning trajectory for developing a productive understanding 

of instantaneous rate of change. A productive meaning is one that is useful for future 

mathematical learning and in this manuscript, I provide two examples to demonstrate 

how this meaning would be coherent and useful in related topics involving instantaneous 

rate of change. 

Paper Three: A Teaching Experiment on Instantaneous Rate of Change 
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Research Question: What understanding of the concept of derivative do individual 

students develop during an instructional sequence designed to support students in using 

quantitative and covariational reasoning? 

Much of the current literature on the learning of derivative is focused on exposing 

students to multiple representations of derivative (Hähkiöniemi, 2004; Jones & Watson, 

2018) that utilizes Zandieh’s (2000) derivative framework. However, many of these 

works are not focused on the types of reasoning students are employing. Instead, this 

paper builds on the work on quantitative and covariational reasoning (Carlson et al., 

2002; Thompson et al., 2013) to foster productive understandings of rate of change. In 

this study, I model two students’ thinking and understanding of rate of change during a 

teaching experiment that emphasized conceptualizing quantities and reasoning about how 

two quantities’ values are related and vary together.  
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CHAPTER 5 

PAPER 1: WHAT ARE STUDENTS’ MEANINGS FOR THE DERIVATIVE AT A 

GIVEN INPUT VALUE? 

INTRODUCTION 

The National Council of Teachers of Mathematics (1998, 2000) has consistently 

recommended that students develop the ability to analyze patterns of change in various 

contexts. They suggest that students should understand how changes in quantities can be 

mathematically represented (2000). However, many students do not have the opportunity 

to construct these productive understandings of changes (variation). One reason is that 

many students conceptualize variables as static and as placeholders for specific values 

instead of imagining variables as varying (White & Mitchelmore, 1996; Frank & 

Thompson, 2021). Thompson and Carlson (2017) argue that if a student has a static 

interpretation of variables, then the student cannot imagine mathematical expressions as 

representing relationships among varying quantities. This static conception of variables 

would then lead students to focus on symbolic manipulations instead of what the 

mathematical operations they employ might represent in a context. 

Many researchers agree that imagining quantities’ values as varying is essential 

for understanding rate of change, functions, and graphs (Johnson, 2015; Thompson, 

1994; Carlson et al., 2002; Moore, 2010). However, researchers indicate that many 

undergraduate students struggle to model functional relationships of problems that 

involve the rate of change of one variable as it continuously varies with another variable 

(Carlson, 1998; Carlson et al., 2002; Monk & Nemirovsky, 1994). Further, research 

indicates that the ability to model a dynamic relationship between two varying quantities 
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is foundational for understanding the key ideas of Calculus (Kaput & West, 1994; 

Thompson, 1994; Zandieh, 2000). Therefore it is imperative to understand how to aid 

students in developing an understanding of dynamic functional relationships. Thompson 

(1994) argues that the concept of rate is central to this development which involves the 

coordination between the values of two quantities as they covary together. 

In this study, I report my findings on students’ understandings of the derivative 

evaluated at a given input value in the context of instantaneous rate of change. I explored 

their understanding of derivative by conducting clinical interviews (Clement, 2000) with 

25 students who had taken Calculus 1. As a result of this study, I argue that attending to a 

student’s interpretation of a rate of change can provide valuable insight into their 

covariational reasoning. 

Research Question: How do students interpret the derivative at a specific input 

value in an instantaneous rate of change context. In this context, how do the students 

attend to quantities’ values changing? 

METHODOLOGY 

 By taking the Radical Constructivist stance (Thompson, 2000), I assume that it is 

impossible to know another’s thinking. Therefore, investigating student thinking aims to 

build models of students’ mathematics (Steffe & Thompson, 2000) that may explain why 

students produce specific responses. Using this approach to build an explanatory model 

of students’ thinking can help describe the process of developing a productive meaning 

for derivative at a point. The word ‘meaning’ will be used in the way that Thompson 

(2013) uses it to describe mathematical meaning. It is the organization of an individual’s 

experiences with an idea that determines how the individual will act. Meanings are 
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personal, and they might be incoherent, procedural, robust, or productive. However, these 

meanings are used by individuals to respond to mathematics tasks and make sense of and 

access mathematical ideas. For example, a person’s meaning for derivative might only be 

associated with calculating the limit of the difference quotient. At the same time, 

another’s meaning for derivative could involve the slope of a tangent line. Since 

meanings are personal, if one student writes a response similar to another student, it 

cannot be assumed that they both have the same meaning. 

To address the research question, I report on the results of conducting a single 

clinical interview with 25 students (Clement, 2000). These were generative clinical 

interviews in that I did not originally have a coding scheme before the interviews took 

place. According to Clement, generative clinical interviews should “generate new 

observation categories and models of mental processes that give plausible explanations 

for the observed behavior” (p. 10). In comparison, a convergent clinical interview 

involves a coded analysis that focuses the observations on predefined categories.4 

Clinical interview methodology consists of an interviewer, a single student, and a 

camera to record each interview. During these interviews, the interviewer asks the student 

to engage in a mathematical task. These tasks intend to explore how students think and 

reason about the tasks. As the interview progresses, the interviewer creates models of the 

student’s understandings and tests their hypotheses by asking questions and probing their 

 
4 Other papers (Yu, 2019, 2020, 2021) describe the findings of these generative clinical interviews. There 

were no predefined categories used from the Covariational Framework (Carlson et al., 2002) when 

analyzing these clinical interviews in those papers. In this paper, I applied the Covariational Framework 

(and my modifications for it) retrospectively as a lens to examine how students coordinated the variations 

in two quantities’ values. 
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thinking. In this interview, there is no teaching component as the goal of a clinical 

interview is to build models of student understanding. 

The interviews were semi-structured (Zazkis & Hazzan, 1998) in that the 

interview was planned in advance, but follow-up tasks would differ based on the 

interviewee’s responses. The semi-structured interviews allowed for unplanned follow-up 

questions and variations on the planned questions. Semi-structured interviews allow the 

interviewer to test their model of the students’ thinking by presenting potential tasks 

based on how they respond during the interview. For example, if a student stated that 

they interpreted the derivative at a point as the slope of the tangent line, the interview 

might follow up by asking the student to draw a graph with the tangent line they are 

thinking of.  

The main tasks for these interviews were as follows 

The purpose of Task 0 (Figure 8) was to elicit the students’ spontaneous meaning for 

derivatives. Task 1 (Figure 9) probed students’ interpretation and use of a derivative 

value in an applied context. More specifically, I was interested in investigating the 

following questions: 

1) Does a student associate a derivative with an “instantaneous rate of change”? 

2) How does a student interpret the value of the derivative at a given input value? 

Given that 𝑃(𝑡) represents the weight (in ounces) of a fish when it is 𝑡 

months old, 

a.) Explain the meaning of 𝑃′(3) = 6 

b.) If 𝑃 (3)  =  15 and 𝑃’(3)  =  6 estimate the value of 𝑃 (3.05) and 

say what this value represents. 

Figure 9: Task 1 - The Fish Task 

Task 0: What does the word ‘derivative’ mean to you? 

Figure 8:Task 0 - The Immediate Meaning 
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3) How does a student utilize the value of a derivative to solve a linear 

approximation problem? 

4) Does a student recognize that the linear approximation they performed in part b is 

an approximation because the value of the rate of change would likely change in 

that input interval? 

I anticipated that many students would verbalize the derivative as representing an 

instantaneous rate of change. I used this task to explore how they would interpret the 

value of an instantaneous rate of change in an applied context. Even if a student did not 

verbalize the derivative as an instantaneous rate of change, I used this task to investigate 

how a student might conceptualize the problem context and how they used their meaning 

for derivative to solve a linear approximation problem. 

Based on the student’s written work and the student’s utterances, I followed up 

with additional tasks and questions to test my model of the students’ understanding of the 

derivative concept. The types of questions I asked focused on assessing how the student 

interpreted the derivative at a point, how they thought about ‘rate of change’ (assuming 

they articulated derivative as a rate of change), and how they conceptualized the problem. 

Figure 10 provides a sample of the interview protocol for this task. 

Task 1 – Interview Protocol 

Let student work on tasks uninterrupted, only answer questions to clarify symbols or 

readings of the question, otherwise let the student answer it as is.  

 

After the student has finished - (Give the student a different color pen (Green) for any 

clarifications, drawings, or additions they may add as the interviewer asks questions) 

 

For Part a. 

- If they wrote something that appears to have a different meaning than what 

they said in Task 0, ask them if those are the same to them, if not ask them 

what is different about what they said. 
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- If they wrote “Instantaneous rate of change” ask what they mean by 

instantaneous, if unclear ask them to give an example. 

- If they wrote “Slope of the tangent line at 3” ask them what they mean by slope 

as well as tangent line. If they are unable to describe it outside of a 

geometric/graphical setting, ask them to say what that means in relation to the 

fish. 

- If they wrote something along the lines of “How fast the fish is growing at three 

months” probe them about their units. Ask whether they mean “In 3 months the 

fish grew 6 ounces”, or “In the next 3 months the fish will grow 6 ounces” or 

“At 3 months the fish grew 6 ounces”. Basically, probe about what students 

mean when they say this, I anticipate that they might flip-flop between a few of 

these. 

- If they wrote “The speed of the fish”, ask them what speed means in this context 

for them. 

Make sure to check if they wrote units or not, if not ask them what the units would be.  

If students articulate change in their response, ask “If I were to take a picture of this 

fish at exactly 3 months, then are you saying that the fish is growing at this rate in this 

frozen picture? is change happening in this picture or is there no change happening in 

this picture?” I suspect that students will say something along the lines of the fish is 

projected to grow at this rate, that if some amount of time were to go by then this 

would be the rate of change, again this means that change is not happening yet for 

them. 

For Part b.: This part is less of a focus, but this part will allow for further evidence of 

students’ meanings in part a. 

- If students wrote down a calculation, ask them what each part of their 

calculation means and why they did it. 

o If they did “6*0.05” ask them why they did this, and what this 

represents 

▪ Pay attention to if they articulate the rate of change in this 

elapsed time interval 

o If they included “15” ask them why they wrote this and what this 

represents to them 

- If they found a value and didn’t explain it as an approximation, ask them if this 

is the value of P(3.05). 

- If blank, ask them what they were thinking as they attempted to solve this 

problem, what was confusing, was it not possible for them to do? 

- If they answered somewhat correctly, ask them why we were able to use the 

derivative to get this value they found 

o I suspect the language the students use here will most likely be the most 

useful as evidence of students’ meanings for the derivative at a point 

from part a.  

o I suspect most students will say something along the lines of “If you 

know how much time has gone by, then you know how much change is 
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supposed to happen”, this will be in line with a student thinking about 

anticipated change for the derivative at a point.  
Figure 10: Task 1 Sample Protocol 

The protocol in Figure 10 includes hypothetical student responses based on Zandieh’s 

(2000) derivative framework. Anticipating the potential types of responses allowed me to 

prepare specific questions and follow-up tasks to investigate further a student’s 

understanding of the derivative concept. I provide the following two optional tasks as 

examples of how I adapted my interviews based on how the student responded to the Fish 

Task. 

Optional Task 1 (Figure 11) was used if a student associated the derivative value 

with the slope of a tangent line. I used this task to explore the student’s understanding of 

a tangent line and how the tangent line was related to the Fish Task. In particular, I 

Optional Task 1 – The Tangent Line Task 

 
Here is the graph of the function, 𝑃, and the tangent line at the point is included. 

 

Potential Questions (depending on what the student does in Task 1) 

- Is the tangent line a graph? Is it the graph of a function? 

- What does this tangent line represent with respect to the previous problem? 

- Why does the derivative give us the slope of the tangent line? 

Figure 11: Optional Task 1 - The Tangent Line Task 
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investigated the student’s interpretation of the derivative value in the context of slope and 

their conception of what a point on the tangent line would represent.   

Optional Task 2 (Figure 12) was used if a student associated the derivative value 

with a rate of change or a speed. The Fish Task was designed to explore a student’s 

meaning for rate of change and ability to apply a rate value in a context. In this task, I 

continued to explore a student’s understanding of the value of a rate of change by having 

students compare different car speeds. Students were asked to describe the difference 

between 3 different cars traveling at different speeds. I investigated how a student 

Optional Task 2 – The Car Task 

 

Suppose at 9:30am there are 3 cars and each speedometer reads a different 

number. Can you describe what is different about each car? 

Figure 12: Optional Task 2 - The Car Task 
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interpreted a speed value, what quantities they would associate a speed with, and how 

they were coordinating changes between those quantities. 

Grounded Theory and Generative Clinical Interviews 

Since the purpose of these generative clinical interviews was to generate new 

elements of a theoretical model in the form of mental actions and processes, the data 

analysis of the interviews was conducted in the spirit of Grounded Theory (Strauss & 

Corbin, 1990). Grounded theory is a qualitative research methodology in which the 

researcher is grounded in empirical data. Conducting research with Grounded Theory 

means developing theory that is “grounded” in the data instead of applying or verifying 

existing theories5. Lining up with Radical Constructivism, Grounded Theory is used by 

researchers to develop theories to explain observations and hypothesize models of 

students’ thinking. With respect to clinical interview methodology (Clement, 2000), 

grounded theory aligns with generative clinical interviews, where the researcher attempts 

to generate new elements of a theoretical model in the form of mental actions or 

processes that can explain the data. I intended to interview students to continually 

generate models of students' thinking until viable models were developed to explain 

patterns in observations. As each interview was conducted, I constructed conjectures of 

the student’s interpretation of the derivative at a point based on their utterances, written 

responses, and gestures. I asked follow-up questions to test these conjectures and updated 

 
5 It may seem strange to say that I am not applying existing theories (quantitative reasoning and 

covariational reasoning). First, I would say that Quantitative Reasoning is a lens I am using to understand 

and frame my students’ responses (rather than using it to code the responses). And second, when I 

conducted these interviews I did not go into these interviews knowing what theoretical framework to apply. 

Instead, after re-watching the interviews, I found that characterizing the students’ conceptualization of 

quantities varying was productive for explaining my students’ responses. 
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my model of the student’s thinking as the interview progressed. This process allowed me 

to generate models of a student’s thinking that emerged both during and after the 

interview. 

Participant Selection 

 I interviewed 25 students over a 2.5-year time frame, beginning in the Summer of 

2017 and ending in the Fall semester of 2019. The subjects were students enrolled in a 

Calculus 1 or Calculus 2 course at a large southwestern university. Twelve of these 

students were enrolled in Calculus 2, and thirteen students were enrolled in a Calculus 1 

course. There were four rounds of interviews, each conducted at the end of the semester 

over the duration of the study. Even though students were interviewed at different times 

throughout the study’s duration, the main tasks were the same for all 25 students. 

Data Analysis 

The analysis involved Open and Axial Coding (Strauss & Corbin, 1990) for 

moment-by-moment coding of students’ responses and interpretations. Using the codes 

from each student, I conducted a thematic analysis (Clarke & Braun, 2013) across 

moments within each student’s interviews and across different students’ moments. This 

thematic analysis aimed to identify and analyze the patterns of student responses to 

model the types of thinking that students were engaging in. 

I conducted my data analysis in the following ways. During the interview, I 

developed an in-the-moment model of students’ thinking grounded in their actions and 

utterances. After the interview, I documented my conjectured model of the student’s 

thinking by making notes alongside the students’ written work. Later, I transcribed the 

interview recording and coded the student’s responses by describing how the student was 
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likely interpreting something or what mental actions they were engaging in. After coding 

the transcript, I looked for commonalities in the codes to build and refine my model of 

the student’s interpretation of the derivative at a point. After each round of interviews at 

the end of each semester, I looked for patterns across different students and similarities in 

the codes between students (thematic analysis). From these patterns, I generated 

categories of student thinking that captured different types of student responses to these 

tasks and described the associated ways of thinking involved in each category. After 

coding around 20 interviews, no new reasoning patterns emerged, and I was able to use 

already defined codes to characterize a student’s thinking. After refining the codes, I re-

analyzed each interview to check for viability and consistency in the analysis.  

After the coding was completed (Yu, 2019, 2020, 2021), a follow-up analysis was 

conducted by examining the data using the Carlson et al. (2002) covariation framework. I 

compared my set of codes and categories with the descriptions and Mental Actions 

described in the original framework. I then observed several nuances and ways of 

thinking not sufficiently described in the original framework. These results led to me 

extending the covariation framework by including a level that characterizes how students 

reason about the value of a rate of change and the connections to their covariational 

reasoning. I hypothesized that attending to how students interpreted the value of a rate 

would reveal the potential mental obstacles that prevented them from reasoning at higher 

covariational reasoning levels. For example, suppose students were reasoning about a rate 

of change as an amount to add. In that case, students’ covariational reasoning would be 

limited to MA3 since they will be coordinating amounts of change instead of 

conceptualizing the multiplicative relationship between two varying quantities. Table 5 
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describes each level of the modified covariation framework and my hypothesis for how a 

student at various developmental levels will reason about the value of a rate of change. I 

modify Carlson et al.’s (2002) covariation framework by incorporating MA0, where an 

individual imagines variation in one quantity (in other words, they are not attending to 

how two quantities vary together). I also added MA3+, where students’ intuitive 

understandings of quantities varying involve smooth and continuous changes but are 

limited in how they coordinate variations in each quantity’s value because of their 

interpretation of a rate value. 

Level Description Example of a student 

reasoning about  𝑓′(3) = 6  

Mental Action 0 (MA0) - 

No Coordination 

The student focuses on the 

variation in the value of 

one quantity only. The 

student has no image of 

quantities varying together. 

The student may interpret the 

“6” as the output value of 𝑓 

changing or changed by 6.  

Alternatively, the student 

may interpret the “6” as the 

output value of 𝑓. 

In either case, there is no 

mention of the input quantity 

varying. 

Mental Action 1 (MA1) -

Coordinating Quantities 

The student coordinates the 

value of one quantity with 

changes in the other. 

The student may believe that 

the value of the output 

quantity changed by 6 and 

then subsequently that the 

value of the input quantity 

changed from 3 to 4. (The 

student is not describing how 

the input and output 

quantities change together; 

instead, they observe that 

both quantities changed) 

Mental Action 2 (MA2) - 

Directional Coordination 

of Values 

The student conceptualizes 

that one quantity varies as 

another quantity varies, but 

in a gross variation manner 

by not considering specific 

values. 

The student interprets that 

the output value is increasing 

as the input increases. The 6 

does not necessarily measure 

something; instead, it is like 

the reading on a 

speedometer. 
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Mental Action 3 (MA3) -

Coordination of Values 

The student coordinates the 

amount of change of one 

quantity with changes in 

the amount of the other 

quantity. 

A student may consider the 

current input and output 

values (3, 𝑓(3)) and 

anticipate that a change in 

the input (usually a 1-unit 

change) results in new values 

for the input quantity and 

output quantity, e.g., 

(4, 𝑓(4)). For example, a 

student interprets the value 

of 6 as the change in the 

output value for a 1-unit 

change in the input value, 

e.g., 𝑓(4) = 𝑓(3) + 6. 

Mental Action 3+ 

(MA3+) -Coordination 

of Values+ 

The student has an image 

of the value of the rate of 

change varying while 

coordinating the amount of 

change of one quantity 

with changes in the amount 

of the other quantity by 

assuming a constant rate of 

change. 

 

A student verbalizes that the 

value of a rate of change 

should vary as the input 

quantity’s value varies. 

However, they consider “6” 

as the change (or the 

approximated change) in the 

output quantity for a 1-unit 

change in the input quantity. 

For example: “If the rate of 

change stays constant, then 

the output value will change 

by 6 as the input value 

changes from 3 to 4.” 

Mental Action 4 (MA4) 

– Coordinating Average 

Rates of Change 

The student coordinates the 

average rate of change of 

the function with uniform 

increments of change in the 

input variable. 

A student may consider the 

current values of the input 

and output quantities 

(3, 𝑓(3)) and anticipate that 

for some change in the input, 

∆𝑥, the output value will 

vary 6 times as much. 

However, the student does 

not verbalize an awareness 

that the value of the rate of 

change varies within this ∆𝑥 

interval.  

Mental Action 5 (MA5) 

– Coordinating 

Instantaneous Rate of 

Change 

The student coordinates the 

instantaneous rate of 

change of the function with 

continuous changes in the 

independent variable for 

A student may consider the 

current values of the input 

and output quantities 

(3, 𝑓(3)) and anticipate that 

for some change in the input, 
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the entire domain of the 

function. 
∆𝑥, the output will vary 6 

times as much. The student 

verbalizes an awareness that 

the value of the rate of 

change will vary in this ∆𝑥 

interval, but for small ∆𝑥 

values, the actual change in 

the output will be essentially 

6 times as large. A student 

may consider continuous 

changes in the independent 

variable and anticipate that 

the values of the associated 

changes in the dependent 

variable will vary. 
Table 5: An Updated Covariational Reasoning Framework 

Results 

 The following section provides examples of each level of covariational reasoning 

and examples of how students at each level interpreted the value of a rate of change. I 

focus on describing and comparing MA3 versus MA3+ due to most students reasoning at 

these levels. 

Mental Action 0 (MA0) – No Coordination 

 Researchers have indicated that many students confuse amount functions with rate 

of change functions (Flynn et al., 2018; Prince et al., 2012; Rasmussen & King, 2000; 

Rasmussen & Marrongelle, 2006: Ibrahim & Robello, 2012). One potential reason for 

this is that if students are not coordinating how two quantities’ values covary. I utilize 

Thompson and Carlson’s (2017) construct of No Coordination (MA0) to classify this 

type of reasoning. A distinctive marker of this level of reasoning is conflating the value 

of a rate of change of a quantity with the amount of that quantity or how that quantity 

changed with no attention to the input quantity varying. It is important to note that this 

does not always mean that a student reasoning at MA0 does not think about the input 
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quantity. Instead, they might think about the input quantity’s value as a way to 

distinguish the instance the output quantity was measured. What characterizes MA0 

reasoning is the lack of attention to the input quantity varying and its relation to how the 

output quantity varies. 

Examples of MA0 reasoning 

 Gemma was a student who interpreted 𝑃′(3) = 6 in the fish task as an amount of 

weight (Table 6). Throughout the task, Gemma only mentioned time once when 

explicating her interpretation of the value of 6. She appeared to have used a time value to 

tag a point in time instead of mentioning how time is also varying [Line 3]. Additionally, 

Gemma discussed 6 as “the fish weight had changed by 6” [Lines 5-6], which furthers the 

notion that Gemma was primarily tracking the value of the weight since she never 

articulated a reference point of where she measured from. In a follow-up task on 

interpreting a speedometer reading of 54 mph, she explained that 54 was “how many 

miles the car’s distance had changed” but again, never discussed time as varying. I 

classify this interpretation as MA0 because she interpreted the rate value as an amount of 

weight, and her lack of attention to the input quantity varying in her explanations. 

Table 6: Gemma’s Explanation for Instantaneous Rate of Change 

1 

2 

3 

4 

5 

6 

7 

Gem: 

 

 

Int: 

Gem: 

Cause if I know that if derivative is like at an instance… I 

don’t know that’s just the same as P(3). The fish is 15 ounces, 

but at 3 months it’s growing at 6 ounces. 

Can you say a little more about what you mean by that? 

Yeah, like growing at 6 ounces is like the fish weight had 

changed by 6…umm... like I know that the fish is 15 ounces 

but like the 6 is like how the weight has changed.  

 

  Similarly, Leah was a student who interpreted 𝑃′(3) = 6 as an amount of weight 

gained by the fish (Table 7). While her initial writing of “from 0 to 3 months, the fish 
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gained 6 ounces” might indicate MA3 reasoning (Figure 13), her explanation revealed 

that she used the time values to distinguish between different measured instances of the 

fish’s weight. Her choice of “then at 3 months” and “by that third month” supported the 

idea that she probably was not imagining time changing continuously [Lines 5&8]. She 

continued to reason in this manner after being asked to clarify whether 6 was the weight 

of the fish or how the weight had changed. She explicated that she thought of the 6 as if 

she “looked at the fish at 0 months” and then “look(ed) at 3 months” [Lines 11-13]. Since 

Leah’s explanation consistently used language that evidenced her thinking about two 

different points in time rather than an interval of time, this corroborates the claim that she 

was not attending to variations in time. Instead, Leah utilized specific times to help her 

refer to which instance of weight she had in mind but never demonstrated that she was  

coordinating both weight and time as varying together. 

 

 

 

 

 

 

 

Table 7: Leah’s Explanation for Instantaneous Rate of Change 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Int: 

 

Leah: 

 

 

Int: 

Leah: 

 

Int: 

 

Leah: 

So can you explain what you wrote and what that means to 

you? 

Yeah, like at 3 months the fish weighs 6 ounces, and that 

would be like at I’m guessing when the fish was born so like 0 

ounces and then at 3 months the fish gained 6 ounces. 

So 6 here is the fish’s weight at 3 months? 

Umm yeah? Like it is also what the fish gained… the weight 

increased by 6 by that third month. 

Wait so is 6 what the fish weighs at 3 months or how much 

weight the fish gained by then? 

I guess both? Like well if we looked at the fish at 0 months… 

the fish weighs 0? But like I now look at 3 months the fish 

weighs 6 ounces so the fish gained 6 ounces by the 3rd month. 

Figure 13: Leah’s Interpretation of 𝑃′(3) = 6 
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Mental Action 1 (MA1) – Coordinating Quantities 

 A student reasoning at MA1 notices variations in two quantities’ values but may 

not realize that these variations happen simultaneously. So when a student engaging in 

MA1 considers the value of a rate of change, they will likely interpret the value as an 

amount of change in the output quantity and a subsequent change in the input quantity. 

Thompson and Thompson’s (1994) construct of a speed-length is a prime example of 

MA1 reasoning where a student considers the value of a speed as an amount of distance 

for a given amount of time or that “traveling a distance at some constant speed will 

produce an amount of time” (p. 5) 

Example of MA1 reasoning from the study 

 

 

 

 

 

 

 Keenan initially wrote 𝑃′(3) = 6 as the “instantaneous weight at 3 months is 6 

ounces” (Figure 14), and while this may look similar to the MA0 examples, Keenan’s 

explanation revealed that he noticed time passing (Table 8). However, as Keenan 

explained his interpretation, time did not seem to be the central focus of what a rate of 

change entailed to him. When discussing two measurements of the fish’s weight, Keenan 

Table 8: Keenan’s Explanation for Instantaneous Rate of Change 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Int: 

Kee: 

 

Int: 

Kee: 

 

 

Int: 

 

Kee: 

So can you explain what you wrote down? 

Yes, so the instantaneous weight being 6 ounces is the 

instantaneous change at 3 months is like 6 ounces.   

So what are you imagining when you say this? 

Uh. Like if I looked at the fish at 2 months then the fish at 3 

months the fish’s weight gained 6 ounces, uh yeah changed by 

6 ounces… like in that one month of time. 

Okay so like the difference between the fish’s weight at 2 

months versus at 3 months would be 6 ounces? 

Yeah, like you know P(2) would be 6 less than P(3). 

Figure 14: Keenan’s Interpretation of 𝑃′(3) = 6 
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mentioned two different points in time as he stated, “I looked at the fish at 2 months then 

at 3 months the fish’s weight gained 6 ounces” [Lines 5-6]. Keenan’s language indicated 

that he primarily focused on the fish’s weight changing since it “gained 6 ounces” and 

“changed by 6 ounces”, and it was not until he paused for a moment (as indicated by the 

‘…’ in the transcript) that he noticed that time had changed as well [Lines 5-7]. Keenan 

primarily associated the value of a rate of change with the output quantity due to his 

consistent response of discussing the 6 as a number of ounces [Lines 2-3, 6, 10]. Even 

though Keenan eventually associated a month with the 6 ounces, he mainly coordinated 

the value of the fish’s weight and later noticed time as elapsing; therefore, I classify his 

explanation as engaging in MA1. 

Mental Action 2 (MA2) – Directional Coordination of Values 

 MA2 marks the beginning of simultaneously coordinating the variations in two 

quantities’ values. A student reasoning at MA2 recognizes that two quantities vary 

together, yet they will likely talk about non-specific amounts of change. They will likely 

interpret the value of a rate like a reading on a speedometer. This would mean that the 

value of the rate, for example, 6 ounces per month, does not entail 6 of something; 

instead, the student utilizes the value to compare to other rates (e.g., 6 ounces per month 

is slower than 8 ounces per month). 

Examples of MA2 reasoning from the study 

 

Figure 15: Bob’s Interpretation of 𝑃′(3) = 6 
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Bob initially explained that he interpreted a rate as the weight increase over the 

third month (Figure 15). As he continued to explain, he attended to both weight and time  

as varying, but his description lacked the specificity of what the 6 represented (Table 9). 

Bob coordinated both time and weight as changing as he verbalized that it would not be 

“like at between 2 and 3 months he’s adding 6 pounds”; instead, he saw the 6 as “a 

number to throw out there” [Lines 3-5]. Later, when the interviewer probed him about his 

choice of units, Bob said that he chose ‘ounces’ because that was how the fish’s weight 

was changing, but he also verbalized that when he “usually read these (rates), I kind of 

think of a unitless number.” Throughout his explanation, Bob demonstrated that he was 

attending to time and weight changing simultaneously, and he was coordinating the 

variations in a unitless manner. Later in the interview, Bob was presented with Optional 

Task 2 (Figure 12), where Bob was asked to explain the difference between three 

different cars traveling at different speeds. Bob explained that one of the cars would be 

traveling faster, which meant that the car would travel further as time passed. Bob stated 

that “that car would obviously go farther than the other two cars, but like I can’t really 

say exactly how much further it would travel.” His statement revealed that Bob did not 

seem to attribute the value of a speed as quantifying something. Instead, he could only 

use the value to compare the distance traveled between each car in a gross variation 

Table 9: Bob’s Explanation for Instantaneous Rate of Change 

1 

2 

3 

4 

5 

Bob: It would be like at the exact moment it is changing by 6. So I 

guess I mean I was thinking about this the other day. I mean I 

guess it wouldn’t really just be like at between 2 and 3 months 

he’s adding 6 pounds, I don’t know how I think about that 

actually. I just kind of see it as a number to throw out there. 
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manner. Bob’s explanation of rate in a unitless manner, yet still as entailing how two 

quantities’ values vary simultaneously, is consistent with MA2 reasoning.  

Mental Action 3 (MA3) – Coordination of Values 

 A student exhibiting MA3 coordinates specific amounts of variation between the 

values in two quantities. Students engaging at MA3 will likely interpret 6 ounces per 

month as the amount of change in weight for a 1-unit change in time. 

Examples of MA3 reasoning from the study 

 

 

 

 

 

 Will was a student that interpreted 𝑃′(3) = 6 as “the instant rate of change of the 

fish’s weight when it is 3 months old is 6 ounces” (Figure 16). He explained that 𝑃′(3) =

6 as the change in weight for a 1-unit change in time (Table 10). Will described that “it’s 

Table 10: Will’s Explanation for Instantaneous Rate of Change 

1 

2 

3 

4 

5 

6 

Int: 

 

Will: 

 

Int: 

Will: 

So what does it mean to you that “the instant rate of change of the 

fish’s weight when it is 3 months old is 6 ounces?” 

So it’s at 3 months and to say that’s it’s growing by 6 ounces. So 

like in that entire third month it gained 6 ounces. 

Like that happened at the end of the month or something else? 

No, that change was over the entire month. *Draws calendar* 

Figure 16: Will's Interpretation of 𝑃′(3) = 6 

Figure 17: Will’s drawing of 6 

ounces over the entire 3rd month 
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growing by 6 ounces” meant that “in that entire third month it gained 6 ounces” [Lines 3-

4]. He later clarified his imagery by drawing a picture of a calendar and drawing an arrow 

through the dates (Figure 17) to demonstrate his awareness of time passing and his 

coordination of the overall change in the weight of the fish [Line 6]. Will interpreted the 

value of 6 in an additive fashion since he coordinated specific amounts of variations 

between weight and time (1 entire month and 6 ounces of weight); therefore, I consider 

Will to be engaging in MA3 reasoning in this excerpt.  

 

 

 

 

 

 

 

 Lucy was another student who exhibited MA3 reasoning during the entire 

interview (Tables 11&12). Lucy wrote that 𝑃′(3) = 6 was “the instantaneous rate of the 

weight of a fish is 6 ounces when it is 3 months old” (Figure 18) and initially explained it 

as the amount of change in weight over 3 months (Table 11). She eventually changed her 

explanation to say that it was a change in the weight for the next month [Lines 6, 10-11]. 

In both cases, her language indicated that she interpreted the 6 as an amount to add since 

Table 11: Lucy’s Explanation for Instantaneous Rate of Change 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Int: 

Lucy: 

 

Int: 

Lucy: 

 

Int: 

Lucy: 

Int: 

Lucy: 

Can you explain what the means to you? 

So the instantaneous rate is there’s a certain rate over a period 

of time so every like 3 months it is going to go up 6 ounces. 

Like every 3 months the fish will gain 6 ounces? 

Yeah like since 𝑃(3) = 15, then 𝑃(6) would be 6 more, 21. 

Oh wait, no it should be that 𝑃(4) would be 6 more. 

Oh? And why do you say that? 

I like mixed it up with the time we are at. 

Okay, so can you restate what you wrote down means? 

Yeah, like the instantaneous rate here tells us that in one month 

the fish’s weight will go up 6 ounces. 

Figure 18: Lucy’s Interpretation of 𝑃′(3) = 6 
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she used phrases such as “go up,” “would be 6 more,” and “go up 6 ounces” [Lines 3,5-

6,10-11]. Lucy’s explanation suggested that she was coordinating the amounts of change 

between time and weight together since she explained that it was “a certain rate over a 

period of time” [Lines 2-3], and she continually associated the change in the input value 

with a corresponding change in the output value [Lines 3, 5-6, 10-11]. 

Table 12: Lucy’s Explanation for her calculation in part b 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Int: 

Lucy: 

 

Int: 

Lucy: 

Int: 

Lucy: 

So how did you get 15.25? 

I was estimating because 3 would be 15 and you with that have 

to divide and it is probably wrong. 

So what did you want to do? 

You would do 6 divided by 0.05 *writes it down in green* 

And so why did you do that? 

To get the 0.05 rate of change to add to this *points to 15*, like 

if this like 4 it would be one more than this so it would be plus 

6, but because it is 0.05 of 1, we want 0.05 of 6. 

  

In part b of the Fish Task, Lucy continued to reason that the value of a rate was an 

amount of change for a 1-unit change in the input quantity (Table 12). Lucy explained 

that she was trying to find “the 0.05 rate of change to add” to the initial value of 15 

ounces [Line 7]. She then articulated that if the change in the number of months were 

one, she would add 6 and then deduced that since she had 0.05 of 1, the fish would gain 

0.05 of 6 [Lines 7-9]. While Lucy employed proportionality in her explanation, it is 

important to highlight that to Lucy, 6 was not describing the multiplicative relationship 

between how the age and weight of the fish would covary. Instead, it was the change in 

Figure 19: Lucy’s written work for part b of the Fish Task 
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the weight for 1 month of time, and she wanted to find 0.05 of that 6-ounce change. 

Additionally, Lucy struggled to mathematically represent what she explained since she 

initially did not write a calculation and instead estimated it [Lines 2-3]. When prompted, 

she tried several incorrect calculations, which indicated a lack of procedural fluency in 

using the value of a rate of change (Work written in green in Figure 19). 

Many other students also engaged in proportional correspondence in part b of the 

Fish Task by using 6 as the reference amount for a 1-month change in time and then 

setting up equivalent ratios to find a proportional amount of change. One student, April, 

explained how she solved part b by thinking of 6 as “how much it will change in a 

month” (Table 13). She later described that her calculation involved finding “0.05 of 

that” because she wanted 5% of 6 [Lines 7&10] (Figure 20). April seemed to be 

coordinating specific amounts of variations for particular times; however, she did not 

articulate how both quantities covaried together.  

 

 

 

 

 

Table 13: April’s Explanation for Instantaneous Rate of Change 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Int: 

Apr: 

Int: 

Apr: 

Int: 

Apr: 

 

Int: 

Apr: 

Can you tell me what this ‘15’ represents to you? 

Uhh, yeah that was how much the fish weighed at 3 months. 

Okay, so what does this ‘0.05 ∗ 6’ mean? 

That was the change in the fish’s weight 

So why does ‘0.05 ∗ 6’ represent that? 

Well like… 6 is how much it will change in a month and I 

wanted to find like 0.05 of that. 

Sorry, can you say again what 0.05 meant to you? 

Yeah, like 0.05 was like how much of the change in 6 ounces I 

wanted to find, like…ummm like I wanted 5% of 6 
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Similarly, other students who explicated 6 as an amount of change of weight in a 

month set up equivalent fractions (Figure 20) because they looked for a proportional 

amount of change. For example, a student named Anu described her calculation as “like 

if I split the rate up into little pieces like 20ths.” Anu’s description revealed that she 

thought of 6 as an amount of change in the fish’s weight and that she could subdivide the 

6 into 20 equal pieces and could find the corresponding amount of change in the fish’s 

weight for a 0.05 change in fish’s age. Many other students also described that 6 was an 

amount of change for a 1-month change in time and that their calculation was finding a 

portion of that change (Figure 21). Similar to Anu, these students engaged in proportional 

correspondence by finding the corresponding amount of change in the weight that would 

keep the proportion of 6 ounces to 1 month. 

The students’ actions and explanations for estimating the change in the fish’s 

weight for a 0.05 change in the amount of time suggested that they were imagining 

variations between weight and time using chunky reasoning (Castillo-Garsow, 2010). In 

other words, they imagined 6 as a discrete amount of change in the weight of the fish and 

took actions to find a smaller-sized chunk of change that maintained the 6:1 ratio. What 

was absent in the interpretations from all the students who exhibited MA3 reasoning was 

Figure 20: Examples of MA3 reasoning 
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that the quantities of the weight of the fish and the age of the fish would vary 

continuously and smoothly. This is supported by the students’ interpretation that 6 was a 

completed change in the number of ounces after some elapsed amount of time instead of 

a value that quantified the relative size of a varying amount of time and a varying fish 

weight (in ounces) since the fish hatched.  

Mental Action 3+ (MA3+) – Coordination of Values+ 

 MA3+ is similar to MA3, except that a student is cognizant that the value of the 

rate of change is also varying. While verbalizing an awareness of how the instantaneous 

rate of change of a function continually varies as the input variable varies is an indication 

of MA5 reasoning, MA3+ is different in that a student is limited to coordinating discrete 

amounts of changes between quantities instead of them varying continuously and 

smoothly. I argue here that a student’s meaning for the value of a rate of change is one of 

Figure 21: Additional Example of MA3 Reasoning 
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the potential obstacles that hinder them from reasoning at MA5. If a student interprets the 

value of a rate of change additively, they will likely reason about variation happening in 

discrete chunks, which may prevent them from understanding what it means for a rate of 

change to vary. A student reasoning at MA3+ experiences a disconnect between their 

intuitive understanding that quantities vary smoothly and continuously versus their 

interpretation that a rate refers to a fixed amount of change. This new classification of 

MA3+ is necessary since some students will demonstrate an awareness of how the 

instantaneous rate of change of a function continually varies as the input variable varies. 

However, their behaviors are limited to MA3 due to their conception of rate of change. 

Examples of MA3+ reasoning 

  

 

 

 

 

 

 

 

Max displayed MA3+ reasoning as he explained his interpretation of 𝑃′(3) = 6 

as an amount of change in the fish’s weight (Table 14). Similar to students who exhibited 

MA3 reasoning, Max also articulated that 6 was the amount the fish was “projected to 

grow” and that “in that month he should gain 6 ounces” [Lines 9-10]. Max coordinated an 

amount of change in the fish’s weight with an amount of change in time; however, he 

Table 14: Max’s Explanation for 𝑃′(3) = 6 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Max: 

Int: 

 

 

Max: 

Int: 

 

Max: 

 

 

 

Int: 

 

Max: 

It gained 6 ounces in weight when it was 3 months old 

So are you saying that after 3 months, the change in weight is 6 

ounces. So like from 0 months to 3 months the fish gained 6 

ounces? 

No… not really 

So what are you trying to describe? Are you saying in the third 

month it gained 6 ounces? 

No because…I do not have enough information to give that 

number. At 3 months he is in a sense projected to grow at that 

rate that he is growing at. Like in that month he should gain 6 

ounces. 

Okay, so what are the units on this derivative? You wrote that 

the units of 𝑃(𝑡) is ounces, what are the units for 𝑃′(𝑡)? 

Change in ounces?... Yeah cause change in ounces is still an 

ounce so the unit is ounces. 
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also consistently qualified his language to indicate his awareness that the value of the rate 

of change would likely vary. Even though the interviewer asked if Max meant that “in the 

third month it gained 6 ounces”, Max quickly denied that because he did “not have 

enough information” [Line 8]. His explanation included words such as “projected” and 

“should” to indicate that the 6 was not the exact amount of change in a month. Instead, it 

meant that if the rate stayed the same, the fish’s weight would gain 6 ounces [Lines 6-11]. 

Although Max was cognizant that the rate at which the fish was growing was varying, it 

seemed that his meaning for rate of change as a “change in ounces” [Line 14] prevented 

him from fully engaging in MA5 reasoning and instead limited him to coordinating 

amounts of variations between the two quantities (MA3). 

 

 

 

 

 

 

Fred was another example of an MA3+ reasoner when he explained how he used 

the derivative value to estimate 𝑃(3.05) (Table 15). Fred explained that 6 was the 

number of ounces the fish will grow “until the third month finishes” and repeated this 

later as “the entire third month [the fish] is going to grow 6 ounces” [Lines 3-4 & 9-10]. 

Like Max, Fred consistently justified his estimation with language such as “assuming the 

rate at which it grows is the same” and that he was “under the assumption that over the 

span of the third month they’re growing at 6 ounces” [Lines 1-3 & 9-10]. His word 

Table 15: Fred’s Explanation for his solution to part b 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Fred: 

 

 

 

 

Int: 

Fred: 

Int: 

Fred: 

At 𝑃(3.05)… uh 15+0.3 ounces… assuming the rate at which 

it grows is the same or very close to the same oh okay… so 

this is under the assumption that over the span of the third 

month they’re growing at 6 ounces so I just took a small 

portion of that. 

Over the entire third month you said? 

Yeah until the third month finishes. 

So the entire month finishes it’s growing at a rate of 6? 

Yeah so I took a portion of that, like assuming the entire 3rd 

month is going to grow 6 ounces I took a portion of that like 

0.05 and found the associated change for that time. 
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choice demonstrated that he was aware that the value of the rate of change might not be 

constant but using the value of an instantaneous rate of change involved making that 

assumption. Again, like Max, Fred’s meaning for a rate of change entailed a change in 

the fish’s weight of 6 ounces [Lines 4&10] which led him to engage in coordinating 

amounts of variations since he wanted to find a “portion” of the 6 ounces for the 

“associated change for that time” [Lines 4-5 &10-11]. I claim that had both Fred and Max 

conceptualized rate of change as a multiplicative relationship between two varying 

quantities instead of a specific amount of variation, they would reason at higher levels of 

covariation reasoning. 

Mental Action 4 (MA4) – Coordination of Average Rates of Change 

 Engaging in MA4 and higher requires recognizing that a rate of change entails a 

multiplicative relationship between the variations in the values of two quantities. In 

contrast to MA3, a student at MA4 would not utilize equivalent ratios or resize a one-unit 

change; instead, they conceptualize the value of a rate of change as describing how many 

times as large the variation in one quantity will be with respect to another. 

Examples of MA4 reasoning 

 Randy explanation of instantaneous rate of change was consistent with MA4 

reasoning (Table 16). Randy described instantaneous rate of change as “how much it’s 

(the fish’s weight) changing by over a process of time,” and as he said this, he slid his 

right hand away from his other hand to indicate the motion that went with his verbal 

description [Lines 1-3]. As Randy continued to explain, he articulated that the 6 

described how the weight would change “from there to there it would keep changing by 

like 6 ounces per month” [Lines 2 & 6-7] and that they vary together because “it (the 
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weight) is not changing if time isn’t changing” [Lines 12-13]. Due to his gestures and 

how he attempted to describe weight and time changing together, Randy evidenced that 

he thought of a rate of change as describing how the quantities vary together smoothly 

and continuously.  

 

 

 

 

 

 

 

Although Randy never explicitly described 6 as representing the relative size of 

the change in weight compared to the change in time, his actions suggested that this rate 

of change entailed the simultaneity of weight and time covarying together. Additionally, 

he verbalized that he was thinking about average rates of change over small intervals and 

that the weight would be changing at a rate of 6 [Lines 5-7 & 10-13]. This suggested that 

he was not engaging in MA3 by thinking of 6 as a change in weight; rather, he attempted 

to articulate that the 6 described how fast the weight would change during the time 

interval. Randy never demonstrated an awareness that the rate of change would vary, and 

in fact, he used more definitive language such as “that’s how much it is changing by” and 

“it would keep changing,” which implied that he thought about the rate being constant 

over those small intervals [Lines 1-2 & 6-7]. Therefore I deem his interpretation and 

explanation as engaging in MA4 reasoning. 

Table 16: Randy’s Explanation for Instantaneous Rate of Change 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Ran: 

 

 

Int: 

Ran: 

 

 

Int: 

 

Ran: 

Like the instantaneous rate of change, so like… that’s how 

much it is changing by over a process of time. *Slides his 

hands to motion* 

So like over the first three months it gained 6 ounces?  

No like…let’s say like from…. like 2.9 to 3.1, like the average 

rate of change is like 6, like from there to there it would keep 

changing by like 6 ounces per month 

So why did you pick 2.9 and 3.1? Does it have to be those 

numbers? 

Nah like that was just something close to 3, we could have 

picked like from 2.85 to 3.15 that average rate would be 6, I 

mean I’m just trying to explain it cause it (the weight) is not 

changing if time isn’t changing. 
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Table 17: Winnie’s Explanation for her solution to part b 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Win: 

Int: 

Win: 

 

 

 

Int: 

Win: 

 

 

Int: 

Win: 

So I multiplied 6 by 0.05 for some reason 

And what were you trying to represent? 

I think it would represent the amount that it is changing in that 

small interval that it’s defined up to 3.05… so we’re using the 

fish’s instantaneous rate of change from 3, yeah that’s what I 

did. 

So how did you get 0.05? 

Because you know that 𝑃(3) is 15… so I multiplied by 0.05 

since that’s what the amount that’s after that. *Slides her right 

hand as she describes this* 

So why does 0.05 times 6 get a change in weight? 

Uhh… because like the instantaneous rate of change is 6 and 

we know that the time only progresses after the interval for 

0.05, and the weight changes with it so I multiplied those to get 

out the change. 

  

Another student, Winnie, exhibited MA4 reasoning as she explained her solution 

to part b of the Fish Task (Table 17). Winnie initially struggled to articulate why she 

multiplied 6 by 0.05, and it is only in the latter portion of the interview where she 

described the 6 as being related to “the time only progresses after the interval…and the 

weight changes with it so I multiplied those…” [Lines 13-15]. Similar to Randy, Winnie 

never demonstrated that she interpreted 6 as an amount of weight; instead, she explained 

that the 6 had something to do with how weight and time varied together [Lines 12-15]. 

Additionally, she also utilized a similar hand gesture when attempting to explain her 

calculation. She slid one of her hands from her other stationary hand (Figure 22) to 

describe what she imagined [Lines 8-10]. Her explanation for her calculation and her 

gestures suggested that she imagined weight and time varying together smoothly and 

Figure 22: Depiction of Winnie’s gesture as she 

explained her interpretation of 𝑃′(3) = 6 
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continuously. Winnie’s actions suggested to her, a rate of change entailed how two 

quantities would vary together, however, she did not communicate that she interpreted 

the 6 as a relative size measurement between variations in the fish’s weight and the age of 

the fish. Lastly, Winnie never explicated an awareness that the value of the rate of change 

would vary, which would preclude her from being classified as MA5; therefore, I classify 

her reasoning as MA4. 

Mental Action 5 (MA5) – Coordination of Instantaneous Rates of Change 

 MA5 includes all of MA4 with the added distinction of recognizing that the value 

of the rate of change varies as the input quantity also varies. A student engaging at MA5 

will consistently qualify the amount of change in a quantity with “if the rate stays the 

same…”. This is further evidenced when a student anticipates that for some input, 𝑎, and 

for some change from the input, ∆𝑥, the output value will vary 𝑓′(𝑎) times as much, in 

other words 𝑓′(𝑎) ∗ ∆𝑥 ≈ 𝑓(𝑎 + ∆𝑥) − 𝑓(𝑎). The student also verbalizes an awareness 

that the rate of change will vary in this ∆𝑥 interval, but for small ∆𝑥 values, the actual 

change in the output will essentially be 6 times as large. It is important to note that among 

the 25 students, I only observed one instance that had sufficient evidence for being 

classified at MA5. This does not mean that there were no other instances where students 

were reasoning at MA5; instead, there was insufficient evidence to support such a claim. 

However, since most students interpreted the value of a rate as an amount of change, it is 

likely that these students were not engaging in MA5 reasoning. 

Example of MA5 reasoning 

Cyrus demonstrated MA5 reasoning as he explained his solution to part b of the 

Fish Task (Table 18). Throughout the entire interview, Cyrus never indicated that he 
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interpreted 6 as an amount of change; instead, he always employed examples where he 

would use the 6 and multiply it by some amount of time. While Cyrus never explicitly 

stated he interpreted a rate as a ratio between changes in two quantities, he only utilized 

the 6 to employ multiplication to discuss how time and the fish’s weight varied together 

[Lines 2 & 11-13]. Cyrus described the 6 as the fish was “changing at 6 ounces per 

month” and explained that as how the fish’s weight was “changing” and not as an amount 

of change [Lines 6-9]. As Cyrus explained his calculation, he consistently verbalized that 

he assumed a constant rate since “it probably is not going to be changing very much 

faster or very much less” and that his estimation was “somewhere close, but I know that’s 

not the correct value” [Lines 3&7-10]. This evidenced his awareness that the rate of 

change would vary even in the small interval between 3 and 3.05 and that even if the rate 

did vary, it would not change drastically unless it “hit a growth spurt right before or 

after,” which meant that his estimation was close enough [Lines 7-10]. Altogether, Cyrus 

demonstrated that he was coordinating how time and the fish’s weight covaried together 

smoothly and continuously as well as coordinating the instantaneous rate of change of the  

function with continuous changes in the independent variable. 

 

 

 

 

 

 

 

Table 18: Cyrus’ explanation for his solution to part b 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Int: 

Cyr: 

 

Int: 

Cyr: 

So what did you try doing here? 

0.05 * 6 and got 0.3, so I estimated 15.3. I know it’s 

somewhere close, but I know that’s not the correct value. 

So why did you do this part over here 0.05 * 6? 

So that was the estimation, it was 3 and 0.05 months, at 3 

months it was changing at 6 ounces per month, and at 3.05 

months it probably is not going to be changing very much 

faster or very much less but that’s an estimation you could 

have hit a growth spurt right before or after, that’s why I did it, 

the rate of change probably won’t change much between 3 and 

3.05. So I multiplied the rate of change which was 6, times the 

value added on to 3 when the rate of change was 6 and I 

multiplied those two numbers together. 
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Discussion 

Based on the results of these clinical interviews, each student’s explanation of the 

value of an instantaneous rate of change revealed how they might have conceptualized 

how two quantities’ values covaried. In Carlson et al.’s (2002) study, students could 

exhibit MA5 reasoning with the bottle problem if they coordinated that equal changes in 

water would result in decreasing (then increasing) changes in height. I argue that some of 

these students leveraged their intuitive understanding but may have struggled to 

demonstrate MA5 if they had to attend to the values of a rate of change at a given 

volume. In this study, some of the students demonstrated an awareness that the 

instantaneous rate of change of the fish’s weight varies as the age of the fish varies. 

However, it was apparent that their interpretation of a value of a rate of change limited 

them to coordinating specific amounts of change, which was demonstrative of MA3 

reasoning. 

To recap, I highlight two major insights from the results of this study 

1) Attending to how a student interprets the value of an instantaneous rate of 

change can provide insight into how they reason covariationally. Further, it is 

likely that a student’s meaning for rate of change is what causes them to 

reason at a particular level of covariational reasoning. 

2) New categories of MA0 and MA3+, and an updated description to MA4 and 

MA5 to further describe several nuances in student thinking regarding 

covariational reasoning that were not originally described in the original 

Covariational Reasoning Framework as proposed by Carlson et al., (2002). 

Conclusion 
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 Overall, 16 of the 25 students did not exhibit beyond MA3/3+ reasoning when 

utilizing the value of an instantaneous rate of change. The results of this study indicate 

that many Calculus students have impoverished understandings of instantaneous rate of 

change and that one potential source for this issue is their mathematical understanding of 

rate of change. Many of the students in this study were limited to reasoning at MA3/3+ 

due to their conception of rate of change as an amount to add to the function’s output 

value for a one-unit change in the input. Students in this sample that had an additive 

conception of rate of change took actions to suggest they were thinking about completed 

changes instead of quantities varying smoothly and continuously. Therefore it stands to 

reason that supporting students in constructing a productive understanding of rate of 

change can be beneficial for their understanding of derivative as instantaneous rate of 

change. 

 Many students in this sample struggled to interpret the value of a rate of change as 

entailing the multiplicative comparison between two varying quantities and instead 

employed additive reasoning. Even the few students who evidenced MA4 or MA5 

reasoning could not articulate the underlying reason for employing multiplication when 

using the value of a rate of change. It is not surprising then that students with an additive 

conception will struggle to adapt this understanding to their other STEM courses, such as 

physics, differential equations, and various engineering courses (Prince et al., 2012; 

Rasmussen & King, 2000; Rasmussen & Marrongelle, 2006; Ibrahim & Robello, 2012). 

While developing a robust understanding of rate of change should be seeded early on 

(e.g., Thompson & Thompson, 1994), the findings of this study suggest that Calculus 
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instructors should attend to what a rate of change entails in order to support their students 

in understanding the derivative as a rate of change function.  
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CHAPTER 6 

PAPER 2: A CONCEPTUAL ANALYSIS FOR THE IDEA OF INSTANTANEOUS 

RATE OF CHANGE 

 Based on the previous study’s findings, many Calculus students interpret the 

value of an instantaneous rate of change as an amount to add to the output value for a 1-

unit change in the input. From my perspective, this way of thinking will be a conceptual 

barrier for some students and will thus be an obstacle to their understanding of ideas of 

Calculus, such as accumulation. Therefore, an appropriate follow-up question is, “What 

is a productive meaning for instantaneous rate of change, and how might we support 

students in constructing that meaning?” In this paper, I propose a conceptual analysis 

(Thompson, 2008) of the derivative concept rooted in relevant literature and the results of 

my clinical interviews (Yu, 2019, 2020, 2021). This conceptual analysis includes a 

Hypothetical Learning Trajectory (Simon & Tzur, 2004) that I conjecture would be 

propitious for students in understanding the idea of instantaneous rate of change. 

Research Question: What is a productive meaning for instantaneous rate of 

change? What understandings are foundational for understanding the concept of 

derivative? 

Conceptual Analysis 

According to Glasersfeld (1995), a conceptual analysis entails a detailed 

description of what is involved in understanding a particular concept. This description 

consists of explicating the mental operations that might explain why individuals think the 

way they do. Thompson (2008) elaborates that conceptual analyses can effectively 

express productive ways of thinking for learning an idea.  
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As a student is reasoning about ‘derivative,’ as describing the instantaneous rate 

of change of one quantity (output quantity) with respect to another quantity (input 

quantity). What this entails is that a function, 𝑓, having an instantaneous rate of change 

value of 𝑓′(𝑎) at the input value 𝑎 means that for small variations in the input quantity, 

the variation in the output quantity will essentially be 𝑓′(𝑎) times as large as the variation 

in the input. In contrast, typical Calculus textbooks (e.g., Stewart (2013) and Larson 

(2007)) discuss derivatives as the slope of a tangent line or as velocity with little attention 

to describing how quantities are changing. Zandieh’s (2000) research evidenced that 

many students interpret the derivative as the slope of a tangent line or like the reading on 

a speedometer, but researchers have demonstrated that students’ weak meanings for 

derivative as rate of change will be an obstacle for related mathematical topics (Byerley 

et al., 2012; Flynn et al. 2018; Prince et al., 2012; Rasmussen & King, 2000; Rasmussen 

& Marrongelle, 2006; Ibrahim & Robello, 2012). In this paper, I explicate the ways of 

thinking and mental actions involved for derivative as instantaneous rate of change that I 

conjecture would be productive and coherent for future mathematical learning.6 

It may seem paradoxical to talk about a desired meaning for a concept while 

taking the stance of Radical Constructivism. In Radical Constructivism, each individual 

constructs knowledge through their own experiences, and it is impossible to verify if one 

person’s knowledge is the same as another’s. Therefore it might be strange to describe a 

desired meaning with no way of verifying that a student holds this exact meaning. 

Instead, I argue that explicating what is involved in learning a topic entails describing the 

 
6 To be clear, I am not claiming that this is the only meaning a student should have for “derivative.” Rather, 

I argue that when interpreting a derivative as an “instantaneous rate of change” that it would be useful if it 

entails a multiplicative comparison. 
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productive mental actions that a student may be engaging in. Additionally, I will describe 

behaviors that would evidence that a student is engaging in these mental actions. 

Productive Meaning 

Thompson (2016) defines a productive meaning in learning mathematics as a 

meaning that is useful for future mathematical learning. Additionally, Thompson states 

that a productive meaning is a meaning that allows students to see different mathematical 

ideas as being coherent and interconnected. What one researcher believes to be a 

productive meaning may be deemed unproductive by another. Researchers use the term 

productive meaning to explicate or identify the ways of thinking about a mathematical 

idea that they believe will be useful in their conception of future mathematical learning. 

For example, many physics education researchers (Roundy et al., 2015; Dray et al., 2019) 

argue that calculating the slope between 2 carefully chosen values is a derivative. In their 

conception of derivative, these researchers believe that students thinking about derivative 

in this manner is more consistent with how physicists and engineers utilize derivatives. 

Conversely, some mathematics education researchers (Thompson & Dreyfus, 2016; 

Rogers, 2005) argue that differentials should be taught in place of limits with a focus on 

quantities varying. For Thompson, thinking about differentials as a variable whose value 

varies through a small interval is a productive meaning since it coherently fits his 

conception of mathematical thinking based on quantitative reasoning (2011) and how 

quantities covary with one another (Thompson & Carlson, 2017). This comparison 

illustrates that a researcher uses the term productive meaning to describe a meaning the 

researcher believes will be useful in a variety of situations and is coherent in their 

conception of mathematical thinking. 
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One clarification that needs to be made regards the issue that meanings are 

personal and the Radical Constructivist stance that another’s knowledge cannot be known 

to another. Therefore it is necessary to explain how what a researcher believes to be a 

productive meaning would be useful for another’s conception of mathematical thinking. I 

claim that articulating a productive meaning can be used as part of conceptual analysis to 

“describe ways of knowing that might be propitious for students’ mathematical learning” 

and “in analyzing the coherence, or fit, of various ways of understanding a body of ideas” 

(Thompson, 2008). By elucidating a productive meaning, a researcher can leverage their 

meaning to hypothesize how students may come to build such a meaning. When someone 

hypothesizes a goal for a student, they also must envision the potential paths that would 

lead to that goal and the pitfalls that would prevent students from attaining it. An example 

of leveraging a productive meaning to anticipate how students may come to learn an idea 

can be seen in the works of Thompson and Thompson (1994, 1996). The authors describe 

a productive meaning for speed as (1) a quantification of motion, (2) completed motion 

involves distance traveled and the amount of time required to travel that distance, (3) a 

multiplicative relationship between distance and time traveled, and (4) a proportional 

relationship between distance and time traveled. They demonstrated that if a student was 

thinking of a speed as a length (e.g., a student would attempt to fit a number of speed-

lengths into a total distance), the student would encounter difficulties when answering 

questions about finding the needed constant speed to travel a distance in a given number 

of seconds. To combat this way of thinking, Thompson and Thompson made deliberate 

teaching moves that allowed their student to conceive of motion as entailing distance and 

time simultaneously. By considering what a conceptual understanding for motion 
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entailed, they identified the ways of thinking that the students needed to engage in and 

the actions the instructor needed to take in order for the student to build such a meaning.   

One Productive Meaning for Instantaneous Rate of Change 

In a typical Calculus 1 course, instantaneous rate of change is introduced to 

students via the limit definition of derivative, 𝑓′(𝑥) = lim
∆𝑥→0

𝑓(𝑥+∆𝑥)−𝑓(𝑥)

(𝑥+∆𝑥)−(𝑥)
 (Stewart, 2013; 

Larson et al., 2006). One productive interpretation of this limit is the multiplicative 

relationship (the value of 𝑓′(𝑥)) between a variation in a function’s output (𝑓(𝑥 + ∆𝑥) −

𝑓(𝑥)) and a variation in the input ((𝑥 + ∆𝑥) − (𝑥)) so long as the variation from the 

input value 𝑥 is arbitrarily small ( lim
∆𝑥→0

). The convergence of this limit is what we call 

“instantaneous rate of change,” which represents the multiplicative relationship between 

two varying quantities with respect to one another’s relative variation size. To use a 

derivative value as a rate of change having some value 𝑚, one must imagine the input 

quantity varying while simultaneously imagining the output quantity varying 𝑚 times as 

much as the input quantity’s variation. This is the same meaning we might attribute to an 

average rate of change over a small interval, in that someone imagines the constant rate 

of change needed to achieve the same accrual in one quantity with respect to the accrual 

size of the other quantity. Additionally, a student must recognize that the variation in the 

output value will be essentially equal to the actual variation since the quantity is not 

changing at a constant rate of change. In this case, what it means to be essentially equal is 

that the approximation of the variation in the output by assuming a constant rate of 

change will be so close to the actual variation that the difference between the two is 

imperceptible.  
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In the next section, I provide an example of the usefulness of the meaning I 

described for instantaneous rate of change.  

A Differential Equations Example 

 The first example was about linear approximation (in the Theoretical Perspective 

Chapter), which is generally taught right after teaching the derivative as a function. 

However, for the meaning to be productive, the meaning should be useful for future 

mathematical learning. I outline the usefulness of this meaning for instantaneous rate of 

change in a topic that is centrally about derivatives, differential equations. According to 

Rasmussen and Keene (2019), students need to develop increasingly sophisticated ways 

of reasoning about rate of change in order to predict solutions to autonomous differential 

equations. One way of reasoning that they highlight as significant is coordinating a rate 

of change of a function that depends explicitly on the dependent variable (where the 

dependent variable is not time). Below is an example involving a differential equation 

that demonstrates the usefulness of attending to a rate of change as a quantity that 

measures something about a situation. This way of reasoning about a rate of change as a 

function is aligned with researchers findings on supporting students in differential 

equations courses (Rasmussen & Keene, 2019; Donovan, 2007; Jones and Kluster, 2021). 

Figure 23: A Cart Rolling to a Stop 
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 Imagine a cart that is moving and is rolling to a stop (Figure 23).  The differential 

equation gives the acceleration of the cart: 𝑣′ = −𝑘 ∗ 𝑣, where 𝑣 represents the velocity 

of the cart7, 𝑣′ is the rate at which the velocity changes, and 𝑘 is the drag coefficient8. 

Suppose that we are given that 𝑘 = 0.7 and that we can measure the velocity of the cart at 

any time 𝑡 with an initial starting value 𝑣(0) = 2.3. Typically in a differential equations 

class, students are taught various techniques to determine an explicit function that defines 

𝑣(𝑡). In this case, since the derivative of 𝑣 is −0.7 times as large as the original velocity 

function, then the function is of the form 𝑒−0.7𝑡, where 𝑣(0) = 2.39. Solving this gives 

that 𝑣(𝑡) = 2.3𝑒−0.7𝑡. This procedure builds upon students’ experience with rules for 

differentiation, but it does not seem to help students think about quantities changing. I 

offer the following way of thinking that employs quantitative reasoning to understand this 

differential equations problem. 

 First, when one is reading the statement, 𝑣′ = −𝑘 ∗ 𝑣, a student can imagine that 

at higher velocity values, the value of the rate at which the velocity is changing is more 

negative. Note that in this case, a student is not imagining that 𝑣 is increasing in this 

situation. Instead, the student imagines that as the cart slows down (𝑣 is decreasing), the 

rate at which the velocity is changing is increasing (becoming less negative). Next, the 

student imagines that 𝑣′ represents how the velocity is changing with respect to time for 

small changes in time. Then the student can manually find different coordinate pairs 

(𝑡, 𝑣) and coordinate how the quantities’ values are changing. Afterward, the student can 

 
7 Implied by this situation is that 𝑣 is a function of time. 
8 One way to make sense of the entire equation is that “the faster the cart is moving, the more it will slow 

down”. 
9 Recall that the derivative of 𝑒−𝑘𝑡 with respect to 𝑡 is −𝑘𝑒−𝑘𝑡. 
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imagine that the velocity changes at a constant rate between each consecutive input value. 

Graphing these piecewise lines together creates a hypothesized velocity graph. Then the 

student can compare that graph to the graph of the proposed solution 2.3𝑒−0.7𝑡 and can 

then see that they are very close to one another. Video 5 demonstrates this way of 

thinking. 

 

Video 5: Coordinating Velocity Values 

Lastly, a student can further verify this solution by examining ordered pairs of (𝑣, 𝑣′) and 

note that 𝑣′ would change at a constant rate of −2.3 with respect to 𝑣. This way of 

reasoning aligns with the findings of Jones and Kuster (2021). They identified that 

simultaneously reasoning about a rate of change as a variable output and relating to two 

other variables was important in understanding differential equation variables and 

functions. 

To be clear, I am not arguing that students will approach every differential 

equation with this way of thinking. Instead, I argue for having students discover the 

https://www.youtube.com/embed/6ZP7QDV9TX8?feature=oembed
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solution and why the solution makes sense quantitatively. Similar to the limit definition 

of derivative, we do not expect students to continually engage in evaluating the limit of 

average rates of change to calculate a derivative function. Instead, we stress how the 

derivative function is derived so that students will associate the imagery of tiny variations 

in quantities with the derivative. 

Hypothetical Learning Trajectory 

 Based on the ideas outlined in the previous section and the literature on derivative 

and prerequisite topics (see Introduction and Literature Review), I propose that the 

following foundational ideas that are essential to learning derivative (Table 19). This 

ordering is based on Simon & Tzur’s (2004) hypothetical learning trajectory (HLT). An 

HLT includes an ordered list of learning goals (Table 19), tasks intended to promote 

these learning goals (Table 20), and hypotheses about how students may learn from these 

tasks. Table 19 outlines a proposed list of learning goals for a student in Calculus 1 for 

the learning of derivative10. The usage of an HLT aligns with Thompson’s (2008) 

description the usage of conceptual analyzes to describe the ways of knowing that might 

be propitious for students’ mathematical learning and to provide imagistically-grounded 

descriptions of mathematical cognition. 

Proposed 
Order of 

Instruction 

Foundational Idea for the 
Learning of Derivative 

Desired Student Understanding 

 
10 I am making assumption that students understand Limit as imagining the value of an expression varying 

as the limiting variable varies towards the limiting value (lim
𝑥→𝑎

). I hasten to note that the learning of limit is 

non-trivial (Roh, 2008; Tall & Vinner, 1981; Przenioslo, 2004). In my experience in teaching Calculus 1, 

students with diverse conceptions of limit such as convergence of values or as asymptotes does not seem to 

have a significant impact on how students conceptualize rate of change. As such, I omit learning goals 

about Limit in this HLT. Further, the tasks will not employ limit notation, and will instead utilize intuitive 

understandings of picking smaller and smaller sized intervals. 
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1 
Variation: Change (noun) as a 

difference. A completed change, 

∆𝒙 

A change from one value of Quantity A, 𝑥1, to 

another value of Quantity A, 𝑥2, is conceptualized 

as a difference in the values through an additive 

comparison. 

𝑥2 − 𝑥1 = ∆𝑥 

∆𝑥 is how much 𝑥 changed from instance 1 to 

instance 2. 

2 Ratio 

A ratio between two quantities is conceptualized as 

measuring the value of one quantity in terms of 

another quantity's value. The resultant number 

represents how many times larger the value of one 

quantity is in terms of the value of another. This is 

describing the multiplicative relationship between 

the two quantities at a particular instance. 

3 Rate as a Reconceptualized Ratio 

A rate between two quantities is conceptualized as 

imagining that as the quantities' values vary, the 

ratio between the two quantities remains constant. 

4 Constant Rate of Change 

For 𝑥 and 𝑦, (the values of the varying Quantities 

A and B respectively), if the variation of the value 

of Quantity B (∆𝑦) is always 𝑚 times as large as 

the variation in Quantity A (∆𝑥), then Quantity Y 

changes at a constant rate of change with respect 

to Quantity X. 

Imagining that 𝑥 and 𝑦 are both varying, and 

coordinating the variations in them as maintaining 

the multiplicative relationship of ∆𝑦 = 𝑚 ∗ ∆𝑥 

5 Average Rate of Change 

A student determines the variations in two 

quantities (over the same two instances), and then 

finds a ratio between them. Then the student uses 

the value of the ratio, 𝑚, to imagine how the 

values of the quantities will vary if they were to 

vary at a constant rate, 𝑚. 

6 
The Difference Quotient 

𝑓(𝑎 + ∆𝑥) − 𝑓(𝑎)

(𝑎 + ∆𝑥) − 𝑥
 

The average rate of change of a function, 𝑓, over 

the interval of an input value, 𝑎, and some 

variation, ∆𝑥, from that input value. 

7 

The Limit of the Difference 

Quotient (at a given input value of 

𝑎) 

lim
∆𝑥→0

𝑓(𝑎 + ∆𝑥) − 𝑓(𝑎)

(𝑎 + ∆𝑥) − 𝑎
 

The average rate of change of the function, 𝑓, at 

the input value of 𝑎, over the input interval 𝑎 and 

𝑎 + ∆𝑥, as the value of ∆𝑥 varies towards 0. 

Imagining the variation in 𝑥 as becoming smaller 

and smaller, and coordinating the value of the 

average rate of change of the function over that 

interval. 

8 

Instantaneous Rate of Change (at a 

point) 

𝑓′(𝑎) = lim
∆𝑥→0

𝑓(𝑎 + ∆𝑥) − 𝑓(𝑎)

(𝑎 + ∆𝑥) − 𝑎
 

A function having an instantaneous rate of change 

of value 𝑓′(𝑎) at the input value 𝑎 means that for 

small variations in the input quantity, ∆𝑥, the 

variation in the output value of the function, ∆𝑓 

will essentially be 
∆𝑓 = 𝑓′(𝑎) ∗ ∆𝑥 

Table 19: Learning Goals for the Learning of Derivative 
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 According to Radical Constructivists, learning happens when students reflect on 

their actions and the results of those actions. To reflect on their ways of thinking, students 

need to experience perturbations in their current ways of thinking. I designed the 

following task sequence with these ideas in mind (Table 20). Table 20 describes a set of 

tasks that I envision would be useful for leading up to the idea of derivative. As a preface 

to the sequencing of tasks, the following list outlines the key ideas that I conjecture will 

be productive in assisting a student to build a meaning for instantaneous rate of change as 

a constant rate of change in an arbitrarily small interval. 

I. A (Constant) Rate of Change is a quantity that measures the multiplicative 

relationship between variations in the values of two varying quantities (
∆𝑦

∆𝑥
=

𝑚). 

II. An Average Rate of Change is a hypothetical constant rate of change over a 

function’s input interval that achieves the same change in the output quantity 

over the input interval, from 𝑥1 to 𝑥2, on which the average rate of change is 

determined. (
𝑓(𝑥2)−𝑓(𝑥1)

𝑥2−𝑥1
= 𝑚, where 𝑚 is the value of the imagined constant 

rate of change). 

III. One can obtain better approximations of the rate of change at a given value of 

the input variable by determining average rates of change on smaller and 

smaller intervals that include that value of the input variable. 

IV. An Instantaneous Rate of Change is a hypothetical constant rate of change in a 

small enough interval such that imagining the output quantity’s value 
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changing at this constant rate of change will be imperceptibly different from 

how the output quantity’s value actually varies. 

The tasks in this instructional sequence involve kinematic problems where time is 

the input quantity. While of course, not all Calculus problems involve time, Hitt and 

Dufour (2021) demonstrated the benefits of employing kinematic problems to motivate 

Calculus concepts and as a way to deemphasize symbolic manipulation. Hitt and Dufour 

also observed that their students struggled to construct coherent mathematical 

representations for these problems but conversing with other students (or with the 

instructor) enabled successful solutions to the problems. It is important to note that it is 

non-trivial to help students understand that not all rates are time-dependent and 

supporting students to consider a time-invariant rate of change function entails additional 

mental obstacles (Rasmussen & Keene, 2019). 

Table 20: A Proposed Instructional Sequence 

Proposed 

Order of 

Tasks 

Task 
Rationale and Additional 

Protocol 

Task 1: Constant Rate of Change 

1a 

“I will be walking away from the wall at a 

constant rate of 1.7 meters per second. What 

does it mean to have a constant speed of 1.7 

meters per second?” 

 

If students say, “For every 1 second, you will 

travel 1.7 meters”, then follow up on the 

conversation, asking what happens if I travel for 

0.4 seconds? “How does how you defined 

constant speed connect to your previous 

answer?” 

This task is meant to elicit students’ 

current ways of understanding about 

constant rate of change. In general, I 

expect that students will say 

something like, “For every 1 second, 

you will travel 1.7 meters”.  

 

I will explore if students’ conception 

of a constant rate of change is similar 

to that of ratio as identical groups in 

that a student interprets the value of 

the constant rate of change as a 1.7 

change in the output value and a 

change of 1 in the input value. 

1b We are going to keep track of my distance from 

the wall with this graph [This is done with a 

Desmos Animation,  
https://www.desmos.com/calculator/on4zt70oj3]. 

This portion of the task introduces 

students to the Desmos Animation 

that will facilitate the conversation 

https://www.desmos.com/calculator/on4zt70oj3
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What does the ordered pair displayed on the 

graph represent? 

Does 1.7 meters per second show up here? If so, 

where? 

about the idea of constant rate of 

change. 

 

I will explore whether students 

recognize that the value of a constant 

rate of change describes how two 

quantities’ values vary together 

(∆𝑦 = 𝑚 ∗ ∆𝑥). In particular, 

whether they recognize that the ratio 
∆𝑦

∆𝑥
, remains constant as the two 

quantities’ value change together; 

and what aspects of the animation the 

student uses to explain this 

relationship. 

 

1c 

Suppose we fix the current distance and time 

values in mind. Next, we are going to let the 

quantities vary from there and keep track of the 

changes. What does each of the following 

represent? 

 

Then ask “Does 1.7 show up somewhere? If so, 

where?” 

 

This portion of the task is to 

familiarize students with the Desmos 

animation and have them attend to 

variations in distance and time.  

 

I intend for students focus on what 

the parts of the animation are 

representing in this context. In 

particular, I want students to interpret 

the length of the red line as 

representing a variation in time from 

a chosen input value, and the length 

of the green line as representing the 

variation in distance traveled.  

 

By asking “Does 1.7 show up 

somewhere”, I will explore if a 

student recognizes that 1.7 describes 

the multiplicative relationship 

between the variations in the input 

and output values (∆𝑦 = 1.7 ∗ ∆𝑥), 

or if they still think of 1.7 as an 

amount to add to the output (or to go 

up 1.7 units). 

 

If a student has not exhibited 

reasoning about 1.7 as an invariant 

relationship that is restricted by a 

constant ratio between the variations, 

I built the animation to have the 

values vary (by animating the 

Desmos animation) and that the 1.7 

should describe something about this 

situation. The intent is to move 

students who are thinking of 1.7 in 

the sense of ratio as identical groups 

towards a meaning of ratio as 

measure. 
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1d 

Ask students to measure the length of the green 

line in units of the length of the red line. 

 

Repeat with different time values and changes in 

the time value. 

 

Video 6 illustrates the animation that students 

will be engaging with (not the pacing or the 

questions asked) 

 

 
Video 6: The Constant Rate of Change Graph 

 

This portion is to have students 

engage in reasoning about division 

(or multiplication) as “how many 

times as large” the value of one 

quantity is in terms of another.  

 

I will explore if students now 

recognize (or continue to recognize) 

that no matter the size of the change 

in the input value (∆𝑥) the size of the 

associated change in the output value 

(∆𝑦) is always 1.7 times as large 

(
∆𝑦

∆𝑥
= 1.7). 

 

A student (who did not previously 

articulate an understanding of rate as 

a multiplicative relationship between 

2 varying quantities) can reflect on 

the repeated activity of measuring 

variations in two quantities and 

conclude that the 1.7 does not 

describe a fixed change in the output 

value, instead it describes the 

invariant ratio between the variations 

in the quantities’ values. 

Additionally, I will explore what 

aspects of this Desmos activity the 

student uses to articulate this 

meaning for a constant rate of 

change. 

Summary of Task 1: The intention of Task 1 is first to draw out the student’s current understanding of 

constant rate of change. In doing so, I hope to bring about cognitive conflict in what the value of “1.7” 

means. I assume that most students will be engaging in ratio as identical groups in that they are 

associating 1.7 meters with 1 second. I intend that students will abandon this way of reasoning and 

instead start to conceive that 1.7 is describing a relationship between the two varying quantities (ratio 

as measure). 

Task 2: Constant Rate of Change as Quantifying a Multiplicative Relationship 

2a 

Suppose I was walking away from the wall at a 

constant rate of 4.1 meters per second. How far 

would I travel in 0.8 seconds? (What do we have 

4.1 of?) [Measure out 4.1 of 0.8s] 

 

How far would I travel between 2.2 seconds and 

3.9 seconds? 

 

What about between times 𝑎 and 𝑏? 

This portion of the task is to have 

students engage in using the value of 

a constant rate of change to 

coordinate changes in two quantities’ 

values.  

 

To build off the previous task, I 

intend to support students in 

reasoning about the value of a 

constant rate of change as describing 

the multiplicative relationship 

between the changes in 2 varying 

quantities (∆𝑦 = 𝑚 ∗ ∆𝑥). 

Additionally, the activity is designed 

to have students reflect on “what we 

https://www.youtube.com/embed/BSVh2nVrWHU?feature=oembed
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have 4.1 of” since 4.1 is not a 

number of meters. Students may 

reflect on the activity-effect 

relationship of this task to conclude 

that 4.1 measures something about 

this situation (ratio as measure). I 

will explore whether having students 

attend to what 4.1 measures will 

perturb any ratio as identical groups 

conceptions of constant of rate. 

 

The last part of this task does not 

provide a numerical value for the 

student to work with. Instead, I will 

investigate whether a student has 

generalized  ∆𝑦 = 𝑚 ∗ ∆𝑥. A student 

doing so might either indicate that 

the change in distance would be 4.1 

times as large as the change in time, 

or that they would find the variation 

in time (b-a) and multiply that by 4.1. 
2b Suppose you are driving at a constant speed. 

Your app tells you that your entire trip will take 

38 minutes. If you have traveled 
4

5
 of the total 

distance, how much more time will it take until 

you reach your destination? What portion of the 

total time is left to travel? 

 

Suppose you are driving at a constant speed. 

Your app tells you that your entire trip will take 

17 minutes. If you have traveled 
1

3
 of the total 

distance, how much more time will it take until 

you reach your destination? 

What portion of the total time is left to travel? 

 

Suppose you are driving at a constant speed. 

Your app tells you that your entire trip will take 

17 minutes. If you have traveled 
129

293
 of the total 

distance, how much more time will it take until 

you reach your destination? 

What portion of the total time is left to travel? 

 

Suppose you are driving at a constant speed. 

Your app tells you that your entire trip will take 

𝑥 minutes. If you have traveled 
2

7
 of the total 

distance, how much more time will it take until 

you reach your destination? 

 

Suppose you are driving at a constant speed. If 

you have traveled 
1

3
 of the total time, what would 

you do to determine how much distance was left 

if the total distance was 𝑥 meters? 

The purpose of this task is to have 

students engage in reasoning 

multiplicatively about the 

relationship between distance and 

time traveled when traveling at a 

constant rate of change. I have 

chosen “not nice” numbers so that 

students will be discouraged from 

trying to calculate the time traveled 

and then subtract that from the total. 

 

This task intends to promote students 

to reflectively abstract that a constant 

rate of change entails a proportional 

relationship between 2 quantities. In 

particular, I intend for students to 

reflect on this activity to realize that 

traveling at a constant speed entails 

proportionality between total 

distance traveled and total time 

traveled. That is to say, if you go 

some portion of the total distance, 

then the same portion of total time 

has also elapsed. Ex: Going one-third 

of the total distance also means to go 

one-third of the total time. 

 

The last problem is a “mental run” 

task (Simon et al. 2010), where a 

student is asked to narrate their 

solution to an activity without 

actually engaging in writing it down. 

The intent of this is to help students 
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Suppose you are given a total distance and a 

portion of the total time traveled. Describe what 

you would do to determine how much distance 

there was left to travel. 

think about their previous actions and 

the results of those actions. 

2c 

Suppose a water bottle fills up in such a way that 

the height of water in the bottle changes at a 

constant rate with respect to volume at a rate of 

0.037 inches per cubic inch of water. Let 𝑉 

represent the volume of water in the water bottle 

(in cubic inches) and let ℎ represent the height 

of water in the water bottle (in inches). 

 

Suppose 𝑉 changes from 𝑉 = 9.5 to 𝑉 = 13.4. 

How much has the volume changed (∆𝑉) 

between from 𝑉 = 9.5 to 𝑉 = 13.4 

What was the change in the height of the water 

bottle (∆ℎ) from 𝑉 = 9.5 to 𝑉 = 13.4? 

Over this interval, the change in the height of 

water (∆ℎ) is how many times as large as the 

change in the volume of water (∆𝑉)? 

 

[Repeat with a different set of numbers] 

 

Suppose I know how much the Volume has 

changed (∆𝑉). What would you do to find how 

much the height of the water has changed (∆ℎ)?   

The purpose of this task is 3-fold 

1) Have students actively work with 

variations in quantities 

2) Familiarize students with ∆ as 

representing a variation in a 

quantity’s value 

3) Continue having students engage 

in reasoning with constant rates of 

change as the multiplicative 

relationship between changes in two 

quantities’ values. 

 

This task introduces the ∆ notation as 

a variation in a given quantity’s 

value. I intend for students to 

actively measure out a variation by 

making an additive comparison 

between two instances of a quantity’s 

value (∆𝑉 = 𝑉2 − 𝑉1). 

 

I will explore whether students 

recognize that a constant rate of 

change entails a proportional 

relationship between 2 varying 

quantities (∆𝑉 = 0.037 ∗ ∆ℎ). 

 

The last portion of the task is to have 

students reflect on the activity-effect 

relationship of this task and to 

imagine the result of the activity as if 

the action of measuring the variations 

(and subsequently measuring out 

0.037 of that variation) was already 

performed. 

Summary of Task 2: The intent of Task 2 is to have students build a meaning for rate of change that 

is similar to Thompson and Thompson’s (1994a) conceptual curriculum for speed.  

➢ Rate of change is a quantification of variations 

➢ Rate of change relates variations in two varying quantities 

➢ Rate as a quantification of variations in two quantities is made by a multiplicative 

comparison of these variations 

➢ To say that rate of change of quantity Y with respect to quantity X is “𝑚” is to mean that the 

variation in quantity Y (∆𝑦) is 𝑚 times as large as the variation in quantity X (∆𝑥), i.e., ∆𝑦 =

𝑚∆𝑥 

I do not intend for these two tasks to be an HLT for the idea of constant rate of change. Instead, I work 

within slightly more realistic confines that students come into Calculus with some ideas about 

Constant Rate of Change. The work here will help them envision that a rate of change regards a 

multiplicative relationship between variations in 2 varying quantities. 
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Task 3: Average Rate of Change 

3a 

Jonah is running on a racetrack  

[https://www.desmos.com/calculator/bpdeilsrsb] 

Is he running at a constant speed? How do you 

know? 

 

Let 𝑠(𝑡) represent the distance ran by the first 

runner, in meters, after he ran for 𝑡 seconds. If 

he finished the 100-meter race in 32 seconds, 

what was his average speed? 

How would you represent his average speed in 

the first 23 seconds of his run? Between 4 

seconds and 8.9 seconds? 

 

This portion of the task is to elicit 

students’ understandings about 

average rate of change and how to 

calculate it. During this portion, the 

instructor asks students what they are 

writing and what they believe is 

being represented. This is to have 

students attend to variations in 

quantities and engage in using 

division to represent a ratio. 

 

I will explore whether a student 

interprets “average speed” as “adding 

all the speeds and then dividing” or if 

they recognize that an average speed 

is an imagined constant speed needed 

to travel the same distance in the 

same amount of time. 

 

3b Suppose we wanted to run the same race as 

Jonah. We want to travel the same total distance 

and use the same amount of time as Jonah did. 

However, we want to run at a constant speed. 

What constant speed would that have to be? 

[Students can put their answer into the Desmos 

file and run the animation to check] 

 

Video 7 illustrates what might be shown in the 

animation. 

 

 
Video 7: The Runner Task 

This portion of the task is to have 

students continue to engage in 

reasoning about constant rate of 

change.  

 

I will explore whether a student can 

apply what they did in Tasks 1 and 2 

to determine a constant speed by 

recognizing that the desired constant 

speed in this task involves the ratio 

between the completed distance 

traveled and total time traveled 

(
𝑠(32)−𝑠(0)

32−0
).  

 

3c 

The calculation you did for finding the constant 

speed is the same as for the average speed of the 

1st runner over the entire 32 seconds. Why is 

that? What does average speed mean? 

This part is to discuss connecting 

average rate of change with constant 

rate of change.  

 

I will explore if a student 

demonstrates an awareness that an 

https://www.desmos.com/calculator/bpdeilsrsb
https://www.youtube.com/embed/vrIhM6MMijg?feature=oembed
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average speed is the constant speed 

that the 1st runner would have to run 

at in order to travel the same distance 

in the same amount of time. If not, I 

will use the optional portion of this 

task to help perturb their 

understanding on the meaning of the 

word “average”. 

(3d) 

Optional 

Suppose out of 5 quizzes (graded out of 10 

points) you earned a 7, 9, 10, 4, 9. What is your 

average test score?  

 

If you earned the same total score as the above 

and scored the same score on each quiz, what 

score would that have to be? 

 

How is “average” here similar to “average” in 

average speed? 

Students may not have strong 

quantitative meanings for average 

outside of “add up everything and 

divide.” I provide additional 

examples to help students realize that 

“average” is about a replacement 

with a constant. 

 

I designed this optional task to 

perturb students who rely on 

calculating an average as “add up 

everything and divide” by having 

them reconcile the meaning of 

“average” in 1 context with another. I 

intend for students to reflect on their 

meaning of average in Task 3 and 

consider that an average involves a 

replacement of values. (For the 

previous task, one meaning may be 

to replace all of the 1st runner’s 

speeds with 1 speed that would have 

him travel the same distance in the 

same amount of time). 

Summary of Task 3: The intent of this task is to draw out students’ meanings for average rate of 

change and perturb understands of average as “add up and divide”. The goal is to have students 

interpret “average” to mean a replacement of values with a constant one. In the context of Average Rate 

of Change, a student is determining variations in two quantities and then finds a ratio between them. 

Then the student uses the value of the ratio to imagine how the values of the quantities will vary if they 

were to vary that constant rate. 

Again I want to be quick to make the disclaimer that I do not intend this task to be an HLT on average 

rate of change. I constrain myself to imagine that 1 set of tasks would take 1 class period and is the 

amount of time I would allot in teaching average rate of change in a Calculus 1 course. 

Task 4: Average Rate of Change Over Smaller and Smaller Intervals 

4a Suppose the 2nd runner now runs the first 16 

seconds by running at the average speed of the 

1st runner in this 16 seconds. Write a function 

that represents the 2nd runner’s distance after 

traveling for t seconds at this speed. 

[Students will be using 

https://www.desmos.com/calculator/gaiwt9fjwm 

to check their solution] 

In the next 16 seconds, the 2nd runner will run at 

the average speed of the 1st run in this time. 

Rewrite your function to include this.  

 

This task's overarching goal is to 

have students engage in using 

average rates of change over smaller 

and smaller intervals to introduce the 

idea of instantaneous rate of change. 

Students are presented with the goal 

that we want to know about the 1st 

runner’s speed at any time. 

 

Since students do not have direct 

access to the values of the function, 

𝑠, they will have to use function 

https://www.desmos.com/calculator/gaiwt9fjwm
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notation to represent variations in the 

distance in order to represent an 

average speed. 

I will explore if students recognize 

that 𝑠(𝑡) represents the distance the 

1st runner has ran after running for t 

seconds, without needing an explicit 

function definition to determine the 

value at a given input value. If 

students struggle with this, then I will 

investigate whether having the 

Desmos functionality of typing in 

𝑠(3) and Desmos showing the value 

of it, aids students in building this 

understanding of function notation. 

(For example, if a student decides to 

represent the average speed in the 

first 16 seconds using 
𝑠(16)−𝑠(0)

16−0
 

instead of finding the value of 𝑠(16) 

I would say that a student evidences 

this desired understanding of 

function notation). 

 

The 2nd portion of this task is 

challenging because students have to 

consider that the amount of time the 

runner is running at this constant 

speed for is not the value of the 

variable 𝑡; it is 𝑡 − 16. 

I will closely follow students’ work 

and ask them about what they are 

trying to represent and attempt to 

perturb student thinking. Ex:  If a 

student is writing 
𝑠(32)−𝑠(16)

32−16
∗ 𝑡, then 

I may ask that if 𝑡 = 17, what 

happens? Additionally, the Desmos 

interface will help with visualizing 

the issue. 

 

I will investigate if students are able 

to utilize the value of the imagined 

constant rate of change to determine 

a projected change in the output 

value for a change in the input value.  

 

4b Repeat activity but with more intervals. 4, then 

10 intervals. 

 

Video 8 illustrates the task that students will be 

interacting with and the result of what they 

might see. 

 

The purpose of having students 

repeat this process is to 

1) Have them repeatedly reason 

about average rates and constant 

rates 

2) Have them experience that doing 

this for too many intervals makes it 
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Video 8: The Racer Problem 

tedious, so there is a necessity for 

simplifying the process 

3) This exercise is similar to how 

some students may learn about 

accumulation functions (integrals), so 

having students engage in connecting 

an accumulated distance with a rate 

of change function fits into making 

the rest of Calculus coherent for the 

student. 

4) When students are using the 

animation to test their solutions, they 

can also see that picking more and 

more intervals makes the two runners 

line up more and more. 

4c 

What do you expect will happen if we did it for 

100 intervals? If you had to do it, what do you 

think the process would be like? 

 

Is the average speed in that interval the speed 

the 1st runner runs at in that interval? 

This is the part of the task that would 

be too tedious to do. Instead, this task 

allows students to reflect on their 

previous work and imagine the 

results of their activity as if the 

actions were performed. Again this 

question is akin to a “mental run” 

(Simon et al., 2010) to have students 

actively recall the actions they 

engaged in to allow them to reflect 

on their actions and results of those 

actions. 

 

A student can reflect on this activity 

(and the result of “running” the 

animation) to imagine that they can 

keep choosing smaller and smaller 

intervals ( lim
∆𝑥→0

), and that doing so 

makes the 2 runners line up more and 

more. 
Summary of Task 4: The purpose of Task 4 is to have students keep engaging in using average rates 

of change, the varying quantities involved, and creating a necessity for limits. Additionally, the student 

may start to consider that an average rate in a small time window is good enough to model someone’s 

speed in that time window. 

Task 5: Average Rate of Change Over Smaller and Smaller Intervals 

5a [This task uses 

https://www.desmos.com/calculator/psagu3btkq]  

Let us look at the graph of the 1st runner. Let 

𝑠(𝑡) represent the distance ran by the first 

runner, in meters, after he ran for 𝑡 seconds. 

Use the Desmos File and use two intervals to 

model the 2nd runner running at the average 

speed of the 1st runner in each interval. (Then 4, 

then 10) 

 

[Before a student plays the Time slider, ask the 

student what they think will appear on the screen 

and why] 

The purpose of this part of the task is 

for students to connect what they did 

in Task 4 to a graphical context.  

This task has the student once again 

program the average speeds by 

calling on the values of the given 

function to define a linear change in 

each interval. The student can 

determine the number of intervals 

https://www.desmos.com/calculator/psagu3btkq
https://www.youtube.com/embed/AdIbsBK9VOA?feature=oembed
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and can use the time slider to check 

their solution. 

 

In this portion of the task, I will 

investigate if a student recognizes 

that the constant speed in each 

interval will be the average speed of 

the 1st runner. That is to say that the 

average speed of the 1st runner is the 

imagined constant speed for the 2nd 

runner to run the same distance in the 

same amount of time. 

5b 

Describe what you would do if you had to do 50 

intervals? 

 

What do you think that graph will look like? 

 

[The student will then have access to 

https://www.desmos.com/calculator/ltnnrgqfww 

which pre-programs each portion. The student 

can slide the n slider to see what the graph of the 

2nd runner would look like for any number of 

intervals] 

The student will then be asked to 

perform another “mental run.” This 

allows the student to reflect on how 

average rates of change are imagined 

constant rates of change over a given 

interval. 

The latter portion of this task has the 

student predict what happens as they 

let the number of intervals increase 

(or letting the size of the variation 

decrease, lim
∆𝑥→0

). 

Additionally, this illustrates the 

tedious amount of work needed to 

calculate the average rate of change 

for a large number of intervals, 

motivating the need to encapsulate 

the process. 

 

I will investigate: 1) if a student 

demonstrates an understanding that 

average rates of change over small 

intervals is essentially equal to the 

speed over those time intervals, and 

2) the aspects of this animation the 

student uses to articulate this 

understanding.  

 

5c Suppose you are the engineer on a film set. The 

director wants to shoot a scene where a car 

moves along a road and wants the camera to run 

alongside the car. The director asks you to 

program the track that the camera will run on. 

The only information you have access to is that 

you know exactly how far the car has traveled 

after any amount of time since the scene started. 

 

[Student will use 

https://www.desmos.com/calculator/u7ldxbssf2 

] to answer the problem 

 

Depending on how the student approaches this, 

the instructor can prompt questions (What 

This task aims to have students 

repeatably reason about modeling 

motion using average rates of change 

by applying the methods they used in 

the previous tasks to this task. The 

Desmos interface in this task does 

not provide the built-in interface to 

program piecewise linear functions 

that was in the previous task. Instead, 

the student will be prompted to 

discuss what approach they might 

take to model the camera’s 

movement and how they would 

employ mathematics to do so. Based 

on their response, the instructor can 

https://www.desmos.com/calculator/ltnnrgqfww
https://www.desmos.com/calculator/u7ldxbssf2
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approach do you think will work? What 

information are you trying to represent? Is this 

similar to the previous questions?) 

The instructor can also provide the Desmos 

framework that was provided in the previous 

tasks. It is omitted in this one to not push the 

student to make the association that the tasks are 

similar. 

assist the student in providing the 

previous interface to build piecewise 

linear functions, or explain the 

commands available in Desmos. 

 

Again, I will assess if students reason 

that using an average rate of change 

over small intervals will be 

essentially equal to the actual speed 

of the car. 
Summary of Task 5: The purpose of this task is to have students continually utilize average rates of 

change and to consider that average rate of change in a small enough interval is good enough to model 

speed. Without bringing up the formal limit definition of derivative, lim
∆𝑥→0

𝑓(𝑎+∆𝑥)−𝑓(𝑎)

(𝑎+∆𝑥)−𝑎
, students will be 

imagining the variation in 𝑥 as becoming smaller and smaller, and coordinating the value of the average 

rate of change of the function over that interval. 

Task 6: Utilizing Average Rates of Change 

6a 

[Students will use the function they made for the 

previous task] 

For the camera, how much distance would they 

travel between (pick two values, the values 

depend on how they defined their function. Have 

the interval be in the middle of the endpoints on 

an interval they chose) 

 

How much does the car travel in the same time 

period? Are you surprised by your answers? 

 

Repeat with different intervals. 

This part of the task is to have 

students use an average rate of 

change to determine how a quantity 

would change by utilizing the value 

of the rate of change. 

 

The purpose of this portion of the 

task is to have students numerically 

compare how determining the car’s 

average speed over a small interval 

can be used to determine the car’s 

accumulated distance. I will 

investigate if students are able to 

represent a projected change in 

distanced traveled by utilizing an 

imagined constant rate of change 

over a given input interval. 

 

 

When implementing this task I will 

repeatedly explore if a student 

recognizes that using an average rate 

of change over small intervals will be 

essentially equal to the actual speed 

of the car. 

6b 

Students will fill out a table that they will pick 

the interval size. 

 

What would you need to do if you wanted the 

error between them to be less than 0.01? 0.003? 

[Repeat as needed] 

The Desmos applet in this portion of 

the task automates the process from 

the previous problem for the student. 

All the student has to do is decide an 

interval size, and they can compare 

the approximated distance traveled 

with the actual distance traveled. 

This allows the student to focus on 

reasoning about the results of the 
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calculations instead of having to 

calculate them. 

 

I will explore whether a student 

recognizes that they can get better 

and better approximations because 

they can choose interval sizes as 

small as they want ( lim
∆𝑥→0

). 

 

6c The film director wants to make sure that the car 

is not going too fast for legal reasons. She thinks 

that at the end of the scene (t=30) that it might 

be too fast. She asks you  “at that time what 

speed is the car traveling at?” 

 

What would you do if she asked for the speed at 

t=10? At t=2.98?  

 

If the director gave you a particular time that she 

wanted to know the speed for, describe what you 

would do to determine that for her. 

This task requires students to use and 

compute the average speed to 

internalize how speed at a point is 

computed. By repeatedly reasoning 

about it, the student can generalize 

the process, which will allow them 

not to have to go through the process 

to determine the speed. Instead, the 

student will then have the basis for 

building a rate of change function. 

Summary of Task 6: The two major points of this task is for students to reason in the following ways 

• Reason about an Average Rate of Change as imagining how two quantities would change 

together at a constant rate (if we wanted them to start and end at the same values) 

• Reason about Speed at a Point as an average rate of change in a small enough interval and that 

this process is repeatable for other input values. 

Task 7: Instantaneous Rate of Change 

7a It appears that if we know about how much of a 

quantity we have at all times (distance the car 

has traveled), 𝑠(𝑡), we can determine how fast 

that quantity is changing at all times. Given a 

value 𝑡 we could find an average rate of change 

in a small enough interval, and that was our 

“speed at a point.” Since we can do this for any t 

value, let us call the “speed of the car at time t” 

as 𝑠′(𝑡). This function will be called the 

derivative of s(t), which is “how fast the distance 

the car has traveled is changing” or “the 

This part of the task is to introduce 

the derivative notation 𝑠′. Just as 

students have (hopefully) 

encapsulated the process of a 

function mapping an input to an 

output, the students can then 

encapsulate the previous process they 

engaged in.  
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instantaneous rate of change of distance with 

respect to time.”  

 

[The student will use a Desmos activity] 

 

Find the speed of the car at 𝑡 = 2.3.  

Then type “𝑠′(2.3)” what do you notice? 

 

Use the value you found to estimate what the 

distance traveled by the car would be for 𝑡 =
2.5. 

Type “s(2.5)” to check your answer, what do 

you notice? Are you surprised? 

 

Repeat for other values 

 

 

7b [Students will be using 

https://www.desmos.com/calculator/nidqma1dya 

] 

 

Let us look at the graph of a function 𝑓.  

Suppose we want to know how fast the output 

value of the function changes at a particular 

input value. 

(Student will be given the option to choose an 

input value of their choice, and then follow the 

instructions on the Desmos activity where they 

will zoom in until the graph looks linear) 

(Student will then be instructed to find the value 

of 𝑓′ at the associated input value) 

What does this value tell you? 

(Students can move the slider pick a small 

change in x and the associated change in the 

value of the function) 

How much has the output changed given the 

change in your input? Are you surprised? 

What does the value of the derivative at the 

input tell you? 

 

Repeat with other input values. 

This portion of the task is adapted 

from works of Tall (2009, 2013) and  

Ely and Samuels (2019) where 

students will be “zooming in” to see 

that the function is essentially 

changing at a constant rate of change, 

and the value of the derivative is this 

constant rate of change. 

 

I will explore if a student 

demonstrates an understanding that A 

function having an instantaneous rate 

of change of value 𝑓′(𝑎) at the input 

value 𝑎 means that for small 

variations in the input quantity, ∆𝑥, 

the variation in the output value of 

the function, ∆𝑓 will essentially 

be ∆𝑓 = 𝑓′(𝑎) ∗ ∆𝑥. I will also 

investigate what aspects of this 

Desmos activity the student uses to 

express this understanding. 

Learning Goal for Task 7: Students will interpret the value of a derivative as the value of the 

instantaneous rate of change at a given input value. This means that if they were to look at a small 

enough interval, the quantity they are imagining is changing at essentially a constant rate of change.  

 

The understanding of instantaneous rate of change that a student will hopefully construct is “A function 

having an instantaneous rate of change of value 𝑓′(𝑎) at the input value 𝑎 means that for small 

variations in the input quantity, ∆𝑥, the variation in the output value of the function, ∆𝑓 will essentially 

be ∆𝑓 = 𝑓′(𝑎) ∗ ∆𝑥” 

 

 

 

 

https://www.desmos.com/calculator/nidqma1dya
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Animations in the Context of Productive Learning 

 Desmos animations and applets are used during the instructional sequence. The 

animations and applets were designed to facilitate a mathematical conversation about 

quantities varying. What a student understands from an animation or applet depends on 

how the teacher manages the conversation around the mathematical ideas the teacher 

wishes the students to learn (Thompson, 2002). According to researchers, animations 

should have an enabling function to help reduce the cognitive load (Mayer, 2001) and 

also support reflective discourse by focusing the conversation on students’ 

understandings (Cobb et al., 1997). One way to enable reflective discourse involves 

having students anticipate what they will see before the animation plays and then explain 

what they see in the animation (Schnotz & Rasch, 2005; Thompson, 2019).  

 I hypothesize that one vital aspect for the success of this hypothetical learning 

trajectory is that students must come to realize that variables vary. Therefore, the 

animations and applets play an essential role in supporting students in imagining a 

quantity’s value varying continuously and smoothly. Many Calculus reform efforts 

leverage technology (e.g., Swidan, 2020; Thompson et al., 2013, Tall, 2009) and have 

demonstrated the benefits of illustrating dynamic images in teaching mathematics. 

Further, the usage of the Desmos applet allows for an objective mediator of the 

mathematical expressions that students will employ. Since the various Desmos activities 

will visually demonstrate the mathematical expressions that the students type in, the 

Desmos applet acts as a neutral third party that validates the work the students produce. 

This neutrality affords students a safe space to reflect upon their mathematical thinking 

and is beneficial when they are perturbed by the animation. 
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 The following study in this manuscript reports on the results of leveraging the 

hypothetical learning trajectory in the context of a teaching experiment (Steffe & 

Thompson, 2000). This teaching experiment leveraged the findings from the previous 

study (See Paper 1) by supporting students in developing a coherent understanding of rate 

of change that they can leverage for instantaneous rate of change. 
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CHAPTER 7 

PAPER 3: RESULTS OF A TEACHING EXPERIMENT ON TWO STUDENTS’ 

UNDERSTANDING OF RATE OF CHANGE  

INTRODUCTION 

This chapter discusses the results of a teaching experiment (Steffe & Thompson, 

2000) designed to support students in constructing a productive understanding of 

instantaneous rate of change. In my first study (see Paper 1), I reported that it is common 

for students to interpret the value of an instantaneous rate of change as an amount to add 

to the output value of a function for a one-unit change in the input quantity. This result 

that many students have an additive conception of rate of change is corroborated by 

findings reported by Byerley et al. (2012) and Castillo-Garsow (2010). As a result, I 

developed a Hypothetical Learning Trajectory and designed tasks to support students in 

confronting and overcoming this conception (see Paper 2). I leveraged my HLT to 

conduct a teaching experiment to support students in conceptualizing a rate of change of 

one quantity with respect to another as the relative size measurement of the two 

quantities’ values as they vary together or as a proportional relationship between the 

changes in two quantities’ values. Additionally, the teaching experiment aimed to support 

students in constructing a coherent understanding of rate of change across multiple 

contexts in an effort to prevent students from building disconnected meanings for 

derivative. Jones and Watson (2018) observed the benefits of having students apply their 

derivative understanding in multiple applied contexts to promote comprehension of the 

ratio-limit-function layers of derivative from Zandieh’s (2000) derivative framework. 
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METHODOLOGY 

This study was conducted by engaging 3 students in individual teaching 

experiments (Steffe & Thompson, 2000). The teaching experiment involved six sessions 

(1 pre-interview and 5 teaching sessions) that focused on characterizing and advancing 

students’ ways of thinking about rate of change. 

According to Steffe and Thompson (2000), a teaching experiment involves a 

sequence of teaching sessions that include a student, a teacher, a witness, and a camera to 

record each episode. A teaching experiment's primary purpose is to identify a start and 

ending point of student progress and how students construct knowledge as they progress 

through each teaching episode. The goal of a teaching experiment then is to hypothesize 

and test models of student thinking.  

Initially, a teacher has in mind a set of tasks and questions they believe will help 

students progress. As each teaching episode progresses, the teacher builds models of each 

student’s thinking and tests them through questioning and tasks. As the teacher tests and 

refines their model, they adapt the lesson to help them determine the reasoning a student 

is engaging in and the potential mental actions involved. Since the witness is not active in 

a teaching role, they aid the teacher-researcher by offering additional conjectures about 

the student’s reasoning and may suggest questions to the teacher-researcher to test their 

observation. The teacher is the one who takes the active teaching role by interacting with 

the student and making teaching moves, whereas the witness does not interact with the 

student. Additionally, between each session, the teacher and witness debrief to review 

what they observed and analyze each student’s actions and behaviors. During this 

debriefing, they discuss the student’s current understandings while determining goals and 
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questions for the following interview. The teacher (researcher) then cycles through the 

building, studying, and refining their models of student thinking to hypothesize a 

progression for learning the concept. 

 During the Fall 2021 semester, students were recruited from a MAT 265 course 

(Calculus 1 for Engineers). Students were asked to take a Pre-Study survey, and based on 

my analysis of their responses, 10 students were selected to participate in a pre-interview. 

From those 10 students, 3 students were selected for the teaching experiment. In the 

following sections, I describe the Pre-Study survey, the pre-interview, and how students 

were selected to participate in the study. 

Pre-Study Survey 

 The Pre-Study survey contained 9 multiple-choice questions designed to assess 

students’ ability to imagine a quantity’s value varying, function notation, proportional 

reasoning, and rate of change (Table 21). Five of the nine questions were adaptations 

from the Precalculus Concept Assessment (Carlson et al., 2010) 

Table 21:Pre-Study Survey Questions 

Survey Question Question Rationale 

1) Lily walks to school every weekday morning. 

Let 𝑓(𝑡) represent the distance (in miles) that Lily 

has walked on a particular morning and let 𝑡 

represent the number of minutes elapsed since Lily 

left home. Which of the following expressions 

represents the number of miles Lily traveled 

between 3 minutes and 7 minutes after she left 

home? 

 

a) 𝑓(7 − 3) 

b) 𝑓(7) 

c) 𝑓(7) − 𝑓(3) 

d) 𝑓−1(7) − 𝑓−1(3) 

e) 
1

𝑓−1(4)
 

• Conceptualizing function notation as 

representing the simultaneous value of a 

function’s input and output  

• How to use function notation to represent 

a change in the value of the function as 

the input quantity changes from one value 

to another. 

2) Two boys, Brother A and Brother B, each have 

a little sister, Sister A and Sister B. 
• Conceptualize a difference as how much 

larger one quantity is than another. 
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The two boys argue about how much taller they 

are than their respective sisters. 

After measuring, it turns out that the difference in 

Brother A and Sister A’s height is 17cm more than 

the difference in Brother B and Sister B’s height. 

If Brother A was 186cm tall, Sister A was 87cm 

tall, and Brother B was 193 cm tall. How tall was 

Sister B? 

 

a) 111 

b) 107 

c) 77 

d) 82 

e) 176 

• Conceptualize a difference as a measured 

quantity that can be compared with 

another quantity. 

3) (PCA) The graph of 𝑓 gives the number of liters 

of water, 𝑓(𝑡) that have flowed into a water tank 𝑡 

seconds since the water began to flow into the 

tank. Evaluate 𝑓(4) and explain its meaning. 

 

 
 

a) 𝑓(4) = 4; Four seconds after the pipe was 

turned on, four liters of water had been poured into 

the water tank. 

b) 𝑓(4) = 3; Four seconds after the pipe was 

turned on, three liters of water had been poured 

into the water tank. 

c) 𝑓(4) = 3; Three seconds after the pipe was 

turned on, four liters of water had been poured into 

the water tank. 

d) 𝑓(4) = 6; Six seconds after the pipe was turned 

on, four liters of water had been poured into the 

water tank.  

e) 𝑓(4) = 6; Four seconds after the pipe was 

turned on, six liters of water had been poured into 

the water tank. 

• Conceptualizing a point as a 

multiplicative object (Saldanha & 

Thompson, 1998) where a point 

simultaneously represents the value of a 

function’s input and output. 

• Conceptualizing function notation as 

representing the simultaneous value of a 

function’s input and output  

 

4) (PCA) Given the function 𝑔, defined as 𝑔(𝑥) =
2𝑥2 − 3𝑥 + 7, find 𝑔(𝑥 + 𝑎) 

 

a) 𝑔(𝑥 + 𝑎) = 2𝑥2 + 2𝑎2 − 3𝑥 − 3𝑎 + 7 

b) 𝑔(𝑥 + 𝑎) = 2𝑥2 − 6𝑥𝑎 + 2𝑎2 − 3𝑥 + 7 

c) 𝑔(𝑥 + 𝑎) = 2(𝑥 + 𝑎)2 − 3(𝑥 + 𝑎) + 7 

d) 𝑔(𝑥 + 𝑎) = 2(𝑥 + 𝑎)2 − 3𝑥 + 7 

e) 𝑔(𝑥 + 𝑎) = 2𝑥2 − 3𝑥 + 7 + 𝑎 

• Representing a function’s output for a 

variable argument. 

• Coordinating a function’s argument with 

its function definition. 

5) (PCA) The weight of a fish is modeled by the 

formula 𝑤 = 1.24𝑥 + 0.31 where 𝑤 is the weight 
• Understanding constant rate of change as 

the relative size of the changes in the 
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of the fish in pounds in terms of the number of 

years 𝑥 since the fish was born. Which of the 

following describes what 1.24 conveys in the 

context of this situation? 

I. For any change in the age of the fish, ∆𝑥, 

the change in the weight of the fish is 
(1.24) ∗ (∆𝑥) 

II. The weight of the fish increases by 124% 

every year 

III. The fish gains 1.24 pounds every year 

 

a) I only 

b) II only 

c) III only 

d) I and II only 

e) I and III only 

values between two varying quantities. 

(Constant rate of change as ∆𝑤 = 1.24 ∗
∆𝑥) 

• A constant rate of change entails 

coordinating any size change in the input, 

∆𝑤, with the corresponding change in the 

output. A constant rate of change is not 

limited to only 1-unit changes in the 

input. 

6) (PCA) To the right are drawings of a wide and a 

narrow cylinder. The cylinders have equally 

spaced marks on them. Water is poured into the 

wide cylinder up to the 4th mark (see A). This 

water rises to the 6th mark when poured into the 

narrow cylinder (see B).  

 

Both cylinders are emptied, and water is poured 

into the narrow cylinder up to the 11th mark. How 

high would this water rise if it were poured into 

the empty wide cylinder?  

 
a) To the 7 ½ mark 

b) To the 9th mark 

c) To the 8th mark 

d) To the 7 ⅓ mark 

e) To the 11th mark 

• A proportional relationship between two 

quantities entails that the values of the 

two quantities maintain a constant ratio. 

7) (PCA) A candle has been burning at a constant 

rate of change of 2.5 inches per hour. The candle 

has been burning for 4 hours and is 3.5 inches tall. 

What was the length of the candle before it was 

lit? 

 

a) 3.5 inches 

b) 6 inches 

c) 10 inches 

d) 13.5 inches 

e) 16.5 inches 

• Coordinating changes in the values 

between quantities by utilizing the value 

of a constant rate of change.  
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8) Suppose you are driving your car on the 

freeway. Below is a table that has some data points 

on the distance you have traveled and the 

associated times. 

 

Time since start 
of trip (in hours) 

Distance Traveled on Trip 
(in miles) 

1 23 

1.03 25.2 

1.5 53.1 

2 72.8 

Which of the following is the best estimate of your 

car’s speed at 1 hour since you started driving? 

 

a) 
25.2−23

1.03−1
 

b) 72.8 − 23 

c) 
23+25.2+53.1+72.8

4
 

d) 
23

1
 

e) Cannot be determined 

• Conceptualizing speed as a multiplicative 

comparison between change in distance 

and change in time. 

• Rate of change as involving how 

involving two quantities varying together 

(instead of describing how the output 

value will change). 

9) Suppose you are driving your car on the 

freeway. At 4pm your speedometer reads 51mph. 

Which of the following best represents the 

meaning of the 51? 

 

a) In the next hour, your change in distance will be 

51 miles 

b) Since you started driving up until 4pm, your 

average speed was 51 miles per hour 

c) You have traveled a total of 51 miles by 4pm 

d) The steepness of the road you are traveling on is 

51 

e) In the next minute, you will travel 

approximately 51 ∗
1

60
 of a mile 

• Conceptualizing speed as a multiplicative 

comparison between change in distance 

and change in time. 

• Conceptualizing an instantaneous rate of 

change as a constant rate of change over a 

small period of time. 

• A constant rate of change entails 

coordinating any size change in the input, 

∆𝑤, with the corresponding change in the 

output. A constant rate of change is not 

limited to only 1-unit changes in the 

input. 

 

 Students who took the survey were classified as “weak,” “average,” or “strong” 

based on their responses to the survey items (Table 22). I considered a “strong” student as 

one who demonstrated productive understandings of variation as a quantity, function 

notation, and rate of change as involving two quantities. An “average” student 

demonstrates productive understandings of variation as a quantity, function notation, and 

may consider a rate of change as an amount to add to an output quantity’s value. A 

“weak” student is one who failed to demonstrate understandings of variation as a 
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quantity, function notation, and rate of change. Table 22 displays the qualifications for 

each category. Out of the 39 students who took the survey, 10 students were selected for 

the Pre-Interview (5 “Average” and 5 “Strong”). 

Table 22:Criteria for "Strong", "Average", and "Weak" students 

Student 

Understandings 

Categorization 

Strong 

❖ Demonstrates pre-

requisite 

understandings of 

variation and function 

notation 

❖ Demonstrates an 

understanding of rate 

of change as 

involving changes in 

2 quantities. 

Average 

❖ Mostly demonstrates pre-

requisite understandings of 

variation and function 

notation 

❖ Demonstrates an 

understanding of constant 

rate of change as 1-unit 

changes in the output 

❖ Demonstrates some 

understanding of rate of 

change as involving two 

quantities 

Weak 

❖ Fails to demonstrate 

pre-requisite 

understandings of 

variation and function 

notation. 

❖ May demonstrate 

some understandings 

of rate of change 

 

Possible 

answers on 

survey 

❖ Correctly Answers 

Questions 1-4, and at 

least 3 of 5-9 

❖ At most, incorrectly answers 

only 1 of Questions 1-4. 

❖ At least 3 of the following 

occurs 

➢ Chooses answer C for 

Question 5 

➢ Chooses answer D for 

Question 6 

➢ Incorrectly answers 

Question 7 

➢ Chooses answer B or D 

for Question 8 

➢ Chooses Answer A for 

Question 9 

❖ Incorrectly answers at 

least 2 of Questions 

1-4. 

❖ Incorrectly answers at 

least 3 of Questions 

5-9 

 

 

Pre-Interviews 

The pre-interviews consisted of a single exploratory teaching interview (Castillo-

Garsow, 2010; Moore, 2010). Exploratory teaching interviews consist of a one-on-one 

interview including an interviewer/teaching agent, a single student, and a video camera to 

record the single episode. During these interviews, the interviewer asked the student to 

complete a problem designed to produce a perturbation in the student’s thinking. As the 

interview progressed, the interviewer attempted to create a model of the student’s 
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thinking and understandings. As the model was being created, the interviewer tested their 

hypotheses by asking questions targeted to verify their conjectures. Additionally, the 

interviewer suggested a productive way of interpreting a problem when the interviewer 

determined that the student could not make further progress or was pursuing an 

unproductive path of reasoning. The researcher sometimes attempted to perturb the 

student by suggesting an alternative way of thinking. However, the interviewer primarily 

focused on assessing the student's understanding and reasoning when answering the 

survey questions. The suggestions made by the interviewer were the only teaching 

components of the interview; this teaching component is what distinguishes an 

exploratory teaching interview from a clinical interview (Clement, 2000). 

During the interviews, students were asked to verbalize the thinking they used in 

the survey to discuss how they chose their answers. Students were also presented with 

other tasks to reveal the students’ thinking about and understandings of ideas of variation 

and rate of change. Additionally, the researcher used these interviews to gauge how well 

students could communicate their thinking aloud. The types of questions the interviewer 

employed were similar to the following: 

▪ What led you to choose the response that you did? 

▪ What was it about the problem that prompted you to do that (calculation, ruled 

out an answer, etc.) 

▪ If you did so, how did you eliminate incorrect choices? How did you know 

that they were not correct? 

▪ You chose this… would that still be true if…? 

After each interview, the researcher documented their model of the student’s 

understanding. Afterward, the researcher engaged in retrospective analysis (Steffe & 

Thompson, 2000) by reviewing the videos to determine if their model of the student’s 
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thinking was supported by how the student acted (this included utterances, gestures, and 

drawings). After conducting all 10 interviews, each student was ranked according to their 

understanding of pre-requisite topics, engagement with the pre-interview tasks, and 

ability to express their thinking. 

 Three students were selected for the teaching experiment, one “strong” and two 

“average.” A “strong” student was selected due to the research interest in exploring how 

someone with robust pre-requisite understandings of variation and function notation 

might develop ideas about derivatives. Since derivative is a complex topic with multiple 

layers (Zandieh, 2000), choosing a “strong” student reduces the time needed to re-teach 

pre-requisite concepts and notation. Two “average” students were chosen to explore how 

they develop understandings of rate of change. No “weak” students were selected 

because of the amount of time needed to re-teach ideas of variation, function notation, 

and rate of change. This paper discusses two of these students and their progress through 

the teaching sessions. 

The 2 Students 

Scott 

 Scott was a first-year computer science major classified as an “average” student. 

During the Pre-interview, Scott demonstrated a productive understanding of function 

notation and was able to identify a difference as a quantity11. However, when discussing 

rate of change (on question 8 in particular), he consistently referenced a slope. When 

probed to describe what the slope of a line represented, he said, “slope is like the speed 

 
11 I say, “identify a difference” (instead of “conceptualizing a difference as a quantity”) since he would 

verbalize that 𝑓(7) − 𝑓(3) was a “difference”, but his language was largely rooted in describing the 

operation of subtraction. This is further explained in the analysis of the first teaching session. 
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like one value is distance and one value is time, it’s like how much we go over in each 

direction.” Based on his responses, Scott was likely focused on the algebraic structure 

and operations involved in a constant rate of change and was accustomed to imagining a 

rise over run process in a graphical context. Further, when asked why he could use 

multiplication (Questions 5 and 9) or employ equivalent fractions (Question 6), Scott said 

that he did not know how to explain it and that “that was what I was taught to do for these 

kinds of problems.” Since Scott struggled to describe the underlying reason for using 

multiplication when utilizing the value of a constant rate of change and mainly focused 

on the procedures involved, the researcher classified Scott as having a weak conceptual 

understanding of constant rate of change. Scott was selected because he understood 

foundational ideas for understanding rate of change but had a weak meaning for rate of 

change. Therefore, he was a good candidate for characterizing how his meaning for rate 

of change might shift during the teaching experiment. 

Hans 

 Hans was a first-year Aerospace engineering major who was also classified as an 

“average” student. Similar to Scott, Hans demonstrated productive understandings of 

function notation. When discussing rate of change, he often thought of an amount of 

change or a set of “different ratios, but same proportion.” For example, Hans explained 

that 
3

4
 was a different ratio than 

6

8
  because a ratio is for one instance, and “they can’t be 

the same ratio, because their denominators are not equal.” He also explained that they 

were the “same proportion” if the fractions could be “reduced down to the same ratio.” 

Hans also discussed speed as “distance and time,” but he was not specific about the 

distance and time he referenced, nor did he indicate how he compared them. Due to his 
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weak meaning for rate of change and inability to express what a rate of change entails, 

there was potential for observing shifts in Han’s meaning for rate of change during the 

teaching experiment. 

THE TEACHING EXPERIMENT 

 The following table describes the key ideas and understandings that the researcher 

attempted to support their subjects in constructing when interacting with them during the 

teaching experiment. The researcher conjectured that these key ideas would be productive 

in assisting students in constructing a coherent understanding of instantaneous rate of 

change at a particular input value as a hypothetical constant rate of change on an 

arbitrarily small interval of a function’s domain that includes that input value.  

I. A (Constant) Rate of Change is a quantity that measures the multiplicative 

relationship between variations in the values of two varying quantities (
∆𝑦

∆𝑥
=

𝑚). 

II. An Average Rate of Change is a hypothetical constant rate of change over a 

function’s input interval that achieves the same change in the output quantity, 

as achieved by the function, over the input interval, from 𝑥1 to 𝑥2, on which 

the average rate of change is determined. (
𝑓(𝑥2)−𝑓(𝑥1)

𝑥2−𝑥1
= 𝑚, where 𝑚 is the 

value of the imagined constant rate of change). 

III. One can obtain better approximations of the rate of change at a given value of 

the input variable by determining average rates of change on smaller and 

smaller intervals that include that value of the input variable. 
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IV. An Instantaneous Rate of Change is a hypothetical constant rate of change in a 

small enough interval such that imagining the output quantity’s value 

changing at this constant rate of change will be imperceptibly different from 

how the output quantity’s value actually varies. 

Foundational Understanding 1 – What is Rate of Change 

The first teaching session focused on supporting students in building a productive 

meaning for constant rate of change; in particular, a (constant) rate of change is a quantity 

that measures the multiplicative relationship between variations in the values of two 

varying quantities (
∆𝑦

∆𝑥
= 𝑚). This session was designed to detect whether a student 

possessed an additive conception of rate of change; and if so, engage the student in a 

sequence of tasks to support them in confronting and overcoming this conception 

(Byerley et al., 2012; Castillo-Garsow, 2010). In order to support students in developing 

a productive meaning for constant rate of change, the session focused on developing four 

foundational understandings of what rate of change entails. 

1. Rate of change is a quantification of variations: This entails that a completed 

variation in a quantity’s value is a quantity itself that must be distinguished from 

the original quantity. 

2. Rate of change relates variations in two varying quantities: A rate of change 

results from a quantitative operation (Thompson, 1990) of comparing variations 

in two varying quantities. One important nuance is that the quantities’ values vary 

since a rate does not entail a static comparison. 

3. Rate of change is a quantification of variations in two quantities made by a 

multiplicative comparison of these variations: The quantitative operation entails 
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the relative size between a change in the value of one quantity with respect to a 

change in the value of another quantity. 

4. To say that a rate of change of quantity Y with respect to quantity X is “𝑚” is to 

mean that the variation in quantity Y (∆𝑦) is 𝑚 times as large as the variation in 

quantity X (∆𝑥), i.e., ∆𝑦 = 𝑚∆𝑥 and 𝑚 =
∆𝑦

∆𝑥
. 

Summary of Session 1 

 Session 1 (Table 23) introduces a situation where a person is walking away from a 

wall at a constant speed. The interviewer asks the student to explain what it means to 

have a constant speed of 1.7 meters per second. The interviewer then poses questions to 

assess how the student interprets the value of 1.7. Most students will likely be engaging 

in ratio as identical groups (Johnson, 2015) in that they are associating 1.7 meters with 1 

second. The remainder of the task is designed to support students in abandoning this way 

of reasoning and instead conceive that 1.7 describes a relationship between the two 

varying quantities of distance traveled and time elapsed. The Desmos portion of this task 

involves an animation that displays a horizontal length (representing the change in time) 

being used to measure a vertical length (representing the change in distance) (Video 6). 

Table 23:Session 1 Tasks and Rationale 

Session 1: Constant Rate of Change 

Order of 

Instruction 
Task Task Rationale 

1a “I will be walking away from the wall at a 

constant rate of 1.7 meters per second. What 

does it mean to have a constant speed of 1.7 

meters per second?” 

 

If students say, “For every 1 second, you will 

travel 1.7 meters”, then follow up on the 

conversation, asking what happens if I travel 

for 0.4 seconds? “How does how you defined 

This task is meant to elicit students’ 

current ways of understanding about 

constant rate of change. In general, I 

expect students to say something like, 

“For every 1 second, you will travel 1.7 

meters”.  

 

I will explore if students’ conception of 

a constant rate of change is similar to 
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constant speed connect to your previous 

answer?” 

that of ratio as identical groups in that 

a student interprets the value of the 

constant rate of change as a 1.7 change 

in the output value and a change of 1 in 

the input value. 

1b 

We are going to keep track of my distance 

from the wall with this graph [This is done 

with a Desmos Animation,  
https://www.desmos.com/calculator/on4zt70oj3]. 

What does the ordered pair displayed on the 

graph represent? 

Does 1.7 meters per second show up here? If 

so, where? 

This portion of the task introduces 

students to the Desmos Animation that 

will facilitate the conversation about 

the idea of constant rate of change. 

 

I will explore whether students 

recognize that the value of a constant 

rate of change describes how two 

quantities’ values vary together (∆𝑦 =
𝑚 ∗ ∆𝑥). In particular, whether they 

recognize that the ratio 
∆𝑦

∆𝑥
, remains 

constant as the two quantities’ value 

change together; and what aspects of 

the animation the student uses to 

explain this relationship. 

 

1c 

Suppose we fix the current distance and time 

values in mind. Next, we are going to let the 

quantities vary from there and keep track of 

the changes. What does each of the following 

represent? 

 

Then ask “Does 1.7 show up somewhere? If 

so, where?” 

 

This portion of the task is to familiarize 

students with the Desmos animation 

and have them attend to variations in 

distance and time.  

 

I intend for students focus on what the 

parts of the animation are representing 

in this context. In particular, I want 

students to interpret the length of the 

red line as representing a variation in 

time from a chosen input value, and the 

length of the green line as representing 

the variation in distance traveled.  

 

By asking “Does 1.7 show up 

somewhere”, I will explore if a student 

recognizes that 1.7 describes the 

multiplicative relationship between the 

variations in the input and output 

values (∆𝑦 = 1.7 ∗ ∆𝑥), or if they still 

think of 1.7 as an amount to add to the 

output (or to go up 1.7 units). 

 

If a student has not exhibited reasoning 

about 1.7 as an invariant relationship 

that is restricted by a constant ratio 

between the variations, I built the 

animation to have the values vary (by 

animating the Desmos animation) and 

that the 1.7 should describe something 

about this situation. The intent is to 

move students who are thinking of 1.7 

https://www.desmos.com/calculator/on4zt70oj3
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in the sense of ratio as identical groups 

towards a meaning of ratio as measure. 

 

1d 
Ask students to measure the length of the 

green line in units of the length of the red line. 

 

Repeat with different time values and changes 

in the time value. 

 

Video 6 illustrates the animation that students 

will be engaging with (not the pacing or the 

questions asked) 

 

 
Video 6: The Constant Rate of Change Graph 

 

This portion is to have students engage 

in reasoning about division (or 

multiplication) as “how many times as 

large” the value of one quantity is in 

terms of another.  

 

I will explore if students now recognize 

(or continue to recognize) that no 

matter the size of the change in the 

input value (∆𝑥) the size of the 

associated change in the output value 

(∆𝑦) is always 1.7 times as large (
∆𝑦

∆𝑥
=

1.7). 

 

A student (who did not previously 

articulate an understanding of rate as a 

multiplicative relationship between 2 

varying quantities) can reflect on the 

repeated activity of measuring 

variations in two quantities and 

conclude that the 1.7 does not describe 

a fixed change in the output value, 

instead it describes the invariant ratio 

between the variations in the quantities’ 

values. Additionally, I will explore 

what aspects of this Desmos activity 

the student uses to articulate this 

meaning for a constant rate of change. 

Summary of Task 1: The purpose of Task 1 is to reveal the student’s current understanding of constant 

rate of change. In doing so, I hope to reveal and advance the student’s conception of what the value of 

1.7 means. I anticipate that most students will be engaging in ratio as identical groups in that they are 

associating 1.7 meters with 1 second. I intend that students will abandon this way of reasoning and 

instead start to conceive that 1.7 describes a relationship between the two varying quantities (ratio as 

measure). 

 

Teaching Session 1 - Scott 

In the first session, Scott explained his interpretation of 1.7 meters per second as 

“a constant speed of 1.7 meters per second is a change in distance of 1.7 meters every 

Figure 24:Scott's Written Work for Determining 

a Change in Distance for a 0.4-second Change 

in Time 

https://www.youtube.com/embed/BSVh2nVrWHU?feature=oembed
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second.” Afterward, he was asked to determine the distance traveled in 0.4 seconds, and 

he set up equivalent fractions to determine the number of meters traveled (Figure 24)12. 

When asked to consider the animation of the walking man and why his definition 

reflected that he could utilize equivalent fractions, Scott replied that he was trying to find 

the “partial amount of distance” for those 0.4 seconds. However, Scott was perturbed 

when the interviewer provided an example where the man’s speed varied as he walked 

(very slowly at first and then sped up) such that after one second, the distance traveled 

was still 1.7 meters. The interviewer then asked why that would not be the same as his 

written definition. Scott said that the man in this situation did not walk at a constant 

speed but did not know how to modify his previous description that “a constant speed of 

1.7 meters per second is a change in distance of 1.7 meters every second.”  

When discussing the graphical portion of the task, Scott appeared to conceptualize 

a variation distinct from the initial quantity (Figure 25). When asked if he saw 1.7 show 

up in the graph, he indicated that he did not see 1.7 of anything but that it could be 

“found by dividing the change in distance traveled by the change in time elapsed” (Figure 

26) and that even if we moved the second point around (and therefore the values of the 

changes would be different), the division would still end up as 1.7. Up to this point, it 

seemed that Scott’s understanding of constant speed entailed the structure of “change in 

distance divided by change in time,” and the value of the speed could determine the 

change in distance of 1.7 meters for a 1-second change in time. This response suggested 

 
12 As a reminder from the Pre-Interview, Scott stated that did not know how to explain why he should 

employ equivalent fractions and that “that was what I was taught to do for these kinds of problems.” 
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that Scott lacked a quantitative understanding of division as the relative size between the 

changes in two quantities’ values. 

 

Figure 25: Scott's Interpretation of Various Features of a Graph 

Figure 26: Scott's Interpretation of where he sees 1.7 show up in the Desmos applet 
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When playing the animation, Scott initially attended to the value of the change in 

time (the length of the red line) when discussing what the length of the vertical line up to 

the first tick mark measured (Figure 27). Due to this, he had trouble interpreting what 

quantities were displayed in the animation since he was fixated on determining the 

length's magnitude. However, dragging the slider on the applet to display different 

amounts of variation in the input quantity supported him in attending to a change in time 

as a unit of measure; “I guess it’s going about the same distance as what’s on the 𝑥-axis, 

so that is like a one-to-one ratio.” As Scott continued working with the applet, he 

sometimes shifted back to discussing the specific values involved. However, with 

minimal suggestions, he observed that “we can use the slider to end up with different 

numbers (values of the change in time).” This observation allowed him to conceptualize 

the change in time as a unit of measure: “oh, the change, that’s the change in time we use 

to measure the other change.” After working through questions posed in the context of 

Figure 27:Screencapture of the Desmos Applet where one 

horizontal line segment (representing the value of the change 

in time) is marked off on the vertical line segment 

(representing the value of the change in distance) 
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the applet, Scott summarized that “we took 1.7 of the change in time, and that was the 

change in distance no matter how big they [the changes] were.” 

During the retrospective analysis of the teaching session, the interviewer 

hypothesized that Scott’s initial difficulty stemmed from his inability to conceive of a 

variation as a measured quantity that could be used as a unit of measure. During the pre-

interview, Scott had no difficulty identifying that an expression of the form 𝑥2 − 𝑥1 was a 

change in a quantity’s value. Therefore, what likely explains Scott’s focus on specific 

values was that his conception of 𝑥2 − 𝑥1 was a calculation to be performed. However, 

the expression did not represent a quantity that he could operate with until he had 

computed its value. This claim is corroborated by the fact that it was not until the end of 

the session that he recognized that “oh, the change, that’s the change in time.” What 

likely allowed Scott to shift from thinking about specific values to unitizing the change in 

the input quantity was the applet’s functionality to show the continuous variations in the 

two quantities’ values. Initially, when Scott interpreted what was shown in Figure 27, he 

took actions to calculate the magnitude of the horizontal line. However, as Scott used the 

sliders on the applet to vary the amount of variation in the independent quantity, he 

discontinued his efforts to calculate the value of the variation. Instead, he considered 

what was being marked off on the vertical line segment that represented the change in 

distance. This claim is supported by his statement that “it’s going about the same distance 

as what’s on the 𝑥-axis.” Scott’s shift from taking actions to calculate a value to 

considering that the indicated length between the tick marks represented one of 

something likely supported Scott in measuring the size of the change in distance relative 

to an arbitrary change in time. As he moved away from calculating the magnitude of the 
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length, he then stated, “oh, the change, that’s the change in time we use to measure the 

other change.” 

After working through the activity, Scott was asked what 1.7 represented in this 

situation, and he said, “the change in distance is 1.7 times the change in time at any given 

point.” In the following teaching session, when asked what he remembered about the first 

lesson, Scott recalled that “I said that [rate of change] was the change in this for one 

second, and then we broke it down into how the changes vary with each other.” 

Moreover, he also remembered the Desmos animation as he used his hands to mimic the 

animation where the length of the red horizontal line (change in time) was used to 

measure the length of the vertical green line (change in distance) (Figure 27). Scott was 

cognizant that his original meaning focused on a one-second change in time (and the 

associated change in distance) and that his new meaning could attend to any change in 

time. His recollection supports the hypothesis that attending to the relative size between 

an arbitrary amount in the change in time and the associated change in distance supported 

him in reconceiving what a rate of change entails. 

Figure 28: Scott's Usage of the Value of a Constant Rate of Change 
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When asked to use the value of a constant rate of change, Scott appeared to 

leverage his conception of rate of change as a relative size measurement when 

constructing his response (Figure 28). His calculations in Figure 28 are contrary to his 

previous actions during the pre-interview and the beginning of this teaching session, 

where he utilized an equivalent fractions method (Figure 24). In determining how far he 

would travel at a constant speed of 2.3 meters per second between 3.1 and 4.9 seconds, 

Scott explained that he typed in (4.9 − 3.1) to represent the change in time and then 

multiplied by 2.3 because “for any change in time, the change in the distance would be 

2.3 times as much.” In subsequent teaching episodes, Scott consistently used “times as 

much” phrasing when talking about a rate of change. For example, in the context of the 

height of water in a jar changing at a constant rate of 8.34 inches per gallon, Scott 

explained it “as the amount of water or however many gallons is added, the height of the 

water increases will be 8.34 times that”. His shifts in language and mathematical 

representations of rate of change as a relative size measurement indicate that he 

spontaneously conceptualized a variation as a quantity without calculating its value and 

that he was able to use proportional reasoning to determine the change in height of the 

water for an arbitrary amount of change in the volume of water. This suggests that he was 

fluent in considering a rate of change as entailing a multiplicative relationship between 

the amounts of variation in the independent and dependent quantities’ values. 

Teaching Session 1 - Hans 

 

During the pre-interview, Hans repeatedly utilized the value of a rate of change by 

employing equivalent fractions. For example, he wrote 
4

6
=

𝑎

11
  and described it as 

“different ratios, but same proportion,” and they “can’t be the same the ratio, because the 
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one on this (denominator) is not equal.” In the first teaching session, Hans explained a 

constant speed of 1.7 meters per second as "every second that passes, I move 1.7 meters.” 

When asked to explain his statement, he said that a constant rate is a constant ratio 

between distance and time13 that is maintained. He clarified that a ratio is “something to 

simplify down to,” such as 8:6 or 
8

6
 would be the same as 4:3 or 

4

3
 (Figure 29). Based on 

his utterances and written work, Hans appeared to be interpreting the value of a rate of 

change as a simplified ratio that defined what other fractions needed to be equivalent to. 

When asked to determine how far he would travel if he traveled for 0.63 seconds, Hans 

set up equivalent fractions, 
1

1.7
=

0.63

𝑥
, and determined what value of 𝑥 would make the 

statement true. Hans explained that because “1 second equals to 1.7 meters, that’s a 

constant ratio that is proven, so if I were to plug in another number for 1, it would have 

the same ratio just with different values.” Moreover, as he says, “plug in another number 

for 1,” he used the cursor to point to the .63 he had written. Then he stated that he wanted 

to find the value of 𝑥 that would keep the ratio intact. 

 
13 Throughout this first teaching session, Hans was consistently vague about which “distance” and “time” 

he was thinking about. Based on his responses throughout this session, he was likely thinking about a rate 

as involving a quantity called “distance” and a quantity called “time” but did have a specific distance and 

time in mind.  

Figure 29: Hans' Interpretation of "Rate of Change" and "Ratio" 
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Upon retrospective analysis of this portion of the teaching session, Hans appeared 

to interpret the value of a rate of change as describing the equivalent amounts between 

two different quantities’ values. For example, he described two fractions with the same 

numerical value as “different ratios, but same proportion,” and “1 second equals 1.7 

meters.” Even though Hans verbalized that the 1.7 meters per second described a ratio 

between distance and time being maintained, he did not articulate 1.7 as describing the 

relative size between the change in distance and the change in time. Instead, he thought 

about the number of meters he needed to associate 1 second with, which is supported by 

his statements that “every second that passes, I move 1.7 meters” and “1 second equals to 

1.7 meters, that’s a constant ratio that is proven.” His actions also suggested that he 

interpreted the value of a rate of change as the number that described the fraction that 

other “ratios” had to be equivalent to. 

When discussing the graphing portion of the task, Hans continually referred to 

𝑥, 𝑦, and physical features of the graph with little or no mention of the quantities he had 

in mind. His language only shifted when he was prompted to talk about what the features 

Figure 30: Hans' observation that the length of the vertical line segment was 1.7 times 

the length of the horizontal line segment 
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of the graph represented in the walking context. While the animation was playing with 

the red line marking off one change in time on the change in distance segment, Hans 

commented that it “was like seconds but in relation to the meter line.” However, when he 

explained what we had 1.7 of, he referred to the length of the red line as 1 second instead 

of as the change in the input quantity. He stated the length of the red line as 1 second 

several times, and the interviewer intervened by dragging the slider to demonstrate that 

the length of the red line could take on different values. While Hans eventually described 

the length of the red line as representing a change in time, it was apparent that Hans 

struggled to distinguish between the variation in a quantity and the unit of that quantity 

(Hans never said the length of the red line was the amount of time elapsed, rather, he 

indicated that it was one second of time). When asked to explain what he saw in the 

animation, Hans described that the length of the green line was 1.7 times as large as the 

red line or that it was 1.7 small lines (Figure 30). When asked to talk about the quantities 

represented by the length of the lines, Hans first stated that they were “𝑥 and 𝑦 values.” 

Then when asked to refer to the quantities in the walking context, Hans was vague about 

which quantities he had in mind (since he said “time” and “distance”). It took prompting 

for him to specify the lengths of the lines as representing a change in time and a change 

in distance from a specific reference point. Through consistent prompting to refer to the 

quantities in the walking context, Hans summarized that we had a “1.7 change in time for 

the change in meters” (Figure 31).  
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 Through the retrospective analysis of this session, Hans likely was not 

accustomed to reasoning quantitatively or talking conceptually about mathematics. 

Throughout the pre-interview and first teaching session, Hans’ language about 

mathematics was procedurally oriented and lacked specification on what quantities he 

had in mind. For example, when asked to describe what we had 1.7 of in the animation, 

Hans was comfortable explaining that the length of the vertical green line was 1.7 times 

as large as the small red line (Figure 30). However, he repeatedly struggled to discuss 

what quantities in the walking context were represented and compared in the Desmos 

animation. As previously mentioned, Hans went back and forth between describing the 

length of the red line as representing 1 second versus an arbitrary change in the amount of 

time. He also talked about the length of the green line as a change in 𝑦 or a distance 

(instead of representing a change in distance). Hans required consistent prompting to talk 

about which distance he was thinking about. During the second teaching session, when 

asked what he recalled about the animation, he stated that “rate as a change in 𝑦-value 

with the change in 𝑥-value.” Even though Hans discussed “change in” as part of his 

recollection, it is worth noting that he chose to talk about “𝑥” and “𝑦” values instead of 

distance or time. 

Figure 31: Hans' interpretation of 1.7 after working 

through the Desmos Applet 
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 During the analysis of this first teaching episode, the researcher conjectured that 

Hans could articulate the multiplicative relationship between changes in output values (𝑦-

values) with respect to changes in input values (𝑥-values) but was not yet fluent in 

speaking quantitatively. This hypothesis resulted in adapting the later teaching sessions to 

include more prompts for Hans to reference the quantities represented by symbols and 

graphs. The interviewer hypothesized that these prompts would support Hans in 

consistently reasoning quantitively about rate of change. 

Foundational Understanding 2 – Average Rate of Change 

 Teaching sessions 2 and 3 focused on developing students’ understanding of 

average rate of change as a constant rate of change over a function’s input interval that 

achieves the same change in the output quantity over the input interval, from 𝑥1 to 𝑥2, on 

which the average rate of change is determined (
𝑓(𝑥2)−𝑓(𝑥1)

𝑥2−𝑥1
= 𝑚, where 𝑚 is the value of 

the constant rate of change). Thompson (1994) indicated that developing this 

understanding is nontrivial since he noticed that undergraduate students “did not have 

operational schemes for average rate of change” (p.49), likely because their image of 

constant rate of change did not entail a proportional relationship. Frank and Thompson 

(2021) indicated that while students could correctly identify 
𝑓(𝑥2)−𝑓(𝑥1)

𝑥2−𝑥1
 as computing an 

average rate of change, their interpretations of the value hindered them from developing a 

quantitative interpretation as an estimate for the rate of change of the output quantity, 

𝑓(𝑥), with respect to the input quantity, 𝑥. Dorko and Weber (2013) explain that one 

reason for students’ weak meanings for average rate of change is due to the “lexical 

ambiguity because of its uses in statistics and everyday language” (p.386). Since the 
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previous teaching session focused on developing students’ understanding of rate of 

change as a multiplicative comparison, teaching sessions 2 and 3 focused on developing 

students’ meanings for average rate of change as also entailing a multiplicative 

comparison between the variations in the amounts of two quantities’ values. 

Summary of Session 2 

 Session 2 (Table 24) involves an animation showing a runner, Jonah, running a 

100-meter race in 32 seconds (not at a constant speed). A second racer, Ishtesa, runs the 

same distance in the same amount of time at a constant speed. Students are asked to 

compare their calculations for Jonah’s average speed over the entire duration of the race 

and Ishtesa’s constant speed. This task probes students for their meanings for average rate 

of change and potentially perturb their understandings of average as “add up and divide.” 

This session aims to support students in interpreting an “average” to mean a replacement 

of values with a constant value. The instructor guides the student to consider the 

similarities between both runners (they travel the same amount of distance in the same 

amount of time) and the calculations for an average speed and a constant speed (Video 7). 

Table 24: Session 2 Tasks and Rationale 

Session 2: Average Rate of Change – The Runner Task 

Order of 

Instruction 
Task Task Rationale 

3a [https://www.desmos.com/calculator/bpdeilsrsb] 

Jonah is running on a racetrack that is 100 

meters long and his distance from the starting 

line is given by the function 𝑠, where 𝑠(𝑡) 

represents his distance in meters from his 

starting spot after running for 𝑡 seconds. Jonah 

finishes running the 100 meters in 32 seconds. 

 

a) Does Jonah run at a constant rate of change 

(with respect to time)? How do you know? 

(What would you do to verify your answer) 

 

This portion of the task is to elicit 

students’ understandings about 

average rate of change and how to 

calculate it. During this portion, the 

instructor asks students what they 

are writing and what they believe is 

being represented. This is to have 

students attend to variations in 

quantities and engage in using 

division to represent a ratio. 

 

https://www.desmos.com/calculator/bpdeilsrsb
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b) What was his average speed? 

How would you represent his average speed in 

the first 23 seconds of his run? Between 4 

seconds and 8.9 seconds? 

 

I will explore whether a student 

interprets “average speed” as 

“adding all the speeds and then 

dividing” or if they recognize that 

an average speed is an imagined 

constant speed needed to travel the 

same distance in the same amount 

of time. 

 

3b Suppose we wanted to run the same race as 

Jonah. We want to travel the same total distance 

and use the same amount of time as Jonah did. 

However, we want to run at a constant speed. 

What constant speed would that have to be? 

[Students can put their answer into the Desmos 

file and run the animation to check] 

 

Video 7 illustrates what might be shown in the 

animation. 

 

 
Video 7: The Runner Task 

This portion of the task is to have 

students continue to engage in 

reasoning about constant rate of 

change.  

 

I will explore whether a student can 

interpret their calculation in Tasks 1 

and 2 to determine a constant speed 

by recognizing that the desired 

constant speed involves the ratio 

between the completed distance 

traveled and total time traveled 

(
𝑠(32)−𝑠(0)

32−0
).  

 

3c 

The calculation you did for finding the constant 

speed is the same as for the average speed of the 

1st runner over the entire 32 seconds. Why is 

that? What does average speed mean? 

The portion promotes that an 

average rate of change involves a 

constant rate of change (not 

necessarily the entire definition of 

an average rate of change, instead 

this task provides an opportunity for 

students to make a connection that 

an average speed entails a constant 

speed) 

 

I will explore if a student 

demonstrates an awareness that an 

average speed is the constant speed 

that the 1st runner would have to run 

in order to travel the same distance 

in the same amount of time as the 

2nd runner. If not, I will use the 

optional portion of this task to help 

https://www.youtube.com/embed/vrIhM6MMijg?feature=oembed
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perturb their understanding on the 

meaning of the word “average”. 

(3d) 

Optional 

Suppose out of 5 quizzes (graded out of 10 

points) you earned a 7, 9, 10, 4, 9. What is your 

average test score?  

 

If you earned the same total score as the above 

and scored the same score on each quiz, what 

score would that have to be? 

 

How is “average” here similar to “average” in 

average speed? 

Students may not have strong 

quantitative meanings for average 

outside of “add up everything and 

divide.” I provide additional 

examples to help students realize 

that “average” is about a 

replacement with a constant. 

 

I designed this optional task to 

perturb students who rely on 

calculating an average as “add up 

everything and divide” by having 

them reconcile the meaning of 

“average” in 1 context with another. 

I intend for students to reflect on 

their meaning of average in Task 3 

and consider that an average 

involves a replacement of values. 

(For the previous task, one meaning 

may be to replace all of the 1st 

runner’s speeds with 1 speed that 

would have him travel the same 

distance in the same amount of 

time). 

Summary of Session 2: The intent of this task is to explore students’ meanings for average rate of 

change and potentially perturb their understandings of average as “add up and divide”. The goal is to 

support students in interpreting “average” to mean a replacement of values with a constant value. In the 

context of Average Rate of Change, a student is determining variations in two quantities and then finds 

a ratio between them. Then the student uses the value of the ratio to imagine how the values of the 

quantities will vary if they were to vary at that constant rate. 

Again I want to be clear to that I do not intend this task to be an HLT on average rate of change. I 

constrain myself to imagine that 1 set of tasks would take 1 class period and is the amount of time I 

would allot in teaching average rate of change in a Calculus 1 course. 

 

The third teaching session was designed to continue developing students’ 

understanding of average rate of change. A second goal was to support students in 

recognizing a need for and then choosing smaller and smaller input intervals ( lim
∆𝑥→0

) when 

representing the average rates of change (
𝑓(𝑥+∆𝑥)−𝑓(𝑥)

(𝑥+∆𝑥)−(𝑥)
). This session was designed to 

engage students in developing fluency in using and explaining the idea of average rate of 

change. This session began by asking students to use average rates of change to model a 

hypothetical runner running at Jonah’s average speed over smaller and smaller time 
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intervals. As students choose smaller and smaller time intervals, the Desmos applet 

provides a visual representation that an average speed over a small enough interval will 

be visually indistinguishable from the actual speed of the original runner. 

Summary of Session 3 

 Session 3 (Table 25) builds off of the Runner Task in Session 2 by creating the 

goal of modeling Jonah’s motion (his distance traveled as time elapses) using 

mathematics. The task involves students programming a function that will model the 

second runner’s distance with respect to time elapsed. Students are instructed to use 

Jonah’s average speed as the second runner’s constant speed over each specified time 

interval (Video 8). This task aims to support students in reasoning quantitatively about 

the numbers and operations they employ. In this session, students need to symbolize and 

distinguish between how the runner’s distance will vary as time varies (a rate of change 

multiplied by a change in time) and the amount of distance already traveled by the start of 

the time interval (See 3a in Table 25). The Desmos applet provides a visual 

representation of the second runner’s distance traveled based on the students’ 

mathematics, and this can provide opportunities for the student to be perturbed if their 

expectation does not match what happens in the animation. For example, if a student does 

not include the distance accrued by the start of an interval, the animation will show the 

runner instantly jumping back to the start of the race when 𝑥 = 16. 

Table 25: Session 3 Tasks and Rationale 

Session 3: Average Rate of Change Over Smaller and Smaller Intervals 

Order of 

Instruction 
Task Task Rationale 

3a Suppose the 2nd runner now runs the first 16 

seconds by running at the average speed of 

the 1st runner in this 16 seconds. Write a 

This task's overarching goal is to have 

students engage in using average rates 

of change over smaller and smaller 
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function that represents the 2nd runner’s 

distance after traveling for t seconds at this 

speed. 

[Students will be using 

https://www.desmos.com/calculator/gaiwt9fj

wm 

to check their solution] 

In the next 16 seconds, the 2nd runner will run 

at the average speed of the 1st run in this time. 

Rewrite your function to include this.  

 

intervals to introduce the idea of 

instantaneous rate of change. Students 

are presented with the goal that we 

want to know about the 1st runner’s 

speed at any time. 

 

Since students do not have direct access 

to the values of the function, 𝑠, they 

will have to use function notation to 

represent variations in the distance in 

order to represent an average speed. 

I will explore if students recognize that 

𝑠(𝑡) represents the distance the 1st 

runner has ran after running for t 

seconds, without needing an explicit 

function definition to determine the 

value at a given input value. If students 

struggle with this, then I will 

investigate whether having the Desmos 

functionality of typing in 𝑠(3) and 

Desmos showing the value of it, aids 

students in building this understanding 

of function notation. (For example, if a 

student decides to represent the average 

speed in the first 16 seconds using 
𝑠(16)−𝑠(0)

16−0
 instead of finding the value of 

𝑠(16) I would say that a student 

evidences this desired understanding of 

function notation). 

 

The 2nd portion of this task is 

challenging because students have to 

consider that the amount of time the 

runner is running at this constant speed 

for is not the value of the variable 𝑡; it 

is 𝑡 − 16. 

I will closely follow students’ work and 

ask them about what they are trying to 

represent and attempt to perturb student 

thinking. Ex:  If a student is writing 
𝑠(32)−𝑠(16)

32−16
∗ 𝑡, then I may ask that if 𝑡 =

17, what happens? Additionally, the 

Desmos interface will help with 

visualizing the issue. 

 

I will investigate if students are able to 

utilize the value of the imagined 

constant rate of change to determine a 

projected change in the output value for 

a change in the input value.  

 

3b Repeat activity but with more intervals. 4, 

then 10 intervals. 

The purpose of having students repeat 

this process is to 

https://www.desmos.com/calculator/gaiwt9fjwm
https://www.desmos.com/calculator/gaiwt9fjwm
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Video 8 illustrates the task that students will 

be interacting with and the result of what they 

might see. 

 

 
Video 8: The Racer Problem 

1) Have them repeatedly reason about 

average rates and constant rates 

2) Have them experience that doing this 

for too many intervals makes it tedious, 

so there is a necessity for simplifying 

the process 

3) This exercise is similar to how some 

students may learn about accumulation 

functions (integrals), so having students 

engage in connecting an accumulated 

distance with a rate of change function 

fits into making the rest of Calculus 

coherent for the student. 

4) When students are using the 

animation to test their solutions, they 

can also see that picking more and 

more intervals makes the two runners 

line up more and more. 

3c 

What do you expect will happen if we did it 

for 100 intervals? If you had to do it, what do 

you think the process would be like? 

 

Is the average speed in that interval the speed 

the 1st runner runs at in that interval? 

This is the part of the task that would 

be too tedious to do. Instead, this task 

allows students to reflect on their 

previous work and imagine the results 

of their activity as if the actions were 

performed. Again this question is akin 

to a “mental run” (Simon et al., 2010) 

to have students actively recall the 

actions they engaged in to allow them 

to reflect on their actions and results of 

those actions. 

 

A student can reflect on this activity 

(and the result of “running” the 

animation) to imagine that they can 

keep choosing smaller and smaller 

intervals ( lim
∆𝑥→0

), and that doing so 

makes the 2 runners line up more and 

more. 

Summary of Session 3: The purpose of this session is to have students keep engaging in using average 

rates of change, the varying quantities involved, and creating a necessity for limits. Additionally, the 

student may start to consider that an average rate in a small time window is good enough to model 

someone’s speed in that time window. 

 

Teaching Session 2 - Scott 

During the Runner Task, Scott stated that 
𝑠(32)−𝑠(0)

32−0
 was Jonah’s average speed 

since it was a change in distance over a change in time. However, he also verbalized that 

an average is “every different speed that he’s moving at, add them all together and divide 

https://www.youtube.com/embed/AdIbsBK9VOA?feature=oembed
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and call that the average.” Further, he stated that “like two different points from where he 

is running and we find the average slope,” and he drew a line between two points on a 

graph (Figure 32). While Scott’s explanations contradicted each other, his interpretation 

represented a common understanding of “average” across different contexts. Scott 

expressed three inconsistent meanings for average rate of change i) a procedural meaning 

as a change in output values divided by a change in input values, ii) a process meaning as 

“add up and divide,” and iii) an “average slope” obtained by determining the slope of a 

line between two points on a function’s graph. As Scott discussed his understanding of 

average in different contexts, it did not seem like Scott recognized the inconsistencies in 

these conceptions. Scott had disconnected understandings of average rate of change 

which parallels how some students develop disconnected understandings of derivative 

(Zandieh, 2000)14. Hypothetically, it stands to reason that if these inconsistencies were 

not addressed, Scott might have compartmentalized different understandings for 

derivative: procedurally as the limit of the difference quotient, a process of calculating 

limits or sliding a secant line, and graphically as the slope of a tangent line. 

 
14 As a reminder, Zandieh (2000) indicated that there are several (often disconnected) representations of 

derivatives that students tend to recall: graphically as the slope of the tangent line, verbally as instantaneous 

rate of change, physically as speed, and symbolically via the limit definition of derivative, yet some 

students are often unaware of how and why these ideas are related to each other. 

Figure 32: Scott's drawing of a secant 

line with an average slope 
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To perturb Scott’s way of thinking, the interviewer introduced a question about an 

average quiz score and asked what the average quiz score would describe in that situation 

(Figure 33). Scott replied, “I have no idea what to say because average is one of those 

words that I use in a lot of other situations…like here it might be like the middle score”. 

The interviewer then asked Scott to consider two of his meanings for average 

simultaneously by writing out the calculations for an average for the Runner Task and the 

quiz problem (Figure 34). Next, the interviewer provided a hypothetical second student 

who scored 8 on all five quizzes and highlighted that both students had the same total 

quiz score (Figure 35). Scott remarked, “it’s kind of clicking for the other one (The 

Runner Task), I guess like they both run the same total they just run different speeds 

throughout that total distance… like they both run the same total distance for the same 

total time with different speeds.”  

Figure 33: The Quiz Problem 

Figure 34:Representation of "Average" in the Runner Task and Quiz Problem 
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When presented with the quiz score problem, Scott verbalized his awareness that 

he had different meanings for average depending on the context. Having Scott consider 

the juxtaposition between the average speed of the runner and the average quiz score 

supported Scott in realizing the inconsistencies across his meanings for average. 

Prompting Scott to compare the runner and quiz situations caused him to consider an 

average as involving the same net changes over the same input interval in each situation. 

For example, in Figure 34, Scott wrote  
𝑠(32)−𝑠(0)

32−0
 to represent Jonah’s average speed and 

8+6+9+7+10

5
 to represent the average quiz score, and seeing both as representing an 

“average” deterred him from explaining an average as a particular procedure. Instead, 

Scott noticed that “they both run the same total for the same total time in the runner task.” 

 At the start of the third teaching session, Scott discussed his recollection of the 

second session. Scott mentioned the two runners, one running at a constant speed and the 

other running at a varying speed, but both finished running 100 meters in the same 

Figure 35: Average Quiz Score as the Constant Score needed for all 5 quizzes to have the 

same total quiz score across 5 quizzes 
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amount of time. He then verbalized that the runner who had an average speed of 
100

32
 

meters per second meant that “if every value of speed were to be the same, they would 

still travel the 100 meters in 32 seconds.” Scott’s recollection indicated a shift in his 

understanding of average speed as entailing the same total distance and the same amount 

of time as someone who would travel at a constant speed of 
100

32
 meters per second for 32 

seconds. 

Teaching Session 2 – Hans 

In the Runner Task, Hans’ interpretation of average speed was similar to Scott’s. 

Hans also recognized that 
𝑠(32)−𝑠(0)

32−0
 was “Jonah’s average constant speed” since it was a 

change in distance divided by a change in time (Figure 36a). When asked to explain what 

he meant by average, he struggled to verbalize his meaning. He eventually drew a graph 

of the situation (Jonah’s distance traveled with respect to time elapsed) and a dashed blue 

secant line and then indicated that the whole line was the average (Figure 36b). 

Figure 36a: Hans' Interpretation of  
𝑠(32)−𝑠(0)

32−0
 Figure 36b: Hans' Drawing of a Secant line as the Average 
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Unlike Scott, Hans never mentioned that his interpretation of average speed 

included a process of adding up and dividing. However, Hans’ interpretation of the secant 

line as representing the average speed was reminiscent of his lack of associating 

quantities with features of a graph in the first teaching session. The interviewer then 

recreated Hans’ drawing and asked him what a point on his secant line represented in the 

runner context (Figure 37a). After determining that a point on the secant line would be an 

ordered pair of time elapsed and distance traveled, Hans said that the average speed 

would be the constant speed over the time period between 0 and 32 seconds. He then 

drew the associated total distance and time on the graph to match what he said (Pink lines 

in Figure 37b). After drawing, he paused and noted that the average speed of 
100

32
 meters 

per second would mean that “Jonah (the first runner) will end at the same distance and 

time as Ishtesa (the constant speed runner)”; however, he said that he still did not know 

how to explain what 
100

32
 quantified about Jonah. 

Figure 37a: What does a point on the secant line 

represent in this context? 
Figure 37b: Hans’ observation of the Total 

Distance and Total Time in the Runner Task 
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To support Hans in developing a meaning for the value of an average speed, the 

interviewer employed the same average quiz score situation used in Scott’s teaching 

session. After working through the example and considering both the runner and quiz 

score scenarios (Figure 38), Hans indicated that “they [the situations] were similar 

because like the totals were the same, like on the left [the runner situation], Jonah has the 

same ratio of distance and time, and on the right [quiz score situation] the students have 

the same ratio of scores and tests.” Hans was then prompted to explain what Jonah’s 

average speed of 
100

32
 meters per second meant, and he updated his description to “Jonah 

having an average speed of 
100

32
 means that if his speed fluctuates, he will end at the same 

time and distance as if he were going at a constant rate.” 

After conducting the retrospective analysis of this session, it is likely that having 

Hans attend to the quantities that composed an average (the total distance and total time 

in the runner task, and the total quiz score and total number of quizzes in the quiz 

problem) helped him articulate a productive understanding for average rate of change. As 

the session progressed, Hans’ thinking about an average shifted from a secant line 

Figure 38: Hans Comparing the Runner Task and Quiz Problem 
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connecting two points on a graph (Figure 36b) to interpreting Jonah’s average speed as 

involving the same total distance and total time (Figure 38), and finally, that the value of 

an average speed involved a hypothetical constant rate of change. What supported Hans’ 

actions was the prompting to associate numbers and features of a graph with quantities. 

For instance, Hans initially thought the secant line represented the average speed. After 

being asked what a point on that secant line represented (Figure 37a), he realized the 

average speed involved the total distance and time traveled (Figure 37b). Later, Hans 

noticed the similarities across the runner and quiz score problems by taking note of the 

same ratios in each context. He then connected how ‘average’ referred to this similarity 

by updating his description of Jonah’s average speed to entail the constant speed that 

resulted in the runner traveling the same total distance over the same period of time. This 

description provided evidence of a shift in Han’s understanding of average speed. 

Teaching Session 3 – Scott 

 During the third teaching session, Scott was given a Desmos applet and was asked 

to program a second runner (that would run alongside Jonah) that ran at Jonah’s average 

speed over the entire 32-second race using 2, 4, and then his choice on the number of 

time intervals. When working on the 2-interval portion of the task, Scott had no difficulty 

determining an expression that represented the distance traveled by the runner after 

running for 𝑥 seconds for the first time interval. He typed 𝑠(16) into the applet to 

determine the distance Jonah had traveled by 16 seconds and used this in his average rate 

of change expression, 
67.098

16
𝑥. However, for the next time interval, he wrote 

100−67.098

32−16
 (𝑥 − 16). Before continuing, the interviewer asked what he attempted to 
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represent with his second expression. Scott replied that 
100−67.098

32−16
  was Jonah’s average 

speed in the second half of the race, and the expression (𝑥 − 16) represented an amount 

of time. Scott clarified that he wrote (𝑥 − 16) because “we have to worry about this 

interval and so total time, 𝑥, that means we are taking away the first interval of time.” His 

explanation suggests that he was using 𝑥 to represent the number of seconds since the 

start of the race and that he conceptualized (𝑥 − 16) as another quantity, the number of 

seconds elapsed after the first 16 seconds of the race (Figure 39). 

 What was absent from Scott’s second expression was the amount of distance 

traveled by the runner during the first 16 seconds of the race. The interviewer decided to 

press play on the animation to demonstrate what Scott’s expression represented in this 

situation. When the time elapsed hit the 16-second mark, the runner jumped back to the 

starting position. Scott was surprised when he saw the runner jump back, and he paused 

to look at his expression, 
100−67.098

32−16
 (𝑥 − 16). The interviewer then asked him what he 

attempted to represent and let the animation rerun. After watching the animation a second 

time, Scott remarked that he was missing the distance the runner had already traveled and 

Figure 39: Scott’s explanation for (𝑥 − 16) 
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proceeded to add 67.098 to his expression. In the subsequent tasks that prompted Scott to 

determine Jonah’s average rate of change over four different time intervals, Scott 

multiplied one of the average speed values by a value of a change in time and then added 

the previously accumulated distance. As Scott completed each part of the task, he 

continued to check his work by playing the animation to verify that the runner was 

running according to his expectation.  

 Throughout this teaching session, the Desmos applet played a pivotal role in 

supporting Scott in connecting his mathematical expressions with how he imagined 

distance accruing. The Desmos animation provided a visual representation of his 

mathematical expressions, and when the runner jumped back to the start of the race, Scott 

was perturbed by what he saw. Since Scott’s expectation of what would happen did not 

align with what he observed, this prompted Scott to reconsider what quantities his 

symbols represented and then make adjustments to accurately represent the quantitative 

relationships he intended. Having the Desmos animation display the runner’s movement 

and distance from the starting line provided Scott with immediate feedback by displaying 

the quantities being represented by his expression. Seeing his programmed runner make 

an instantaneous jump back to the starting point prompted Scott to reconsider how to 

represent the distance he wanted to model (the distance of the programmed runner from 

the starting line as a function of time elapsed since the start of the race); in particular, he 

recognized that he needed both an expression to represent how that runner’s distance 

would vary as time varied, 
100−67.098

32−16
 (𝑥 − 16), and the initial distance already accrued 

(67.098 meters) after 16 seconds since the start of the race. 

Teaching Session 3 – Hans  
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Due to Hans’ previous struggles in associating quantities with a mathematical 

representation, the interviewer anticipated that Hans would encounter difficulties in 

programming the average speed runner. Initially, during the 2-interval portion of the task, 

Hans only wrote the average speed, 
67.098−0

16−0
, and then verbalized that he did not know 

what he needed to write to represent time passing. The interviewer then leveraged Hans’ 

understanding of how to use a speed and an amount of time traveled to determine a 

distance traveled by asking how far the runner would travel if he ran for 1.2 seconds. The 

interviewer also drew on the animation and swept the mouse cursor over the associated 

distance to support Hans in thinking about how distance smoothly varied with time 

(Figure 40). Hans replied that he would use the average speed value and multiply it by 

1.2. He then mentioned that he needed to “add time” to his previous expression, in which 

he multiplied an 𝑥 to his existing expression. He repeated this for the second interval by 

typing in 
100−67.098

32−16
𝑥, but he did not attend to 𝑥 as representing the total amount of time 

elapsed; he also failed to include the distance the runner had traveled during the first 16 

seconds (Figure 41). 

Figure 40: Hans' first attempt at programming the average speed runner 
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 For the first issue, the interviewer hypothesized that Hans was thinking “rate 

multiplied with time equals distance” and was not yet distinguishing between total 

distance and distance varying within an interval (similar with total time and the amount 

of time elapsed in the interval). The interviewer then made the following teaching moves 

to aid Hans in conceptualizing the difference between total distance and a change in the 

distance (Figure 42). 

1. The interviewer referred back to the first expression and asked Hans to review 

what each piece of his expression represented and what he was trying to represent. 

Figure 41: Hans' mathematical expressions for the 

average speed runner 

Figure 42: The Interviewer's Annotations on 

Hans' Expressions 
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[Hans identified the average speed and the amount of time elapsed and then noted 

that all together, it represented a “change in distance”] 

2. The interviewer mentioned that for 𝑥 = 17.8 we are not saying that the runner 

will run at the speed of 
100−67.098

32−16
 for 17.8 seconds because the first expression 

accounted for the first 16 seconds of the race. 

3. The interviewer then asked how long the runner had run at the speed of 
100−67.098

32−16
  

when 𝑥 = 17.8  and then for 𝑥 = 23.1. [Hans replied that he needed to determine 

17.8 − 16 = 1.8 since the runner was running at a different speed during the first 

16 seconds. He had a similar response when answering the question when the 

total time elapsed was 23.1 seconds] 

4. The interviewer asked Hans how he might incorporate his response into his 

expression to represent the runner’s distance traveled with respect to the number 

of seconds since the race started. [Hans said that “we need (𝑥 − 16) to account 

for the first 16 seconds of our race” and that “(𝑥 − 16) is our change in time from 

16 seconds”] 

To aid Hans in conceptualizing the distance already traveled in the first 16 

seconds, the interviewer played the animation, and the runner jumped back to the starting 

line after the runner had traveled for 16 seconds. Unlike Scott, Hans initially thought to 

add the expression 
67.098−0

16−0
 𝑥 to 

100−67.098

32−16
𝑥. He appeared to conceptualize the expression 

67.098−0

16−0
 𝑥 as a completed distance traveled that could be determined by multiplying a 

rate times a time (Table 26). The interviewer then prompted Hans to talk about the 

quantities he conceptualized and attempted to represent [Lines 4-6] while probing the 
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conception of the starting point for a quantity’s measurement [Lines 7-9]. Eventually, he 

noted that we still needed “the first distance” and proceeded to add 67.098 to his 

expression [Line 11]. Hans’ statement that he needed “the first distance” suggested that 

he shifted to making a distinction between different distances in the situation since he 

chose to label the distance accrued within the first 16 seconds as the “first distance.” 

 A retrospective analysis revealed that focusing Hans’ attention on the quantities 

to be represented appeared to support him in constructing the accurate expressions for 

those quantities. It is also noteworthy that Hans did not recognize how to symbolize a 

value for time when its value varied. As reported in other studies (e.g., Moore & Carlson, 

2008), an interaction that led to him conceptualizing the specific quantities in a 

contextual problem (Figure 40) enabled him to use symbols meaningfully. In particular, 

he transitioned to conceptualizing and defining 𝑥 as representing the runner’s distance 

from the starting line and constructing an accurate expression to represent the time 

elapsed after the first 16 seconds (Figure 42).  

The Desmos animation also supported Hans in developing fluency in applying an 

average rate of change in a context and connecting his mathematical expressions with the 

quantities he attempted to represent. Similar to Scott, Hans was perturbed when the 

Table 26: Teaching Session 3 – Hans working through the Runner Task 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Hans: 

Int: 

Hans: 

Int: 

 

 

Hans: 

Int: 

Hans: 

Int: 

Hans: 

So would I… add the top? 

So you want to add this? *Highlights 
67.098−0

16−0
 𝑥* 

Yeah 

Remember 𝑥 is going to vary (Hans: oh yeah) so what quantity do you want to add? 

So think about what you’re trying to represent. This over here *highlights 
100−67.098

32−16
 (𝑥 − 16)*, what is this again? 

Um that’s my change in distance. 

From what? 

From 𝑥 − 16… like change in distance from… from 16 seconds 

Okay so what part are we missing? 

The beginning part of the race… the first distance 
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runner instantly jumped back to the starting line, which prompted him to reflect on what 

quantities his symbols represented. Upon seeing the runner jump back to the starting 

point, Hans realized that he needed the distance traveled by the runner during the first 16 

seconds of the race, and this led to a conversation (Table 26) that supported Hans in 

making adjustments to accurately represent the quantitative relationships he 

conceptualized. 

Foundational Understanding 3 – Average Rate of Change in a Small Interval 

The third key idea is that we can obtain better approximations of a function’s rate 

of change at a given value of the input variable by finding average rates of change on 

smaller and smaller intervals that include that value of the input variable. In the third 

teaching session, the students programmed the average speed runner using more and 

more time intervals. They could see in the animation that as they chose smaller and 

smaller time intervals, their programmed runner’s motion aligned more and more with 

the original runner’s motion. An important nuance of the last portion of the teaching 

session was that students had the agency to determine how many intervals to use (in other 

words, they could choose how small ∆𝑥 could be). Both students mentioned they could 

improve their approximations by making the time intervals as small as they wanted. 

Summary of Session 4 

Teaching session 4 (Table 27) involves a similar problem to the Runner Task, 

where a student is prompted to model the motion of an object (this time without 

deliberate priming to use average rates of change). This session also included questions 

on how they might determine the speed at a particular time value and approximate future 

values of a function using that speed. 
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Table 27: Session 4 Tasks and Rationale 

Session 4: Average Rate of Change Over Smaller and Smaller Intervals – The Camera Problem 

Order of 

Instruction 
Task Task Rationale 

4a Suppose you are the engineer on a film set. 

The director wants to shoot a scene where a 

car moves along a road and wants the camera 

to run alongside the car. The director asks 

you to program the track that the camera will 

run on. The only information you have access 

to is that you know exactly how far the car 

has traveled after any amount of time since 

the scene started. 

 

Student will use 

https://www.desmos.com/calculator/u7ldxbss

f2 ] to answer the problem 

 

Depending on how the student approaches 

this, the instructor can prompt questions 

(What approach do you think will work? 

What information are you trying to represent? 

Is this similar to the previous questions?) 

The instructor can also provide the Desmos 

framework that was provided in the previous 

tasks. It is omitted in this one to not push the 

student to make the association that the tasks 

are similar. 

This task aims to have students 

repeatably reason about modeling 

motion using average rates of change 

by applying the methods they used in 

the previous tasks to this task. The 

Desmos interface in this task does not 

provide the built-in interface to 

program piecewise linear functions that 

was in the previous task. Instead, the 

student will be prompted to discuss 

what approach they might take to 

model the camera’s movement and how 

they would employ mathematics to do 

so. Based on their response, the 

instructor can assist the student in 

providing the previous interface to 

build piecewise linear functions, or 

explain the commands available in 

Desmos. 

 

Again, I will assess if students reason 

that using an average rate of change 

over small intervals will be essentially 

equal to the actual speed of the car. 

Summary of the Camera Problem: The purpose of this task is to have students continually utilize 

average rates of change and to consider that average rate of change in a small enough interval is good 

enough to model speed. Without bringing up the formal limit definition of derivative, lim
∆𝑥→0

𝑓(𝑎+∆𝑥)−𝑓(𝑎)

(𝑎+∆𝑥)−𝑎
, 

students will be imagining the variation in 𝑥 as becoming smaller and smaller, and coordinating the 

value of the average rate of change of the function over that interval. 

4b 

[Students will use the function they made for 

the previous task] 

For the camera, how much distance would 

they travel between (pick two values, the 

values depend on how they defined their 

function. Have the interval be in the middle 

of the endpoints on an interval they chose) 

 

How much does the car travel in the same 

time period? Are you surprised by your 

answers? 

 

Repeat with different intervals. 

This part of the task is to have students 

use an average rate of change to 

determine how a quantity would 

change by utilizing the value of the rate 

of change. 

 

The purpose of this portion of the task 

is to have students numerically 

compare how determining the car’s 

average speed over a small interval can 

be used to determine the car’s 

accumulated distance. I will investigate 

if students are able to represent a 

projected change in distanced traveled 

by utilizing an imagined constant rate 

of change over a given input interval. 

 

When implementing this task I will 

repeatedly explore if a student 

https://www.desmos.com/calculator/u7ldxbssf2
https://www.desmos.com/calculator/u7ldxbssf2
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recognizes that using an average rate of 

change over small intervals will be 

essentially equal to the actual speed of 

the car. 

4c 

Students will fill out a table that they will 

pick the interval size. 

 

What would you need to do if you wanted the 

error between them to be less than 0.01? 

0.003? [Repeat as needed] 

The Desmos applet in this portion of 

the task automates the process from the 

previous problem for the student. All 

the student has to do is decide an 

interval size, and they can compare the 

approximated distance traveled with the 

actual distance traveled. This allows the 

student to focus on reasoning about the 

results of the calculations instead of 

having to calculate them. 

 

I will explore whether a student 

recognizes that they can get better and 

better approximations because they can 

choose interval sizes as small as they 

want ( lim
∆𝑥→0

). 

 

4d The film director wants to make sure that the 

car is not going too fast for legal reasons. She 

thinks that at the end of the scene (t=30) that 

it might be too fast. She asks you  “at that 

time what speed is the car traveling at?” 

 

What would you do if she asked for the speed 

at t=10? At t=2.98?  

 

If the director gave you a particular time that 

she wanted to know the speed for, describe 

what you would do to determine that for her. 

This task requires students to use and 

compute the average speed to 

internalize how speed at a point is 

computed. By repeatedly reasoning 

about it, the student can generalize the 

process, which will allow them not to 

have to go through the process to 

determine the speed. Instead, the 

student will then have the basis for 

building a rate of change function. 

Summary of Task 6: The two major points of this task is for students to reason in the following ways 

• Reason about an Average Rate of Change as imagining how two quantities would change 

together at a constant rate (if we wanted them to start and end at the same values) 

• Reason about Speed at a Point as an average rate of change in a small enough interval and that 

this process is repeatable for other input values. 
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Teaching Session 4 – Scott 

 The camera problem prompted students to program a camera’s movement on a 

track to mirror the movement of a car on a parallel track. Scott initially stated that he 

wanted to determine the equation of the line that would create the same path the camera 

was on15. However, he realized that having the function whose graph matched the 

physical shape of the track path would not model how the camera’s distance traveled 

along the track as time varied. Scott then suggested using the given distance function of 

the car, 𝐷, but then recognized he could not do this since he did not have the function 

definition for 𝐷 (Figure 43). Scott then decided that we could “find the average rate of 

change in really small intervals where it would be pretty close but not exact.” As Scott 

started to define a function, 𝐶, where he used the car’s average speed and multiplied it by 

an amount of time, he verbalized that he wanted to use the same method as the previous 

 
15 In other words, Scott wanted a function where the physical shape of that function’s graph matched the 

shape of the track he saw on the Desmos applet. 

Figure 43: The Camera Problem and Scott's initial ideas 
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session (the Runner Task)16. The interviewer then provided the prior interface to aid Scott 

in defining piecewise linear functions. Scott’s choice to utilize average rates of change is 

important to note since the questions that accompanied the Desmos applet did not have 

any prompts to define piecewise linear functions or use average rates of change to model 

the camera’s motion. Scott decided to break up the 30-second time interval into one-

second intervals (Figure 44). As he defined his piecewise linear function, he checked his 

work by playing the animation to ensure that the camera moved according to his 

expectation.  

 
16 Scott stated that he wanted to use the previous interface, since the previous interface was easier to 

navigate through. Desmos does not have a user-friendly interface for programming a piecewise function, 

and the interface from the Runner task removes having to deal with Desmos coding syntax when creating 

piecewise functions. 

Figure 44: Scott programming the camera's distance traveled 

over time using the car's average speed in each one-second 

interval 
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After programming the function to model the camera’s distance traveled along the 

track with respect to time elapsed, Scott was asked a series of questions on determining 

the car’s speed at a particular value of time (Figure 45). Scott stated that he would “find 

the change in distance between 2 really small intervals of time and divide it by the change 

in time.” He later generalized this statement as “I would just take 2 values very close to 

that time, and I would calculate the rate of change between them.” There are several 

aspects of Scott’s worth response worth highlighting: 

1. The sizes of the time intervals he chose to determine the speed at 𝑡 = 30 were 

different from the size he used to program the camera’s motion. For programming 

the camera’s distance traveled, he used the car’s average speed in 1-second 

intervals, and for the speed at 𝑡 = 30, he used the car’s average speed in a 0.1-

second interval. This suggests that Scott’s choice in the “2 values very close to 

that time” was arbitrary and that there was no specific size of an interval needed. 

2. During the start of this session, Scott verbalized that using average rates of change 

over a small time interval “would be pretty close but not exact” to modeling the 

Figure 45: Scott's response to finding the speed of the car at a 

given input value 
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car’s motion as time passed. As he answered each of the prompts about 

determining the car's speed at a particular time, he never verbalized a need to 

justify that they were close approximations. It is likely that because the animation 

displayed the motion of the camera and the car was essentially the same, he might 

have believed that his approximations were good enough and that the difference 

between the actual and the approximated distance functions was insignificant. 

3. Compared to the first teaching session, Scott had no issue talking about a change 

in distance without calculating it. He comfortably leveraged function notation to 

represent a change in distance in modeling the camera’s distance traveled (Figure 

44) and when he discussed how to calculate the speed at a given time value 

(Figure 45). This suggests that Scott could consistently conceptualize a variation 

as a distinct quantity. 

Teaching Session 4 – Hans 

 Like Scott, Hans’ initial approach to the camera problem was to determine the 

equation of the line whose graph matched the path of the road. He then suggested finding 

Figure 46: The Camera Problem and Hans' Initial Ideas 
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“the constant rate of change of the car.” However, after playing the animation, Hans 

recognized that the car was moving at varying speeds, so he proposed that we “cut the car 

into sections and make secant lines” (Figure 46). Hans verbalized that this was similar to 

the Runner Task, and he wanted to build a piecewise linear function using the car’s 

average speed over small time intervals to model the camera’s motion. 

Hans chose to employ 3-second intervals (Figure 47) and did not play the 

animation until he finished defining the piecewise function. After playing the animation, 

he noticed that the camera and the car’s movements did not align adequately in the first 

few seconds. He then suggested that “we could do better if I made it like 1 second [the 

interval size] instead.” Rather than having Hans rewrite his piecewise function, the 

interviewer asked hypothetical questions such as “suppose we wanted to do 1-second 

intervals, what would we need to change?”. Hans replied that he would have to change 

everything since “you wouldn’t be able to use like 3 seconds…like how these are done. I 

Figure 47: Hans’ programming the camera's 

distance traveled over time using the car's average 

speed in each three-second interval 
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would have to re-do them to resize these rates of change.” After this round of 

questioning, Hans demonstrated that he could obtain better approximations of the car’s 

distance traveled with respect to time elapsed by using average rates of change over a 

smaller time interval. 

 The interviewer then asked Hans how he might determine the speed at 𝑡 = 30. 

Hans initially stated “
𝐷(30)

30
 since it is the rate of change for 30… err… it’s just a rate, not 

a rate of change.” He later clarified that 
𝐷(30)

30
  “is a rate [and not a rate of change] because 

it remains a constant value of 0.878 like it would be the constant rate at 30.” The 

interviewer then wrote 
𝐷(30)

30
 as 

𝐷(30)−0

30−0
 and asked what 

𝐷(30)−0

30−0
 would represent in this 

context. Hans identified that 
𝐷(30)−0

30−0
 would be the car’s average speed between 0 and 30 

seconds, and then quickly realized that 
𝐷(30)

30
 would not be the car’s speed at 30 seconds. 

Afterward, he suggested we could determine the average speed between 29 and 30 

seconds since “it’s in the region that we want it in like 30, so it’s close enough to the 

speed” (Figure 48). On the other tasks that prompted Hans to determine the speed at a 

given time value, Hans’ responses indicated that he would determine the average rate of 

change over a small interval near the requested time (Figure 49). 

 There are several aspects of Hans’ responses that are important to discuss. 

Figure 48: Hans moving from 
𝐷(30)

30
 to  

𝐷(30)−𝐷(29)

30−29
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1. Hans thought about 
𝐷(30)

30
 as a “rate not a rate of change.” In his pre-interview, his 

conception of rate was as “different ratio, same proportion” and would set up 

equivalent fractions. His expression, 
𝐷(30)

30
, suggested that a fraction with a 

singular distance divided by a singular time would determine a “rate,” and 

something of the form 
𝑦2−𝑦1

𝑥2−𝑥1
 would determine a “rate of change” since the 

numerator and denominator represented a change in one quantity’s value. It was 

likely through reconceiving 
𝐷(30)

30
 as being equivalent to 

𝐷(30)−𝐷(0)

30−0
 (which he 

identified as the car’s average speed between 0 and 30 seconds) that supported 

Hans in conceiving 
𝐷(30)

30
 as the car’s average speed over 30 seconds. 

2. Another possibility for his response of 
𝐷(30)

30
 as the car’s speed at 30 seconds is 

that he considered that a rate was “distance over time,” and so he used the 

distance at 30 seconds, 𝐷(30) and divided it by the time value of 30 seconds. In 

either case, what supported Hans in shifting his conception of 
𝐷(30)

30
 was the 

prompting to explain what each portion of his expression represented. 

Additionally, writing an equivalent expression in the form that he was familiar 

Figure 47: Hans’ explanation of how to find a speed at a given input value 
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with (e.g., recognizing that 
𝐷(30)−𝐷(0)

30−0
 would represent an average speed) aided 

him in reflecting on the quantities he attempted to represent. 

3. Like Scott, Hans also demonstrated an understanding of the arbitrariness of 

choosing how small an interval had to be when determining the speed at a given 

input value. When determining how he might determine the speed at 𝑡 = 10, 

Hans initially wrote 
𝐷(10)−𝐷(9.99)

10−9.99
 but also noted that he could choose other sized 

intervals like the subsequent ones he wrote in Figure 49.  

Foundational Understanding 4 – Instantaneous Rate of Change 

The final waypoint involves encapsulating the process of calculating average rates 

of change in arbitrarily small intervals into a single expression. This is essentially the 

limit definition of derivative, lim
∆𝑥→0

𝑓(𝑥+∆𝑥)−𝑓(𝑥)

(𝑥+∆𝑥)−(𝑥)
= 𝑓′(𝑥). The next step in conceiving of a 

quantity we call “instantaneous rate of change” is to interpret the rate value as a constant 

rate of change over a small enough input interval such that imagining the output 

quantity’s value changing at this constant rate of change will be imperceptibility different 

from how the output quantity’s value will actually vary. 

Teaching Session 5 (Table 28) introduces derivative notation and has students 

practice interpreting and utilizing the value of an instantaneous rate of change in an 

applied context. This task prompts students to compare changes in a function’s output 

value with approximated changes using a derivative value (linear approximation) and a 

zooming-in task to display that most continuous functions behave linearly in a small 

enough input interval. 
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Table 28: Session 5 Tasks and Rationale 

Session 5: Instantaneous Rate of Change 

Order of 

Instruction 
Task Task Rationale 

5a It appears that if we know about how much of a quantity 

we have at all times (distance the car has traveled),𝐷(𝑡), 

we can determine how fast that quantity is changing at 

all times. Given a value 𝑡 we could find an average rate 

of change in a small enough interval, and that was our 

“speed at a point.” Since we can do this for any t value, 

let us call the “speed of the car at time t” as 𝐷(𝑡). This 

function will be called the derivative of D, which is “how 

fast the distance the car has traveled is changing” or “the 

instantaneous rate of change of distance with respect to 

time.”  

 

[The student will use a Desmos activity] 

 

Find the speed of the car at 𝑡 = 2.3.  

Then type “𝐷′(2.3)” what do you notice? 

 

Use the value you found to estimate what the distance 

traveled by the car would be for 𝑡 = 2.5. 

Type “D(2.5)” to check your answer, what do you 

notice? Are you surprised? 

 

Repeat for other values 

This part of the task is to 

introduce the derivative 

notation 𝑠′. Just as students 

have encapsulated the 

process of a function 

mapping an input to an 

output, the students can then 

encapsulate the previous 

process they engaged in.  

5b 

[Students will be using 

https://www.desmos.com/calculator/nidqma1dya ] 

 

Let us look at the graph of a function 𝑓.  

Suppose we want to know how fast the output value of 

the function changes at a particular input value. 

(Student will be given the option to choose an input 

value of their choice, and then follow the instructions on 

the Desmos activity where they will zoom in until the 

graph looks linear) 

(Student will then be instructed to find the value of 𝑓′ at 

the associated input value) 

What does this value tell you? 

(Students can move the slider pick a small change in x 

and the associated change in the value of the function) 

How much has the output changed given the change in 

your input? Are you surprised? 

What does the value of the derivative at the input tell 

you? 

 

Repeat with other input values. 

This portion of the task is 

adapted from works of Tall 

(2009, 2013) and  Ely and 

Samuels (2019) where 

students will be “zooming 

in” to see that the function is 

essentially changing at a 

constant rate of change, and 

the value of the derivative is 

this constant rate of change. 

 

I will explore if a student 

demonstrates an 

understanding that a 

function having an 

instantaneous rate of change 

of value 𝑓′(𝑎) at the input 

value 𝑎 means that for small 

variations in the input 

quantity, ∆𝑥, the variation in 

the output value of the 

function, ∆𝑓 will essentially 

be ∆𝑓 = 𝑓′(𝑎) ∗ ∆𝑥. I will 

also investigate what 

aspects of this Desmos 

https://www.desmos.com/calculator/nidqma1dya
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activity the student uses to 

express this understanding. 

Learning Goal for Task 5: Students will interpret the value of a derivative as the value of the 

instantaneous rate of change at a given input value. This means that if they were to look at a small 

enough interval, the quantity they are imagining is changing at essentially a constant rate of change.  

 

The understanding of instantaneous rate of change that a student will hopefully construct is “A function 

having an instantaneous rate of change of value 𝑓′(𝑎) at the input value 𝑎 means that for small 

variations in the input quantity, ∆𝑥, the variation in the output value of the function, ∆𝑓 will essentially 

be ∆𝑓 = 𝑓′(𝑎) ∗ ∆𝑥” 

 

Teaching Session 5 – Scott17 

The teaching session began with Scott recalling how he approached the camera 

problem. Scott recalled that he made “the intervals of the average rate of change so small 

 
17 Hans and Scott had a very similar experience with Teaching Session 5. For the purpose of brevity, only 

Scott’s is discussed here. 

 

Figure 50: Scott's recollection of Session 4 

Figure 51a: Desmos Applet displaying the average 

rate of change near 𝑡 = 2.3 and the instantaneous 

rate of change at 𝑡 = 2.3 

Figure 51b: Scott using the value of the 

instantaneous rate of change to estimate a future 

output value of the function. 
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they were practically 0”18 and that the goal of the camera problem was  “to match the 

car’s speed with the camera” (Figure 50). The interviewer then introduced derivative 

notation to explain that 𝐷′(𝑡) would represent “the speed of the car at the time, 𝑡, or the 

instantaneous rate of change of distance with respect to time at time 𝑡.” The interviewer 

used the Desmos applet to demonstrate how calculating average rates of change around 

𝑡 = 2.3 would converge to the value of 𝐷′(2.3) (Figure 51a). Scott was then prompted to 

estimate 𝐷(2.5) and he wrote 𝐷′(2.3) ∗ (2.5 − 2.3) because “that [𝐷′(2.3)] is the rate, 

and we have our change in time, so I multiplied rate times time to get a change in 

distance.” Then he added 𝐷(2.3) to his expression to represent “the distance we already 

traveled by 2.3” (Figure 51b). In a later task, Scott was asked to interpret the value of a 

derivative, and he employed relative size language such as “times as large as” when 

describing the value of a rate of change (Figure 52). His interpretation demonstrated his 

understanding of instantaneous rate of change which is described in the following table. 

 
18 Scott clarified that “practically 0” referred to the size of the input interval not the value of the average 

rates of change. 

Figure 52: Scott's explanation for the derivative at a 

given input value 
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I. Scott attended to “ a minuscule change” in the input quantity ( lim
∆𝑥→0

), which 

suggested that he was aware that an instantaneous rate of change involves small 

amounts of changes between two quantities’ values. 

II. His interpretation of a rate entailed that for some change in the input quantity, the 

output quantity would be 𝑓′(16.4) “times as much” (∆𝑓 = 𝑓′(𝑎) ∗ ∆𝑥). 

Moreover, Scott’s attention to the input and output quantities (weight and cost of 

the special material) suggested that Scott’s interpretation of a rate of change 

entailed distinguishing which two quantities were covarying together. 

III. He qualified his statement with “the change in the cost will be around -2.31 times 

as much for numbers around 16.4”. His statement demonstrated his understanding 

that using the value of an instantaneous rate of change over a small enough 

interval would approximate the actual amount of change in the output quantity so 

long as we were sufficiently close to the specified input value. 

Through the retrospective analysis of this session, Scott appeared to have 

developed a strong foundation for understanding instantaneous rate of change as an 

average rate of change over an arbitrary small input interval of a function’s domain. His 

recollection of the camera problem from Session 4 indicated that he could use the car’s 

average rate of change over a small interval to program the camera to match the car’s 

motion (Figure 50). In Session 4, Scott verbalized an awareness that an average speed 

over a small time interval “would be pretty close but not exact” to the car’s actual speed 

in that time interval. In this session, Scott described 𝑓′(16.4) as how the value of the 

output quantity would essentially vary for minuscule variations in the input quantity 

around the input value of 16.4 (Figure 52). This evidenced a stabilization of his 
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understanding that the value of the derivative for a specific value of the input quantity is 

essentially equal to an average rate of change over a small enough input interval 

containing that input value. Lastly, his actions indicated that his interpretation of the 

value of a rate of change (whether it was a constant, average, or in this case, an 

instantaneous rate of change) entailed the relative size of the change in two quantities as 

the quantities’ values change together.  

DISCUSSION 

 Overall, the combination of prompting students to reason about quantities and the 

usage of the Desmos applets supported these students in advancing their understanding of 

instantaneous rate of change as an average rate of change over an arbitrarily small input 

interval. The interviewer prompted the subjects to conceptualize that a number quantified 

or measured something about a given context. For example, in the first teaching session, 

both students were perturbed when they had to reconcile their written definition for a 

constant speed of 1.7 meters per second with an example of someone walking 1.7 meters 

in 1 second but at a varying speed. For both students, puzzling about what the value of a 

constant speed represented prompted them to reflect on their meanings for constant rate 

of change. Additionally, attending to the quantities in each context supported the students 

in representing these quantities with appropriate mathematical symbolization and 

distinguishing between a quantity and a variation in that quantity’s value (Sessions 2 and 

3). As the two students advanced their understanding of constant and average rate of 

change, they were able to construct a quantitative understanding of instantaneous rate of 

change (Sessions 4 and 5).  
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 The Desmos applet played a pivotal role in providing a visual representation of 

the problem context and immediate feedback about the quantities each student was trying 

to represent with their mathematical expressions. The following list outlines the aspects 

of the Desmos applet that I consider as crucial for helping these students construct their 

meaning for instantaneous rate of change. 

1. The Desmos applet provided a visual aid to enable students to imagine quantities’ 

values varying instead of only making static comparisons between quantities. For 

Scott, he initially fixated on calculating the value of the variation in a quantity. 

However, the ability to vary the value in the variation in the input quantity 

through a slider on the Desmos applet prompted Scott to reconsider his 

conception of a difference outside of calculating its value. For Hans, he initially 

conflated an arbitrary change in time with 1 second of time. It was not until he 

envisioned the value of the variation in time as varying (by seeing in the Desmos 

applet the length of the horizontal line as varying) that he conceived of an 

arbitrary change in time as a unit of measure (Session 1). 

2. The Desmos applet displayed a visual representation of the quantities in each 

student’s mathematical expressions in the Runner and Camera problems (Sessions 

2-4). When the animation displayed a quantitative relationship that differed from 

their expectations, both students appeared perturbed by what they saw. This was 

followed by both students examining their symbols and comparing them with 

what was displayed in the animation. For example, when constructing a function 

to model Jonah’s motion in the Runner Task (Session 3), both students failed to 

include the distance traveled during the first 16 seconds of the race. This resulted 
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in the runner instantly moving back to the beginning of the race after 16 seconds 

had elapsed. This perturbed both students and provided the basis for discussing 

what they attempted to represent and distinguishing between how the runner’s 

distance would vary as time varied versus the runner’s total distance traveled. 

3. As each student progressed through the Runner Task (using an increasing number 

of time intervals), they noticed in the Desmos animation that the motion of their 

programmed runner aligned more and more with the motion of the runner they 

were trying to model. In the Camera Task (Session 4), students spontaneously 

chose to use average rates of change over small time intervals to model the 

camera’s distance traveled with respect to time elapsed. Both students verbalized 

that they could choose smaller-sized input intervals if they did not see the camera 

and car’s movements aligned in the animation. As the student progressed in 

completing the tasks in the Desmos applets, they made advances in 

conceptualizing “the average rate of change in really small intervals where it 

would be pretty close (to the actual rate of change) but not exact.” 

Figure 53: Overall Flow of the Discussions that led to Shifts in Student Thinking 
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In each teaching session, the Desmos applets played a significant role in the 

students’ conceptualization of the quantities in each problem context and their 

construction of the symbols that were personally meaningful to them. Figure 53 displays 

how I leveraged Desmos to support a conversation to support shifts in student thinking. 

In each teaching session, the tasks were situated within a context (e.g., The 

Runner Task, The Camera Problem, etc.). Initially, a student has an image of the problem 

context (Figure 54a) and some mathematical symbols that they believe represent a 

quantity or quantities within that situation (Figure 54b). One role that the applets played 

in these teaching sessions was to use each student’s symbols and display what their 

mathematics would represent in that situation (Figure 55). Before the animation plays, a 

student already has an expectation of what they would see in that animation because of 

Figure 54a: Students have an image of 

the situation in their mind 
Figure 54b: A student's mathematical symbolization of a 

quantity within that situation 
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their initial image of the situation (Figure 56). However, if what each student saw in the 

animation did not align with what they imagined, they then experienced a perturbation. 

Figure 55:Desmos using each students' symbols to display what would happen 

Figure 56:A student anticipates what they might see 

Figure 57:Students reflect on what they initially symbolized 
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This perturbation allowed students to reflect on what they initially symbolized (Figure 

57). The instructor used this opportunity to facilitate a conversation where the instructor 

posed questions to aid the student in reasoning about quantities and how they would 

represent those quantities. This discussion led students to reconsider what they had 

symbolized and how to make refinements to represent the quantities they had in mind. 

According to Radical Constructivists, students need to experience perturbations to 

catalyze self-reflection on their actions. In this teaching experiment, the Desmos applets 

enabled opportunities for students to experience these perturbations. The results of this 

study suggest how instructors can leverage applets and animations to help students reason 

about quantities and how to mathematical symbolize those quantities. 

Limitations and Future Directions 

 While the results of this teaching experiment suggest the benefits of an 

instructional intervention on rate of change, the limited sample size does not provide a 

basis for extending these findings to every student. The conclusions can only be known to 

hold true for the students in this sample. However, during the pre-interview and first 

teaching session, both students demonstrated a weak understanding of constant rate of 

change and inexperience in reasoning quantitatively. These issues are reminiscent of what 

the students from the first study exhibited and were likely the sources of preventing these 

students from articulating a productive understanding of instantaneous rate of change (see 

Paper 1). Therefore, it stands to reason that an instructional intervention focused on 

developing students’ meanings for rate of change can support students in developing a 

productive understanding of instantaneous rate of change. One avenue for future research 

is to explore implementing the tasks in this teaching experiment in a classroom setting. 
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 Another limitation is that almost all of the tasks involved relative motion where 

time was the input quantity. One future direction is to develop items that involve rates of 

change where time is not the independent quantity and investigate how students may 

reason about quantities varying where time is parametrized in the context. While Jones 

and Watson (2018) evidenced the benefits of reasoning about derivatives in multiple 

applied and representational contexts, this study’s findings suggest that students should 

also reason about rate of change in different representational and applied contexts. The 

idea of rate of change is used to describe quantitative relationships in many applied and 

mathematical contexts. However, researchers have reported that many students leave 

Calculus with weak meanings for rate of change (Flynn et al., 2018; Castillo-Garsow, 

2010; Prince et al., 2012; Rasmussen & King, 2000; Rasmussen & Marrongelle, 2006) 

and struggle to apply their understanding of derivative outside of kinematic situations 

(Marrongelle, 2004; Ibrahim & Robello, 2012; Jones, 2017). Therefore, students would 

benefit from developing a coherent and robust understanding of derivatives that they can 

leverage in a variety of contexts.  
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CONSENT FORM FOR PRE-INTERVIEWS 

Title of research study: An Instructional Sequence on The Learning of Instantaneous Rate 

of Change 

Investigator: Franklin Yu 

Why am I being invited to take part in a research study? 

We invite you to take part in a research study because you are enrolled in Pre-Calculus,18 

years or older, and are willing to participate. 

Why is this research being done? 

We would like to study ways in which course materials can be developed to support 
students in learning meaningful mathematics. 

How long will the research last? 

We expect that individuals will spend 1 to 1.5 hours participating in a pre-interview and 

if selected, an additional 8-10 hours over 3 weeks. 

How many people will be studied? 

We expect about 10 people will participate in the pre-interviews and 3 to participate in 

the instructional sequence. 

What happens if I say yes, I want to be in this research? 

You will meet with the investigator and participate in 1 pre-interview session and if selected, 

an additional 8-10 one to two hour sessions. You are free to decide whether you wish to 

participate in this study. You will be compensated $15 per hour for this research. 

What happens if I say yes, but I change my mind later? 

You can leave the research at any time; it will not be held against you. 

Is there any way being in this study could be bad for me? 

Your participation will entail working through course materials and discussing your 
thinking aloud. Your participation will be video recorded. 

Will being in this study help me in any way? 

We cannot promise any benefits to you or others from your taking part in this research. 

However, possible benefits include developing a deeper understanding of the 

mathematics involved in calculus. 

What happens to the information collected for the research? 

Copies of your recorded interviews will be stored on a password protected folder on a 

personal laptop (a cloud storage service). Any physical data will be stored in a locked 

filing cabinet/desk drawer in a locked office. We will analyze the data to try to describe 
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how your mathematical meanings changed over the duration of the intervention. The data 

may be used in reports or publications. Raw video footage, however, may be shown 

during research presentations. 

Who can I talk to? 

If you have questions, concerns, or complaints, talk to the research team at 

fhyu1@asu.edu  or Marilyn.carlson@asu.edu.   

This research has been reviewed and approved by the Social Behavioral IRB. You may 

talk to them at (480) 965-6788 or by email at research.integrity@asu.edu if: 

• Your questions, concerns, or complaints are not being answered by the research 

team. 

• You cannot reach the research team. 

• You want to talk to someone besides the research team. 

• You have questions about your rights as a research participant. 

• You want to get information or provide input about this research. 

 

 

Signature Block for Capable Adult 

 

 

  

 

 

  

Your signature documents your permission to take part in this research. 

   

Signature of participant  Date 

 
 

Printed name of participant 

   

Signature of person obtaining consent  Date 
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