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ABSTRACT

Graph matching is a fundamental but notoriously difficult problem due to its NP-hard

nature, and serves as a cornerstone for a series of applications in machine learning

and computer vision, such as image matching, dynamic routing, drug design, to name

a few. Although there has been massive previous investigation on high-performance

graph matching solvers, it still remains a challenging task to tackle the matching

problem under real-world scenarios with severe graph uncertainty (e.g., noise, outlier,

misleading or ambiguous link).

In this dissertation, a main focus is to investigate the essence and propose solu-

tions to graph matching with higher reliability under such uncertainty. To this end,

the proposed research was conducted taking into account three perspectives related to

reliable graph matching: modeling, optimization and learning. For modeling, graph

matching is extended from typical quadratic assignment problem to a more generic

mathematical model by introducing a specific family of separable function, achieving

higher capacity and reliability. In terms of optimization, a novel high gradient-efficient

determinant-based regularization technique is proposed in this research, showing high

robustness against outliers. Then learning paradigm for graph matching under intrin-

sic combinatorial characteristics is explored. First, a study is conducted on the way

of filling the gap between discrete problem and its continuous approximation under

a deep learning framework. Then this dissertation continues to investigate the neces-

sity of more reliable latent topology of graphs for matching, and propose an effective

and flexible framework to obtain it. Coherent findings in this dissertation include

theoretical study and several novel algorithms, with rich experiments demonstrating

the effectiveness.
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Chapter 1

INTRODUCTION

1.1 Background

While being a long standing and NP-hard combinatorial problem, graph matching

(GM) has been persistently investigated over decades (Loiola et al., 2007; Yan et al.,

2020). A graph can be defined as a collection of nodes and associated edges as

G = {V , E}, where i ∈ V refers to node index i and (i, j) ∈ E corresponds to an

edge linking node i and j. Let n = |V| be the number of nodes. In general, given

source and target graphs, GM seeks to find node-to-node correspondence between

them which maximizes the overall similarity measurement for both nodes and edges.

Several modeling methods for GM have been proposed such as linear assignment

(Swoboda et al., 2017, 2019), semi-definite programming (Schellewald and Schnörr,

2005; Yu and Wang, 2016) or higher-order tensor expression (Duchenne et al., 2011;

Shi et al., 2016). In this dissertation, we focus on a more general mathematical model

of GM termed as Quadratic Assignment Problem (QAP) which can be formalized as

1 :

max
z

z>Mz s.t. Z ∈ {0, 1}n×n, Hz = 1 (1.1)

where the affinity matrix M ∈ Rn2×n2

+ encodes node (diagonal elements) and edge

(off-diagonal) affinities/similarities and z is the column-wise vectorization form of the

permutation matrix Z. H is a selection matrix ensuring each row and column of Z

1Without loss of generality, we discuss graph matching under the setting of equal number of
nodes without outliers. The unequal case can be readily handled by introducing extra constraints or
dummy nodes. Bipartite matching and graph isomorphism are subsets of this quadratic formulation
(Loiola et al., 2007).
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summing to 1. 1 is a column vector filled with 1. A large body of arts in the category

of traditional deterministic optimization framework have been proposed attempting

to tackle GM problem (Eq. (1.1)) under QAP relaxation (Rangarajan et al., 1999a;

Nowak et al., 2018; Yu et al., 2018b). More recently, investigation following QAP

has extended from deterministic optimization to deep-learning-based methods, which

significantly enhance the capacity and performance on several real-world benchmarks

(Wang et al., 2019a; Zhang and Lee, 2019; Yu et al., 2020a; Fey et al., 2020; Roĺınek

et al., 2020).

Although GM problem, especially its QAP counterpart, is more like a theoretical

practice, it has a wide range of applications under real scenarios. A series of practical

applications can benefit from the research on GM, such as image matching (Zhou

et al., 2015b), dynamic routing (Hsu et al., 2020), protein matching (Krissinel and

Henrick, 2004), social network mining (Chiasserini et al., 2018) and metric for com-

paring graphs (Bai et al., 2019). Here we outline two typical examples where GM

serves as the fundamental cornerstone:

• (Multi-)Image Matching. This is an essential task and building block of sev-

eral computer vision pipelines, where establishing keypoint matching between

two or more images is vital for the subsequent task (Zhou et al., 2015b). For

example, in the application of stereo, the most difficult and time-consuming

step is to find the dense point matching between images, then the 3D geometry

of objects in the scene can be estimated from matching of the pixels. This can

be viewed as a special case of GM, since typical stereo matching algorithms

also seek to maximize an overall similarity on nodes under some smoothness

constraints on edges, analogously to the objective in GM. While GM covers the

model of stereo, it is capable of handling more complex geometry since it incor-

porates higher level similarity. However, one major problem is that traditional
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GM methods may suffer from severe noise and mis-detected keypoints due to

complex 3D real-world environments. Besides, a grid-like structure indicates

isotropic local interaction for each pixel and its neighbors, which may cause

misleading to a GM solver.

• Gene Regulatory Network Inference. It is instrumental baseline to explore

genetic mechanisms which potentially drive diverse diseases, including cancer

(Weighill et al., 2020). The essential part of this task can be reduced to QAP

under a subgraph matching context 2 . While some efficient solvers to this

problem regard it as a bipartite matching problem, this modeling does not ac-

commodate clique-level (higher-level) similarities, thus can produce ambiguous

matching in some cases (Alberich et al., 2019). Thus we can infer that encoding

clique-level similarities can further help to improve the performance. However,

an essential issue in this task is that the length of a piece of gene can easily

exceeds mega with a large amount of gene segments that cannot be aligned

intrinsically, which greatly hinders the applicability of traditional QAP solvers

since they are very likely to be interfered by mass outliers. Since this task is

related to key research on improving human lives and can bring about much

economic benefit, we think it is demanding to devise more efficient and reliable

solvers for such problems.

Significance: A series of practical applications can in consequence benefit from

this research, such as image matching (Zhou et al., 2015b), dynamic routing (Hsu

et al., 2020), protein matching (Krissinel and Henrick, 2004), social network mining

(Chiasserini et al., 2018) and metric for comparing graphs (Bai et al., 2019). In either

of the applications, GM can serve as a building block or even the cornerstone from

2Subgraph matching implies a small graph is similar to a subgraph of a larger one. It sometimes
called inexact graph matching.
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the mathematical modeling perspective. Therefore, this research is anticipated to

boost or at least provide insight to relevant topics. Aside from application benefits,

investigation on theoretical aspects of combinatorial GM may also help to further

understand the intrinsic structure of related combinatorial problems.

1.2 Overview

Having discussed the relevant real-world problems and identified some key issues,

this dissertation will focus on the topic of learning to solve graph matching with higher

reliability. Concretely, we put our focus on three essential aspects of GM related to

the reliability issue: modeling, optimization and learning:

• Modeling. As a common modeling of GM, QAP has been investigated for

years. However, it is clear that the model capacity of QAP is limited since

QAP only consists of one linear part and a quadratic part. This fact can

potentially hinder the expressive power of GM and sometimes lead to difficulties

in optimization (Yan et al., 2020). The first aspect in the dissertation is about

finding a more generic and reliable modeling method as studied in Chapter 3,

which can increase the model capacity as well as ease in optimization, compared

to QAP.

• Optimization. Since GM is intrinsically a discrete combinatorial problem, a

series of optimization methods for GM heavily rely on regularization or func-

tion deformation techniques to reach discrete solutions. However, there has no

previous work on investigating the basis of validity or effectiveness of such tech-

niques. In this part, we study the functional behavior of such regularizers and

propose a novel method to improve the reliability under massive outliers as in

Chapter 4.
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• Learning. It has been proved that deep learning paradigm can greatly help

to improve the matching accuracy compared to traditional solvers under severe

degradation (Zanfir and Sminchisescu, 2018; Wang et al., 2019a; Zhang and Lee,

2019). Based on this fact, we further investigate more effective graph neural

mechanism as well as the gap between discrete GM problem and its approxi-

mation in Chapter 5. Besides, we also study the way of explore more effective

latent topology for graph matching under a learning paradigm in Chapter 6.

We will briefly review recent related works for graph matching in Chapter 2. In

what follows (from Chapter 3-6), we will summarize our progress towards each per-

spective as stated above. In Chapter 3, we summarize our effort to generalize graph

matching problem from QAP to a more broader function family, denoted as Separa-

ble Function, achieving higher model capacity and graph degradation tolerance. In

Chapter 4, we introduce a specific regularization technique using matrix determinant,

with stronger performance on outlier. We further develop a optimization method de-

rived from geometric inequality. We outline our deep learning based graph matching

solver which seeks to fill the gap between disrete problem and its approximation in

Chapter 5. A way of learning more effective topology to avoid useless and misleading

edges is investigated in Chapter 6, building upon the hypothesis on the existence of

latent topology that is favorable for the GM solvers. We finally summarize our work

and point some future research directions in Chapter 7.

5



Chapter 2

RELATED WORK

2.1 Prior Art

Mathematically, graph matching has been treated as a pure optimization problem

(Loiola et al., 2007) where the objective to find node-to-node level correspondence

between two graphs, in which the topological structure as well as the inter-graph

similarities are predefined. As such, traditional solvers to graph matching do not

incorporate any learning paradigm. While this problem is NP-hard due to its discrete

nature, some methods attempt to incorporate discrete combinatorial heuristics for

solving it (Zhao et al., 2014; Adamczewski et al., 2015). A broader series of works alter

to introduce continuous relaxation to make the optimization tractable, including: 1)

Quadratic Assignment Problem (QAP) (Gold and Rangarajan, 1996; Cho et al., 2010;

Yu et al., 2018b); 2) Semi-Definite Programming (SDP) relaxation (Schellewald and

Schnörr, 2003; Torr, 2003); 3) Linearization (Swoboda et al., 2017, 2019). While both

SDP and linearization relaxations scale up the number of variables to be optimized,

most existing traditional graph matching solvers are devised based on QAP. Solvers

based on such relaxed problem generally fall into the categories of iterative update

(Cho et al., 2010; Jiang et al., 2017a) or numerical continuation (Zhou and Torre,

2016; Yu et al., 2018b). On one hand, iterative update generally assumes that the

affinity/similarity matrix between two input graphs has some nice properties, which

enable more efficient calculation or update for each round of iteration; on the other

hand, numerical continuation does not make any assumption on affinity but seeks to

find the optima purely using gradient. In either of these two categories, the solvers
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are developed under two key assumptions: 1) Affinity matrix is pre-computed with

some non-negative metrics, e.g. Gaussian kernel, L2-distance or Manhattan distance;

2) Graph topology is pre-defined as input either in dense (Schellewald and Schnörr,

2005) or sparse (Zhou and Torre, 2016) fashion.

It is a natural extension from deterministic optimization to learning paradigm,

since the model capacity of QAP is somewhat limited while more high-quality human

labelled datasets become available. Early non-deep learning-based methods seek to

learn effective metric (e.g. weighted Euclid distance) for node and edge features or

affinity kernel (e.g. Gaussian kernel) in a parametric fashion (Caetano et al., 2009;

Cho et al., 2013). These attempts, unfortunately, cannot be readily integrated into

deep networks mostly due to their undifferentiable nature. Recent deep graph match-

ing methods have shown how to extract more dedicated feature representation. In

2018, the seminal work (Zanfir and Sminchisescu, 2018) adopts VGG16 (Simonyan

and Zisserman, 2014) as the backbone for feature extraction on images. Other efforts

have been witnessed in developing more advanced pipelines, where graph embed-

ding (Wang et al., 2019a; Yu et al., 2020a; Fey et al., 2020) and geometric learn-

ing (Zhang and Lee, 2019; Fey et al., 2020) are involved. Roĺınek et al. (2020) studies

the way of incorporating traditional non-differentiable combinatorial solvers, by intro-

ducing a differentiatiable blackbox GM solver (Pogancic et al., 2020). Recent works

in tackling combinatorial problem with deep learning (Huang et al., 2019; Kool and

Welling, 2018) also inspire developing combinatorial deep solvers, for GM problems

formulated by both Koopmans-Beckmann’s QAP (Nowak et al., 2018; Wang et al.,

2019a) and Lawler’s QAP (Wang et al., 2019b). Specifically, Wang et al. (2019a)

devise a permutation loss for supervised learning, with an improvement in Yu et al.

(2020a) via Hungarian attention. Wang et al. (2019b) solve the most general Lawler’s

QAP with graph embedding technique. We note, to our best knowledge, there is no
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previous work explicitly seek to systematically address the issues of reliability. Most

existing algorithms are designed for up to hundreds of nodes (Wang et al., 2019a;

Zhang and Lee, 2019; Yu et al., 2020a; Fey et al., 2020; Roĺınek et al., 2020), under

naive Gaussian noise or less outliers.

Since we will handle the case where graph topology is generated or sampled, we

also briefly review related arts in the context of graph generative model. Early genera-

tive models for graph can date back to 1950s (Erdos and Renyi, 1959), in which edges

are generated with fixed probability. Recently, Kipf and Welling (2016) presented

a graph generative model by re-parameterizing the edge probability from Gaussian

noise. Johnson (2017) proposed to generate graph in an incremental fashion, and in

each iteration a portion of the graph is produced. Gómez-Bombarelli et al. (2018)

utilized recurrent neural network to generate graph from a sequence of molecule repre-

sentation. Adversarial graph generation is considered in Pan et al. (2018); Wang et al.

(2018a); Bojchevski et al. (2018). Specifically, Wang et al. (2018a); Bojchevski et al.

(2018) seeked to unify graph generative model and generative adversarial networks. In

parallel, reinforcement learning has been adopted to generate discrete graphs (De Cao

and Kipf, 2018). In either of the aforementioned methods, the generative model is

dedicated to generate graph as a whole sufficing some observable data distribution.

For generating partial graph, there is barely any previous research. Though Ibarrola

et al. (2020) is an initial attempt towards partial generation, it can only handle partial

categorical conditioning vector which can only be applied to limited scenarios.

2.2 My Related Work

This dissertation is based on our previous investigation of graph matching prob-

lem from both deterministic and learning perspectives. On tradition modeling and

optimization of graph matching, we extended traditional Quadratic Assignment Prob-
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lem (QAP) modeling to a much broader domain by developing Separable Functions

(Yu et al., 2018b). This extension can significantly improve the model capacity with

theoretical guarantee. In Yu et al. (2020b), we discussed the effectiveness of several

regularization techniques and proposed a novel one using determinant. It achieves

much better gradient-effectiveness compared to previous regularizers such as entropy

and L2-norm. Noticing the issues of overfitting and approximation gap to discrete

problem, we proposed Channel-Independent Embedding and Hungarian Attention in

Yu et al. (2020a) to respectively address them. This deep learning based GM algo-

rithm achieved state-of-the-art performance on several public benchmarks. Taking

into account the uncertainty of heuristically created topology, we further propose a

way of performing graph matching on the latent topology in a learning-based fash-

ion (Yu et al., 2021). This framework can be readily extended to a family of graph

matching solvers and ensures the convergence under an Expectation-Maximization

interpretation.

Aside from pairwise GM, we proposed the first work to conduct incremental multi-

graph matching by grouping set of graphs under diversity with randomness (Yu et al.,

2018a). This method was an attempt to reduce hyper-topology from dense to sparse,

aligning our plan on investigating sparse hyper-topology to handle scalability issue.

In Yu et al. (2018c), we defined a novel problem to jointly perform graph cuts and

graph matching, with a novel optimization method.
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Chapter 3

GENERALIZED MODELING OF GRAPH MATCHING

3.1 Problem Statement

Graph matching seeks the solution to the quadratic assignment problem (QAP):

max
Z

vec(Z)>Avec(Z) (3.1)

where vec(Z) ∈ {0, 1}n2
is the column-wise vectorized version of the binary (partial)

assignment matrix Z ∈ {0, 1}n×n and the so-called affinity matrix A ∈ Rn2×n2
in

the real domain consists of the affinity score measuring how one edge in one graph

is similar to another from the other graph. Traditionally, the common practice is

relaxing vec(Z) into the continuous real domain vec(Z) ∈ Rn2
(Gold and Rangarajan,

1996; Leordeanu and Hebert, 2005; Cho et al., 2010).

In this part, we show that a large family of functions, defined as Separable Func-

tions, can asymptotically approximate the discrete matching problem by varying the

approximation controlling parameters. With this function family, there exist infinite

modelings of graph matching problem, thereby providing the feasibility of adapting

different practical problems with different models. This provides a new perspective of

considering graph matching. We also give analysis on the conditions based on which

these approximations have good properties. Novel solvers on instances of Separable

Functions are proposed based on the path-following and multiplicative techniques

respectively.

Notations We use bold lower-case x and upper-case A to represent vector and

matrix, respectively. Function vec(·) transforms a matrix to its column-wise vector-

ized replica. Conversely, function mat(·) transfers a vector back to its matrix form.
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Denote R+, S as non-negative real numbers and symmetric matrices respectively.

Function K = diag(k) transforms a vector k into a diagonal matrix K such that

Kij = ki if i = j, and Kij = 0 otherwise.

3.2 Generalizing QAP for Graph Matching

We re-visit the graph matching problem in this section. We propose an equivalent

model to the discrete one over continuous domain [0, 1], provided the relaxation gap

is 0. This gives rise to the possibility to relax graph matching with much tighter

ways. Mathematically, graph matching can be formulated as the following quadratic

assignment problem which is also called Lawler’s QAP 1 (Lawler, 1963):

max
Z

vec(Z)>Avec(Z)

s.t. Z1 = 1,Z>1 = 1,xia ∈ {0, 1}
(3.2)

where A ∈ Rn2×n2

+ is a non-negative affinity matrix, which encodes node similarities

on diagonal elements and edge similarities on the rest. Note xia denotes the element

of Z indexed by row i and column a indicating the matching status of node i to node

a from the other graph. If we break down problem (3.2) into element-wise product,

it becomes:

max
x

∑
i,j,a,b

Aij:abziazjb

s.t. Hz = 1, z ∈ {0, 1}n2

(3.3)

where Aij:ab corresponds to the edge similarity between edge (i, j) ∈ G1 and (a, b) ∈

G2. Here H ∈ {0, 1}2n×n2
is a selection matrix over the elements of x sufficing assign-

ment constraints according to (3.2).

1Here the number of nodes in two graphs are assumed the same. In case m 6= n one can add
dummy nodes as a standard technique as in literature Cho et al. (2010); Zhou and Torre (2012).
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In particular, we relax z into continuous domain and let fprod(zia, zjb) = ziazjb:

max
z

∑
i,j,a,b

Aij:abfprod(zia, zjb)

s.t. Hz = 1, z ∈ [0, 1]n
2

(3.4)

We generalize problem (3.4) by replacing fprod with fδ:

max
z

∑
i,j,a,b

Aij:abfδ(zia, zjb)

s.t. Hz = 1, z ∈ [0, 1]n
2

(3.5)

where fδ is a 2D quasi-delta function in the continuous domain (fδ(x, y) = 1 if x = 1

and y = 1, and fδ = 0 otherwise). We have the following theorem that establishes

the connection between (3.3) and (3.5):

Theorem 1. The optimal objective p∗ to problem (3.3) is equal to the optimal objec-

tive p∗δ to problem (3.5).

Proof. As problem (3.5) is the relaxed version of problem (3.3), we must have p∗δ ≥ p∗.

Suppose z∗ = vec(Z∗) is the optimal solution to problem (3.5). We recursively

implement the following procedure until there is no 1 in z∗. If z∗ia = 1, according to

the doubly stochastic property, the ith row and ath column elements other than (i, a)

element would all be 0. We then remove all the elements in A corresponding to node

i in G1 and node a in G2. Finally we can reach a subset of z and A such that each

element in z is in the range [0, 1). Figure 3.1 schematically shows how this procedure

works from left to right.

However, due to the definition of function fδ, the affinity score over the remaining

nodes becomes 0. As A is non-negative, any 1 value assignment would result in

affinity score no less than 0. Denote the objective value of such assignment passign,

then we have p∗δ ≤ passign. On the other hand, passign is discrete, then we must have

passign ≤ p∗.
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Figure 3.1: Procedure to Remove 1 Elements. Here the Manipulation on a 6 × 6

Matrix Is Demonstrated Schematically. From Left to Right, We Remove a 1 Element

and Corresponding Column and Row in Each Step. The Rightmost Matrix Is mat(Z†)

with All Elements in [0, 1).

In summary, we have p∗ = p∗δ . QED.

Remark. Based on Theorem 1, one can devise a sampling procedure to find the

optimal solution to problem (3.3) from the solution to problem (3.5): Given optimal

z∗δ to problem (3.5), if all the elements are in the set {0, 1}, then z∗δ is automatically

optimal to problem (3.3). If not, we first remove all 1 elements and corresponding

columns and rows, yielding a subvector (submatrix) z† with all elements in range

[0, 1). Then any sampling subject to one-to-one constraint on z†, together with the

removed discrete values, forms the optimal solution to problem (3.3).

For the time being, a discrete assignment problem (3.3) is relaxed into (3.5) with

continuous feasible domain. However, function fδ is not continuous as there is a

jump at value (1, 1), ending up with much difficulty to solve (recall (3.5) is equivalent

to (3.3)). In the next section, we will show some approximate techniques to tackle

problem (3.5).
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3.3 Separable Functions

3.3.1 Separable Approximation Function Family

It is important to find an appropriate approximate function for fδ, otherwise it

may lead to intractable models to solve. To avoid high computational cost, we narrow

our focus on a specific family of functions, called Separable Functions.

Definition 1. A function fθ(x, y) is called Separable Function (SF) 2 if it satisfies

the following properties:

1. fθ(x, y) = hθ(x)× hθ(y) where hθ is defined on [0, 1].

2. hθ(0) = 0 and hθ(1) = 1. hθ ∈ C1.

3. hθ is non-decreasing and limθ→0 hθ(x)− hδ(x) = 0 for any x ∈ [0, 1], where hδ

is defined on [0, 1], hδ(x) = 1 if x = 1 and hδ(x) = 0 otherwise.

We also call such a function hθ univariate SF, where θ is a controlling parameter.

Being seemingly a simple formulation, SF has three fine properties for computation.

Firstly, SF shows similar behavior as a probabilistic distribution on two indepen-

dent variables. That is, if two nodes are impossible to match, then any pair of edges

containing the two nodes will never match neither. Mathematically, assuming the

matching score of node pair 〈i, a〉 is hθ(zia), we have fθ(zia, zjb) = 0 for any 〈j, b〉 if

hθ(zia) = 0.

Secondly, the definition of SF eases gradient computing. For a given SF fθ(x, y) =

hθ(x)hθ(y), the approximate version of problem (3.5) can be expressed in matrix form

as:

max
z

h>θ Ahθ

s.t. Hz = 1, z ∈ [0, 1]n
2

(3.6)

2In fact separable function has its traditional meanings in mathematics, we re-define it in the
graph matching context.
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where hθ = [hθ(z1), ..., hθ(zn2)]>. The gradient of objective (3.6) with respect to z is

∇z = 2GAh, where G is a diagonal matrix with the ith element ∂hθ(zi)/∂zi.

The third advantage of SF is that we can construct new approximation functions

via reweighted summation and multiplication of existing ones, e.g. if h1 and h2 are

two univariate SFs, it can be trivially verified that αh1 + (1−α)h2 for 0 ≤ α ≤ 1 and

h1 × h2 are also univariate SFs.

If we keep the constraints on z intact as in problem (3.6), and let

p∗θ = max
z

hθ(z)>Ahθ(z) (3.7)

where hθ(z) = [hθ(z1), ..., hθ(xn)]>, we have the following theorem:

Theorem 2. limθ→0 p
∗
θ = p∗δ

Proof. First we define two sets: C1 = {z|Hz = 1, z ∈ [0, 1]n
2}, C2 = {z|z ∈ [0, 1]n

2}.

It’s easy to observe that |p∗θ − p∗δ| ≤ p1, where p1 = arg maxz|h>θ Ahθ − h>δ Ahδ|

subject to C1. This observation is true because the gap between two separable optimal

objectives must be no larger than the maximal gap between the objectives.

We further define p2 = arg maxx|h>θ Ahθ − h>δ Ahδ| subject to C2. As C1 ⊂ C2, we

must have p1 ≤ p2. By rewriting the objective corresponding to p2 in the following

way: ∣∣∣∣∣∑
i,j

Aijhθ(zi)hθ(zj)−
∑
i,j

Aijhδ(zi)hδ(zj)

∣∣∣∣∣
=

∣∣∣∣∣∑
i,j

Aij [((hθ(zi)− hδ(zi))hθ(zj) + (hθ(zj)− hδ(zj))hδ(zi)]

∣∣∣∣∣
Note A, hθ and hδ are all bounded. Additionally, hθ(zi)→ hδ(zi) and hθ(zj)→ hδ(zj)

when θ → 0 by the third property. Thus |p∗θ − p∗δ| ≤ p1 ≤ p2 → 0. QED.

The above theorem guarantees that, if we approximate the quasi-delta function by
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(a) hLap
(b) hGauss (c) hPoly

Figure 3.2: Three Examples of Approximations (Laplacian, Gaussian, Polynomial) to

Function fδ with Varying θ. The Closer for θ → 0 (from Red to Green), the Better

Approximation to fδ.

letting θ → 0, problem (3.5) can also be approximated asymptotically. As hθ ∈ C1,

gradient-base algorithms can be applied to such approximations.

3.3.2 Approximations to Function fδ

Though we have proved that using fδ can derive an equivalent problem i.e. (3.5),

finding its optimal solution is still notoriously difficult. Instead of solving (3.5) di-

rectly, based on the analysis in Sec. 3.3.1, we introduce approximation functions to

fδ. To simplify the expression, we only present the univariate SF h, and the SF f can

be obtained using definition (1). It is trivial to show that the SFs derived from the

following functions approximate fδ when θ → 0+ under the properties in definition

(1):

hLap(x) =
1

m

{
exp

(
x− 1

θ

)
− d
}

(3.8a)

hGauss(x) =
1

m

{
exp

(
−(x− 1)2

θ

)
− d
}

(3.8b)

hPoly(x) = x
1
θ (3.8c)
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where d = exp(−1
θ
) and m = 1− d. The usage of m and d is to normalize the SFs to

satisfy the second property. Figure 3.2 shows some examples of such functions with

varying θ values. Note that traditional quadratic graph matching model in fact is a

special case of our model, which seeks to optimize a model where the SF is derived

from hPoly and θ = 1. Specifically, for the univariate SFs (3.8a) and (3.8c), we also

have the following proposition.

Proposition 1. For univariate SF hLap, hPoly, suppose p∗1 and p∗2 are the optimal

objectives for (3.6) with θ1 and θ2, respectively. Then we have p∗1 ≥ p∗2 if 0 < θ2 < θ1.

Proof. This can be easily proved by showing hLap(x; θ2) < hLap(x; θ1) and hPoly(x; θ2) <

hPoly(x; θ1) when θ2 < θ1. QED.

Together with Theorem 2, this claim means that, given univariate SF hLap or

hPoly, the optimal objective of (3.6) will converge as θ → 0+ monotonically.

3.3.3 Convexity/Concavity Analysis

Section 3.3.1 and 3.3.2 show that original problem (3.5) can be asymptotically

approximated using SFs as θ → 0. In this section, we analyze the properties of con-

vexity/concavity under such approximations. We believe this effort is worthwhile as

one can employ techniques e.g. self-amplification (Rangarajan et al., 1999b), to con-

vert non-convex/non-concave problems into convex/concave ones with the beneficial

properties of convexity/concavity. We first show the equivalence of problem (3.4) and

(3.6) under global convexity.

Theorem 3. Assume that affinity A is positive definite. If the univariate SF hθ(x) ≤

x on [0, 1], then the global maxima of problem (3.3), which is discrete, must also be

the global maxima of problem (3.6).
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Proof. As shown in Yuille and Kosowsky (1994), whenever affinity A is positive defi-

nite, the global maximum of problem (3.4) is a permutation. In this case, the optimum

to (3.4) is also optimum to (3.3). Denote y∗ the optimal permutation to (3.4). As

y∗ is doubly stochastic, it must also satisfy the same constraints in problem (3.6).

Let p1 be the objective of problem (3.6) w.r.t. y∗ – Note p1 is the optimal objective

of problem (3.4). Assume there exists an optima z∗θ 6= y∗ to problem (3.6) with cor-

responding objective p2. As p2 is optimal, we have p2 ≥ p1. Let yθ = hθ(z
∗
θ). As

hθ(z) ≤ x, we must have z∗θ ≥ yθ ≥ 0. Denote p3 the objective score of (3.4) by

substituting z∗θ. Since A is non-negative, z∗θ ≥ yθ and z∗θ,yθ ≥ 0, we have p3 ≥ p2.

In summary, p3 ≥ p1. However, p1 is the global optimal objective of (3.4). Thus the

inequality leads to contradiction. The equality exists only when the global optimum

of (3.6) is y∗. QED.

The above theorem builds up a link from problem (3.3) to problem (3.6) when

A is positive definite. In this case, we first conclude that the optimum to problem

(3.4) is discrete, hence also optimal to (3.3). Then as long as hθ(x) < x on [0, 1]

and hθ satisfies the second property in Definition 1, this solution is also optimal to

problem (3.6). In this case the optimal objective gap of these three problems becomes

0. We give the following proposition showing under mild conditions, the generalized

problem (3.6) is convexity/concavity-preserving.

Proposition 2. Assume affinity maxtrix A is positive/negative semi-definite, then

as long as the univariate SF hθ is convex, the objective of (3.6) is convex/concave.

Proof. Consider problem (3.6), we prove this proposition by checking the property

of the Hessian with respect to z. As we have obtained the gradient 2GAhθ of the

objective in (3.6) with respect to z, we calculate the Hessian by taking the derivative
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once again. After some mathematical manipulations, we have ∇2z = 2AK, where

K = diag

[(∂hθ
∂z1

)2

+ hθ(z1)
∂2hθ
∂z2

1

, · · · ,
(
∂hθ
∂zn2

)2

+ hθ(zn2)
∂2hθ
∂z2

n2

]> (3.9)

It is easy to show that (∂hθ/∂zi)
2 and hθ(zi) are non-negative according to Definition

1. As hθ is convex, its second order derivative must also be non-negative. Matrix

K is positive semi-definite. Thus the convexity/concavity of A is preserved after

multiplying K. QED.

Any matrix A can be transformed to positive definite by adding up a diagonal

matrix λI. The lower bound of λ is λ ≥ |λ†|, where λ† is the smallest eigenvalue of

A below 0. We define A† = A + λI.

Proposition 3. Assume affinity matrix A is positive definite and univariate SF hθ

is convex. The optimal value to the following problem is:

Econv = max
z

h>θ A†hθ (3.10)

Then there exists a permutation z∗, s.t. Econv − E(z∗) ≤ nλ where E(z∗) is the

objective value w.r.t. problem (3.6).

Proof. First for any convex univariate SF hθ in range [0, 1], we have hθ(z) ≤ z. Under

the assumption in the theorem, given ẑ the optima to problem (3.6), we can obtain an

optimal discrete y according to the sampling procedure in Theorem 1. The optimal

objective of (3.6) can be written as:

Econv(y) =
∑

i 6=j,a6=b

Aij:abhθ(yia)hθ(yjb) +
∑
i,a

(Aii:aa + λ)h2θ(yia) (3.11)

Besides, by substituting y into problem (3.6) we obtain:

E(y) =
∑
i,j,a,b

Aij:abhθ(yia)hθ(yjb) (3.12)

19



By subtracting Equation (3.12) from (3.11) we have:

Econv(y)− E(y) = λ
∑
i,a

h2θ(yia) (3.13)

As mat(y) ∈ {0, 1}n2
is a permutation hence hθ(yia) = yia, we have λ

∑
i,a h

2
θ(yia) =

nλ. Then there exists at least one permutation z∗ satisfying the condition. QED.

3.4 Two Optimization Strategies for Generalized GM

Algorithm 1 Path following for GGM

Input: A, hθ, θ0, 0 < α < 1, initial

z0, k

Output: z

z← z0, θ ← θ0

repeat

make problem according to (3.6)

with θ

repeat

compute V using Eq. (3.14)

z = z + εvec(V)

until Converge

θ ← αθ

until θ < k

Algorithm 2 Multiplicative strategy

for GGM

Input: A, hθ, initial z0

Output: z

z← z0

repeat

h← hθ(z)

h← Ah

z← h−1θ (h)

until Converge

3.4.1 Path Following Strategy

It is observed that solving the problem when θ is too close to 0 is highly non-

convex, suggesting the existence of many local optima. Instead, moderate smoothness

is desired when we initiate the optimization. This naturally leads to the path fol-

lowing strategy. Such optimization is involved in (Gold and Rangarajan, 1996; Zhou
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and Torre, 2012; ?). In our implementation, we start by obtaining a local optimum

z∗1 from a relatively tractable problem Pθ1 , then we shrink the value of θ1 by letting

θ2 = αθ1 where 0 < α < 1. Let the starting point for next iteration be z∗1, we solve the

updated problem Pθ2 . The iteration continues until convergence condition is satisfied.

To verify the convergence, we calculate the energy gap between two consecutive iter-

ations. Formally, for current z(t) at iteration t, we calculate the corresponding energy

E (t) = z(t)>Az(t). The energy at previous iteration t − 1 is analogously calculated

as E (t−1) = z(t−1)>Az(t−1). Then if
∣∣E (t) − E (t−1)∣∣ < η, where η is a small positive

value, we identify the convergence of the iteration. If there is no such t, the algorithm

stops when reaching the pre-defined maximal iteration number. In all the following

experiments, we let η = 10−8.

Note the problem Pθ is a general objective with affine constraints. For any

gradient-based strategy, projection is necessary to mapping the current solution back

to the feasible set. As discussed in Jiang et al. (2017a), projection in variable domain

may lead to weak optima. Instead, we use Iterative Bregmann Gradient Projection

(IBGP), which is performed in the gradient domain and the convergence is guaran-

teed (Yu et al., 2018c). Given current gradient U = mat(∇z), previous matching Z

and step length ε, IBGP performs the following calculations iteratively to obtain V

until convergence:

V = U− 1

n
U11T − 1

n
11>U +

2

n2
11>U11> (3.14a)

Vij = −Zij/ε if Vij < −Zij/ε (3.14b)

Vij = (1− Zij)/ε if Vij > (1− Zij)/ε (3.14c)

where V is the update direction within the feasible set. Note the iterative procedure
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in the above equation is a projection. As the constraint set is convex (affinity set), the

projection convergence is ensured. Thus in each iteration of update, the algorithm

seeks a direction V with ascending guarantee and proceeds a fixed length ε. This

procedure iterates until convergence or maximal step number. The path following

method is summarized in Algorithm 1.

3.4.2 Multiplication Strategy

Multiplicative strategy on optimizing quadratic objective proved to be convergent

under the assumption that A is positive semi-definite (Rangarajan et al., 1999b). In

this strategy, each step amounts to a multiplication z(t+1) = Az(t) and the objective

score over the solution path is non-decreasing. There are works (Cho et al., 2010;

Gold and Rangarajan, 1996; Tian et al., 2012) falling into this category. However, in

general affinity A is barely positive semi-definite. While some methods handle this

circumstance by adding reweighted identity matrix to A (Jiang et al., 2017b), others

simply neglect the non-decreasing constraint including some popular algorithms (Cho

et al., 2010; Gold and Rangarajan, 1996). The empirical success of such methods

suggests pursuing objective ascending and enhancing matching accuracy sometimes

are paradox. Moreover, the recent study (Yan et al., 2016) further shows due to

noise and the parametric modeling limitation of the affinity function, high accuracy

may even corresponds to lower affinity score. Inspired by these observations, we

devise a simple yet effective multiplicative strategy by omitting the non-decreasing

check. The procedure is shown in Algorithm 2. In this strategy, the update rule

involves calculating inverse function of hθ. While it is found the multiplicative method

converges much faster and hence the overall run time is less compared with the path

following method.
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3.5 Experiments

Three popular benchmarks are used including Random Graph Matching (Cho

et al., 2010), CMU house sequence (Caetano et al., 2006) and Caltech-101/MSRC

object matching (Cho et al., 2010). accuracy, score and ratio are evaluated, where

accuracy measures the portion of correctly matched nodes with respect to all nodes,

score represents the value of the objective function and ratio emphasizes the ratio be-

tween current objective value and the maximal one. The algorithms for comparison

include Spectral Matching (SM) (Leordeanu and Hebert, 2005), Integer Projected

Fixed Point (IPFP) (Leordeanu et al., 2009), Graduated Assignment (GAGM)

(Gold and Rangarajan, 1996), Reweighted Random Walk (RRWM) (Cho et al.,

2010), Soft-restricted Graduated Assignment (SRGA) (Tian et al., 2012), Factor-

ized Graph Matching (FGM) (Zhou and Torre, 2012) and Branching Path Following

Matching (BPM) (?). We term our algorithm Generalized Graph Matching (GGM)

with a subscript indicating the corresponding Separable Function and optimization

strategy. Namely, GGMxy represents the method with Separable Function x ∈ {l :

hLap; p : hPoly} and optimizing strategy y ∈ {p : Path following; m : Multiplication}.

In all the experiments, the algorithms with any updating rules are initialized with

a uniform matching. For path following strategy of GGM , we set θ0 = 2, α = 0.5,

k = 0.2.

3.5.1 Results on Random Graph

This test is performed following the protocol in Cho et al. (2010). For each

trial, source graph GS and destination graph GD with nin inlier nodes are generated,

consisting of vector attributes aSij and aDij for both nodes and edges (note aii is a

node attribute and aij is an edge attribute when i 6= j.). In the initial setting, GD is
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Figure 3.3: Performance on Random Graphs. Note BPM (Wang et al., 2016)’s Run-

time Is Significantly More Expensive than Other Methods (Empirically an Order

Higher than Ours Using the Public Source Code) as It Simultaneously Seeks Multiple

Paths for the Best Score (Though Accuracy Is Similar to Ours). In Contrast, Our

Method Focus on One Path No Matter the Path Following or Multiplicative Strategy

Is Used.

the replica of GS. Three types of sub-experiments are conducted with varying graph

deformation σ, number of outliers nout and edge density ρ. To deform a graph, we

add an independent Gaussian noise ε ∼ N (0, σ) to attribute aDij such that aDij =

aSij + ε. Thus the resulting affinity is calculated by Aij:ab = exp(−|aSij − aDab|2/σ2
s).

The parameter σs is empirically set to be 0.15. In outlier test, we generate the same

number of outlier nodes for both graph. In edge density test, we randomly sample ρ

portion of corresponding edges from two fully connected graphs. Each type of sub-

experiment is independently carried out 500 times, while average accuracy and score

are calculated.
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Figure 3.4: Results on CMU House. Left: Convergence Speed VS Iteration. Right:

Accuracy by Frame Gap.

Results are shown in Fig 3.3. In the deformation and the edge density tests,

GGMpp and GGMlp achieve competitive performance compared to state-of-the-art

algorithms. Especially when there is combination of severe deformation and edge

density is low, GGMpp and GGMlp outperform the selected counterparts. On the

other hand, GGMpm and GGMlm reach significant performance close to state-of-

the-art e.g. BPM ?. Though multiplicative strategies cannot guarantee ascending

objective in each iteration, GGMpm and GGMlm are still effective. This supports the

discussion of the paradox between matching accuracy and objective score in Section

3.4.2. We only show results of GGMlp in the following experiments, as we see no

notable performance gap compared to the other settings.

To examine the algorithm sensitivity to the parameters, we also conduct an extra

Random Graph Matching experiment with SFs hPoly and hLap on Algorithm 1. In

this test, we let deformation noise 0.15 and edge density 0.8, 20 inliers and 5 outliers.

Test is carried out independently for 20 times and the average accuracy is reported.

For both the SFs, we observe that k = 0.2 is sufficient to produce satisfying matching

accuracy. Thus we conduct the test by varying the values of θ0 and α. The results are
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Table 3.1: Sensitivity Test on hPoly and hLap

hPoly
α

0.7 0.6 0.5 0.4 0.3

θ0
3 0.842 0.839 0.841 0.721 0.610

2 0.905 0.905 0.904 0.848 0.725

1 0.910 0.905 0.908 0.851 0.717

0.5 0.823 0.814 0.770 0.652 0.422

hLap
α

0.7 0.6 0.5 0.4 0.3

θ0
4 0.912 0.909 0.910 0.872 0.685

3 0.911 0.907 0.903 0.836 0.672

2 0.904 0.904 0.906 0.811 0.567

1 0.853 0.844 0.810 0.728 0.472

Table 3.2: Performance on Natural Images from Caltech-101 and MSRC Datasets.

Method GAGM IPFP SRGA RRWM SM FGM BPM GGMlp

accuracy (%) 73.66 75.77 72.86 72.95 65.78 76.35 75.14 76.69

score ratio 0.933 0.942 0.940 0.946 0.735 0.969 1 0.972

demonstrated in Table 3.1. As larger θ0 and α indicate more iterations, and θ0 < 2

and α < 0.5 result in decreasing behavior, we employ the setting θ0 = 2 and α = 0.5

throughout all experiments.
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(a) RRWM: 13/20

(b) RRWM: 4/20

(c) FGM: 14/20

(d) FGM: 11/20

(e) GGMlp: 16/20

(f) GGMlp: 18/20

Figure 3.5: Top and Bottom Row Shows Examples on CMU House Sequence with

Gap 20 and 80 Respectively, by Setting (nS = 30, nD = 20).

(a) car pair

(b) face pair

(c) RRWM: 27/36

(d) RRWM: 32/40

(e) FGM: 29/36

(f) FGM: 33/40

(g) GGMlp: 30/36

(h) GGMlp: 35/40

Figure 3.6: Examples of Matchings on Selected Caltech-101 and MSRC Datasets.

3.5.2 Results on CMU House Sequence

We perform feature point matching on widely used CMU house sequence dataset

following the settings in Caetano et al. (2006); Cho et al. (2010). The dataset con-

sists of 111 house images with gradually changing view points. There are 30 land-

mark points in each frame. Following the protocol in Cho et al. (2010); ?, match-

ing test is conducted on totally 560 pairs of images, spaced by varying frame gaps

(10, 20, ..., 100). We use 2 settings of nodes (nS, nD) = (30, 30) and (20, 30). In case

nS < 30, nS nodes are randomly sampled from the source graph. The affinity is con-
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ducted by Aij:ab = exp(−|aSij − aDab|2/σ2
s), where aSij measures the Euclidean distance

between point i and j, and σ2
s = 2500. The edge density is set by ρ = 1. One can

see when there is no outlier, all methods except for IPFP and SM achieve perfect

matching on any gap setting, and we only show the results with outliers. Figure 3.5

and Figure 3.4 depict the matching samples and performance curve, respectively. We

also show typical converging behavior of GGMlp and GGMlm on the upper of Figure

3.4. We note our path following strategy (Alg. 1) converges slower than multiplica-

tive one (Alg. 2) and they obtain similar final accuracy. One can see when there

exist outlier points, GAGM and RRWM suffer notable degraded performance. Our

algorithm, on the other hand, achieves competitive performance to state-of-the-arts

and behaves stably even under severe degradations.

3.5.3 Results on Natural Image Matching

This is a challenging dataset as it includes natural images in arbitrary back-

grounds. In line with the protocol in Cho et al. (2010), 30 pairs of images are included

in this test collected from Caltech-101 (Fei-Fei et al., 2007) and MSRC 3 . In each pair

of images, MSER detector (Matas et al., 2004) and SIFT descriptor (Lowe, 1999) are

used to obtain the key points and the corresponding node feature. Mutual projection

error function (Cho et al., 2009) is further adopted to calculate the edge affinity. The

ground-truth are manually labeled. The results are shown in Table 4.1 and match-

ing examples are shown in Fig. 3.6. Our method outperforms selected algorithms

w.r.t. accuracy regardless of objective score. This also suggests the paradox between

accuracy and score under complex affinity modeling as discussed in Yan et al. (2016).

3http://research.microsoft.com/vision/cambridge/recognition/
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3.6 Conclusion

By using Separable Functions, we present a family of continuous approximations

to the vanilla QAP formulation widely used in graph matching. We explore the

relation of such approximations to the original discrete matching problem, and show

convergence properties under mild conditions. Based on the theoretical anslysis, we

propose a novel solver GGM, which achieves remarkable performance in both synthetic

and real-world image tests. This gives rise to the possibility of solving graph matching

with many alternative approximations with different solution paths.
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Chapter 4

GRADIENT-EFFICIENT REGULARIZATION

4.1 Problem Statement

Over the decades, extensive works have been developed on graph matching. Tra-

ditionally, most methods are focused on pairwise graph matching, i.e., each time only

two graphs are involved for matching. Due to its NP-hardness, most methods seek

approximation techniques to pursuit the trade-off between accuracy and efficiency. A

popular conversion treatment from continuous to discrete solution is applying greedy

algorithm or Hungarian method as projection. However such a conversion is likely to

bring about arbitrary accuracy degeneration to the final solution.

Recently, a few regularizers have been developed and become an important way

to graduated discretization along the solution path. Examples include entropy (Tian

et al., 2012), factorization based convex-concave relaxation (Zhou and Torre, 2013),

and `2 norm (Jiang et al., 2017b)). However, there still lacks a clear investigation

on the gradient behavior during the optimization: how does the regularized gradient

impact the solution path and what can we do to improve?

This part is focused on investigating and improving the effectiveness of gradient

provided by regularization, by providing more reliable gradient direction along the

continuous solution path (being a numerical continuation method). We also develop a

new regularization technique combined with the simple gradient based continuous op-

timization. It explores the determinant of the matching matrix which is relaxed in the

continuous domain, and achieves superior performance among several gradient-based

solvers, while existing regularized methods (Gold and Rangarajan, 1996; Tian et al.,
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2012; Jiang et al., 2017b) often perform less competitive and also are algorithmically

more complex. The main contributions are summarized as:

i) To enable gradient-efficient continuation optimization for graph matching, we

propose a novel graduated discretization technique. Specifically a determinant reg-

ularization technique is devised on the matching solution. We analytically show the

geometric property of our method compared to existing regularizers;

ii) We develop two types of sub-gradient updating rules to address the issue of

irregular solution matrix, which have been proved effective and moderately efficient;

iii) Our approach shows promising experimental results on public benchmarks.

Thanks to the clear theoretical foundation, the algorithm procedure is in general

simple and insensitive to hyperparameters.

Notations are used as follows. Bold lower case x and upper case X refer to vector

and matrix, respectively. While det(·) and sign(·) calculate matrix determinant and

sign of a real value, respectively, and diag(·) maps a vector to a diagonal matrix, and

vice versa. 1 is a vector with all 1.

4.2 GM via Determinant Regularization

4.2.1 Theorem and Derived Objectives

Graph matching can be relaxed as following:

max
z

z>Kz, s.t. Hz = 1, z ∈ [0, 1]n
2

(4.1)

where K ∈ Rn×n is the so-called affinity matrix which is assumed pre-given in this

chapter, and H is a selection matrix encoding the one-to-one constraint for node

correspondence. Here n is the number of nodes in each graph. Now we first present

the following proposition.
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Proposition 4. For any doubly stochastic matrix Z, we have |det(Z)| ≤ 1. Equality

holds iff Z is a permutation.

Proof. According to Hadamard’s inequality (Fink, 2000), we have |det(Z)| ≤
∏n

j=1‖Zj‖,

where Zj refers to the jth column of Z. As Z is doubly stochastic, we have Zij ∈ [0, 1]

and
∑

i Zij = 1. Thus ‖Zj‖≤ 1 and equality holds iff there is only a 1 element in

Zj and all the resting elements are 0s. Therefore, for any column j that’s not in 0-1

mode, we must have ‖Zj‖< 1. This observation claims that, if Z is not a permutation

(in this case non-0/non-1 element exists), |det(Z)| ≤
∏n

j=1‖Zj‖ < 1.

On the other hand, for any permutation Z, we must have |det(Z)| = 1 (As the

columns of a doubly stochastic matrix are orthogonal). QED.

This proposition gives an upper bound for the absolute value of the determinant.

Together with the trivial lower bound we have 0 ≤ |det(Z)| ≤ 1. The equality of

the 0 side holds when the columns/rows of Z are linearly dependent. Based on the

discussion above, we construct the following objective involving determinant regular-

ization:

max
z

z>Kz + λ|det(Z)|, s.t. Hz = 1 (4.2)

We refer to objective (4.2) as Pλ. Given objective (4.2) with a regularization term,

two types of optimization strategies, namely multiplication and gradient, are widely

applied. The multiplicative strategy is established on certain convergence guarantee

where in the current iteration the updated affinity value is greater than the previous

one under some mild conditions (Jiang et al., 2017a; Gold and Rangarajan, 1996). In

our case, however, it is difficult to devise a multiplication-based updating paradigm

since the convergence condition involving matrix inversion cannot be easily found.

Instead, we develop a gradient-based optimization algorithm under the framework of

path-following (Zhou and Torre, 2012). Though we still face the difficulty of calcu-
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lating matrix inversion in this setting, we provide an effective and efficient way to

approximate the gradient of low-rank solution. These will be discussed in Section

4.3. Although it was reported that the multiplicative updating rule is more com-

putationally efficient, we have found that our gradient-based algorithm can achieve

remarkable improvement compared to multiplication-based ones in a reasonable time

cost.

4.2.2 Geometric Property of Gradients

We show some geometric properties of the proposed models in this section and

analyze the gradient behavior compared to two regularization counterparts. To this

end, we unfold our analysis in Euclidean space, which is more intuitive. We also

choose regularization model with `2 (Jiang et al., 2017b) (
∑

i z
2
i ) and entropy (Gold

and Rangarajan, 1996) (−
∑

i zi log(zi)) for comparison on the polytope. As the

underlying contours are visualized, we demonstrate the property of determinant by

showing its bound vs `2 norm. Let us consider the following two sets:

S1 = {Z|‖Z‖2F = n} S2 = {Z||det(Z)| = 1} (4.3)

where S1 is the regularization introduced in Jiang et al. (2017b). For any Z ∈ S1,

we have the following formula according to the geometric inequality and Hadamard’s

inequality:

‖Z‖2F/n =
n∑
j=1

‖Zj‖22/n ≥
n

√√√√ n∏
j=1

‖Zj‖22 ≥
n
√
|det(Z)|2 (4.4)

In general, we have |det(Z)| ≤ 1 if Z ∈ S1. The above analysis implies that,

the set of {Z|‖Z‖2F ≤ n} is a proper subset of {Z||det(Z)| ≤ 1}. To show the

geometric relation among these regularizers in 2D space, we present an example by

projecting the 2-permutation polytope onto the 2-dimensional Euclidean space, with
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two permutation:

A1 =

1 0

0 1

 , A2 =

0 1

1 0

 (4.5)

Any point on this polytope can be expressed as:

αA1 + (1− α)A2 (4.6)

We first give a 2-dimensional expression of determinant regularizer. Given Eq.

(4.6), the corresponding absolute determinant value given α is:∣∣∣∣∣∣∣det


 α 1− α

1− α α



∣∣∣∣∣∣∣ = |2α− 1| (4.7)

which is merely dependent on variable α. Upon this juncture, we linearly map per-

mutation vertices A1, A2 and original point (0, 0; 0, 0) onto (0, 1), (1, 0) and (0, 0) in

regular 2D space, respectively. This can be done with a naive projection matrix from

vectorized 4D to 2D space:

P =

0.5 0 0 0.5

0 0.5 0.5 0

 (4.8)

In this case the 2-permutation polytope in a regular 2D Euclidean space is the

interval between points (0, 1) and (1, 0). If we rescale any point on the polytope by

b > 0, then the absolute value of determinant is b2|2α − 1|. This implies that the

absolute value of determinant is the product of rescaled point b|2α− 1| and b. Since

b corresponds to an axis orthogonal to the polytope, we conclude that the contour of

absolute value of determinant is a hyperbola rotated by 45◦. The contours of `2 and

entropy can be analogously obtained.

The contours of three types of regularizers can be found in Figure 4.1. Serving

as another regulizer besides `2 and entropy, we note that absolute determinant shows
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much different behavior than the other two. When the current solution is in the

interior of the polytope and near to the point 1
n
11>, the gradients of `2 and entropy

are almost orthogonal to the polytope. In this case, the gradients of regularizers have

no contribution to the update. However, absolute determinant has more effective

gradient (almost in the polytope subspace) in the interior. This effectiveness also holds

along with the solution path until polytope vertices, yielding contributing gradient in

each iteration.

Furthermore, it is a fact that |det(Z)| > 0 when X is strictly diagonal dominant

(i.e. there exist an i for each j, such that |Zij|≥
∑

k 6=i Zkj). Thus for any (not

necessarily doubly) stochastic matrix Y, strictly diagonal dominance implies there

exist an i such that Yij > 0.5 for any j. As for doubly stochastic matrix, there will

be only one element larger than 0.5 in each column/row, which means there’s no

ambiguity. In this case, there exists a permutation P such that PXP> is diagonally

dominant. We call such Z doubly diagonally dominant. Conversely, if for any

continuous solution det(Z) = 0, Z cannot be doubly diagonally dominance, which

implies ambiguity and is not of our interest. In general, larger determinant value of

doubly stochastic solution implies less ambiguity, and a absolute determinant larger

than 0 implies strong discriminativity to some extent (Zij > 0.5 exists).

4.3 Optimization Methods

4.3.1 Path-following for solving Objective (4.2)

Given objective (4.2), we devise a path-following-based method. Path-following,

sometimes also called continuation method, is widely adopted in previous works on

graph matching e.g. Zhou and Torre (2012). While the details differ, the common

advantage of such strategy includes a guarantee on increasing objective score, as
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Figure 4.1: Contours of Three Regularization Techniques on 2D Euclidean Space.

Black Arrows Indicate the Contours of the Regularization Terms: Entropy, `2 Norm

(`2) and Determinant (DET). The Black Dashed Line Refers to a 2-dimensional Dou-

bly Stochastic Polytope (DSP), Where the Discrete Solutions Lie on Coordinates

(0, 1) or (1, 0). We See along with Emphasizing the Regularization Weights, Either

Term Will Push the Solution to the Discrete Ones. However, in the Deep Interior of

the DSP, Determinant Has Much Different Behavior Against the Other Two.

well as the optimum being a permutation, since a discrete solution is what we seek

for the original problem. Another reason that we employ path-following rather than

multiplication is that it is extremely difficult to find a theoretical ascending guarantee

for the determinant-regularized model under multiplicative strategy.

Such an algorithm requires the calculation of gradient of det(Z) w.r.t. Z involve
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a matrix inversion. However in practice, Z is not necessarily invertible, especially

in the early stage of optimization when Z is deep in the interior of the permutation

polytope. For the time being, we assume Z is invertible, hence Z−1 exists. We will

discuss how to handle the case of low-rank Z in the next section.

Our path-following starts from an initial λ0 > 0. After a gradient-based algorithm

finds the local optimum ZO0 corresponding to λ0, it proceeds by amplifying the value

with λt+1 > λt and solves problem Pλt+1 for the next stage. In all the experiments

we employ the amplifying procedure λt+1 = 2λt. The gradient of (4.2) w.r.t. Z is:

Ẑ = 2Kz + λsign(det(Z))Z−> (4.9)

Then the algorithm iterates by Z = Z + ∆Ẑ, where ∆ > 0 is a small incre-

ment. Likewise we need to project Z back to the permutation polytope. Rather

than Sinkhorn’s algorithm (Sinkhorn, 1964), we employ a slightly revised projection

method from Yu et al. (2018c) which manipulates columns and rows simultaneously.

To this end, we first let Zij = 0 if Zij < 0, then repeat the following projection:

Z = Z +
1

n
11> − 1

n
Z11> − 1

n
11>Z +

1

n2
11>Z11> (4.10)

which theoretically ensures to converge to a point in the permutation polytope. This

algorithm has fast convergence in practice (less than 10 iterations to an acceptable

precision).

4.3.2 Spectral Sub-gradient

As discussed earlier, Z is not necessarily invertible. In this case, the assumption

of updating rule (4.9) no longer holds. This issue possibly happens when the current

solution is close to the center of the polytope interior. One may imagine a naive

replacement of matrix inversion with the pseudo-inversion, which can be applied on
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singular matrices. However, pseudo-inversion will keep the zero eigenvalues intact,

and will not fulfill the purpose of maximizing the absolute determinant.

To address this issue, we first diverge to look into the partial objective max | det(Z)|.

Since this partial term seeks to maximize the absolute determinant, any small value

above 0 will be a proper increment on | det(Z)| if the current determinant is 0. Thus

any incremental direction in terms of absolute determinant implies a proper “sub-

gradient”, and we can adopt such sub-gradient for update. To this end, we first

perform eigen-decomposition on Z:

Z = UΛU−1 (4.11)

where U is an orthogonal matrix containing both the basis of linear and null spaces

and Λ is the diagonal matrix with eigen-values in the magnitude descending order

(σ1, ..., σq, 0, ..., 0), |σt−1| ≥ |σt| for any t. Now we present two types of proper sub-

gradients.

Method Design by Increment Update: DetGM1

We employ a simple yet effective amplification procedure by letting any eigenvalue

with magnitude smaller than a tolerance ε > 0 to ε. The amplified eigenvalues become

(σ1, ..., σs, sign(σs+1)σs+1, ..., sign(σr)σr, ε, ..., ε), where s ≤ q, 0 < |σs+1| < ε, |σs| ≥ ε,

σr 6= 0 and σr+1 = 0 in the original eigen-values and q is the index of the first element

which is negative value but with magnitude larger than ε. We add a tolerance ε to

accommodate the calculating precision of float numbers. As such, each eigen-value

is above 0, thus the determinant will not vanish. Let the diagonalized amplified

eigenvalue matrix be Λ̂, then the modified matrix with small non-zero determinant

can be written as:

Zu = UΛ̂U
−1

(4.12)
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Algorithm 3 Spectral sub-gradient for DetGM1.

Input: Z; tolerance ε

Output:sub-gradient Z̄

UΛU−1 ← Z (eigen-decomposition)

Λ̂← Λ

for ∀i, |Λii| < ε do

if Λii = 0 then

Λ̂ii = ε

end if

Λ̂ii = sign(Λii)ε

end for

Zu = UΛ̂U
−1

return Z̄ = Zu − Z

Then the difference Z̄ = Zu − Z ≈ ∂| det(Z)|
Z

can be viewed as a proper ascending

direction w.r.t. Z, as by adding Z̄, | det(Z)| becomes above 0. This procedure is

summarized in Algorithm 3.

Method Design by Geometric Update: DetGM2

This line of sub-gradient is motivated by the geometric inequality 1
n

∑
i ai ≥

n
√∏

i ai

for ai ≥ 0. It is easy to show that
∏

i ai is concave in the affine subset
∑

i ai = d,

where ai ≥ 0 and d > 0 is a constant. The maximal value is reached if and only if

ai = d/n for each i. According to the concavity and the reachable maximum, it is easy

to conclude that for any 0 < θ < 1 and the reweighted point b = (1−θ)a+θm, it have

to be
∏

i bi ≥
∏

i ai. Here a = (a1, ..., an) and m = (n/d, ..., n/d). Motivated by this

observation, we devise another type of valid sub-gradient for absolute determinant in

graph matching.
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Algorithm 4 Spectral sub-gradient for DetGM2.

Input: Z; tolerance ε; step θ

Output: sub-gradient Z̄

UΛU−1 ← Z (eigen-decomposition)

g ←
∑

i |Λii|

for all i do

if Λii 6= 0 then

Γi ← g
n
sign(Λii)−Λii

else

Γi ← g
n

end if

end for

return Z̄← θUdiag(Γ)U−1

To this end, we first calculate the summation of all the absolute eigen-values

in Λ as g =
∑

i |Λii|. g is regarded as a constant. Then under fixed summation

g, the maximal determinant value can be achieved iff each eigen-value is equal to

g/n. Then we can calculate the gap Γ = m− a between m = (g/n, ..., g/n) and

a = (Λ11, ...,Λnn). To avoid the gradient to be too aggressive, we assign a small step

θ to Γ. Thus the sub-gradient is written as:

Z̄ = θUdiag(Γ)U−1 (4.13)

This procedure is given in Algorithm 4. The main overhead for both algorithms

lies in the eigen-decomposition, resulting in similar computational efficiency.
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4.4 Experiments

All the experiments are conducted on a laptop with 3.0GHz CPU and 16GB

memory.

Datasets and metrics. Experiments involve both synthetic data and real-world

images. The synthetic dataset is from the popular Random Graph Matching (Cho

et al., 2010). The real images include the CMU house sequence (Caetano et al.,

2006), Caltech-101/MSRC object matching (Cho et al., 2010) and Pascal dataset

(Leordeanu et al., 2012). For evaluation, accuracy, score and ratio are evaluated,

where accuracy measures the portion of correctly matched nodes with respect to all

nodes, score represents the value of the objective function and ratio emphasizes the

ratio between current objective value and the maximal one.

Compared Methods. Compared methods include Integer Projected Fixed Point

(IPFP) (Leordeanu et al., 2009), Graduated Assignment (GAGM) (Gold and Ran-

garajan, 1996), Reweighted Random Walk (RRWM) (Cho et al., 2010), Binary-

preserving Graph Matching (BGM) (Jiang et al., 2017b), and two very recent state-

of-the-art solvers: Branching Path Following Matching (BPF) (??) and Generalized

Graph Matching (GGM) (Yu et al., 2018b). For GGM, we select the setting of

GGMlp (refer (Yu et al., 2018b) for more details). We term our method DetGM1

and DetGM2 for Sec. 4.3.2 and Sec. 4.3.2, respectively. In all experiments, all algo-

rithms are initialized with a uniform matching.

4.4.1 Results on Synthetic Data

For each trial of the matching, a pair of graphs GS and GD is generated with nin

inlier nodes on both, where we let nin = 40 in all tests (nin = 40 is more challenging

than a usual setting nin = 20 such as in Cho et al. (2010)). The attribute akij with
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Figure 4.2: Accuracy and Objective Score on Synthetic Data by Varying Deformation,

Outlier Count and Edge Density. Zoom-in for Better View.

Table 4.1: Accuracy (%) and Ratio on Caltech-101 Natural Images.

Method GAGM BGM RRWM BPF GGMlp DetGM

Acc. 73.66 76.56 72.95 75.14 76.69 77.44

Ratio 0.933 0.970 0.946 1 0.972 0.985

k ∈ {S,D} on edge is randomly generated from a multivariate uniform distribution

(i = j and i 6= j correspond to node and edge attributes, respectively). Attributes

on graph GD are the copies of those on graph GS with Gaussian noise ε ∼ N (0, δ),

namely aDij = aDij+ε. For a pair of edges (i, j) inGS and (a, b) inGD, the corresponding

affinity is calculated as Aij:ab = exp(−|aSij − aDab|2/σ2
s), where σs is a parameter and

set to be 0.15 during all the synthetic tests. We conduct three types of empirical

experiments with varying deformation noise ε, outlier count nout and edge density ρ
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Figure 4.3: Accuracy and Score Ratio on Pascal Dataset by Varying the Number of

Outliers.

Cho et al. (2010). In each experiment, we independently conduct 200 times of the

single trial and report the average accuracy and score (objective value).

Figure 5.4 summarizes the synthetic experimental results. We see that DetGM1

and DetGM2 outperform all the selected algorithms in all settings. Particularly in

the outlier test, the algorithms of DetGM significantly surpass both BPF and GGMlp

when there are massive outliers. We also observe that, though the objective scores

of DetGM1,2, BFP and GGMlp are similar, there is a significant gap w.r.t. accuracy.

This fact indicates again that the score may not necessarily reflect the true matching,

which has also been pointed out in Yan et al. (2016); Yu et al. (2018b). DetGM1,2,

BPF and GGMlp show similar performance in edge density test.

Remarks IPFP, GAGM and RRWM are in the line of multiplication-based up-

dating strategy, where in iteration the product between the affinity and the previous

solution contributes most to the current solution. Instead, DetGM1,2, BGM, BPF

and GGMlp are gradient-based, which implies these algorithms employ a much more

cautious update in each iteration other than multiplication-based ones. While the

performance of the two categories of updating strategies hardly differentiates when
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Figure 4.4: Average Running Time on Pascal Dataset by Varying the Number of

Outliers.

the number of nodes is small (up to 20 for inliers and 10 for outliers), which has

been verified by multiple previous works (Cho et al., 2010; Jiang et al., 2017b; Yu

et al., 2018b), it can be concluded from our experiments that gradient-based methods

have more stable performance compared with multiplication-based ones if number of

nodes is large. We infer the reason of such phenomenon is as follows. With increasing

problem dimension, the affinity matrix A tends to deliver more complex (2nd-order)

local behavior, thus an aggressive update strategy such as multiplication will likely

jump over previous local region and diverge to an inconsistent solution path. Besides,

the convergence criterion of multiplicative strategy is typically due to the gap of two

consecutive objective scores. When A is complex, with a higher probability an as-

cending gradient may still exist even if the gap is small. The aforementioned factors

will result in weak solution.
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Figure 4.5: Accuracy on CMU House by Varying the Sequence Gap, for Two Graphs

with 20 and 30 Nodes Respectively.

4.4.2 Results on Real-world Data

CMU House and Hotel Sequence. CMU house sequence has 110 images in total.

We follow the widely adopted protocol in Cho et al. (2010) to conduct the test under

varying sequence gap (10, 20, ..., 100), resulting in 560 image pairs. For each image,

30 landmark points are manually labelled. And for each pair of images, 10 landmarks

are randomly removed from the first image. The graph is established with Delaunay

triangulation. The affinity is obtained as Kij:ab = exp(−|aSij − aDab|2/σ2
s), where aSij

measures the Euclidean distance between point i and j, and σ2
s = 2500 empirically.

Typical matching example with BPF, DetGM1 and DetGM2 are shown in Figure

4.6, and we report accuracy in Figure 4.5. It can be observed that in both settings of

the proposed algorithm can reach out competitive performance against state-of-the-

art algorithms BPF and GGMlp, and significantly outperforms the resting algorithms
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(a) BPF: 13/20 (b) DetGM1: 17/20 (c) DetGM2: 17/20

Figure 4.6: Matching Examples on CMU House Dataset with 20 and 30 Nodes for

Each Graph Respectively. Correct Matchings Are in Green.

(a) Original image pair

(b) GAGM: 20/40

(c) RRWM: 32/40

(d) BPF: 35/40

(e) GGMlp: 35/40

(f) DetGM: 36/40

Figure 4.7: Examples on Caltech-101 Dataset with 40 Nodes on a Pair of Face Images.

Correct Matchings Are in Yellow.

in accuracy. The two settings DetGM1 and DetGM2 show very similar performance

in CMU house and synthetic tests, indicating both of the updating rules are valid and

the corresponding solution paths do not diverge much. For the rest if the experiments,

we only report the behavior of DetGM1 due to their high similarity while abbreviating

it as DetGM.

Caltech-101. It (Cho et al., 2010) consists of 30 pairs of images from Caltech-101

(Fei-Fei et al., 2007) and MSRC 1 . The features points are generated by MSER detec-

tor (Matas et al., 2004) and each point is assigned its SIFT feature (Lowe, 1999). The

1http://research.microsoft.com/vision/cambridge/recognition/
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(a) IPFP: 6/30

(b) GAGM: 18/30

(c) RRWM: 18/30

(d) BPF: 20/30

(e) GGMlp: 20/30

(f) DetGM: 24/30

Figure 4.8: Examples on Pascal Dataset with 30 Inliers and 12 Outliers on a Pair of

Motorbike Images. Correct Matchings are in Green.

candidate matchings are selected by comparing the feature distance with a threshold

0.6, which allows multiple correspondences for each feature. The dissimilarity be-

tween a candidate pair (i, j) and (a, b) is obtained with Kij:ab = max(50 − dij:ab, 0)

where dij:ab refers to the mutual projection error (Cho et al., 2009).

Results are reported in Table 4.1 and matching examples are shown in Figure 4.7.

One can see that our method outperforms the peers including most up-to-date BPF

and GGMlp.

Pascal Dataset. Pascal dataset (Leordeanu et al., 2012) consists of 20 pairs of

motorbike images and 30 pairs of car images collected from Pascal07 dataset (?).

For each image pair, feature points and corresponding ground-truth correspondence

are manually labelled. We follow the popular protocol (Zhou and Torre, 2012) to

randomly select 0 to 20 outliers from the background to evaluate the algorithms

under degradation. We follow Zhou and Torre (2012) to generate the graph and

the corresponding affinity. For each node i, a feature fi is assigned by taking its

orientation of the normal vector at that node to the contour where the point was
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sampled. Then the node affinity between node i and j is computed as exp(−|fi− fj|).

Delaunay triangulation is performed to obtain the graphs, and pairwise distance dij

and absolute angle θij are calculated on any valid edge (i, j). Thus the affinity between

edge (i, j) in GS and edge (a, b) in GD is Kij:ab = exp(−(|dSij − dDab|+ |θSij − θDij |))/2.

Figure 4.8 and 4.4 presents an example of matching results on 6 counterparts

and Figure 4.3 shows the quantitative results of the experiments. We also present

time cost comparison against two typical solvers: RRWM and BPF. It can be seen

that our algorithm achieves competitive performance against BPF and GGMlp and

outperforms them in some specific outlier settings. It should also be noted that,

though BPF achieves high accuracy, the running speed of BPF is extremely slow.

From Figure 4.4, we can find that in a typical setting with 20 outliers, BPF costs

over 2, 000 seconds to finish one trial in average. However, our algorithm only need

around 60 seconds in average. Though RRWM has higher efficiency, our algorithm

still shows moderate computational cost in practical use.

4.5 Conclusion

To enable gradient-efficient continuation optimization, this chapter has presented

a novel regularization technique for graph matching, as derived from the determinant

analysis on the node matching matrix between two graphs. Theoretical property of

our relaxation technique is studied and we also give some analysis on the geometric

behavior compared to existing regularizers, which has rarely been considered. These

findings are anticipated to bring about insights to other regularized objective with

affine constraints. Extensive experiments are performed which show the state-of-the-

art accuracy as well as efficiency of our method.
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Chapter 5

COMBINATORIAL LEARNING OF GRAPH MATCHING

5.1 Problem Statement

For Eq. (1.1), a series of solvers haven been developed to solve graph matching

problem (Leordeanu and Hebert, 2005; Cho et al., 2010; Bernard et al., 2018; Yan

et al., 2015a; Yu et al., 2018b). All these methods are based on deterministic op-

timization, which are conditioned with pre-defined affinity matrix and no learning

paradigm is involved. This fact greatly limits the performance and broad application

w.r.t. different problem settings considering its NP-hard nature.

Recently, the seminal work namely deep graph matching (DGM) (Zanfir and Smin-

chisescu, 2018) is proposed to exploit the high capacity of deep networks for graph

matching, which achieves state-of-the-art performance. This is in contrast to some

early works which incorporate learning strategy separately in local stages (Caetano

et al., 2009; Cho et al., 2013). On the other hand, Graph Convolutional Networks

(GCN) (Kipf and Welling, 2017) brings about new capability on tasks over graph-like

data, as it naturally integrates the intrinsic graph structure in a general updating

rule:

H(l+1) = σ
(
ÂH(l)W(l)

)
(5.1)

where Â is the normalized connectivity matrix. H(l) and W(l) are the features and

weights at layer l, respectively. Node embedding is updated by aggregation from

1-neighboring nodes, which is akin to the convolution operator in CNN. By taking

advantages of both DGM and GCN, Wang et al. (2019a) and Zhang and Lee (2019)

incorporate permutation loss instead of displacement loss in (Zanfir and Sminchisescu,
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2018), with notable improvement across both synthetic and real data.

Note that Eq. (1.1) involves both node and edge information, which exactly corre-

spond to the diagonal and off-diagonal elements in M, respectively. Edges can carry

informative multi-dimensional attributes (namely weights) which are fundamental to

graph matching. However existing embedding based graph matching methods (Wang

et al., 2019a; Xu et al., 2019) are focused on the explicit modeling of node level fea-

tures, whereby the edges are only used as topological node connection for message

passing in GCN. Besides, edge attributes are neither well modeled in the embedding-

free model (Zanfir and Sminchisescu, 2018) since the edge information is derived

from the concatenation of node features. To our best knowledge, there is no deep

graph matching method explicitly incorporating edge attributes. In contrast, edge

attributes e.g. length and orientation are widely used in traditional graph matching

models (Cho et al., 2010; Yan et al., 2015b; Yu et al., 2018b) for constructing the

affinity matrix M. Such a gap shall be filled in the deep graph matching pipeline.

Another important consideration refers to the design of loss function. There are

mainly two forms in existing deep graph matching works: i) displacement loss (Zanfir

and Sminchisescu, 2018) similar to the use in optical flow estimation (Ren et al., 2017);

ii) the so-called permutation loss (Wang et al., 2019a) involving iterative Sinkhorn

procedure followed by a cross-entropy loss. Results in (Wang et al., 2019a) show the

latter is an effective improvement against the former regression based loss. However,

we argue that the continuous Sinkhorn procedure (in training stage) is yet an un-

natural approximation to Hungarian sampling (in testing stage) for discretization.

If the network is equipped with a continuous loss function (e.g. cross-entropy), we

argue that the training process will make a great “meaningless effort” to enforce some

network output digits of the final matching matrix into binary and neglect the resting

digits which might have notable impact on accuracy.
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This part strikes an endeavor on the above two gaps and makes the following main

contributions:

i) We propose a new approach for edge embedding via channel-wise operation,

namely channel-independent embedding (CIE). The hope is to effectively ex-

plore the edge attribute and simulate the multi-head strategy in attention mod-

els (Veličković et al., 2018) by decoupling the calculations parallel and orthogonal

to channel direction. In fact, edge attribute information has not been considered in

existing embedding based graph matching methods (Wang et al., 2019a; Xu et al.,

2019).

ii) We devise a new mechanism to adjust the loss function based on the Hungarian

method which is widely used for linear assignment problem, as termed by Hungarian

attention. It resorts to dynamically generating sparse matching mask according to

Hungarian sampling during training, rather than approximating Hungarian sampling

with a differentiable function. As such, the Hungarian attention introduces higher

smoothness against traditional loss functions to ease the training.

iii) The empirical results on three public benchmarks shows that the two proposed

techniques are orthogonal and beneficial to existing techniques. Specifically, on the

one hand, our CIE module can effectively boost the accuracy by exploring the edge

attributes which otherwise are not considered in state-of-the-art deep graph matching

methods; on the other hand, our Hungarian attention mechanism also shows gener-

ality and it is complementary to existing graph matching loss.
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Figure 5.1: Architecture Overview of the Proposed Deep Graph Matching Networks

That Consist of the Proposed Channel-independent Embedding and Hungarian At-

tention Layer over the Loss Function.

5.2 The Proposed Approach

5.2.1 Approach Overview

An overall structure of our approach is illustrated in Fig. 5.1. In line with (Wang

et al., 2019a), we employ VGG16 (Simonyan and Zisserman, 2014) to extract features

from input images and bi-linearly interpolate the features at key points (provided by

datasets). We concatenate lower-level (Relu4 2) and higher-level (Relu5 1) features

to incorporate local and contextual information. For an image with k key points, the

feature is denoted as H ∈ Rk×d, where d is the feature dimension. Unless otherwise

specified, the adjacency matrix A ∈ Rk×k is consequentially constructed via Delaunay

triangulation (Delaunay et al., 1934), which is a widely adopted strategy to produce

sparsely connected graph. To introduce more rich edge information, we also generate

k × k m-dimensional edge features E ∈ Rm×k×k. E can be initialized with some

basic edge information (e.g. length and angle and other attributes) or a commutative

function Eij = p(Hi,Hj) = p(Hj,Hi) ∈ Rm, where Hi refers to the feature of node

i. Note for directed graph, the commutative property is not required.

The features H and E, together with the adjacency A, are then fed into GNN
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module. Pairs of features are processed in a Siamese fashion (Bromley et al., 1994).

Standard GCN’s message passing rule simply updates node embedding as shown in

Eq. (5.1). In contrast, each GNN layer in our model computes a new pair of node

and edge embeddings simultaneously:

H(l+1) = fi(H
(l),E(l),A;W l

0), E(l+1) = g(H(l),E(l),A;W l
1) (5.2)

where W l
0 and W l

1 are the learnable parameters at layer l. The edge information

is essential to provide structural feature enhancing graph matching. We initialize

H(0) = H and E(0) = E in our setting. We will discuss the details of functions f

and g in Sec. 5.2.2. Following state-of-the-art work (Wang et al., 2019a), we also

compute the cross-graph affinity followed by a column/row-wise softmax activation

and a Sinkhorn layer (Adams and Zemel, 2011):

Mij = exp
(
τH>(1)iΛH(2)j

)
, S = Sinkhorn(M) (5.3)

Note here M ∈ Rk×k is the node-level similarity matrix encoding similarity between

two graphs, differing from the edege-level affinity matrix K in Eq. 1.1. τ is the

weighting parameter of similarity, Λ contains learnable parameters and H(1)i is the

node i’s embedding from graph G1. The output S ∈ [0, 1]k×k,S1 = 1,S>1 = 1 is

a so-called doubly-stochastic matrix. Here Sinkhorn(·) denotes the following update

iteratively to project M into doubly stochastic polygon:

M(t+1) = M(t) − 1

n
M(t)11> − 1

n
11>M(t) +

1

n2
11>M(t)11> − 1

n
11> (5.4)

The Sinkhorn layer is shown to be an approximation of Hungarian algorithm which

produces discrete matching output (Kuhn, 1955). As there are only matrix multi-

plication and normalization operators involved in Sinkhorn layer, it is differentiable.

In practice, Eq. (5.4) converges rapidly within 10 iterations for decades of nodes.
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Figure 5.2: Illustration of the Proposed CIE Layer for Embedding Based Deep Graph

Matching. The Operation “Linear” Refers to the Linear Mapping in Eq. (5.8).

Less iterations involved, more precise back-propagated gradients can be achieved.

We employ a cross-graph node embedding strategy following (Wang et al., 2019a):

H
(l)
(1) = fc

(
cat(H

(l)
(1),SH

(l)
(2))
)
, H

(l)
(2) = fc

(
cat(H

(l)
(2),S

>H
(l)
(2))
)

(5.5)

where fc is a network and cat(·, ·) is the concatenation operator. H(i) is the node

feature of graph i. This procedure seeks to merge similar features from another graph

into the node feature in current graph. It is similar to the feature transfer strategy in

(Aberman et al., 2018) for sparse correspondence, which employs a feature merging

method analogous to style transfer (Li et al., 2017).

As Sinkhorn layer does not necessarily output binary digits, we employ Hungarian

algorithm (Kuhn, 1955) to discretize matching output S in testing. The testing differs

from the training due to the Hungarian discretization. We introduce a novel attention-

like mechanism termed as Hungarian attention, along with existing loss functions

(will be detailed in Sec. 5.2.3). The final training loss is as follows, where SG and H

correspond to binary true matching and Hungarian attention loss.

minH(S,SG) (5.6)
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5.2.2 Channel-independent Embedding

We detail the updating rule in Eq. (5.2). We propose a method to merge edge

features into node features and perform matching on nodes. Edge information acts

an important role in modeling relational data, whereby such relation can be complex

thus should be encoded with high-dimensional feature. To this end, Gilmer et al.

(2017) introduce a general embedding layer, which takes node and edge features and

outputs a message to node v, then fuses the message and the current embedding:

m(l)
v = σ

(∑
w∈Nv

ft (Evw) H(l)
w + W(l)H(l)

)
, H(t+1)

v = ut
(
H(t)
v ,m

(l)
v

)
(5.7)

where Evw is the feature corresponding to edge (v, w). In the realization of Eq.

(5.7) (Gilmer et al., 2017), m
(l)
v and H

(l)
v are fed to GRU (Cho et al., 2014) as a

sequential input. There are several variants which take into account specific tasks (Li

et al., 2016; Schütt et al., 2017; Chen et al., 2019). Among these, Li et al. (2016)

generates a transformation matrix for each edge and Schütt et al. (2017) resorts to

merge embedding via fully connected neural networks. While edge-wise merging is

straightforward, the representation ability is also limited. On the other hand, fully

connected merging strategy will result in high computational cost and instability for

back-propagation. To address these issues, we propose to merge embedding in a

channel-wise fashion, which is termed as Channel-Independent Embedding (CIE).

Concretely, the updating rule is written as:

H(l+1)
v = σ

∑
w∈Nv

ΓN

(
W

(l)
1 E(l)

vw ◦W
(l)
2 H(l)

w

)
︸ ︷︷ ︸
channel-wise operator/function

+ σ
(
W

(l)
0 H(l)

v

)
(5.8)

E(l+1)
vw = σ

(
W

(l)
1 E(l)

vw

)
(5.9)

where ΓN(· ◦ ·) is a channel-wise operator/function (above the underbrace), and it

performs calculation per-channel and the output channel dimension is the same as
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input. The second σ(·) term is the message a node passes to itself, which is necessary

in keeping the node information contextually consistent through each CIE layer. In

this fashion, CIE is thus a procedure to aggregate node and edge embedding in each

channel independently, which requires the dimensions of node (W
(l)
2 H

(l)
w ) and edge

(W
(l)
1 E

(l)
vw) representations to be equal. Similarly, we also propose an corresponding

updating rule of edge embedding by substituting Eq. (5.9):

E(l+1)
vw = σ

(
ΓE

(
W

(l)
1 E(l)

vw ◦ h
(
H(l)
v ,H

(l)
w

)))
+ σ

(
W

(l)
1 E(l)

vw

)
(5.10)

where h(·, ·) is commutative h(X,Y) = h(Y,X). Eq. (5.10) is supplementary to

Eq. (5.8).

Fig. 5.2 shows a schematic diagram of CIE layer, which is motivated from two

perspectives. First, CIE is motivated by counterparts in CNN (Qiu et al., 2017; Tran

et al., 2018) which decouple a 3D convolution into two 2D ones (e.g. a 3 × 3 × 3

convolution can be decomposed to a 1× 3× 3 and a 3× 1× 1 convolutions). In this

sense, the number of parameters can be significantly reduced. As shown in Fig. 5.2,

node and edge embedding is first manipulated along the channel direction via a linear

layer, then operated via ΓN and ΓE orthogonal to the channel direction. Instead of

merging node and edge as a whole, CIE layer decouples it into two operations. Second,

CIE is also motivated by the triumph of multi-head structure (e.g. graph attention

(Veličković et al., 2018)), the key of which is to conduct unit calculation multiple

times and concatenate the results. Multi-head proved effective to further improve the

performance since it is capable of capturing information at different scales or aspects.

Traditional neural node-edge message passing algorithms (Gilmer et al., 2017; Li

et al., 2016; Schütt et al., 2017) typically produce a unified transformation matrix for

all the channels. On the other hand, in Eq. (5.8) (5.9) and (5.10), one can consider

that the basic operator in each channel is repeated d times in a multi-head fashion.
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The cross-channel information exchange, as signified in Eq. (5.8) (5.9) and (5.10),

only happens before the channel-wise operator (i.e. weights W
(l)
i as the cross-channel

matrices). The main difference between CIE and traditional multi-head approaches

e.g. (Veličković et al., 2018) is that CIE assumes the channel-independence of two

embedded features (node and edge), while traditional ones only take one input under

head-independence assumption.

5.2.3 Hungarian Attention Mechanism

For most graph matching algorithms, the output is in a continuous domain.

Though there are some alternatives that deliver discrete solutions by adding more

constraints or introducing numerical continuation (Zhou and Torre, 2012; Yu et al.,

2018b), the main line of methods is to incorporate a sampling procedure (e.g. winner-

take-all and Hungarian). Among them, the Hungarian algorithm (Kuhn, 1955) is a

widely adopted, for its efficiency and theoretical optimality.

However, the Hungarian algorithm incurs a gap between training (loss function)

and testing stages (Hungarian sampling). We compare the permutation loss (Wang

et al., 2019a) for concrete analysis:

LCE = −
∑

i∈G1,j∈G2

(
SG
ij log Sij +

(
1− SG

ij

)
log (1− Sij)

)
(5.11)

Note Eq. (5.11) is an element-wise version of binary cross-entropy. During training,

this loss tends to drag the digits in S into binary format and is likely trapped to

local optima. This is because this loss will back-propagate the gradients of training

samples that are easy to learn in the early training stage. In later iterations, this

loss is then hard to give up the digits that have become binary. In fact, the similar

phenomenon is also investigated in the focal loss (Lin et al., 2017) in comparison to

the traditional cross-entropy loss. During the testing stage, however, the Hungarian
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Figure 5.3: A Working Example Illustrating Our Proposed Hungarian Attention

Pipeline Starting from Similarity Matrix. Sinkhorn Algorithm Solves Similarity Ma-

trix into a Doubly-stochastic Matrix in a Differentiable Way. A Discrete Permutation

Matrix Is Further Obtained via Hungarian Algorithm. Our Proposed Hungarian At-

tention, Taking the Ground Truth Matching Matrix into Account, Focuses on the

“important” Digits Either Labeled True or Being Mis-classified. The Output Ma-

trix Is Obtained by Attention Pooling from Doubly-stochastic Matrix, Where We

Compute a Loss on It.

algorithm has no preference on the case if digits in S are close to 0 − 1 or not. It

binarizes S anyway. Therefore, the effort of Eq. (5.11) to drag S into binary might

be meaningless.

This issue is likely to be solved by integrating Hungarian algorithm during the

training stage. Unfortunately, Hungarian algorithm is undifferentiable and its behav-

ior is difficult to mimic with a differentiable counterpart. In this chapter, instead of

finding a continuous approximation of Hungarian algorithm, we treat it as a black
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box and dynamically generate network structure (sparse link) according to its output.

Concretely, the sparse link is calculated as:

Z = Atten
(
Hungarian(S),SG

)
= P ∪Q (5.12)

where the attention mechanism Atten is fulfilled by an element-wise “logic OR” func-

tion. Fig. 5.3 shows an example of Hungarian attention procedure, and Eq. (5.12)

highlights the most contributing digit locations: positive digits P = S where Hun-

garian agrees with the ground-truth; negative digits Q = Hungarian(S) \ SG where

Hungarian differs from ground-truth. While GT (positive digits) naturally points out

the digits that must be considered, negative ones indicate the digits that most hinder

the matching (most impeding ones among all mis-matchings). Thus we need only

minimize the loss at Z, without considering the rest of digits. As we note that this

mechanism only focuses on a small portion of the matching matrix which is analogous

to producing hard attention, we term it Hungarian attention. Now that with the

attention mask Z, the Hungarian attention loss becomes:

HCE = −
∑

i∈G1,j∈G2

Zij

(
SG
ij log Sij +

(
1− SG

ij

)
log (1− Sij)

)
(5.13)

Note that Hungarian attention mechanism can also be applied to other loss functions

once the matching score is calculated in an element-wise fashion. Our experiment

also studies Hungarian attention loss when casted on focal loss (Lin et al., 2017) and

a specifically designed margin loss.

Finally we give a brief qualitative analysis on why Hungarian attention can im-

prove matching loss. As discrete graph matching problem is actually built upon Delta

function over permutation vertices (1 at ground-truth matching and 0 otherwise) (Yu

et al., 2018b), learning of graph matching with permutation loss is actually to ap-

proximate such functions with continuous counterparts. Unfortunately, more precise
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Table 5.1: Accuracy on Pascal VOC (Best in Bold). White and Gray Background

Refer to Results on Testing and Training, Respectively.

method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Ave

GMN-D 31.9 47.2 51.9 40.8 68.7 72.2 53.6 52.8 34.6 48.6 72.3 47.7 54.8 51.0 38.6 75.1 49.5 45.0 83.0 86.3 55.3

GMN-P 31.1 46.2 58.2 45.9 70.6 76.4 61.2 61.7 35.5 53.7 58.9 57.5 56.9 49.3 34.1 77.5 57.1 53.6 83.2 88.6 57.9

GAT-P 46.4 60.5 60.9 51.8 79.0 70.9 62.7 70.1 39.7 63.9 66.2 63.8 65.8 62.8 39.5 82.0 66.9 50.1 78.5 90.3 63.6

GAT-H 47.2 61.6 63.2 53.3 79.7 70.1 65.3 70.5 38.4 64.7 62.9 65.1 66.2 62.5 41.1 78.8 67.1 61.6 81.4 91.0 64.6

EPN-P 47.6 65.2 62.2 52.7 77.8 69.5 63.4 69.6 37.8 62.8 63.6 63.9 64.6 61.9 39.9 80.5 66.7 45.5 77.6 90.6 63.2

PIA-D 39.7 57.7 58.6 47.2 74.0 74.5 62.1 66.6 33.6 61.7 65.4 58.0 67.1 58.9 41.9 77.7 64.7 50.5 81.8 89.9 61.6

PIA-P 41.5 55.8 60.9 51.9 75.0 75.8 59.6 65.2 33.3 65.9 62.8 62.7 67.7 62.1 42.9 80.2 64.3 59.5 82.7 90.1 63.0

PCA-P 40.9 55.0 65.8 47.9 76.9 77.9 63.5 67.4 33.7 65.5 63.6 61.3 68.9 62.8 44.9 77.5 67.4 57.5 86.7 90.9 63.8

PCA-H 49.8 60.7 63.9 52.6 79.8 72.5 63.8 71.2 38.4 62.5 71.7 65.4 66.6 62.5 40.5 84.7 66.1 47.9 80.5 91.1 64.6

PCA+-P 46.6 61.0 62.3 53.9 78.2 72.5 64.4 70.5 39.0 63.5 74.8 65.2 65.0 61.6 40.8 83.2 67.1 50.5 79.6 91.6 64.6

CIE2-P 50.9 65.5 68.0 57.0 81.0 75.9 70.3 73.4 41.1 66.7 53.2 68.3 68.4 63.5 45.3 84.8 69.7 57.2 79.8 91.6 66.9

CIE2-H 51.2 68.4 69.5 57.3 82.5 73.5 69.5 74.0 40.3 67.8 60.0 69.7 70.3 65.1 44.7 86.9 70.7 57.3 84.2 92.2 67.4

CIE1-P 52.1 69.4 69.9 58.9 80.6 76.3 71.0 74.2 41.1 68.0 60.4 69.7 70.7 65.1 46.1 85.1 70.4 61.6 80.7 91.7 68.1

CIE1-H 51.2 69.2 70.1 55.0 82.8 72.8 69.0 74.2 39.6 68.8 71.8 70.0 71.8 66.8 44.8 85.2 69.9 65.4 85.2 92.4 68.9

PCA-P 75.8 99.2 83.3 74.7 98.7 96.3 74.3 87.8 80.9 85.7 100.0 83.7 83.8 98.7 66.5 99.1 80.7 99.7 98.2 97.0 88.2

CIE1-P 56.5 84.0 73.5 58.0 91.5 81.1 67.8 76.8 46.4 72.2 98.0 73.9 73.6 77.9 46.1 94.8 72.7 93.6 93.7 91.6 76.2

CIE1-H 59.4 88.1 75.9 58.0 94.3 81.9 69.4 78.9 49.5 78.2 99.7 78.1 78.0 82.1 47.4 95.8 75.7 97.6 96.0 91.1 78.7

approximation to Delta function will result in higher non-smoothness, as discussed

in Yu et al. (2018b). For highly non-smooth objective, the network is more likely

trapped at local optima. Hungarian attention, however, focuses on a small portion of

the output locations, thus does not care about if most of the output digits are in {0, 1}.

In this sense, Hungarian attention allows moderate smoothness of the objective, thus

optimizer with momentum is likely to avoid local optima.

5.3 Experiments

Experiments are conducted on three benchmarks widely used for learning-based

graph matching: CUB2011 dataset (Welinder et al., 2010) following the protocol

in (Choy et al., 2016), Pascal VOC keypoint matching (Everingham et al., 2010b;

60



Bourdev and Malik, 2009) which is challenging and Willow Object Class dataset

(Cho et al., 2013). Mean matching accuracy is adopted for evaluation:

Acc =
1

k

∑
i∈G1,j∈G2

AND
(
Hungarian(S)ij,S

G
ij

)
(5.14)

The algorithm abbreviation is in the form “X-Y”, where “X” and “Y” refer to the

network structure (e.g. CIE) and loss function (e.g. Hungarian attention loss), re-

spectively. Specifically, D, P and H correspond to displacement used in (Zanfir and

Sminchisescu, 2018), permutation as adopted in (Wang et al., 2019a) and Hungarian

attention over permutation loss devised by this chapter, respectively.

Peer methods. We compare our method with the following selected counter-

parts: 1) HARG (Cho et al., 2013). This shallow learning method is based on hand-

crafted feature and Structured SVM; 2) GMN (Zanfir and Sminchisescu, 2018). This

is a seminal work incorporating graph matching and deep learning, and the solver is

upon spectral matching (Leordeanu and Hebert, 2005). While the loss of this method

is displacement loss, we also report the results of GMN by replacing its loss with

permutation loss (GMN-P); 3) PIA/PCA (Wang et al., 2019a). PCA and PIA

correspond to the algorithms with and without cross-graph node embedding, respec-

tively. Readers are referred to Wang et al. (2019a) for more details; We further

replace the GNN layer in our framework with: 4) GAT (Veličković et al., 2018).

Graph attention network is an attention mechanism on graphs, which reweights the

embedding according to attention score; 5) EPN (Gong and Cheng, 2019). This

method exploits multi-dimensional edge embedding and can further be applied on di-

rected graphs. The edge dimension is set to 32 in our experiments. Finally, we term

our network structure CIE for short. To investigate the capacity of edge embedding

update, we also devise a version without edge embedding, in which connectivity is

initialized as reciprocal of the edge length then normalized, rather than A. This
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model is called PCA+ since the node embedding strategy follows PCA.

Implementation details. As the node number of each graph might vary, we add

dummy nodes for each graph pair such that the node number reaches the maximal

graph size in a mini-batch in line with the protocol in (Wang et al., 2019a). In either

training or testing stages, these dummy nodes will not be updated or counted. The

activation function in Eq. (5.8) (5.9) and (5.10) is set as Relu in all experiments.

Specifically, the node and edge embedding is implemented by:

H(l+1)
·q = σ

((
A�

(
W

(l)
1 E(l)

)
·q

)(
W

(l)
2 H(l)

)
·q

)
+ σ

((
W

(l)
0 H(l)

)
·q

)
(5.15a)

E(l+1)
·q = σ

(∣∣∣∣(W
(l)
0 H(l)

)
·q
	
(
W

(l)
0 H(l)

)>
·q

∣∣∣∣� E(l)
·q

)
+ σ

((
W

(l)
1 E(l)

)
·q

)
(5.15b)

where � and 	 refer to element-wise product and pairwise difference, respectively.

H·q is the qth channel of H. In CIE1 setting, only node-level merging Eq. (5.15a)

is considered and the edge feature is updated as Eq. (5.9). In CIE2 setting, we also

replace the edge update Eq. (5.10) with Eq. (5.15b). Note edge embedding is used in

both CIE1 and CIE2 and note PCA-H can be regarded as the pure node embedding

version of our approach. The edge feature is initiated as reciprocal of the edge length.

For training, batch size is set to 8. We employ SGD optimizer (Bottou, 2010) with

momentum 0.9. Two CIE layers are stacked after VGG16.

5.3.1 Synthetic Test

Synthetic graphs are generated for training and testing following the protocol in

Cho et al. (2010). Specifically, Kpt keypoints are generated for a pair of graphs with a

1024-dimensional random feature for each node, which is sampled from uniform distri-

bution U(−1, 1). Disturbance is also applied to graph pairs including: Gaussian node
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feature noise from N (0, σ2
ft); random affine transformation


s cos θ −s sin θ tx

s sin θ s cos θ ty

0 0 1


with s ∼ U(0.8, 1.2), θ ∼ U(−60, 60), tx, ty ∼ U(−10, 10) followed by Gaussian coor-

dinate position noise N (0, σ2
co). By default we assign Kpt = 25, σft = 1.5, σco = 5.

Two graphs share the same structure. We generate 10 random distributions for each

test. Results are shown in Fig. 5.4. The performance of PCA and CIE is reported.

We see our method significantly outperformed PCA. It can further be noticed that

Hungarian attention can help to achieve an even higher accuracy. Readers are referred

to Wang et al. (2019a) for some other results on synthetic test.

However, we also notice that the way to generate synthetic graphs is much different

from the distribution of real-world data. For real-world data, on one hand, there is

strong correlation on the neighboring node features. This is the reason why the

message passing from nearby node features works. However, the features of synthetic

data are randomly generated and there is no correlation between neighboring node

features. Therefore, message passing mechanism is not very effective to reveal the

relation or pattern among local nodes for synthetic data. On the other hand, features

of real-world data typically lie on a manifold embedded in high dimensional space,

hence is low dimensional. However, randomly generated features will span the whole

space and show no patterns.

Taking into account the aforementioned factors, we believe there is a demand for

a novel strategy to generate more reasonable synthetic data. This can be one of the

future works.
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Figure 5.4: Results on Synthetic Test Where Two Different Loss Functions Are Com-

pared in Ablative Study.

5.3.2 Results on CUB2011

CUB2011 consists of 11,788 images from 200 kinds of birds with 15 annotated

parts. We randomly sample image pairs from the dataset following the implementa-

tion released by Choy et al. (2016). We do not use the pre-alignment of poses during

testing, because their alignment result is not publicly available. Therefore, there ex-

ists significant variation in pose, articulation and appearance across images, in both

training and testing phase. Images are cropped around bounding box and resized to

256 × 256 before fed into the network. Instead of evaluating the performance in a

retrieval fashion (Zanfir and Sminchisescu, 2018), we directly evaluate the matching

accuracy since the semantic key-points are pre-given. We test two settings: 1) intra-

class. During training, we randomly sample images, with each pair sampled from the

same category (out of 200 bird categories). In testing, 2,000 image pairs (100 pairs for

each category) are sampled; 2) cross-class. We analogously sample image pairs with-

out considering the category information and 5,000 randomly sampled image pairs

are employed for testing. While the first setting is for a class-aware situation, the

second setting is considered for testing the class-agnostic case. Results are shown in
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Figure 5.5: Performance Study on Pascal Voc. Note in (a) the Loss Is Calculated

on All Matching Digits for Both CIE1-p and CIE1-h. Note Around 10th Epoch, the

Accuracy of CIE1-p Almost Reaches the Highest, but the Loss Keeps Descending

until 30th Epoch. This Indicates That in Most of the Latter Epochs, P-loss Performs

“meaningless” Back-propagation to Drag the Output to Binary. H-loss, by Accommo-

dating Smoothness, Can Emphasize Most Contributing Digits and Achieves Higher

Accuracy.

Table 5.3.

We see our method surpasses all the competing methods in terms of matching

accuracy. Besides, almost all the selected algorithms can reach over 90% accuracy,

indicating that this dataset contains mostly “easy” learning samples. In this case,

the Hungarian attention can slightly improve the performance since easy gradients

agree with descending trend of the loss on the whole dataset.

5.3.3 Results on Pascal VOC

The Pascal VOC dataset with Key-point annotation (Bourdev and Malik, 2009)

contains 7,020 training images and 1,682 testing images with 20 classes in total. To
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the best of our knowledge, this is the largest and most challenging dataset for graph

matching in computer vision. Each image is cropped around its object bounding box

and is resized to 256 × 256. The node size of this dataset varies from 6 to 23 and

there are various scale, pose and illumination perturbations. Experimental results

are summarized in Table 6.1. We see in either setting, CIE significantly outperforms

all peer algorithms. Specifically, CIE1-H achieves the best performance and has 0.8%

improvement w.r.t. average accuracy over CIE1-P. For each class, CIE1-H and CIE1-

P carve up most of the top performance. We also note that CIE1-H has a close

performance on “table” compared with GMN-D. Since P-loss is naturally not as

robust as D-loss on symmetric objects, P-loss showed great degradation over D-loss

on “table” (as discussed in (Wang et al., 2019a)). However, with the help of Hungarian

link, H-loss can maintain relatively high accuracy despite natural flaw of P-loss. This

observation indicates that H-loss can focus on “difficult” examples. We also note

that CIE1 produces better results against CIE2, which implies that updating edge

embedding is less effective compared to a singleton node updating strategy. We can

also see from Table 6.1 that PCA-P has much higher performance on training samples

than CIE1-H, which is to the contrary of the result on testing samples. This might

indicate that PCA-P overfits the training samples.

Accuracy/loss vs. training epoch. We further show the typical training

behavior of P-loss and H-loss on Pascal VOC dataset in Fig. 5.5. 30 epochs are

involved in a whole training process. Accuracy is evaluated on testing samples after

each epoch while loss is the average loss value within each epoch. In the early training

stage, the loss of CIE1-P immediately drops. On the other hand, CIE1-H hesitates

for several epochs to find the most effective descending direction. On the late stage,

we observe that even though P-loss (Eq. (5.11)) calculates much more digits than

H-loss (Eq. (5.13)), the loss values are opposite. This counter-intuitive fact strongly

66



indicates that P-loss makes meaningless effort, which is not helpful to improve the

performance, at late stage. The proposed H-loss, on the other hand, is capable of

avoiding easy but meaningless gradients.

Effect of Hungarian attention mechanism. We also conduct experiments to

show the improvement of Hungarian attention over several loss functions (with and

without Hungarian attention): Hungarian attention is applied on Focal loss (Focal)

(Lin et al., 2017) as:

Lfocal =


−αZij(1− Sij)

γ log(Sij), SG
ij = 1

−(1− α)ZijS
γ
ij log(1− Sij), SG

ij = 0

(5.16)

where controlling parameters α = 0.75 and γ = 2 in our setting. We also design a

margin loss (Margin) with Hungarian attention under a max-margin rule. Note we

insert the Hungarian attention mask Zij into Eq. (5.16) and Eq. (5.17) based on the

vanilla forms.

Lmargin =


Zij ×max(1− Sij − β, 0), SG

ij = 1

Zij ×max(Sij − β, 0), SG
ij = 0

(5.17)

where we set the margin value β = 0.2. Loss of Eq. (5.17) is valid because after

Softmax and Sinkhorn operations, Sij ∈ [0, 1]. We also show permutation loss (Perm)

(Wang et al., 2019a). Result can be found in Fig. 5.5 (b) whereby the average accuracy

on Pascal VOC is reported. All the settings are under CIE1. For either loss, the

proposed Hungarian attention can further enhance the accuracy, which is further

visualized by a pair of matching results under P-loss and H-loss in Fig. 5.6.
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(a) Reference Image (b) P-loss: 7/10 (c) H-loss: 8/10

Figure 5.6: Visualization of a Matching Result: 10 Key Points in Each Image with

7 and 8 Correct Matchings Dispalyed, Respectively. Different Colors Across Images

Indicate Node Correspondence. The Larger Size of Dot, the Larger Is the Predicted

Value Sij. (A) the Reference Image. (B) Result on the Target Image from CIE1-p.

(C) Result on the Target Image from CIE1-h. We See Though H-loss i.e. Hungar-

ian Attention Loss Outputs Smaller Predicted Values, It Delivers a More Accurate

Matching.

5.3.4 Results on Willow Object Class

We test the transfer ability on Willow Object Class (Cho et al., 2013). It contains

256 images 1 of 5 categories in total, with three categories (face, duck and winebottle)

collected from Caltech-256 and resting two (car and motorbike) from Pascal VOC

2007. This dataset is considered to have bias compared with Pascal VOC since images

in the same category are with relatively fixed pose and background is much cleaner.

We crop the object inside its bounding box and resize it to 256× 256 as CNN input.

While HARG is trained from scratch following the protocol in (Cho et al., 2013),

all the resting counterparts are either directly pre-trained from the previous section

or fine-tuned upon the pre-trained models. We term the method “X-V” or “X-W”

1The data size is too small to train a deep model. Hence we only evaluate the transfer ability on
this dataset.
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Table 5.2: Accuracy (%) on Willow Object.

method face mbike car duck wbottle

HARG 91.2 44.4 58.4 55.2 66.6

GMN-V 98.1 65.0 72.9 74.3 70.5

GMN-W 99.3 71.4 74.3 82.8 76.7

PCA-V 100.0 69.8 78.6 82.4 95.1

PCA-W 100.0 76.7 84.0 93.5 96.9

CIE-V 99.9 71.5 75.4 73.2 97.6

CIE-W 100.0 90.0 82.2 81.2 97.6

Table 5.3: Accuracy (%) on CUB.

method intra-class cross-class

GMN-D 89.6 89.9

GMN-P 90.4 90.8

GAT-P 93.2 93.4

PCA-P 92.9 93.5

PCA-H 93.7 93.5

CIE-P 94.1 93.8

CIE-H 94.4 94.2

to indicate pre-trained model on Pascal VOC or fine-tuned on Willow, respectively.

CIE refers to CIE1-H for short. Results in Table 5.2 suggest that our method is

competitive to state-of-the-art.

5.4 Conclusion

We have presented a novel and effective approach for learning based graph match-

ing. On one hand, the novelty of our method partially lies in the development of
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the Hungarian attention, which intrinsically adapts the matching problem. It is fur-

ther observed from the experiments that Hungarian attention can improve several

matching-oriented loss functions, which might bring about potential for a series of

combinatorial problems. On the other hand, we also devise the channel indepen-

dent embedding (CIE) technique for deep graph matching, which decouples the basic

merging operations and is shown robust in learning effective graph representation.

Extensive experimental results on multiple matching benchmarks show the leading

performance of our solver, and highlight the orthogonal contribution of the two pro-

posed components on top of existing techniques.
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Chapter 6

LEARNING LATENT TOPOLOGY FOR GRAPH MATCHING

6.1 Motivation

With the strong learning ability of deep networks, recent research on graph match-

ing (GM) has migrated from traditional deterministic optimization (Schellewald and

Schnörr, 2005; Cho et al., 2010; Zhou et al., 2015a) towards learning-based methods

(Zanfir and Sminchisescu, 2018; Wang et al., 2019a; Yu et al., 2020a). GM is a clas-

sic combinatorial and NP-hard problem (Loiola et al., 2007). As the mathematical

cornerstone for a series of real-world applications (e.g., image matching (Wang et al.,

2018b), social mining (Chiasserini et al., 2018) and protein matching (Krissinel and

Henrick, 2004)), GM has received persistent attention from the machine learning and

optimization communities for many years.

Recently, deep learning based GM solvers (Zanfir and Sminchisescu, 2018; Wang

et al., 2019a; Yu et al., 2020a; Fey et al., 2020; Roĺınek et al., 2020) have enabled end-

to-end training of GM on high-quality human labelled datasets (e.g., Pascal VOC

(Everingham et al., 2010a; Bourdev and Malik, 2009) and SPair-71k (Min et al.,

2019)), which greatly improved the model capacity. Any of the aforementioned deep

GM algorithms behaves as an integral framework, of which the main parts cover

topology construction 1 , feature extraction and differentiable GM solver. In this line

of works, affinity M (see Eq. (1.1)) is not obtained beforehand, but calculated using

node/edge features from some feature backbones given heuristically constructed con-

nectivity, then fed to subsequent GM solvers. Therefore, recent investigation on deep

1Topology in some GM problems is pre-defined and needs to be fixed, such as graph isomorphism.
In this proposal, we consider a more generic case where topology construction is necessary.
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GM frameworks typically focuses on two essential parts: 1) node/edge feature back-

bone (e.g., graph convolutional networks Wang et al. (2019a), channel-independent

embedding (Yu et al., 2020a) and SplineCNN (Fey et al., 2018)); 2) GM solvers

(e.g., spectral (Zanfir and Sminchisescu, 2018), linear (Wang et al., 2019a) and black-

box (Pogancic et al., 2020)). In particular, since the feature backbones are variants

of Graph Neural Networks, they requires initial heuristically-constructed connectiv-

ity/topology (e.g., Delaunay (Wang et al., 2019a) or k-nearest (Zhang and Lee, 2019)),

and the topology remains fixed throughout the training procedure in almost all the

existing deep GM methods. In this sense, the construction of graph topology is only a

pre-processing step, independent of the GM task. This fixed mechanism was adopted

in many GM applications ranging from computer vision (Wang et al., 2019a; Yu

et al., 2020a; Fey et al., 2020; Roĺınek et al., 2020) to social networks (Zhang and

Tong, 2016; Heimann et al., 2018; Xiong and Yan, 2020), and potentially limits the

reliability under ambiguity and misleading.

From a learning perspective, we argue that freezing the graph topology for match-

ing can hinder the capacity of deep GM frameworks. For a pre-defined graph topology,

the linked nodes sometimes result in less meaningful or even misleading interaction.

Though some earlier attempts (Cho and Lee, 2012; Cho et al., 2013) sought to ad-

just the graph topology under traditional learning settings, such procedures cannot

be readily integrated into end-to-end deep frameworks due to the undifferentiable

nature. Our method is built upon the following hypothesis:

• There exists some latent (distribution of) discrete topology better than what is

heuristically created for GM.

Based on this, we set out to learn the topology (or its distribution) that is more

suitable for GM. We will investigate an end-to-end framework to jointly learn the
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latent graph topology and perform GM. Taking into account the distribution of the

topology, we will try to leverage the power of graph generative model to automatically

produce graph topology from given features and their geometric relations.

6.2 Learning Latent Topology for GM

In this section, we describe details of the proposed framework with two specific al-

gorithms derived from deterministic and generative perspectives, respectively. Both

algorithms are motivated by the hypothesis that there exists some latent topology

more suitable for matching rather than a fixed one. Note that the proposed deter-

ministic algorithm performs a standard forward-backward pass to jointly learn the

topology and matching, while our generative algorithm consists of an alternative opti-

mization procedure between estimating latent topology and learning matching under

an Expectation-Maximization (EM) interpretation. In general, the generative algo-

rithm assumes that a latent topology is sampled from a latent distribution, where the

expected matching accuracy under this distribution is maximized. Therefore, we ex-

pect to learn a topology generator under such distribution. We reformulate GM in a

Bayesian fashion for consistent discussion in Sec. 6.2.1, detail deterministic/generative

latent module in Sec. 6.2.2 and discuss the loss functions from a probabilistic perspec-

tive in Sec. 6.2.3. We finally elaborate on the holistic framework and the optimization

procedure for both algorithms (deterministic and generative) in Sec. 6.2.4.

6.2.1 Problem Definition and Background

Learning-based GM problem can be viewed as an extension to Eq. (1.1). Let

G(s) and G(t) represent respectively the source and target graphs for matching. We

represent a graph as G := {X,E,A}, where X ∈ Rn×d1 is the representation of n

nodes with dimension d1. E ∈ Rm×d2 are d2-dimensional features of m edges and
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A ∈ {0, 1}n×n is initial connectivity (i.e., topology) matrix by heuristics (e.g., Delau-

nay triangulation). For notational brevity, we assume d1 and d2 remain intact after

updating the features across each convolutional layers of GNN (i.e., feature dimen-

sions of both nodes and edges will not change after each layer’s update). Denote the

matching Z ∈ {0, 1}n×n between two graphs, where Zij = 1 indicates a correspon-

dence exists between node i in G(s) and node j in G(t), and Zij = 0 otherwise. Given

training samples {Zk,G(s)k ,G(t)k } with k = 1, 2, ..., N , the objective of learning-based

GM aims to maximize the likelihood:

max
θ

∏
k

Pθ

(
Zk|G(s)k ,G(t)k

)
(6.1)

where θ denotes model parameters. Pθ(·) measures the probability of matching Zk

given the k-th pair, and is instantiated via a network parameterized by θ.

Being a generic module for producing latent topology, our method can be flexibly

and easily integrated into existing deep GM frameworks. We build up our method

based on state-of-the-art (Roĺınek et al., 2020), which utilizes SplineCNN (Fey et al.,

2018) for node/edge feature learning and black-box GM solver (Pogancic et al., 2020).

SplineCNN is a method to perform graph-based representation learning via con-

volution operators defined based on B-splines (Fey et al., 2018). The initial input

to SplineCNN is G = {X,E,A}, where X ∈ Gn×d1 and A ∈ {0, 1}n×n indicate node

features and topology, respectively (same as in Sec. 6.2.1). E ∈ [0, 1]n×n×d2 is so-

called pseudo-coordinates and can be viewed as n2× d2-dimensional edge features for

a fully connected graph (in case m = n2, see Sec. 6.2.1). Let normalized edge feature

e(i, j) = Ei,j,: ∈ [0, 1]d2 if a directed edge (i, j) exists (Ai,j = 1), and 0 otherwise

(Ai,j = 0). Note topology A fully carries the information of N (i) which defines the

neighborhood of node i. During the learning, X and E will be updated while topology

A will not. Therefore SplineCNN is a geometric graph embedding method without

74



adjusting the latent graph topology.

B-spline is employed as basic kernel in SplineCNN, where a basis function has

only support on a specific real-valued interval (Piegl and Tiller, 2012).

Let ((N q
1,i)1≤i≤k1 , ..., (N

q
d,i)1≤i≤kd2 ) be d2 B-spline bases with degree q. The kernel

size is defined in k = (k1, ..., kd2). In SplineCNN, the continuous kernel function

gl : [a1, b1]× ...× [ad2 , bd2 ]→ G is defined as:

gl(e) =
∑
p∈P

wp,l ·Bp(e) (6.2)

where P = (N q
1,i)i× ...× (N q

d,i)i is the B-spline bases (Piegl and Tiller, 2012) and wp,l

is the trainable parameter corresponding to the lth node feature in X, with Bp being

the product of the basis functions in P:

Bp =
d∏
i=1

N q
i,pi

(ei) (6.3)

where e is the pseudo-coordinate in E. Then, given the kernel function g = (g1, ..., gd1)

and the node feature X ∈ Gn×d1 , one layer of the convolution at node i in SplineCNN

reads:

(x ∗ g)(i) =
1

|N (i)|

d1∑
l=1

∑
j∈N (i)

xl(j) · gl(e(i, j)) (6.4)

where xl(j) indicates the convolved node feature value of node j at lth dimension.

This formulation can be tensorized into the following euqation with explicit topology

matrix A:

(x ∗ g|A) = (Â ◦G)X̂ (6.5)

In this sense, we can back-propagate the gradient of A. Reader are referred to Fey

et al. (2018) for more comprehensive understanding of this method.
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6.2.2 Modeling with Latent Topology

Existing learning-based graph matching algorithms consider A to be fixed through-

out the computation without questioning if the input topology is optimal or not. This

can be problematic since input graph construction is heuristic, and it never takes into

account how suitable it is for the subsequent GM task. In our framework, instead of

utilizing a fixed pre-defined topology, we consider to produce latent topology under

two settings: 1) a deterministic and 2) a generative way. The former is often more

efficient while the latter method can be more accurate at the cost of exploring more

latent topology. Note that both methods produce discrete topology to verify our hy-

pothesis about the existence of more suitable discrete latent topology for GM. The

corresponding two deep structures are described below.

Deterministic learning: Given input features X and initial topology A, the

deterministic way of generating latent topology A ∈ {0, 1}n×n is 2 :

Aij = Rounding(sigmoid(y>i Wyj))

with Y = GCN(X,A)

(6.6)

where GCN(·) is the graph convolutional networks (GCN) (Kipf and Welling, 2017)

and yi corresponds to the feature of node i in feature map Y. W is the learnable

parameter matrix. Note that function Rounding(·) is undifferentiable, and will be

discussed in Sec. 6.2.4.

Generative learning: We reparameterize the representation:

P (yi|X,A) = N (yi|µi, diag(σ2)) (6.7)

with µ = GCNµ(X,A) and σ = GCNσ(X,A) are two GCNs producing mean and co-

variance. It is equivalent to sampling a random vector from i.i.d. uniform distribution

2We here consider the node feature X and topology A. Edge feature E can be readily integrated
as another input.
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s ∼ U(0,1), then applying y = µ + s · σ, where (·) is element-wise product.

Similar to Eq. (6.6), by introducing learnable parameter W, the generative latent

topology is sampled following i.i.d. distribution over each edge (i, j):

P (A|Y) =
∏
i

∏
j

P (Aij|yi,yj)

with P (Aij = 1|yi,yj) = sigmoid(y>i Wyj)

(6.8)

Since sigmoid(·) maps any input into (0, 1), Eq. (6.8) can be interpreted as the proba-

bility of sampling edge (i, j). As the sampling procedure is undifferentiable, we apply

Gumbel-softmax trick (Jang et al., 2017) as another reparameterization procedure.

As such, a latent graph topology A can be sampled fully from distribution P (A) and

the procedure becomes differentiable.

6.2.3 Loss Functions

In this section, we explain three loss functions and the underlying motivation:

matching loss, locality loss and consistency loss. The corresponding probabilistic

interpretation of each loss function can be found in Sec. 6.2.4. These functions are se-

lectively activated in DLGM-D and DLGM-G (see Sec. 6.2.4). In DLGM-G, different

loss functions are activated in inference and learning steps.

i) Matching loss. This common term measures how the predicted matching Ẑ

diverges from ground-truth Z. Following Roĺınek et al. (2020), we adopt Hamming

distance on node-wise matching:

LM = Hamming(Ẑ,Z) (6.9)

ii) Locality loss. This loss is devised to account for the general prior that the

produced/learnt graph topology should advocate local connections rather than distant

ones, since two nodes may have less meaningful interaction once they are too distant
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from each other. In this sense, locality loss serves as a prior or regularizer in GM.

As shown in multiple GM methods (Yu et al., 2018b; Wang et al., 2019a; Fey et al.,

2020), Delaunay triangulation is an effective way to deliver good locality. Therefore

in our method, the locality loss is the Hamming distance between the initial topology

A (obtained from Delaunay) and predicted topology A for both the source graph and

the target graph:

LL = Hamming(A(s),A(s)) + Hamming(A(t),A(t)) (6.10)

We emphasize that the locality loss serves as a prior for latent graph. It focuses

on advocating locality, but not reconstructing the initial Delaunay triangulation (as

in Graph VAE (Kipf and Welling, 2016)).

iii) Consistency loss. One can imagine that a GM solver is likely to deliver

better performance if two graphs in a training pair are similar. In particular, we an-

ticipate the latent topology A(s) and A(t) to be isomorphic under a specific matching,

since isomorphic topological structures tend to be easier to match. Driven by this

consideration, we devise the consistency loss which measures the level of isomorphism

between latent topology A(s) and A(t):

LC(·|Z) = |Z>A(s)Z−A(t)|+ |ZA(t)Z> −A(s)| (6.11)

Note that Z does not necessarily refer to the ground-truth, but can be any pre-

dicted matching. In this sense, latent topology A(s) and A(t) can be generated jointly

given the matching Z as guidance. This term can also serve as a consistency prior

or regularization. We give a schematic example showing the merit of introducing the

consistency loss in Fig. 5.1(b).
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Figure 6.1: Holistic Pipeline of Dlgm Consisting of Two Singleton Pipelines. Details

about a Singleton Pipeline Can Be Found In Fig. 6.2

6.2.4 Framework

A schematic diagram of our framework is given in Fig. 6.1 consisting of two sin-

gleton pipelines, with each handling a single input. Detailed diagram can be found

in Fig. 5.1(a) which consists of a singleton pipeline for processing a single image.

It consists of three essential modules: a feature backbone (NB), a latent topology

module (NG) and a feature refinement module (NR). Specifically, module NG cor-

responds to Sec. 6.2.2 with deterministic or generative implementations. Note that

the geometric relations of keypoints provide some prior for generating topology A.

We employ VGG16 (Simonyan and Zisserman, 2014) as NB and feed the produced

node feature X and edge feature E to NG. NB also produces a global feature for

each image. After generating the latent topology A, we pass over X and E together

with A to NR (SplineCNN (Fey et al., 2018)). The holistic pipeline handling pair-

wise graph inputs can be found in Fig. 6.1, which consists of two copies of singleton

pipeline processing source and target data (in a Siamese fashion), respectively. Then
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Figure 6.2: One of the Two Branches of Our DLGM Framework (See the Complete

Version in Fig. 6.3). NB: VGG16 as Backbone Producing a Global Feature of Input

Image, Node and Edge Features; NG: Deterministic or Generative Module Producing

Latent Topology; NR: SplineCNN for Feature Refinement Producing Updated Node

and Edge Features.

the outputs of two singleton pipelines are formulated into affinity matrix, followed

by a differentiable Blackbox GM solver (Pogancic et al., 2020) with message-passing

mechanism (Swoboda et al., 2017). Note that, if NG is removed, the holistic pipeline

with only NB + NR is identical to the method in (Roĺınek et al., 2020). Readers are

referred to this strong baseline (Roĺınek et al., 2020) for more mutual algorithmic

details.

Optimization with Deterministic Latent Graph

We now show how to optimize with the deterministic latent graph module, where the

topology A is produced by Eq. (6.6). The objective of matching conditioned on the

produced latent topology A becomes:

max
∏
k

P
(
Zk|A(s)

k ,A
(t)
k ,G

(s)
k ,G(t)k

)
(6.12)
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Figure 6.3: A Schematic Figure Showing the Merit of Introducing Consistency Loss

for Training. Initial Topology Is Constructed Using Delaunay Triangulation. Given

Matching as Guidance, Latent Topology Is Generated from Inputs. Note That the

Learned Two Structures of Topology Are Isomorphic (Lc = 0), Which Is Easier to

Match in Test, Compared to Non-isomorphic Input Structures (Lc = 4).

Eq. (6.12) can be optimized with standard back-propagation with three loss terms

activated, except for the Rounding function (see Eq. (6.6)), which makes the proce-

dure undifferentiable. To address this, we use straight-through operator (Bengio et al.,

2013) which performs a standard rounding during the forward pass but approximates

it with the gradient of identity during the backward pass on [0, 1]:

∂Rounding(x)/∂x = 1 (6.13)

Though there exist some unbiased gradient estimators (e.g., REINFORCE (Williams,

1992)), the biased straight-through estimator proved to be more efficient and has been

successfully applied in several applications (Chung et al., 2017; Campos et al., 2018).

All the network modules (NG + NB + NR) are simultaneously learned during the
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training. All three losses are activated in the learning procedure (see Sec. 6.2.3),

which are applied on the predicted matching Ẑ, the latent topology A(s) and A(t).

We term the algorithm under this setting DLGM-D.

Optimization with Generative Latent Graph

In this setting, the source and target latent topology A(s) and A(t) are sampled ac-

cording to Eq. (6.7) and (6.8). The objective becomes:

max
∏
k

∫
A

(s)
k ,A

(t)
k

Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
(6.14)

Unfortunately, directly optimizing Eq. (6.14) is difficult due to the integration over

A, which is intractable. Instead, we maximize the evidence lower bound (ELBO)

(Bishop, 2006) as follows:

logPθ(Z|G(s),G(t)) ≥

EQφ(A(s),A(t)|G(s),G(t))

[
logPθ(Z,A

(s),A(t)|G(s),G(t))

− logQφ(A(s),A(t)|G(s),G(t))
] (6.15)

where Qφ(A(s),A(t)|G(s),G(t)) can be any joint distribution of A(s) and A(t) given the

input graphs G(s) and G(t). Equality of Eq. (6.15) holds whenQφ(A(s),A(t)|G(s),G(t)) =

Pθ(A
(s),A(t)|Z,G(s),G(t)). For tractability, we introduce the independence by assum-

ing that we can use an identical latent topology module Qφ (corresponding to NG in

Fig. 5.1(a)) to separately handle each input graph:

Qφ(A(s),A(t)|G(s),G(t)) = Qφ(A(s)|G(s))Qφ(A(t)|G(t)) (6.16)

which can greatly simplify the model complexity. Then we can utilize a neural network

to model Qφ (similar to modeling Pθ). The optimization of Eq. (6.15) is studied in

(Neal and Hinton, 1998), known as the Expectation-Maximization (EM) algorithm.
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Optimization of Eq. (6.15) alternates between E-step and M-step. During E-step

(inference), Pθ is fixed and the algorithm seeks to find an optimal Qφ to approximate

the true posterior distribution (see Sec. 6.2.5 for explanation):

Pθ(A
(s),A(t)|Z,G(s),G(t)) (6.17)

During M-step (learning), Qφ is instead fixed and algorithm alters to maximize the

likelihood:

EQφ(A(s)|G(s)),Qφ(A(t)|G(t))

[
logPθ(Z,A

(s),A(t)|G(s),G(t))
]
∝ −LM (6.18)

We detail on the inference and learning steps as follows.

Inference. This step focuses on deriving posterior distribution Pθ(A
(s),A(t)|Z,G(s),G(t))

using its approximation Qφ. To this end, we fix the parameters θ in modules NB and

NR, and only update the parameters φ in module NG corresponding to Qφ. As stated

in Sec. 6.2.2, we employ the Gumbel-softmax trick for sampling discrete A (Jang et al.,

2017). To this end, we can formulate a 2D vector aij = [P (Aij = 1), 1−P (Aij = 1)]>.

Then the sampling becomes:

softmax (log(aij) + hij; τ) (6.19)

where hij is a random 2D vector from Gumbel distribution, and τ is a small tem-

perature parameter. We further impose prior on latent topology A given A through

locality loss :

log
∏
i,j

P (Aij|Aij) ∝ −LL(A,A) (6.20)

which is to preserve the locality in initial topology A. It should also be noted that

Z is the predicted matching from current Pθ, as Qφ is an approximation. Besides,

we also anticipate two generated topology A(s) and A(t) from a graph pair should be

similar (isomorphic) given Z:

logP
(
A(s),A(t)|Z

)
∝ −LC

(
A(s),A(t)|Z

)
(6.21)
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Algorithm 5 DLGM-D

1: Input: Gs, Gt and ground-truth Z;

2: Output: matching Ẑ;

3: Pretrain Pθ using Eq. (6.12), given Delaunay as input topology;

4: repeat

5: # Inference (E-step):

6: Obtain predicted matching Ẑ using fixed Pθ;

7: Update Qφ (i.e. NG) with loss LL + LC(·|Ẑ) according to Eq. (6.17);

8: # Learning (M-step):

9: Obtain predicted graph topology A(s) and A(t) using Qφ;

10: Update Pθ (i.e. NB and NR) with loss LM given A(s) and A(t) according to

Eq. (6.18);

11: until converge

12: Predict topology and the matching Ẑ with whole network activated (i.e. NG +

NB + NR);

In summary, we activate locality loss and consistency loss as αLL + βLC during

the inference step, where the latter loss is conditioned with the predicted match-

ing rather than the ground-truth. Note that the inference step involves twice re-

parameterization tricks corresponding to Eq. (6.7) and (6.19), respectively. While

the first generates the continuous topology distribution under edge independence as-

sumption, the second performs discrete sampling according to the generated topology

distribution.

Learning. This step optimizes Pθ by fixing Qφ. We sample discrete graph topolo-

gies As completely from the probability of edge P (Aij = 1). Once latent topology

As are sampled, we feed them to module NR together with the node-level features
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from NB. Only NB and NR are updated in this step, and only matching loss LM is

activated.

Remark. Note for each pair of graphs in training, we use an identical random

vector s for generating both graphs’ topology (see Eq. (6.7)). We pretrain the network

Pθ before alternativly training Pθ and Qφ. During pretraining, we activate NB +

NR modules and LM loss during pretraining, and feed the network the topology

obtained from Delaunay as the latent topology. After pretraining, the optimization

will switch between inference and learning steps until convergence. We term the

setting of generative latent graph matching as DLGM-G and summarize it in Alg. 5.

6.2.5 Mathematical Derivation of DLGM-D

We give more details of the optimization on DLGM-D in this section. This part

also interprets some basic formulation conversion (e.g. from Eq. (6.1) to its Bayesian

form). First, we assume there is no latent topology A(s) and A(s) at the current stage.

In this case, the objective of GM is simply:

max
∏
k

Pθ

(
Zk|G(s)k ,G(t)k

)
(6.22)

where Pθ measures the probability of a matching Zk given graph pair G(s)k and G(t)k . If

we impose the latent topology A(s) and A(t), as well as some distribution over them,

then Eq. (6.22) can be equivalently expressed as:

max
∏
k

Pθ

(
Zk|G(s)k ,G(t)k

)
= max

∏
k

∫
A

(s)
k ,A

(t)
k

Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

) (6.23)

where Pθ

(
Zk|G(s)k ,G(t)k

)
is the marginal distribution of Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
with respect to Zk, since A

(s)
k and A

(t)
k are integrated over some distribution. Herein
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we can impose another distribution of the topology Qφ(A
(s)
k ,A

(t)
k |G

(s)
k ,G(t)k ) character-

ized by parameter φ, then we have:

log

∫
A

(s)
k ,A

(t)
k

Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
= log

∫
A

(s)
k ,A

(t)
k

Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

) Qφ(A
(s)
k ,A

(t)
k |G

(s)
k ,G(t)k )

Qφ(A
(s)
k ,A

(t)
k |G

(s)
k ,G(t)k )

= log

E
Qφ(A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k )

Pθ
(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
Qφ(A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k )


≥E

Qφ(A
(s)
k ,A

(t)
k |G

(s)
k ,G(t)k )

[
logPθ(Z,A

(s),A(t)|G(s),G(t))−

logQφ(A(s),A(t)|G(s),G(t))
]

(6.24)

where the final step is derived from Jensen’s inequality. Since optimizating Eq. 6.23

is difficult, we can alter to maximize the right hand side of inequality of Eq. (6.24)

instead, which is the Evidence Lower Bound (ELBO) (Bishop, 2006). Since two input

graphs are handled separately by two identical subroutines (see Fig. 6.2), we can

then impose the independence of topology A
(s)
k and A

(t)
k : Qφ(A(s),A(t)|G(s),G(t)) =

Qφ(A(s)|G(s))Qφ(A(t)|G(t)). In this sense, we can utilize the same parameter φ to

characterize two identical neural networks (generators) for modeling Qφ.

Assuming θ is fixed, ELBO is determined by Qφ. According to Jensen’s inequality,

equality of Eq. (6.24) holds when:

Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
Qφ

(
A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

) = c (6.25)

where c 6= 0 is a constant. We then have:∫
A

(s)
k ,A

(t)
k

Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
=c

∫
A

(s)
k ,A

(t)
k

Qφ

(
A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

) (6.26)
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As Qφ is a distribution, we have:∫
A

(s)
k ,A

(t)
k

Qφ

(
A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
= 1 (6.27)

Therefore, we have: ∫
A

(s)
k ,A

(t)
k

Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
= c (6.28)

We now have:

Qφ

(
A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
=
Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
c

=
Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
∫
A

(s)
k ,A

(t)
k
Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
=
Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
Pθ

(
Zk|G(s)k ,G(t)k

)
=Pθ

(
A

(s)
k ,A

(t)
k |Zk,G(s)k ,G(t)k

)

(6.29)

Eq. (6.29) shows that, once θ is fixed, maximizing ELBO amounts to finding a distri-

bution Qφ approximating the posterior probability Pθ

(
A

(s)
k ,A

(t)
k |Zk,G(s)k ,G(t)k

)
. This

can be done by training the generator Qφ to produce latent topology A given graph

pair and the matching Z. This corresponds to the Inference part in Sec. 6.2.4.

6.3 Experiment

We conduct experiments on datasets including Pascal VOC with Berkeley an-

notation (Everingham et al., 2010a; Bourdev and Malik, 2009), Willow ObjectClass

(Cho et al., 2013) and SPair-71K (Min et al., 2019). We report the per-category and

average performance. The objective of all experiments is to maximize the average

matching accuracy. Both our DLGM-D and DLGM-G are tested. Except for the
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Table 6.1: Accuracy (%) on Pascal VOC (Best in Bold). Only Inlier Keypoints Are

Considered.

method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Ave

GMN 31.1 46.2 58.2 45.9 70.6 76.4 61.2 61.7 35.5 53.7 58.9 57.5 56.9 49.3 34.1 77.5 57.1 53.6 83.2 88.6 57.9

GAT-H 47.2 61.6 63.2 53.3 79.7 70.1 65.3 70.5 38.4 64.7 62.9 65.1 66.2 62.5 41.1 78.8 67.1 61.6 81.4 91.0 64.6

PCA 40.9 55.0 65.8 47.9 76.9 77.9 63.5 67.4 33.7 65.5 63.6 61.3 68.9 62.8 44.9 77.5 67.4 57.5 86.7 90.9 63.8

CIE1-H 51.2 69.2 70.1 55.0 82.8 72.8 69.0 74.2 39.6 68.8 71.8 70.0 71.8 66.8 44.8 85.2 69.9 65.4 85.2 92.4 68.9

DGMC 50.4 67.6 70.7 70.5 87.2 85.2 82.5 74.3 46.2 69.4 69.9 73.9 73.8 65.4 51.6 98.0 73.2 69.6 94.3 89.6 73.2

BBGM 61.5 75.0 78.1 80.0 87.4 93.0 89.1 80.2 58.1 77.6 76.5 79.3 78.6 78.8 66.7 97.4 76.4 77.5 97.7 94.4 80.1

DLGM-D (ours) 60.8 76.0 77.5 79.6 88.0 95.0 90.4 81.6 67.3 82.4 94.1 79.6 81.2 80.5 68.9 98.6 77.1 87.5 97.0 95.3 82.9

DLGM-G (ours) 64.7 78.1 78.4 81.0 87.2 94.6 89.7 82.5 68.5 83.0 93.9 82.3 82.8 82.7 69.6 98.6 78.9 88.9 97.4 96.7 83.8

ablation study, we consistently conduct experiments under α = 5.0 and β = 0.3. We

will test different combinations of αs and βs in the ablation study (Sec. 6.3.4).

Peer methods. We conduct comparison experiments against the following al-

gorithms: 1) GMN (Zanfir and Sminchisescu, 2018), which is a seminal work in-

corporating graph matching into deep learning framework equipped with a spectral

solver (Egozi et al., 2013); 2) PCA (Wang et al., 2019a). This method treats graph

matching as feature matching problem and employs GCN (Kipf and Welling, 2017)

to learn better features; 3) CIE1/GAT-H (Yu et al., 2020a). This chapter develops

an embedding and attention mechanism, where GAT-H is the version by replacing

the basic embedding block with Graph Attention Networks (Veličković et al., 2018);

4) DGMC (Fey et al., 2020). This method devises a post-processing step by empha-

sizing the neighborhood similarity; 5) BBGM (Roĺınek et al., 2020). It integrates a

differentiable linear combinatorial solver (Pogancic et al., 2020) into a deep learning

framework and achieves state-of-the-art performance.
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Table 6.2: F1-score (%) on Pascal VOC. Experiment Are Performed on a Pair of

Images Where Both Inlier and Outlier Keypoints Are Considered. BBGM-max Is a

Setting in Roĺınek et al. (2020).

method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Ave

BBGM-max 35.5 68.6 46.7 36.1 85.4 58.1 25.6 51.7 27.3 51.0 46.0 46.7 48.9 58.9 29.6 93.6 42.6 35.3 70.7 79.5 51.9

BBGM 42.7 70.9 57.5 46.6 85.8 64.1 51.0 63.8 42.4 63.7 47.9 61.5 63.4 69.0 46.1 94.2 57.4 39.0 78.0 82.7 61.4

DLGM-D (ours) 42.5 71.8 57.8 46.8 86.9 70.3 53.4 66.7 53.8 67.6 64.7 64.6 65.2 70.1 47.9 95.5 59.6 47.7 77.7 82.6 63.9

DLGM-G (ours) 43.8 72.9 58.5 47.4 86.4 71.2 53.1 66.9 54.6 67.8 64.9 65.7 66.9 70.8 47.4 96.5 61.4 48.4 77.5 83.9 64.8

Table 6.3: Accuracy (%) on SPair-71K Compared with State-of-the-art Methods (Best

in Bold).

method aero bike bird boat bottle bus car cat chair cow dog horse mbike person plant sheep train tv Ave

DGMC 54.8 44.8 80.3 70.9 65.5 90.1 78.5 66.7 66.4 73.2 66.2 66.5 65.7 59.1 98.7 68.5 84.9 98.0 72.2

BBGM 66.9 57.7 85.8 78.5 66.9 95.4 86.1 74.6 68.3 78.9 73.0 67.5 79.3 73.0 99.1 74.8 95.0 98.6 78.9

DLGM-D (ours) 69.8 64.4 86.8 79.9 69.8 96.8 87.3 77.7 77.5 83.1 76.7 69.6 85.1 75.1 98.7 76.4 95.8 97.9 81.3

DLGM-G (ours) 70.4 66.8 86.7 81.7 69.2 96.4 85.8 79.5 78.4 84.0 79.4 69.4 84.5 76.6 99.1 75.9 96.4 98.5 82.0

6.3.1 Results on Pascal VOC.

This dataset (Everingham et al., 2010a; Bourdev and Malik, 2009) consists of

7,020 training images and 1,682 testing images with 20 classes in total, together with

the object bounding boxing for each. Following the data preparation in (Wang et al.,

2019a), each object within the bounding box is cropped and resized to 256 × 256.

The number of nodes per graph ranges from 6 to 23. We further follow (Roĺınek

et al., 2020) under two evaluating metrics: 1) Accuracy: this is the standard metric

evaluated on the keypoints by filtering out the outliers; 2) F1-score: this metric is

evaluated without keypoint filtering, being the harmonic mean of precision and recall.

Therefore, task 2) can be viewed as common sub-graph matching with outliers. Exper-
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Figure 6.4: Consistency Loss (Eq. (6.10) and Locality Loss (Eq. 6.11)) Keep Decrease

over Training Which Suggests the Effectiveness for Adaptive Topology Learning for

Matching.

imental results on the two setting are shown in Tab. 6.1 and Tab. 6.2. The proposed

method under either settings of DLGM-D and DLGM-G outperforms counterparts

by accuracy and f1-score. DLGM-G generally outperforms DLGM-D.

Quality of generated topology. We further show the consistency/locality curve vs

epoch in Fig. 6.4, since both consistency and locality losses can somewhat reflect the

quality of topology generation. It shows that both locality and consistency losses de-

scend during the training. Note that the consistency loss with Delaunay triangulation

(green dashed line) is far more larger than our generated ones (blue/red dashed line).

This clearly supports the claim that our method generates similar (more isomorphic)

typologies, as well as preserving locality.
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Table 6.4: Accuracy (%) on Willow Object.

Method setting face mbike car duck wbottle

GMN
Pt 98.1 65.0 72.9 74.3 70.5

Wt 99.3 71.4 74.3 82.8 76.7

PCA
Pt 100.0 69.8 78.6 82.4 95.1

Wt 100.0 76.7 84.0 93.5 96.9

CIE
Pt 99.9 71.5 75.4 73.2 97.6

Wt 100.0 90.0 82.2 81.2 97.6

DGMC
Pt 98.6 69.8 84.6 76.8 90.7

Wt 100.0 98.8 96.5 93.2 99.9

BBGM
Pt 100.0 95.8 89.1 89.8 97.9

Wt 100.0 98.9 95.7 93.1 99.1

DLGM-D (ours)
Pt 100.0 95.5 91.3 91.4 97.9

Wt 100.0 99.4 95.9 92.8 99.3

DLGM-G (ours)
Pt 99.9 96.4 92.0 91.8 98.0

Wt 100.0 99.3 96.5 93.7 99.3

6.3.2 Results on Willow Object.

The benchmark (Cho et al., 2013) consists of 256 images in 5 categories, where two

categories (car and motorbike) are subsets from Pascal VOC. Following the protocol

in Wang et al. (2019a), we crop the image within the object bounding box and resize

it to 256 × 256. Since the dataset is relatively small, we conduct the experiment

to verify the transfer ability of different methods under two settings: 1) trained on

Pascal VOC and directly applied to Willow (Pt); 2) trained on Pascal VOC then
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finetuned on Willow (Wt). Results under the two settings are shown in Tab. 6.4.

Since this dataset is relatively small, further improvement is difficult. It is shown

both DLGM-D and DLGM-G have good transfer ability.

6.3.3 Results on SPair-71K.

This dataset (Min et al., 2019) is much larger than Pascal VOC and WillowOb-

ject. It consists of 70,958 image pairs collected from Pascal VOC 2012 and Pascal

3D+ (53,340 for training, 5,384 for validation and 12,234 for testing). It improves

Pascal VOC by removing ambiguous categories sofa and dining table. This dataset is

considered to contain more difficult matching instances and higher annotation quality.

Results are summarized in Tab. 6.3. Our method consistently improves the matching

performance, agreeing with those in Pascal VOC and Willow.

6.3.4 Ablation Study

We conduct ablation to show the effectiveness of some factors involved in our

framework (e.g., sampling size of the generator and varying loss strength α and β).

In the first part, we evaluate the performance of DLGM-D and DLGM-G by

selectively deactivating different loss functions LM , LC and LL. Since our method

involves a sampling procedure, we also conduct the test on DLGM-G using different

sample size of the generator. This ablation test is conducted on Pascal VOC dataset

and average accuracy is reported in Tab. 6.5 and 6.6.

We first test the performance of both settings of DLGM by selectively activate

the designated loss functions. Experimental results are summarized in Tab. 6.5. As

matching loss LM is essential for GM task, we constantly activate this loss for all

settings. Note once LC and LL are both deactivated, our method will degenerate into

BBGM (Roĺınek et al., 2020). In this case, there will be no need to train the generator
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Table 6.5: Selectively Deactivating Loss Functions on Pascal VOC. LM , LC and

LL Are Selectively Activated in DLGM-D and DLGM-G. “full” Indicates All Loss

Functions Are Activated.

method Average Accuracy (%)

DLGM-D (LM + LC) 79.8

DLGM-D (LM + LL) 79.5

DLGM-G (LM + LC) 80.9

DLGM-G (LM + LL) 80.4

DLGM-D (full) 82.9

DLGM-G (full) 83.8

Qφ. We see that the proposed novel losses LC and LL can consistently enhance the

matching performance. Besides, DLGM-G indeed delivers better performance than

DLGM-D under fair comparison.

We then test the impact of sample size from the generator Qφ under DLGM-

G. Experimental results are summarized in Tab. 6.6. We see that along with the

increasing sample size, the average accuracy ascends. The performance becomes

stable when the sample size reaches over 16.

Remark. For time efficiency, if we consider the training time of the baseline

Roĺınek et al. (2020) to be 1x, the training time of our method under discriminative

setting is around 1.2x-1.3x. The time cost of our method under generative setting is

around 8x-9x with sample size 16. We didn’t observe any obvious efficiency gap for

testing.

In the second part, we present more detailed results by varying the loss strength

αs and βs for DLGM-G. Letting the loss at inference step be αLL + βLC , Tab. 6.7
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Table 6.6: Average Matching Accuracy under Different Sampling Sizes from the Gen-

erator Qφ with “full” DLGM-G Setting.

#Sample Ave

1 82.5

2 83.2

4 83.2

8 83.5

16 83.8

32 83.7

shows the performance of DLGM-G with varying α and β on Pascal VOC with only

inliers (Note we reported α = 5.0 and β = 0.3 in all the previous experiments on each

dataset):

6.4 Conclusion

Recent deep GM methods have delivered significant performance gain over tra-

ditional ones through learning node/edge features and GM solvers. However, be-

yond relying on heuristics, there is little work on learning more effective topology

for improved matching. In this chapter, we hypothesize that learning a better (dis-

tribution of) discrete graph topology can significantly improve the matching, thus

being essential. As such, we propose to incorporate a latent topology module under

an end-to-end deep framework that learns to produce better graph topology. We

present the interpretation and optimization of the topology learning module from de-

terministic and generative perspectives respectively. Experimental results show that,

by learning the latent topology, the matching performance can be consistently and
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Table 6.7: Ablation Study of DLGM-G on Pascal VOC Dataset. α and β Correspond

to the Strength of Locality Loss LL and Consistency Loss LC , Respectively. Average

Accuracy (%) Is Reported.

α

β
0.1 0.2 0.3 0.4 0.5

4.0 82.0 81.8 82.4 82.1 81.9

4.5 82.2 82.6 82.9 82.5 82.5

5.0 82.3 83.3 83.8 83.1 82.5

5.5 82.0 82.9 83.3 83.0 82.7

significantly enhanced on several public datasets, with only minimal modification to

existing method.
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Chapter 7

CONCLUSION

Being an instance of combinatorial problem, graph matching has attracted researchers

for many years. This is due to its appealing challenge of NP-hard nature, as well its

potential in a large range of real-world applications. Early study about graph match-

ing is mainly focused on deterministic modeling and optimization, where matching

is considered as an explicitly formulated optimization problem without any learnable

parameters. Although several modeling methods for matching appeared (e.g., lin-

earization, quadratic and semi-definite programming), such a deterministic fashion

greatly hinders the model capacity and prohibits a solver to be applied adaptively

on different tasks with various graph degradation. Therefore, with traditional de-

terministic modelings, one can hardly obtain a reliable graph matching solver under

complex environment.

Although some early attempts resort to integrate higher reliability by model-

ing graph matching in a parameteric fashion, such efforts are too straightforward

and shallow, resulting in limited improvement over traditional methods without any

learning ability. Such a case didn’t change much, until a seminal deep-learning-based

framework was developed by Zanfir and Sminchisescu (2018). By exploiting the pow-

erful learning ability of deep networks, this method outperformed the best known

deterministic method by a significant margin. Since then, a series of notable works

were proposed benefiting from deep learning. Nevertheless, we also note that most

presented works are focusing on designing the network structure, but paying less

attention to some more essential issues: how a deep learning method approximates

discrete problem, and what role the topology of graphs plays in such a framework.
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As such, this dissertation focuses on three identified vital aspects of graph match-

ing: modeling, optimization and learning. By investigating each of the aspects, it

is anticipated to grasp the core of reliable graph matching in terms of both theory

and application under a unified perspective. Taking into account the series of issues,

four specific tasks are intensively investigated corresponding to the aforementioned

aspects. These series of works aim at tackling the essential issues separately, as well as

providing a unified and feasible way of deriving more reliable graph matching solvers

under uncertainty.

The investigation in Chapter 3 and Chapter 4 is generally for understanding and

exploring the mechanism of reliable approximation and optimization for graph match-

ing under the deterministic setting. In particular, the proposed modeling paradigm in

Chapter 3 provides a generalized counterpart of QAP, which is capable of incorporat-

ing more complex graph deformation and offering alternative optimization trajectory.

The proposed regularization technique in Chapter 4 is yet another mathematical con-

tinuation approach to derive a discrete solution in an asymptotic fashion, which can

in turn be applied to the modeling in Chapter 3. Therefore, under a traditional de-

terministic perspective, Chapter 3 and 4 can serve as complements for each other.

Together, these two chapters offer a feasible mathematical backbone to be readily

incorporated with deep learning techniques. Chapter 5 and 6, on the other hand, ex-

tend deterministic optimization of graph matching into a learning-based framework,

meanwhile seek to tackle several essential issues derived from the combinatorial na-

ture of the graph matching problem. Chapter 5 studies the Hungrarian algorithm,

and proposes a surrogate to selectively perform back-propagation, which can fill the

gap between the discrete Hungarian sampling and its continuous approximation (i.e.

Sinkhorn layer). Such a mechanism offers a feasible and efficient way to avoid over-

fitting, leading to higher reliability in several real-world benchmarks. Chapter 6
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considers a more general and basic problem of how the topology of graph can impact

the matching. We demonstrate in Chapter 6 that the necessity and the existence

of latent topology for graph matching task, and provide an effective way of deriv-

ing such latent topology using a series of graph matching solvers. To the best of

our knowledge, the performance of the proposed method in Chapter 6 outperformed

the previous state-of-the-art method by a large margin on several very challenging

real-world benchmarks (e.g., Pascal VOC and SPair-71K). Since such benchmarks

generally consists of high noise and massive outliers, our work has made an effort

towards more reliable graph matching. In summary, the research in Chapter 3, 4,

5 and 6 in this dissertation is coherent. While Chapter 3 and 4 investigate basic

modeling and optimization of deterministic graph matching, Chapter 5 and 6 draw

inspiration from previous chapters and seek to enhance the matching reliability under

learning paradigm by taking into account intrinsic characteristics of graph matching

(e.g., discreteness and topology).

In summary, this dissertation is presented to provide a novel and coherent study

covering a series of essential problems of graph matching towards addressing the reli-

ability issue, following the advances from deterministic optimization to combinatorial

learning. Indeed, we are still facing other challenging issues in terms of reliability in

graph matching and relevant combinatorial problems. However, with the development

of theory, mathematical tools and availability of high-quality data, we anticipate that

the research in this dissertation can inspire future investigation on related topics by

any means.

7.1 Future Work

In this section, we discuss some potential future research directions related to

graph matching from both theoretical and applicable perspectives. Such directions do
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not only consists of aspects in terms of reliability for graph matching, but also another

key issues – scalability. While in this dissertation we mainly focus on reliability issue

about noises, outliers and topology, here we pose another challenging problem to be

investigated where only partial observation is available:

• A part of the graph information can be missing due to transmission failure.

Besides, collecting ground-truth matching of graphs can be highly human-labor

intensive and thus we sometimes can merely obtain partial data with moderate

budget. In either case, GM problem becomes obscure under partial evidence.

While taking into account that such cases can be encountered in real-world

applications, it is demanding that corresponding theory and algorithms can be

explored.

Scalability is another essential issue in parallel with reliability. The key of scalabil-

ity is to find proper ways to extend current learning-based GM solvers to much larger

graphs (million-level nodes) and facilitate simultaneous large-scale multiple graph co-

matching (hundreds of graphs). We identify several directions which have rarely been

investigated yet, to the best of our knowledge:

• QAP on pairwise graphs intrinsically suffers from scalability problem since it

squares the variable size to be optimized. For example, existing GM solvers

can be successfully applied to Pascal VOC dataset where the number of node

is up to 100, but is extremely hard to be exploited to social networks in which

number of nodes can easily exceeds thousands.

• Another consequence of scalability issue occurs when one wants to perform GM

among many graphs simultaneously. Simultaneous matching on a large number

of graphs may require intensive and dense computation, and can greatly hinder

the wide use of GM techniques.
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