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ABSTRACT

Machine learning models are increasingly being deployed in real-world applications

where their predictions are used to make critical decisions in a variety of domains. The pro-

liferation of such models has led to a burgeoning need to ensure the reliability and safety

of these models, given the potential negative consequences of model vulnerabilities. The

complexity of machine learning models, along with the extensive data sets they analyze, can

result in unpredictable and unintended outcomes. Model vulnerabilities may manifest due

to errors in data input, algorithm design, or model deployment, which can have significant

implications for both individuals and society. To prevent such negative outcomes, it is im-

perative to identify model vulnerabilities at an early stage in the development process. This

will aid in guaranteeing the integrity, dependability, and safety of the models, thus mitigat-

ing potential risks and enabling the full potential of these technologies to be realized. How-

ever, enumerating vulnerabilities can be challenging due to the complexity of the real-world

environment. Visual analytics, situated at the intersection of human-computer interaction,

computer graphics, and artificial intelligence, offers a promising approach for achieving high

interpretability of complex black-box models, thus reducing the cost of obtaining insights

into potential vulnerabilities of models. This research is devoted to designing novel visual

analytics methods to support the identification and analysis of model vulnerabilities. Specif-

ically, generalizable visual analytics frameworks are instantiated to explore vulnerabilities in

machine learningmodels concerning security (adversarial attacks anddata perturbation) and

fairness (algorithmic bias). In the end, a visual analytics approach is proposed to enable

domain experts to explain and diagnose the model improvement of addressing identified

vulnerabilities of machine learning models in a human-in-the-loop fashion. The proposed

methods hold the potential to enhance the security and fairness of machine learningmodels

deployed in critical real-world applications.
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Chapter 1

INTRODUCTION

In the era of Big Data, Artificial Intelligence andMachine Learning havemade immense

strides in developingmodels and classifiers for real-world phenomena. To date, applications

of thesemodels are found in cancer diagnosis tools (Esteva et al. 2017), self-driving cars (Mar-

tinez et al. 2018), biometrics (Sundararajan and Woodard 2018), and numerous other areas.

Unfortunately, the real-world application of these models introduces a dynamic environ-

mentwhere vulnerabilities introducedduringmodel development canhave unintended con-

sequences.

Consider e-mail spam filtering as an example. To date, a variety of machine learning

methods (Blanzieri and Bryl 2008; Caruana and Li 2012) have been developed to protect e-

mail inboxes from unwanted messages. These methods build models to classify e-mail as

spam or not-spam. However, adversaries still want their spammessages to reach your inbox,

and these adversaries try to build input data (i.e., spam e-mails) that will fool the model into

classifying their spam as safe. This can be done by misspelling words that might cause the

machine learning classifier to flag amail as spamor by insertingwords andphrases thatmight

cause the classifier to believe the message is safe. Other adversarial attacks have explored

methods to fake bio-metric data to gain access to personal accounts (Biggio et al. 2015) and

to cause computer vision algorithms to misclassify stop signs (S.-T. Chen et al. 2018). Such

exploits can have devastating effects, and researchers are finding that applications ofmachine

learning in real-world environments are increasingly vulnerable to adversarial attacks. As

such, it is imperative that model designers be able to diagnose security risks in their machine

learning models.
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Such risks are not only posed from attackers, but can also come in the form of legal chal-

lenges to machine learning algorithms that exhibit bias. Algorithmic fairness has become

increasingly important in data mining and machine learning. This has led to a proliferation

of algorithmic enhancements to address potential fairness issues that can occur in black-box

models. Although researchers have been developing methods to guarantee the fairness of

data-driven models (Q. Wang et al. 2021; Cabrera et al. 2019; Ahn and Lin 2020; Rahman

et al. 2019; Yao and Huang 2017; Tsioutsiouliklis et al. 2020; J. Kang et al. 2020; Bose and

Hamilton 2019; Zehlike et al. 2017), it has been reported that biases can still be observed

even after the fairness algorithms are applied (Sühr, Hilgard, and Lakkaraju 2020).

Take for example legal definitions of fairness that focus on gender and ethnicity at-

tributes of the data. Here, numerous algorithms have been proposed to correct for single

attribute biases. However, as noted byWang et al. (Q.Wang et al. 2021), algorithmsmight be

subject to indirect discrimination, where a protected class attributemight be correlated to an-

other feature in the dataset, for example, location attributes such as ZIPCodemight have im-

plicit racial information as the distribution of ethnicity is geographically unbalanced. Thus,

fairness solutions that only adjust for a single data attribute can still suffer from algorith-

mic biases. Given such issues, it is difficult to balance algorithmic results under potentially

conflicting definitions of fairness, and recent work (Friedler, Scheidegger, and Venkatasub-

ramanian 2021; Kleinberg, Mullainathan, and Raghavan 2016; Cabrera et al. 2019) has even

discussed an impossibility theorem for fairness noting that it may be impossible to guarantee

fairness that satisfies all constraints.

Such challenges reflect the vulnerabilities ofmachine learningmodels in different aspects.

In this proposal, those challenges are identified as two main categories of machine learning

vulnerabilities: machine learning security and machine learning fairness, where the former

depicts the vulnerability that models can potentially be sabotaged by either the nature of
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models themselves or ingenue data, and the latter describes the vulnerability that themodels

are misled to perform societal tasks with different sorts of biases.

1.1 Problem Statement

The underlying reason for machine learning models to have such vulnerabilities is often

related to their low interpretability. Since many models are treated as black boxes, it is dif-

ficult to explain how and why predictions are made, and many predictions can be caused

by different factors. As such, if predictions go wrong, researchers and developers may be

unable to diagnose the root causes, which raises the difficulty of improving the models. In

this proposal, detailed aspects of vulnerabilities are described with respect to security and

fairness.

1.1.1 Security in Machine Learning

From a security perspective, models are considered vulnerable when they underper-

form due to perturbations of either training data or testing data. According to Huang et

al. (Huang et al. 2011) and Vorobeychik et al. (Vorobeychik and Kantarcioglu 2018b), such

methods are defined as adversarial attacks. Attack methods based on the perturbing the

training data are referred to as poisoning attacks, and those based onmodifying the test data

are evasion attacks. Poisoning attacks usually manipulate the training data by flipping the

labels or adding obscure instances with wrong labels to confuse the model, such that the

random/targeted instances are mispredicted. Evasion attacks try to craft test instances that

look normal to humans while models can hardly recognize. Both attacks leverage the vulner-

abilities of models to output unexpected results. Thus, it is necessary to proactively defend
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against the attack strategies and supportmodel developers in understanding how attacks can

compromise machine learning models.

1.1.2 Fairness in Machine Learning

In addition to security, machine learning models are vulnerable to biases that render

their decisions “unfair”. In the context of decision-making, fairness is the absence of any

prejudice or favoritism toward an individual or a group based on their inherent or acquired

characteristics. Thus, an unfair model is one whose decisions are skewed toward a particular

group of people (Mehrabi et al. 2019). In addition to explicit societal bias derived from the

real-world data to the models, implicit or indirect biases may also be generated from model

debiasing. Researchers have recently proposed many definitions of fairness. Group fairness

and individual fairness are the most popular definitions, where group fairness focuses on

whether or not members of a protected class have the same probability of being assigned a

positive outcome and individual fairness focuses on whether similar individuals are treated

consistently. However, these definitions are sometimes conflicting, meaning that if group

fairness is guaranteed, individual fairness is sometimes violated and vice versa. Therefore,

tools for diagnosing and reasoning with potential unfairness or bias in the development of

machine learning models are critical.

1.1.3 Robustness in Machine Learning

Finally, the goal of revealing varieties of vulnerabilities of machine learning models is to

understand their deficiencies and improve the robustness of the model. Thus, it is necessary

to build the tool to leverage the revealed vulnerabilities and improve them. With the ad-
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vantages of visual analytics techniques, it seems feasible to develop interpretable, interactive,

transparent system to help users with different knowledge background to understand the

black-box models and build more robust model.

1.2 Aim of the Work

Such challenges seem to necessitate a human-in-the-loop approach, where analysts can

audit their machine learning algorithms for potential vulnerabilities and reveal the potential

deficiencies of the model. This work aims to address and explore machine learning vulnera-

bilities with respect to machine learning security and machine learning fairness through vi-

sual analytics, and then enhance the robustness of machine learning models based on them.

For machine learning security, novel visual analytics frameworks are developed to explore

vulnerabilities ofmodels under adversarial attack algorithms anddata perturbations. Forma-

chine learning fairness, another visual analytics framework is proposed to address the group

and individual fairness issues in graph mining models. The final stage of the dissertation is

to explore how visual analytics can move from explanations of why a vulnerability occurred

to also suggesting potential mechanisms to overcome identified vulnerabilities.

1.3 Outline and Individual Contributions

The rest of the content is organized as follows. Chapter 2 describes the state-of-art

progress in terms of vulnerability-related work. Chapters 3 and 4 introduce the main frame-

work workflow and visualization designs of the proposed work. Finally, chapter 5 discusses

the robust analysis of machine learning models. The following list contains the published
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works and contributions as a means of documenting current progress toward the disserta-

tion.

1. A visual analytics framework for explaining vulnerabilities to adversarial machine

learning (Ma et al. 2020), contributed as the second author and was responsible for

system implementation and data processing (note that for this paper, the first and sec-

ond authors were considered to be equivalent);

2. Visual analytics methods for auditing the sensitivity of graph-based ranking (Tiankai

Xie, Yuxin Ma, Hanghang Tong, et al. 2021), contributed as the first author and was

responsible for data processing, system implementation and paper writing;

3. A visual analytics framework for exploring algorithmic fairness in graphmining mod-

els (Xie, Ma, Kang, et al. 2021), contributed as the first author and was responsible for

data processing, system implementation and paper writing.

4. A visual analytics framework for validating machine learning models, contributed as

the first author and was responsible for data processing, system implementation and

paper writing.

5. A visual analytics framework for validating data augmentation, contributed as the first

author and was responsible for data processing, system implementation and paper

writing.
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Chapter 2

LITERATURE REVIEW

This chapter introduces related work in machine learning vulnerability and visual ana-

lytics. The first section introduces the state-of-the-artmethods formachine learning security

analysis, the second section introduces the machine learning fairness analysis, and the third

section introduces the visual analytics methods for machine learning robustness. Each sec-

tion also contains the related work of tasks mentioned above in visual analytics.

2.1 Secure Machine Learning

Adversarial machine learning (AML) is a rapidly growing field that focuses on studying

the security and vulnerability ofmachine learningmodels. AMLaims to identify and exploit

theweaknesses ofmachine learningmodels through the deliberate introduction ofmalicious

inputs, known as adversarial attacks. These attacks can cause a model to make incorrect

predictions or even compromise the integrity of the model itself. The need for AML arises

due to the growing prevalence of machine learning systems in critical applications such as

finance, healthcare, and transportation, where a failure in the model can have significant

consequences. Researchers in the AML field work to develop new techniques for detecting

anddefending against adversarial attacks, ultimately aiming to createmore robust and secure

machine learning models.
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Figure 1. Key features of an adversary. (Left) The general components an adversary must
considerwhenplanning an attack. (Right) Specific considerations in a data poisoning attack.

2.1.1 Adversarial Machine Learning

Since our goal is to support the exploration of model vulnerabilities, it is critical to iden-

tify common attack strategies andmodel weaknesses. The fourmain features of an adversary

(or attacker) (Vorobeychik and Kantarcioglu 2018a; Biggio andRoli 2018) are the adversary’s

Goal, Knowledge, Capability, and Strategy, Figure 1 (Left).

Goal: In adversarial machine learning, an attacker’s goal can be separated into two major

categories: targeted attacks and reliability attacks. In a targeted attack, the attacker seeks

to insert specific malicious instances or regions in the input feature space and prevent these

insertions from being detected (Yingqi Liu et al. 2018; Shafahi et al. 2018). In a reliability
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attack, the goal of the attacker is to maximize the overall prediction error of the model and

make the model unusable for making predictions (Steinhardt, Koh, and Liang 2017).

Knowledge: The information that can be accessed by an attacker plays a significant role in

how an attacker will design and deploy attack operations. The more knowledge an attacker

has about a model (victim), the more precise an attack can be. In a black-box model, the at-

tacker will have imprecise (or even no) knowledge about the machine learning model, while

in a white-box setting, the attacker will have most (if not all) of the information about the

model, including themodel type, hyper-parameters, input features, and trainingdataset (Big-

gio and Roli 2018).

Capability: The capability of the attacker refers to when and what the attacker can do to

influence the training and testing process to achieve the attack’s goal. Where the attack takes

place (i.e., the stage of the modeling process - training, testing) limits the capability of the

attacker. For example, poisoning attacks (Xiao, Xiao, and Eckert 2012; Biggio, Nelson, and

Laskov 2012) take place during the training-stage, and the attacker attempts to manipulate

the training dataset. Typical operations in data poisoning attacks include adding noise in-

stances and flipping labels of existing instances. An evasion attack (Dalvi et al. 2004; Biggio

et al. 2013; Goodfellow, Shlens, and Szegedy 2015) takes place during the testing stage. Such

an attack is intended to manipulate unlabeled data in order to avoid detection in the testing

stage without touching the training process. In all of these cases, the attacker is constrained

by howmuch they canmanipulate either the training or test data without being detected or

whether the training and test data are even vulnerable to such attacks.

Strategy: Given the attacker’s goal, knowledge, and capabilities, all that remains is for the

attacker to design an attack strategy. An optimal attack strategy can be described as max-

imizing the attack effectiveness while minimizing the cost of data manipulation or other

constraints (Mei and Zhu 2015).
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Currently, numerous adversarial machine learning attacks are being developed, with eva-

sion and poisoning strategies receiving the most attention (Thomas and Tabrizi 2018). In

evasion attacks, a common strategy is to add noise to test data instances. Goodfellow et

al. (Goodfellow, Shlens, and Szegedy 2015) proposed amethod to add “imperceptible” noise

to an image, which can drastically confuse a trained deep neural network resulting in un-

wanted predictions. For poisoning attacks, the strategies are usually formalized as bi-level

optimization problems, such as gradient ascending (Biggio, Nelson, and Laskov 2012) and

machine teaching (Mei and Zhu 2015). Common among these attacks is the goal of manipu-

lating the trainedmodel, and it is critical for users to understandwhere andhow theirmodels

may be vulnerable.

2.1.2 Visual Analytics for Secure Machine Learning

The uptake of many machine learning systems has been hampered by their inherent

black-box nature (Krause, Perer, and Ng 2016). Users want to know why models perform a

certain way, why models make specific decisions, and why models succeed or fail in specific

instances (Endert et al. 2017). The visual analytics community has tackled this problem by

developingmethods to open the black-box ofmachine learningmodels (Bertini andLalanne

2009; S. Liu et al. 2017; Y. Lu et al. 2017; J. Lu et al. 2017). The goal is to improve the explain-

ability of models, allow for more user feedback, and increase the user’s trust in a model. To

date, a variety of visual analytics methods have been developed to support model explain-

ability and performance diagnosis.

While the visual analytics community has focused on explainability with respect to

model input-outputs, hidden layers, underlying “black-box”mechanisms, and performance

metrics less work has focused on explaining model vulnerabilities. Liu et al. (M. Liu et
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al. 2018) present AEVis, a visual analytics tool for deep learning models, which visualizes

data-paths along with the hidden layers in order to interpret the prediction process of ad-

versarial examples. However, the approach is tightly coupled with generating adversarial

examples for deep neural networks, which is not extensible to other attack forms andmodel

types. My work builds upon previous visual analytics explainability work, adopting coor-

dinated multiple views that support various types of models and attack strategies. What is

unique in our work is the integration of attack strategies into the visual analytics pipeline to

highlight model vulnerabilities.

2.2 Fair Machine Learning

Machine learning fairness is a growing area of research that aims to ensure that machine

learning algorithms donot produce biased or discriminatory outcomes. Machine learning al-

gorithms can learn and amplify biases present in the data they are trained on, which can have

real-world consequences on individuals or groups. For example, biased algorithms could re-

sult in unfair decisions such as rejecting a loan application based on an individual’s race or

gender. The study of machine learning fairness involves identifying and mitigating sources

of bias in the data and the algorithm itself, and ensuring that the algorithm is not unfairly

discriminating against certain groups. As machine learning is increasingly used in decision-

making processes, it is crucial to ensure that these algorithms are fair and do not perpetuate

harmful biases.
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2.2.1 Fairness in Machine Learning

In order to account for potential algorithmic bias, numerous iterations of fairness-aware

graph mining algorithms have been developed focusing on individual fairness and group

fairness. Kamishima et al (Kamishima, Akaho, and Asoh 2012) employ regularization-based

collaborative filtering which minimizes the average ratings among different groups to con-

trol for potential bias. In graph-based clustering, Kleindessner et al. (Kleindessner et al. 2019)

propose a fairness notion to balance the number of elements in each cluster based on differ-

ent demographic groups. Bose et al. (Bose andHamilton 2019) employ an adversarial frame-

work to achieve statistical parity for the learned embedding results across sensitive attributes.

Kang et al. (J. Kang et al. 2020) study the individual fairness problem in graphminingmodels

and propose an optimization-based framework for diagnosing and debiasing graph mining

models by three individual approaches: debiasing data, debiasing model as well as debiasing

result. However, these approaches only guarantee group fairness or individual fairness with-

out considering whether applying constraints for group fairness affects individual fairness

or vice versa. As such, tools that can support fairness auditing between variations of graph

mining algorithms are critical for identifying algorithmic fairness.

2.2.2 Visual Analytics for Fair Machine Learning

Model explainability is also highly coupled to issues of algorithmic fairness. Given the

fact that definitions of fairness can be highly task-dependent, recent work in the visual an-

alytics community has begun exploring methods for human-in-the-loop fairness auditing

and exploration. Cabrera et al. (Cabrera et al. 2019) propose a visual analytics framework

(FairVis) for discovering intersectional bias by inspecting machine learning models’ perfor-
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mance on different groups, where a group is defined with respect to a set of potential sensi-

tive attributes. The analyst can select the performance metric, e.g., accuracy, F1 score, true

positive rate, etc. Ahn et al. (Ahn andLin 2020) propose a general visual analytics framework

(FairSight) for diagnosing the fairness of top-k ranking results by considering bothnodes and

groups. The framework provides metrics for diagnosing both individual fairness and group

fairness in terms of a single sensitive attribute. However, multi-attribute fairness diagnosis

was unexplored. Wang et al. (DiscriLens) (Q.Wang et al. 2021) also investigated issues of fair-

ness in classification tasks by visualizing the unbalanced proportion between user-defined

groups with respect to a single sensitive attribute. These approaches demonstrate the effec-

tiveness of visual analytics in revealing and analyzing fairness-related problems. However,

there are also limitations to the current approaches. FairVis only supports diagnosing biases

in supervised binary classification tasks, andDiscriLens only supports exploring a single sen-

sitive attribute. FairSight explores trade-offs between the group and individual fairness in

ranking results, but multigroup fairness remains unexplored. Furthermore, none of these

previous systems support model comparison as a mechanism for explaining the impacts of

algorithmic debiasing.

2.3 Robust Machine Learning

Robust machine learning is a branch of machine learning research that focuses on devel-

oping models that can maintain performance even in the presence of unexpected inputs or

perturbations. This is particularly important for applications where the input data is sub-

ject to changes, such as autonomous driving ormedical diagnosis. One approach to building

robust machine learning models is through out-of-distribution (OoD) detection, which in-

volves training amodel to identify inputs that are outside the range of its training data. This
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can help themodel avoidmaking incorrect predictions when presented with inputs that it is

not equipped to handle. Another approach is data augmentation, which involves artificially

generating additional training data by perturbing existing data points in ways that preserve

their original labels. This can help the model learn to be more robust to variations in the

input data. Overall, robust machine learning is an important area of research that seeks to

ensure that machine learning models can maintain performance in the face of real-world

challenges and uncertainties.

2.3.1 Out-of-distribution Detection

Hendrycks et al. (Hendrycks and Gimpel 2018) earlier propose the baseline method for

detecting OoD samples by utilizing and distinguishing probabilities from softmax distribu-

tions of In-Distribution (ID) and OoD data from neural networks. Based on this, Guo et

al. (Guo et al. 2017) leverage temperature scaling to enhance the discrepancy between ID and

OoD to make the detection more effective. The following work, Odin, proposed by Liang

et al. (Liang, Li, and Srikant 2020) further improves the performance by utilizing both tem-

perature scaling and noise adding. In addition to these softmax-based methods that rely on

the model output, some methods represent the confidence of the prediction by modifying

the structure of the neural network. For example, Shalev et al. (Shalev, Adi, and Keshet

2019) employ multiple semantic dense representations instead of sparse representations as

the target label since they discover the magnitude of the paradigm based on representations

is proportional to the confidence of the model prediction. Thus, the learned paradigm of

the target label representation is used in this work to determine whether the sample belongs

to the OoD sample. Lee et al. (Lee et al. 2017) combine OoD detection with ideas of gen-

erative models by suggesting two additional terms added to the original loss, where the first
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one forces samples from out-of-distribution less confident by the classifier and the second

one is for generating most effective training samples for the first one. Similarly, Denouden

et al. (Denouden et al. 2018) find that the reconstruction error of variational autoencoder in

a generative model can be used for OoD detection since the decoder can efficiently decode

the ID samples to generate the reconstructed data corresponding to the Input, while the

OoD samples cannot. Thus they utilize reconstruction error and Mahalanobis distance as

the metric of OoD detection. In addition, Lakkaraju et al. (Lakkaraju et al. 2016) propose a

model-agnostic methodology which is to query an oracle for feedback to both identify un-

known unknowns and to intelligently guide the discovery.

Finally, some approaches extract information from the feature of different levels of the

model as factors to identify OoD data. Abdelzad et al. (Abdelzad et al. 2019) argue that

there may be an implicit Early-Layer Output that can be effectively separated compared to

the output layer. The authors extract the input-output data of different layers, use a one-

class SVM classifier, count the classification error rate of that layer, and then select the layer

with the least error to detect OoD samples. Lakshminarayanan et al. (Lakshminarayanan,

Pritzel, and Blundell 2017) leverage Deep Ensembles to predict OoD samples by measuring

the OoD degree of them with the help of difference of outputs of classifiers. Lee et al. (Lee

et al. 2018) estimate the class conditional Gaussian distributions of different levels of features

of themodels under Gaussian discriminant analysis, which outputs aMahalanobis-distance-

based confidence score to evaluate the the uncertainty of the given instance. While most

prior methods have been evaluated for detecting either OoD or adversarial samples, but not

both, this proposed method achieves state-of-the-art performances for both cases in our ex-

periments. In this paper, we employ this method as part of our functionalities that facilitate

OoD detection, as it also supports class-incremental learning, which is suitable for serving

our defined knowledge validation process.
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2.3.2 Data Augmentation

Data augmentation encompasses techniques used to expand and enhance training

datasets, addressing the issue of limited training data. For a comprehensive discussion, we

refer to the survey by Shorten andKhoshgoftaar (Shorten andKhoshgoftaar 2019). Data aug-

mentation can be achieved through oversampling or data wrapping. Oversampling involves

adding synthetic data to the training datasets, while data wrapping focuses on transforming

existing data while preserving the original labels. Data-wrapping-based augmentation is fur-

ther divided into two categories: data manipulation and deep-learning-based augmentation.

Datamanipulation involves classical hand-crafted transformations such as flipping, crop-

ping, rotation, and scaling. RGB images can be processed by modifying color channels.

Kang et al. (G. Kang et al. 2017) experimented with a kernel filter that randomly swaps pixel

values, while Ionue (Inoue 2018) proposedmixing cropped images and assigning labels based

on the cropped areas. Inspired by Dropout (Srivastava et al. 2014), Zhong et al. (Zhong

et al. 2020) randomly dropped parts of the input image to encourage learning from other

regions. Various sophisticated image manipulation methods have been proposed (Jung et

al. 2020; Hongyi Zhang et al. 2017; DeVries and Taylor 2017; Hendrycks et al. 2019; Cubuk

et al. 2018; X. Chen et al. 2020; Chen, Kornblith, Norouzi, et al. 2020; Chen, Kornblith,

Swersky, et al. 2020; Yang et al. 2020; Erichson et al. 2022; Lim et al. 2021; Cubuk et al. 2020).

Deep-learning-based approaches, such as Generative Adversarial Networks

(GANs) (Goodfellow et al. 2020; Radford, Metz, and Chintala 2015), manipulate input

data by generating new samples, and have been applied to data augmentation (Antoniou,

Storkey, and Edwards 2017). Adversarial examples (goodfellow2014explaining), i.e., slightly

perturbed versions of original data, are embedded into training data for augmentation in

adversarial training (Madry et al. 2017; Hongyang Zhang et al. 2019; Ilyas et al. 2019; Cohen,
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Rosenfeld, and Kolter 2019). Neural style transfer (Gatys, Ecker, and Bethge 2015) creates

new images by combining the style of one image with another’s content. Some data manip-

ulation methods adopt an AutoML approach (Cubuk et al. 2018), blurring the boundary

between deep-learning-based and data-manipulation-based approaches.

2.3.3 Visual Analytics in Robust Machine Learning

In the field of visual analytics, the work most relevant to robust machine learning is

OoD detection and machine learning model behavior diagnosis. OoDAnalyzer (C. Chen

et al. 2020) supports context-enriched exploration by designing the grid-based visualization

of clustering semantically similar images. The designed saliencymaps are provided to explain

important regions of the predicted images. Users can perform image comparison through a

combination of superposition and juxtaposition, and also explore details of the instances of

interest. Similar to OoD data detection, research work emerges for investigating adversarial

examples and their corresponding impacts on the machine learning model. AEVis (Cao et

al. 2020) is proposed to analyze how adversarial examples fool neural networks. The system

takes both normal and adversarial examples as input and extracts their datapaths for model

prediction. Amultilevel visualization is designed to represent the diverging andmerging pat-

terns of the extracted datapaths, which explains how and why the adversarial examples con-

fuse the model through comparing them with normal ones. Ma et al. (ma2019explaining)

design a series of visual representations from overview to detail to reveal the progress of poi-

soned data generated by adversarial attack algorithms that influence the model’s prediction.

Many visual analytics techniques are done to understand the model’s behavior to im-

prove the model. To date, those techniques can be roughly classified into two categories:

structural analysis and instance-level analysis. The structural analysis is performed to de-
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construct the network structure and understand the functionalities and contributions neu-

ron by neuron. An earlier approach (Tzeng and Ma 2005) is to directly extract and visual-

ize the graph layouts of neural networks, however, the visualization is not scalable as the

structure gets complicated. Liu et al. (M. Liu et al. 2016) further develop CNNVis to visual-

ize deep convolutional neural networks with clustering techniques such that similar neu-

rons and connections are grouped to reduce the visual complexity. Wongsuphasawat et

al. (wongsuphasawat2017visualizing) further design an interactive graph-based visualization

for exploring the model architecture in Tensorflow (Abadi et al. 2016) by enabling graph

transformations from a low-level dataflow chart to a high-level model structure. The sys-

tem also supports instance-level analysis to explain the relationship between inputs and out-

puts for improving the model. Rauber et al. (rauber2016visualizing) visualize the represen-

tations learned from each layer in the neural network by projecting them onto 2D scatter

plots. Through the scatter plots, users can explore clusters from the projections and obtain

insights of the representation space learned by the network. Kahng et al. (kahng2017cti) pro-

pose ActiVis for revealing the model structure of large-scale deep neural networks through

visualizing the computational graph and a projected view that shows the activation relation-

ships between instances. Hohman et al. propose Summit (Hohman et al. 2020), to visualize

important neurons and important neuron relationships that contribute to the model pre-

diction. The system integrates an embedding viewwith an attribute graph view to reveal the

activations between classes and to expose influential connections between neurons respec-

tively.
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Chapter 3

MACHINE LEARNING SECURITY ANALYSIS

In this chapter, two new frameworks have been introduced that aim to address machine

learning vulnerabilities in security aspect. The first framework focuses on adversarial ma-

chine learning analysis, which is an emerging area of research that seeks to understand and

prevent adversarial attacks on machine learning models. This framework provides visual

tools to explore and understand the behavior of these attacks and the vulnerabilities of the

models. The second framework is designed for sensitivity auditing of graph mining mod-

els, which are commonly used in various applications, such as social network analysis and

recommendation systems. This framework enables users to visualize the sensitivity of the

models to changes in input data, which is essential for assessing the robustness and reliabil-

ity of these models. Together, these frameworks represent important advances in the field

of visual analytics formachine learning, providing new tools to help users better understand

those potential vulnerabilities of the models.

3.1 Vulnerability Diagnosis for Adversarial ML

Recently, researchers have begun identifying design issues and research challenges for

defending against adversarial machine learning, such as data de-noising, robust modeling,

and defensive validation schemes (Vorobeychik and Kantarcioglu 2018b), citing the need to

identify potential vulnerabilities and explore attack strategies to identify threats and impacts.

These challenges lend themselves well to a visual analytics paradigm, where training datasets

and models can be dynamically explored against the backdrop of adversarial attacks. The
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preliminary results have developed a visual analytics framework (Figure 2) for explaining

model vulnerabilities with respect to adversarial attack algorithms. In general, the frame-

work is designed to answer such questions as: Given the current model, which instances are

most vulnerable to be attacked by the given attack algorithms? When the model is compro-

mised by inserting the “poisoned” instances, what is the impact on themodel’s performance?

And how and why do false positives/negatives occur? The framework uses modularized

components to allow users to swap out various attack algorithms. A multi-faceted visual-

ization scheme summarizes the attack results from the perspective of the machine learning

model and its corresponding training dataset, and coordinated views are designed to help

users quickly identify model vulnerabilities and explore potential attack vectors. For an in-

depth analysis of specific data instances affected by the attack, a locality-based visualization

is designed to reveal neighborhood structure changes due to an adversarial attack.

There are five views that are designed to conduct the analysis: The Data Table View

summarizes the statistical information for every data instance, and shows the cost in order

to attack every instance; the Model Overview summarizes the prediction performance for

the victim model as well as the poisoned model; the Data Instances view presents the labels

of the original and poisoned data instances; the Data Features view, visualizes the statistical

distributions of data along with each feature, and the Local Impacts view depicts the rela-

tionships between target data instances and their nearest neighbors.

Given the key features of an adversary, wehave designed a visual analytics framework that

uses existing adversarial attack algorithms asmechanisms for exploring and explainingmodel

vulnerabilities. Our framework is designed to be robust to general adversarial machine learn-

ing attacks. However, in order to demonstrate our proposed visual analytics framework, we

focus our discussion on targeted data poisoning attacks (Biggio andRoli 2018). Data poison-

ing is an adversarial attack that tries to manipulate the training dataset in order to control
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Figure 2. Reliability attack on spam filters. (1) Poisoning instance #40 has the largest impact
on the recall value,which is (2) also depicted in themodel overview. (3)There is heavyoverlap
among instances in the two classes as well as the poisoning instances. (4) Instance #40 has
been successfully attacked causing anumber of innocent instances tohave their labels flipped.
(5) The flipped instances are very close to the decision boundary. (6)On the feature of words
“will” and “email”, the variances of poisoning instances are large. (7) A sub-optimal target
(instance #80) has less impact on the recall value, but the cost of insertions is 40% lower than
that of instance #40.

the prediction behavior of a trainedmodel such that themodel will labelmalicious examples

into desired classes (e.g., labeling spame-mails as safe). Figure 1 (Right)maps the specific goal,

knowledge, capabilities, and strategies of a poisoning attack to the generalized adversarial at-

tack.

For the purposes of demonstrating our framework, we assume that the attack takes place

in a white-box setting, i.e., the attacker has full knowledge of the training process. Although

the scenario seems partial to attackers, it is not unusual for attackers to gain perfect- or near-

perfect-knowledge of a model by adopting multi-channel attacks through reverse engineer-

ing or intrusion attacks on the model training servers (Biggio, Fumera, and Roli 2014). Fur-

thermore, in the paradigm of proactive defense, it is meaningful to use the worst case attack

to explore the upper bounds of model vulnerability (Biggio and Roli 2018). In terms of poi-

soning operations on the training dataset, we focus on causative attacks (Barreno et al. 2010),

where attackers are only allowed to insert specially-crafted data instances. This kind of in-

sertion widely exists in real-world systems, which need to periodically collect new training

data, examples include recommender systems and email spam filters (Steinhardt, Koh, and

Liang 2017). In such attacks, there is a limit to the number of poisoned instances that can be

inserted in each attack iteration, i.e., a budget for an attack. An optimal attack attempts to

reach its goal by using the smallest number of insertions within the given budget.
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3.1.1 Analytical Tasks

After reviewing various literature on poisoning attacks (Biggio,Nelson, andLaskov 2012;

Mozaffari-Kermani et al. 2015; Steinhardt, Koh, and Liang 2017; Shafahi et al. 2018; Suciu et

al. 2018; Jagielski et al. 2018; Thomas and Tabrizi 2018; Biggio and Roli 2018), we extracted

common high-level tasks for analyzing poisoning attack strategies. These tasks were refined

through discussions with our co-author, a domain-expert in adversarial machine learning.

3.1.1.1 T1: Summarize the attack space

A prerequisite for many of the algorithms is to set target instances to be attacked in the

training dataset. In our framework, analysts need to be able to identify attack vectors and

vulnerabilities of the victim model in order to specify target instances.

3.1.1.2 T2: Summarize the attack results

By following the well-known visual information seeking mantra (Shneiderman 1996),

the system should provide a summary of the attack results after an attack is executed. In data

poisoning, typical questions that the attackers might ask include:

• T2.1 How many poisoning data instances are inserted? What is their distribution?

Has the attack goal been achieved yet?

• T2.2 What is the performance of the model before and after the attack and is there a

significant difference? Howmany instances in the training dataset are misclassified by

the poisoned model?
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3.1.1.3 T3: Diagnose the impact of data poisoning

In this phase, the user explores the prediction results and analyzes the details of the poi-

soned model. Inspired by the recent work in interpretable machine learning (Alsallakh et

al. 2014; Ren et al. 2017; Krause et al. 2017; J. Zhang et al. 2019), we explore the influence

of insertion focusing on: attribute changes for individual instances; and drifts of data dis-

tributions on features due to poisoning. We consider both instance-level and feature-level

diagnoses when investigating the impact of poisoning data. The following questions are

explored in this phase:

• T3.1 At the instance-level, is the original prediction different from the victim model

prediction? How close is the data instance to the decision boundary? How do the

neighboring instances affect the class label? Is there any poisoned data in the data-

instance’s top-k nearest neighbors?

• T3.2 At the feature-level, what is the impact of data poisoning on the feature distribu-

tions?

3.1.2 Design Requirements

From the task requirements, we iteratively refined a set of framework design require-

ments to identify how visual analytics can be used to best to support attack analysis and

explanation. We have mapped different analytic tasks to each design requirement.

23



3.1.2.1 D1: Visualizing the Attack Space

The framework should allow users to upload their victimmodel and explore vulnerabili-

ties. By examining statistical measures of attack costs and potential impact, the users should

be able to find weak points in the victim model depending on the application scenario, and

finally identify desired target instances for in-depth analysis in the next step (T1).

3.1.2.2 D2: Visualizing Attack Results

To analyze the results of an attack, the framework should support overview and details-

on-demand:

• Model Overview - D2.1, summarize prediction performance for the victim model as

well as the poisoned model (T2.2);

• Data Instances - D2.2, present the labels of the original and poisoned data instances

(T2.1, T3.1);

• Data Features - D2.3, visualize the statistical distributions of data along each feature

(T3.2);

• Local Impacts - D2.4, depict the relationships between target data instances and their

nearest neighbors (T3.1).

3.1.3 Visual Analytics Framework

Based on the user tasks and design requirements, we have developed a visual analytics

framework (Figure 3) for identifying vulnerabilities to adversarial machine learning. The

framework supports three main activities: vulnerability analysis, analyzing the attack space,
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and analyzing attack results. Each activity is supported by a unique set of multiple coordi-

nated views, and the user can freely switch between interfaces and views. All views share the

same color mapping in order to establish a consistent visual design. Negative and positive

classes are represented by red and blue, respectively, and the dark red and blue colors are used

for indicating the labels of poisoning data instances. All actions in our framework are pred-

icated on the user loading their training data and model. While our framework is designed

to bemodular to an array of attack algorithms, different performance and vulnerabilitymea-

sures are unique to specific attack algorithms. Thus, for discussion and demonstration, we

instantiate our framework on data poisoning attacks.

3.1.3.1 Data-Poisoning Attack Algorithms

We focus on the binary classification task described in Figure 4 (a)where the training data

instances are denoted as x ∈ X ,X ⊆ Rn×d with class labels of y ∈ {−1,+1} (we refer to

the−1 labels as negative and the+1 labels as positive). A classificationmodel θ is trained on

the victim training dataset, which creates a victim model. For a target data instance xt and

the corresponding predicted label yt = θ(xt), the attacker’s goal is to flip the prediction yt

into the desired class−yt by insertingm poisoning instances P = {pi|pi ∈ Rd, i ∈ [1,m]}.

We useB to represent the budget, which limits the upper bound ofm, i.e., an attacker is only

allowed to insert at most B poisoned instances. To maximize the impact of data poisoning

on the classifier, the attack algorithms craft poisoned instances in the desired class, ypi = −yt.

Attack Strategies Various attack algorithms have been developed to create an optimal set of

P with |P| ≤ B. To demonstrate how attacks can be explored in our proposed framework,
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Figure 3. A visual analytics framework for explaining model vulnerabilities to adversarial
machine learning attacks. The framework consists of: vulnerability analysis, attack space
analysis, and attack result analysis.

we implement two different attack algorithms (Binary-Search and StingRay) described in

Figure 4 (b).

Binary-Search Attack1. The Binary-SearchAttack (Burkard andLagesse 2017) assumes that

the target instance xt can be considered as an outlier with respect to the training data in the

opposite class {xi|yi = −yt}. The classification model acts as an outlier detector and sep-

arates this target from the opposite class −yt. For crafting poisoning instances in a Binary-

Search attack, the goal is to establish connections between the target and the desired class−yt
1For simplicity, we refer to the Burkard and Lagesse algorithm (Burkard and Lagesse 2017) as “Binary-Search
Attack” even though it is not named by the original authors.
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Figure 4. An illustration of data poisoning attacks using the Binary-Search and Stingray
algorithms. (a) In a binary classification problem, the goal of a data-poisoning attack is to
prevent the target instance, xt, from being classified as its original class. (b) The Binary-
Search and StingRay attacks consist of three main steps: 1) select the nearest neighbor to
the target instance, 2) find a proper poisoning candidate, and 3) retrain the model with the
poisoned training data. The procedure repeats until the predicted class label ofxt is flipped,
or the budget is reached.

that mitigate the outlyingness of the target. As illustrated in Figure 4, for each iteration, the

Binary-Search Attack utilizes the midpoint xmid between xt and its nearest neighbor xnn

in the opposite class, −yt, as a poisoning candidate. If this midpoint is in the desired class,

it is considered to be a valid poisoning instance. This instance is appended to the original

training dataset, and the model is re-trained (θ1 in Step 3 - Figure 4). In this way, the poi-

soned instances are iteratively generated, and the classification boundary is gradually pushed

towards the target until the target label is flipped. Sometimes the midpoint may be outside

of the desired class. Under this circumstance, a reset of the procedure is required by using

the midpoint between xmid and xnn as the new candidate.

StingRay Attack. The StingRay attack (Suciu et al. 2018) inserts new copies of existing data

instances by perturbing less-informative features. The StingRay attack shares the same as-

sumptions andpipeline as theBinary-Search attack. Themaindifference between the attacks

is howpoisoning instances are generated (Step 2, Figure 4). In StingRay, a base instance,xnn,

near the target,xt, in the desired class is selected, and a copy of the base instance is created as
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Figure 5. Estimating the decision boundary distance. (Left) Six directional vectors are sam-
pled from the unit ball. (Right) For each direction, the original instance is perturbed one
step at a time until it is in the opposite class. In this example, the direction highlighted by
the red rectangle is the minimum perturbed step (3 steps) among all the directions.

a poisoned candidate. By using some feature importance measures, a subset of features are

selected for value perturbation on the poisoned candidate. After randomly perturbing the

feature values, the poisoned instance closest to the target is inserted into the training data.

Attack Results Both attacks insert poisoned data instances into the victim training dataset

resulting in the poisoned training dataset. The model trained on this poisoned dataset is

called the poisoned model, and we can explore a variety of performance metrics to help ex-

plain the results of an attack (e.g., prediction accuracy, recall). For data instance level analysis

(D2.2), wederive twometrics that can characterize the impact of datapoisoningon themodel

predictions.

Decision Boundary Distance (DBD) (He, Li, and Song 2018): In a classifier, the decision

boundary distance is defined as the shortest distance from a data instance to the decision

boundary. Under the assumption of outlyingness in the Binary-Search or StingRay attack,

DBD is an indication of the difficulty of building connections between a target instance and

its opposite class. However, it is difficult (and sometimes infeasible) to derive exact values

of DBD from the corresponding classifiers, especially in non-linear models. We employ a

sample-based, model-independent method to estimate the DBDs for the training data as
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illustrated in Figure 5. First, with a unit ball centered at the data instance, we uniformly

sample a set of unit direction vectors from the ball. For each vector, we perturb the original

instance along the vector iteratively with a fixed step length, predict the class label with the

classifier, and stop if the prediction is flipped. We use the number of perturbation steps as

the distance to the decision boundary. We use the product of step length and the minimum

steps among all the directions as an estimation of the DBD for each data instance.

Minimum Cost for a Successful Attack (MCSA): To help users understand the cost of an

attack with respect to the budget, we calculate the minimum number of insertions needed

to attack a data instance. For each data instance, the MCSA is the number of poisoning in-

stances that must be inserted for a successful attack under an unlimited budget. TheMCSA

value is dependent on the attack algorithm.

3.1.3.2 Visualizing the Attack Space

The data table view (Figure 2 (B)) acts as an entry point to the attack process. After

loading amodel, all the training data instances are listed in the table to provide an initial static

check of vulnerabilities (T1, D1). Each row represents a data instance in the training dataset,

and columns describe attributes and vulnerability measures which includes the DBD and

MCSA for both the Binary-Search and StingRay attack algorithms, as well as the original

and the predicted labels. Inspired by Jagielski et al. (Jagielski et al. 2018) and Steinhardt et

al. (Steinhardt, Koh, and Liang 2017), we use colored bars for MCSA to highlight different

vulnerability levels based on the poisoning rates, which is defined as the percentage of poison

instances in the entire training dataset. Poisoning rates of lower than 5% are considered to be

high risk, since only a small amount of poisoned instances can cause label flipping in these

data instances, andpoisoning rates of 20%are likely infeasible (high risk of being caught). We

29



define three levels for the poisoning rates: 1) high risk (red) - lower than 5%; 2) intermediate

risk (yellow) - 5% to 20%, and; 3) low risk (green) - more than 20% .

The rows in the table can be sorted by assigning a column as the sorting key. The user can

click on one of the checkboxes to browse details on the data ID, class label, and feature values,

Figure 2 (B). In addition, the clicking operation will trigger a dialog to choose between the

two attack algorithms, and the interface for the corresponding attack result will be opened

in a new tab page below.

3.1.3.3 Visualizing the Attack Results

After selecting a target instance and an attack algorithm, theuser canperforman in-depth

analysis of the corresponding attack results. To visualize the results of the attack, we use four

views: model overview, instance view, feature view, and kNN graph view.

Model Overview: Themodel overview provides a summary of the poisoned model as well

as a comparison between the original (victim) and poisoned model (T2, D2.1). The model

overview (Figure 2 (C)) provides abrief summaryof thenamesof the victimand thepoisoned

models, the ID of the target data instance, and the class of the poisoned instances. A radar

chart is used to describe the performance of the two models. The four elements commonly

used in confusion matrices (true negative (TN), false negative (FN), true positive (TP), and

false positive (FP)) aremapped to the four axes on the left side of the radar chart, and accuracy,

recall, F1 and ROC-AUC scores are mapped to the right side. When hovering on the lines,

the tooltip shows the detailed values on the axes. The two lines in the radar chart can be

disabled or enabled by clicking on the legends.

Instance View: The instance view illustrates changes in the training datasets and supports

the comparative analysis of predictions made by the victim and poisoned models from the
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Figure 6. Design of the virtual decision boundaries in the instance attribute view. The cen-
tral vertical line acts as the virtual decision boundary. Two circles representing the prediction
results of the victim and the poisonedmodels are placed beside the line. In this example, the
data instance far away from the decision boundary was classified as positive with a relatively
high probability. However, in the poisoned model, the instance crosses the boundary, caus-
ing the label to flip.

perspective of individual data instances (T3.1, D2.2). The instance view is comprised of two

sub-views, a projection view and an instance attribute view, which visualize data instances

under the “overview + detail” scheme.

Projection View: Theprojection view (Figure 2 (D)) provides a global picture of the data dis-

tribution, clusters, and relationships between the original and poisoned instances. We apply

the t-SNE projection method (Maaten and Hinton 2008) to the poisoned training dataset.

The projection coordinates are then visualized in a scatterplot. We share the colors used in

the Model Overview, where red is for label predictions in the negative class and blue for the

positive class. To support comparisons between the victim and poisoned model, we apply

the corresponding poisoning color to the border of poisoned instances and stripe patterns

to the data instances whose class prediction changed after the attack.

Instance Attribute View: The instance attribute view (Figure 2 (E)) uses a table-based layout
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where each row represents the attributes of an individual data instance including classifica-

tionprobabilities andDBDs from the victim andpoisonedmodel. To conduct a comparison

between the attributes of the victim and poisoned models, we embed an illustration of at-

tribute changes into the rows using a virtual decision boundary, Figure 6. Here, the vertical

central line acts as a virtual decision boundary and separates the region into two half panes

indicating the negative and positive class regions. Two glyphs, representing the predictions

of the victim and the poisoned models, are placed in the corresponding half panes based on

the predicted class labels. The horizontal distances from the center dots to the central line

are proportional to their DBDs. To show the direction of change, we link an arrow from the

victim circle to the poisoned circle. Additionally, the classification probabilities are mapped

to the length of the lines in the glyph. A set of options are provided in the top right corner

of the view for filtering out irrelevant instances based on their types.

Feature View: The feature view is designed to reflect the relationship between class fea-

tures and prediction outputs to help users understand the effects of data poisoning (T3.2,

D2.3). In Figure 2 (F), each row in the list represents an individual feature. The feature value

distribution is visualized as grouped colored bars that correspond to positive, negative, and

poisoning data. To facilitate searching for informative features, the rows can be ranked by a

feature importancemeasure onboth the victim and the poisonedmodels. In our framework,

we utilize the featureweights exported from classifiers as themeasure, e.g., weight vectors for

linear classifiers and Gini importance for tree-based models. In the list, the importance val-

ues and their rankings from the two models, as well as the difference, are shown in the last

three columns.

Local Impact View: In order to understand model vulnerabilities, users need to audit the

relationship between poisoned instances and targets to gain insights into the impact of an
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Figure 7. Visual design of the local impact view. (a) The process of building kNN graph
structures. (b) The visual encodings for nodes and edges.

attack (T3.1, D2.4). We have designed a local impact view, Figure 2 (G), to assist users in

investigating the neighborhood structures of the critical data instances.

For characterizing theneighborhood structures of data instances, weutilize thek-nearest-

neighbor graph (kNN graph), Figure 7 (a), to represent the closeness of neighborhoods,

which can reveal the potential impact on the nearby decision boundary. A poisoned instance

that is closer to a target may have more impact on the predicted class of the target. Such a

representation naturally corresponds to the underlying logic of the attack algorithms, which

try to influence the neighborhood structures of target instances. Our view is designed to

help the user focus on the most influential instances in an attack. To reduce the analytical
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burden, we condense the scale of the kNN graph to contain only three types of instances as

well as their k-nearest neighbors:

1. The target instance, which is the instance being attacked;

2. The poisoning instances, and;

3. The “innocent” instances, whose labels are flipped after an attack, which is a side-effect

of poisoning.

For the target and innocent instances, we extract their kNNs before the attack, i.e., the

top-k nearest non-poisoned neighbors. This allows the user to compare the two sets of

kNNs to reveal changes in the local structures after inserting poisoned instances.

The design of the local impact view is based on anode-link diagramof the extractedkNN

graph where the data instances are represented as nodes. The coordinates of the nodes are

computed with the force-directed layoutmethod on the corresponding graph structure. We

use three different node glyphs to encode the data instances depending on the instance type

(target, poisoned, innocent), Figure 7 (b).

For the target and innocent instances, we utilize a nested design consisting of three lay-

ers: a circle, an inner ring, and an outer ring. The circle is filled with a blue or red color

representing the predicted label. A striped texture is applied to the filled color if the label

predicted by the poisoned model is different from the victim one, indicating that label flip-

ping has occurred for this data instance. Additionally, the classification probability from the

poisoned model is mapped to the radius of the circle. The inner ring uses two colored seg-

ments to show the distribution of the two classes in the k-nearest non-poisoning neighbors.

The outer ring is divided into three segments that correspond to the negative and positive

classes and poisoning instances in the kNN.

For poisoned instances, we use circles that are filled with the corresponding poisoning

color. To depict the total impact on its neighborhoods, wemap the sumof the impact values
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due to poisoned instances to the lightness of the filled color. As in the encoding of the target

instances, the radius of the poisoned instance circles represent the classification probability.

All other data instances are drawn as small dots colored by their corresponding prediction

labels.

The edges in the local impact view correspond tomeasures of relative impacts, which are

represented by directed curved edges. Inspired by the classic leave-one-out cross validation

method, the relative impact is a quantitative measure of how the existence of a data instance

(poisoned or not) influences the prediction result of another instance with respect to the

classification probability. Algorithm 1 is used to calculate the impact of a neighbor xnn on a

data instancex. First, we train a newmodelwith the sameparameter settings as the poisoned

model; however,xnn is excluded. Then, we compute the classification probability ofxwith

this new model. Finally, the relative impact value is calculated as the absolute difference

between the new probability and the previous one. To indicate the source of the impact, we

color an edge using the same color as the impacting data instance. The color gradient maps

to the direction of impact and curve thickness maps to the impact value. Additionally, since

the kNN graph may not be a fully-connected graph, we employ dashed curves to link the

nodes with the minimum distances between two connected components in the kNNgraph.

Algorithm 1 Computing the impact of xnn on x

1: Inputs: training dataset X ; two instances x ∈ X , xnn ∈ X ; previous classification
probability of x, px

2: Outputs: The impact value of xnn on x, I(xnn,x)
3: θ ← Classifier(X \ {xnn})
4: p′x ← Probability of θ(x)
5: I(xnn,x)← |p′x − px| =0

The local impact view supports various interactions on the kNN graph. Clicking on a

node glyph in the local impact view will highlight the connected edges and nodes and fade

out other irrelevant elements. A tooltipwill be displayed aswell to show the change of neigh-
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boring instances before and after the attack. The highlighting effects of data instances are

also linked between the projection view and the local impact view. Triggering a highlighting

effect in one view will be synchronized in the other one.

One limitation in the proposed design is the potential for visual clutter once the size of

the graph becomes considerably large. In order to provide a clear entry point and support

detail-on-demand analysis, we support various filters and alternative representations to the

visual elements. By default, the edges are replaced by gray lines, which only indicates the

linking relationships between nodes. Users can enable the colored curves mentioned above

to examine the impacts with a list of switches, Figure 2 (G.1). Unnecessary types of nodes

can also be disabled with the filtering options, Figure 2 (G.2).

3.1.4 Case Study

In this section, we present two case studies to demonstrate how our framework can sup-

port the analysis of data poisoning attacks from the perspective of models, data instances,

features, and local structures. We also summarize feedback from four domain experts.

3.1.4.1 Targeted Attack on Hand-written Digits

Digit recognizers are widely-used in real applications including auto-graders, automatic

mail sorting, and bank deposits. In such a system, an attacker may wish to introduce relia-

bility issues that can result in mis-delivered mail, or create targeted attacks that cause checks

to be mis-read during electronic deposit. For this case study, we employ a toy example in

which a model is used to classify hand-written digits. This case study serves as a mechanism

for demonstrating system features.
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1 Data Table View

Model Overview2 3 Projection View4

Local Impact View5Instance Attribute View6

The Selected Target

Figure 8. A targeted attack on hand-written digits. (1) In the data table view, we identify the
target instance #152 (2) as a potential vulnerability. (3) In the model overview, we observe
no significant change of the prediction performance after an attack on #152 occurs. (4) In
the projection view, the two classes of instances are clearly separated into two clusters. The
poisoning instances (dark blue circles) penetrate class Number 8 and reach the neighboring
region of instance #152. (5) The attack can also be explored in the local impact view where
poisoning nodes and the target show strong neighboring connections. (6) The detailed pre-
diction results for instance #152 are further inspected in the instance attribute view.

For this classifier, we utilize the MNIST dataset (LeCun et al. 1998), which contains

60,000 images of ten hand-written digits at a 28×28 pixel resolution (784 dimensions in

total). We trained a Logistic Regression classifier, implemented in Python Scikit-Learn li-

brary (Pedregosa et al. 2011), using 200 randomly sampled images from the numbers 6 and

8, respectively. The value of k for extracting kNN graphs in the local impact view is set to 7.

Initial Vulnerability Check (T1): After the training dataset and model are loaded into

the system, vulnerability measures are automatically calculated based on all possible attacks

from the Binary-Search and StingRayAttack, and results are displayed in the data table view

(Figure 8 (1)). By ranking the two columns of MCSAs for each attack algorithm, the user

finds that the red bar colors indicate that many of the data instances are at high risk of a low

cost poisoning attack. From the table, the user can also observe that the accuracy and recall

values are not highly influenced by an attack, suggesting that a targeted attack on a single
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instance will not influence prediction performances. To some extent, this may disguise the

behavior of a targeted attack bynot alerting themodel ownerswith a significant performance

reduction.

Visual Analysis of Attack Results (T2, T3): Next, the user wants to explore a potential

worst case attack scenario. Here, they select the instance with the largest MCSA among all

the data instances (instance #152, 3.5% in poisoning rate) (Figure 8 (2)) under the StingRay

attack. As illustrated in Figure 8 (3), first the user performs a general check of the model

performance (T2.2). In the model overview, the two lines on four performance metrics in

the radar chart overlap, indicating little to no model performance impact after a poisoning

attack. Next, the user explores the distributionof the poisoning instances (T2.1, T3.1). In the

projection results, Figure 8 (4), thepoisoning instances span theborder regionof two clusters

and flip the prediction of the target instance. However, there are no other innocent instances

influenced by the poison insertions. The user can further inspect the impact of at attack on

instance #152 by examining the local impact view, Figure 8 (5). Here, the user can observe that

in a poisoning attack on instance #152, the neighborhood of #152 must be heavily poisoned,

and these poison insertions establish a connection between the target instance #152 and two

other blue instances, leading to label flipping. In this case, the user can identify that the

sparsity of the data distribution in the feature spacemay be contributing to the vulnerability

of instance #152. Finally, the user explores the detailed prediction result of instance #152 by

navigating to the instance attribute view (Figure 8 (6)). Here, the user observes that the label

has flipped from Number 8 (red) to Number 6 (blue); however, the poisoning results in a

very short DBD and a low classification probability for instance #152.

Lessons Learned and Possible Defense: From the analysis, our domain expert identified

several issues in the victim model and dataset. First, even if instance #152 is successfully poi-

soned, the instance is fairly near the decision boundary of the poisonedmodel, which can be
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identified by the low value ofDBD and the low classification probability. If any further data

manipulations occur in the poisoned dataset, the prediction of the target instance may flip

back, i.e., #152 is sensitive to future manipulations and the poisoning may be unstable. For

the attackers, additional protection methods that mitigate the sensitivity of previous target

instances can be adopted by continuously attacking neighboring instances, further pushing

the decision boundary away from the target, or improving attacking algorithms to insert du-

plicated poisons near the target. Our domain expert was also interested in the pattern of a

clear connection from the two blue instances to instance #152 in the local impact view. He

noted that it may be due to data sparsity, where no other instances are along the connection

path established by the poisoning instances, resulting in #152 having a high vulnerability to

poisoning insertions. For defenders whowant to alleviate the sparsity issue and improve the

security of the victim model, possible solutions could be to add more validated labeled sam-

ples into the original training dataset and adopt feature extraction or dimension reduction

methods to reduce the number of the original features.

3.1.4.2 Reliability Attack on Spam Filters

For spammers, one of their main goals is to maximize the number of spam emails that

reach the customers’ inbox. Somemodels, such as the Naive Bayes spam filter, are extremely

vulnerable to data poisoning attacks, as known spammers can exploit the fact that the e-mails

they send will be treated as ground truth and used as part of classifier training. Since known

spammers will have their mail integrated into the modeling process, they can craft poisoned

data instances and try to corrupt the reliability of the filter. These specially-crafted emails

can mislead the behavior of the updated spam filter once they are selected in the set of new
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samples. In this case study, we demonstrate how our framework could be used to explore

the vulnerabilities of a spam filter.

We utilize the Spambase dataset (Dua andGraff 2017) that contains emails tagged as non-

spam and spam collected from daily business and personal communications. All emails are

tokenized and transformed into 57-dimensional vectors containing statistical measures of

word frequencies and lengths of sentences. For demonstration purposes, we sub-sampled

the dataset into 400 emails, keeping the proportion of non-spam and spam emails (non-

spam:spam = 1.538:1) in the original dataset, resulting in 243 non-spam instances and 157

spam ones. A Logistic Regression classifier is trained on the sub-sampled dataset. The value

of k for the kNN graphs is again set to 7.

Initial Vulnerability Check (T1): Using the LogisticRegressionClassifier as our spam-filter

model, we can explore vulnerabilities in the training data. For spam filters, the recall score

(True-Positives / True-Positives + False-Negatives) is critical as it represents the proportion

of detected spam emails in all the “true” spams. For a spam filter, a lower recall score indi-

cates that fewer true spam emails are detected by the classifier. We want to understand what

instances in our training dataset may be the most exploitable. Here, the user can sort the

training data instances by the change in recall score after an attack (Figure 2 (1)). After rank-

ing the two columns of recall in ascending order for each attack algorithm, we found that

the Binary-Search attack, when performed on instance #40, could result in a 0.09 reduction

in the recall score at the cost of inserting 51 poisoned instances.

Visual Analysis of Attack Results (T2, T3): To further understand what an attack on in-

stance # 40 may look like, the user can click on the row of instance #40 and choose “Binary-

Search Attack” for a detailed attack visualization. In the model overview, Figure 2 (2), we

see that the false negative value representing the undetected spams increased from 16 to 30

(nearly doubling the amount of spam e-mails that would have gotten through the filter),
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while the number of detected spams decreased from 141 to 127. This result indicates that

the performance of correctly labeling spam emails in the poisoned model is worse than the

victim model (T2.2).

We can further examine the effects of this attack by doing an instance-level inspection

using the projection view (T3.1). As depicted in Figure 2 (3), the two classes of points, as well

as the poisoned instances, show a heavy overlap. This indicates that there is an increased pos-

sibility of flipping innocent instances coupled with a decrease in prediction performance. In

the local impact view (Figure 2 (4)), it can be observed that the poisoning instances are also

strongly connected to each other in their nearest neighbor graph (T2.1). Additionally, there

are five poisoning instances with a darker color than the others. As the lightness of poison-

ing nodes reflects their output relative impact, these five neighbors of the target instance con-

tributesmore to the prediction results than other poisons. For target instance #40, the outer

ring consists only of the poisoning color, indicating that it must be completely surrounded

by poisoning instances in order for the attack to be successful. Additionally, in a successful

attack, therewould bemore than 20 innocent instanceswhose label are flipped from spam to

non-spam, which is the main cause of the decreased recall value. After examining the details

of these instances in Figure 2 (5), we found that most of their DBDs in the victim model are

relatively small, i.e., they are close to the previous decision boundary. As such, their predic-

tion can be influenced by even a small perturbation of the decision boundary. Finally, we

conducted a feature-level analysis by browsing the feature view (T3.2, Figure 2 (6)). We find

that for distributions of poisoning instances along each feature, the variances are quite large

on somewords including “will” and “email”. This suggests that there are large gaps between

the non-spam emails and instance #40 on these words in terms of word frequencies, which

could be exploited by attackers when designing the contents of the poisoned emails.

Lessons Learned and Possible Defense: From our analysis, our domain expert was able to
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identify several key issues. First, from the distribution of impact values and classification

probabilities among the poisoning instances, an interesting finding was that the poisoning

instances close to the target are more uncertain (i.e., of low classification probability values)

and essential to flipping its label. Our domain expert mentioned that further optimization

may be performed by removing poisoning instances far away from the target because their

impact and classification uncertainty could be too low to influence the model training. Sec-

ond, even though an attack on instance #40 has the maximum influence on the recall value,

there is a large (but not unfathomable) cost associated with inserting 51 poisoning instances

(poisoning rate = 12.75%). Given the large attack cost, our domain expert was interested

in exploring alternative attacks with similar impacts and lower costs, such as instance #80

(Figure 2 (7)). A poisoning attack on #80 can result in a reduction of 0.07 on the recall at

almost half the cost of #40 (29 insertions, poisoning rate = 7.25%). The key takeaway that

our analyst had was that there are multiple viable attack vectors that could greatly impact

the reliability of the spam filter. Given that there are several critical vulnerable targets, the

attackers could perform continuous low-cost manipulations to reduce the reliability of the

spam filter. This sort of approach is typically referred to as a “boiling-frog attack (Huang

et al. 2011)”. Here, our domain expert noted that the training-sample selection process may

need to be monitored.

3.1.5 Evaluation and Expert Interview

To further assess our framework, we conducted a group interviewwith our collaborator

(E0) and three additional domain experts in adversarial machine learning (denoted as E1,

E2, and E3). For the interview, we first introduced the background and goals of our visual

analytics framework, followed by an illustration of the functions supported by each view.
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Then, we presented a tutorial of the analytical flow with the two case studies described in

Section 3.1.4.1 and 3.1.4.2. Finally, the experts were allowed to freely explore the two datasets

(MNIST and Spambase) in our system. The interview lasted approximately 1.5 hours.

At the end of the interview session, we collected free-form responses to the following

questions:

1. Does the system fulfill the analytical tasks proposed in our work?

2. Does our analytical pipeline match your daily workflow?

3. What are the differences between our visual analytics system and conventional ma-

chine learning workflows?

4. Is the core information well-represented in the views?

5. Are there any views that are confusing, or that you feel could have a better design?

6. What results can you find with our system that would be difficult to discover with

non-visualization tools?

Framework: Theoverallworkflowof our framework receivedpositive feedbackwith the ex-

perts noting that the systemwas practical and understandable. E3 appreciated the two-stage

(attack space analysis and attack result analysis) design in the interface, and he conducted a

combination of “general checks + detailed analysis”. E2 noted that “the stage of attack space

analysis gives our domain users a clear sense about the risk of individual samples, so we can

start thinking about further actions to make the original learning models more robust and

secure,”. E1 mentioned that the framework could be easily adapted into their daily workflow

and improve the efficiency of diagnosing new poisoning attack algorithms. E1 also suggested

that it will be more flexible if we can support hot-swapping of attack algorithms to facilitate

the diagnosis process.

Visualization: All the experts agreed that the combination of different visualization views
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can benefit multi-faceted analysis and provide many aspects for scrutinizing the influence of

poisoning attacks. E2 was impressed by the instance attribute view and felt that the glyphs

were more intuitive than looking at data tables since the changes of distances to the decision

boundary can be directly perceived. E3 mentioned that the local impact view provides es-

sential information on how the neighboring structures are being influenced. The two-ring

design of the target and innocent instances provides a clear comparison of two groups of

nearest neighbors before and after an attack. E3 further added that the node-link diagram

and the visual encoding of impacts are effective for tracing the cause of label flipping and the

valuable poisoning instances. “With the depiction of impacts, maybe we could find how to

optimize our attack algorithms by further reducing the number of insertions, since some of

the low-impact poisoning instances may be removed or aggregated.”

Limitations: One issue found by our collaborator, E0, was the training time that was nec-

essary for using our framework. E0 commented that during the first hour of the interview,

we were often required to repeat the visual encoding and functions in the views. However,

once the domain experts became familiar with the system after free exploration for some

time, they found that the design is useful for gaining insights from attacks. We acknowl-

edge that there could be a long learning curve for domain experts who are novice users in

comprehensive visual analytics systems.
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3.2 Sensitivity Auditing for Graph Mining

Given the large scale use of graph-based ranking algorithms, we have developed a visual

analytics framework to support developers and analysts in exploring and explaining ranking

sensitivities. Our framework is designed to be robust to general graph-based ranking algo-

rithms, and supports the removal of nodes as the key perturbation method. While other

types of perturbations exist, such as adding/removing nodes/edges(Jia et al. 2020; X. Wang

et al. 2018; J. Kang et al. 2018), our framework focuses on the removal of a node and its cor-

responding edges as a proof-of-concept interaction. The removal perturbation allows us to

constrain the computational and exploration space. However, the interactions and design

are robust to all types of perturbations, which will be explored in future work. Our poten-

tial target audience includes researchers, developers, and analysts who are building and/or

deploying graph-based ranking applications. Our goal is to facilitate those experts’ analysis

of the sensitivity of their chosen rankingmethods and support them in auditing the applied

ranking algorithms before deployment.

3.2.1 Analytical Tasks

After reviewing recent literature on graph auditing (J. Kang et al. 2018; Kang and Tong

2019), we extracted common high-level tasks for the auditing process. These tasks were re-

fined with our co-authors, domain-experts in graph-mining.
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Figure 9. Sensitivity analysis of HITS on political blogs. (1) A predefined rule is set to ex-
clude all perturbations that would cause the rankings of the top-5 blogs to decrease. (2) The
blog “liberaloasis.com” has the largest influence under this constraint, and its removal can
increase the rankings of the conservative blogs while decreasing the rankings of the liberal
blogs. (3) The influence overview indicates that nearly 2/3 of the influenced nodes see a
ranking increase. (4) The ranking change distribution view further shows that most of the
ranking-increased nodes are conservative blogs andmost of the ranking-decreased nodes are
liberal blogs, from which the top-3 heavily influenced nodes are ranked 200th or below. (5)
The top-k proportional view shows that the proportion of liberal blogs decreased from 82%
to 77% in the top-100 due to the perturbation.(6, 7) The influence graph view implies that
the removal of “liberaloasis.com” has a direct influence on the majority of the liberal nodes
(including the top-3 influenced nodes), and as the influence distance increases, more conser-
vative nodes are indirectly influenced.
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3.2.1.1 T1: Summarize instance-level sensitivity

The key analytic task is to identify an individual node’s ranking and the sensitivity of

this node’s ranking to changes in the graph structure. Our framework is designed to provide

an overview of the ranking results, and enables analysts to explore any node’s sensitivity to

perturbation. For example:

• T1.1 Which perturbation causes the largest ranking changes?

• T1.2 How do perturbations cause ranking changes, i.e., are there topological features

that leading to ranking instability?

• T1.3Are nodes with specific attributesmore sensitive to perturbations in the network,

i.e., does the removal of a node of group A lead to changes in the ranking of nodes in

group B, where groups are defined by some underlying network attribute.

3.2.1.2 T2: Diagnose the perturbation effects

What-if analysis (Wexler et al. 2019) has previously been used for XAI as a mechanism to

investigate machine learning model performance for a range of data features. In our frame-

work, we adopt this idea of what-if analysis to measure the output of any graph-based rank-

ing algorithm by perturbing the input. This enables model developers to measure and ex-

plore the ranking changes and corresponding effects. As we focus on removing nodes as the

perturbation mechanism, a key analytical task is to support diagnosing changes caused by

node removals including:

• T2.1: Summarize the ranking influence of perturbation. The system should provide

a summary of how perturbation has impacted the graph-based ranking results.
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• T2.2: Enable the ranking influence comparison between subgroups. Each graph node

represents an instance and may have attributes/labels that can be used to define class

membership. Questions about ranking changes are often strongly tied to questions

of fairness related to graph attributes, for example, given a hiring database, are the

ranking of female applicants more sensitive to changes in the graph structure than

male applicants?

• T2.3: Identify the topological influence caused by perturbations. The system also

needs to support analysts in exploring how perturbations have influenced the graph

topology.

3.2.1.3 T3: Enable progressive analysis

The system should support the analysis of multiple perturbations as analysts explore

what-if scenarios.

3.2.2 Design Requirements

From the task requirements, we engaged in an agile design process with our domain ex-

perts, iterating over various visualization and interaction designs. Based on our discussions,

prototyping and feedback, we havemapped different analytic tasks to a set of design require-

ments.
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3.2.2.1 D1: Visualize the Instance-level Sensitivity

The system should visualize ranking and auditing results for all instances (T1). The view

for summarizing the instance-level sensitivity should include the sensitivity index (T1.1) for

all nodes with respect to the node attributes (T1.3).

3.2.2.2 D2: Visualize the Effect of Perturbation

The system should be able to guide analysts to explore the perturbation effect of certain

node’s removal and support interactions such as sorting, searching and filtering to inspect the

auditing results and corresponding perturbation effects (T2, T3). This view should include:

• D2.1 Influence Overview, which summarizes the perturbation’s influence, the

degree of ranking changes, and the proportion of nodes whose rankings are in-

creased/decreased, etc. (T1.2, T2.1, T3)

• D2.2 Distribution View, which shows how the ranking position changes caused by

the perturbation are distributed for each instance and the ranking distribution for

each group of nodes. (T2.2, T1.3)

• D2.3 Ranking Change Detail View, which lists the influenced nodes for this pertur-

bation. The view should support basic query operations, e.g., sorting, filtering and

searching, etc.(T2.1, T3)

• D2.4 Local Influence Graph View, which illustrates the relationship between the rank-

ing changes of nodes and the topological changes caused by the perturbation. (T2.3,

T3)

The development of visual analytics methods and tools for explainable artificial intel-

ligence (XAI) primarily tackles analytical tasks in vector-space learning, such as classifica-
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tion (Alsallakh et al. 2014; Zhang, NianWu, and Zhu 2018), clustering (Kwon, Crnovrsanin,

and Ma 2018; Cavallo and Demiralp 2019), and outlier detection (Kwon, Crnovrsanin, and

Ma 2018; Xu et al. 2018). However, graph-based learning algorithms are significantly dif-

ferent from vector-space representations, and these differences have not been sufficiently

studied in the visual analytics community. Specifically, graph-based ranking algorithms

have received little attention; however, algorithms such as PageRank (Page et al. 1999) and

HITS (10.1145/324133.324140 ) are foundational in industrial information retrieval settings.

In these information retrieval settings, a person searches a graph-based dataset looking for

relevant objects, and the resultant ranking order has amajor impact with respect to exposure.

For example, recent work by Singh and Joachims (Singh and Joachims 2018) demonstrated

that the exposure of resumes to potential employers could be reduced by upwards of 30% if

an item’s rank fell by as little as three places.

Previous work (Kang and Tong 2019; Ng, Zheng, and Jordan 2001; Chartier et al. 2011;

J. Kang et al. 2018) has demonstrated that the results of such graph-ranking algorithms can

be highly sensitive to perturbations within the graph structure, and these sensitivity issues

give rise to rankingmanipulations. Given the importance of the ranking results, it is impera-

tive that algorithmdesigners and analysts understand theunderlying algorithmic sensitivities

and vulnerabilities. Consider a news navigation website (Adamic and Glance 2005) where

the consumer can search political-related blogs and posts. The search result rankings are de-

termined by a graph ranking algorithm, and higher ranked stories are more likely to be read

and shared. Here, one could imagine a nation-state actor thatwouldwant to promote biased

content. The nation-state actor can create webpages to add various links in the graph struc-

ture, or even identify websites to shadow ban, which could manipulate the ranking results

so that certain political opinions are more exposed to the public. Given the importance of
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such rankings, it is critical that model developers have access to tools that can support them

in understanding the ranking methods’ sensitivity to structural changes in the graph.

The preliminary work has developed a modularized visual analytics framework to facili-

tate auditing and diagnosing any graph-based ranking method’s sensitivities by performing

what-if analysis over a given graph dataset via node perturbation. This framework is suit-

able for answering the following questions: Given a list of ranking results performed by

a graph-ranking algorithm, how perturbations can influence the results? How such influ-

ence is reflected in terms of the topological structures? In this framework, the interactive

perturbation of a graph’s nodes through coordinated views enables analysts to explore and

identify algorithmic sensitivities. A summarization view for the sensitivity index (i.e., the

degree of the ranking method’s sensitivity to the perturbation) facilitates the identification

of the graph-ranking method’s instance-level sensitivity. A group of views quantifies the im-

pacts of perturbations through the comparison of statistical information about the ranking

results, and a local graph influence view supports the inspection of ranking changes due to

changes in the graph topology.

3.2.3 Visual Analytics Framework

Based on the analytic tasks and design requirements, we have developed a visual analytics

framework (Figure 10) for auditing, diagnosing, and analyzing graph-based ranking meth-

ods’ sensitivities to instance-level perturbation through what-if analysis. The framework is

designed to first compute a sensitivity calculation for each node of the graph and integrate

the results to form a list of all sensitivity information (Figure 10 (A)). Once the precompu-

tation is loaded, the analyst interacts with the system by choosing nodes to perturb, and the

framework calculates and visualizes the perturbation effects (Figure 10 (B)). The framework
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Figure 10. A visual analytics framework for identifying, auditing, and diagnosing a ranking
method’s sensitivity to instance-level perturbations. The framework consists of Identifying
the Instance-level Sensitivity, Diagnosing the Perturbation Effects, andConstraints Filtering.
(A) Perturbation is applied for each node instance. The ranking methods are rerun for each
new graph generated. Sensitivity to the rankingmethod for each node’s removal is calculated.
(B) The analyst can explore one of the nodes to see the perturbation effects through both
overview inspection and detailed inspection. (C) Then the analyst can apply constraints to
the sensitivity index list based on their findings, and the sensitivity index list is updated.

also supports filtering the list based on the analyst-defined rules to support the inspection of

the data under a variety of constraints (Figure 10 (C)). By supporting an iterative process of

perturbing nodes and adding analyst-defined rules, this framework enables the auditing of

the sensitivity of graph-based ranking algorithms.

The framework supports three main activities: instance-level sensitivity identification,

perturbation diagnosis, and customized constraints filtering. Through instance-level sensi-

tivity identification, the analyst can explore an overview of ranking sensitivity with respect

to perturbation (node removal). In the perturbation diagnosis, effects caused by the per-

turbation are displayed with respect to the statistical distribution, top-k distribution, and

influenced paths. From the detailed influence view, the analyst can identify the potential

constraints and further apply those constraints to filter the results. The analyst can repeat

this process until they identify nodes of interest. Our framework is designed to be modu-
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lar, enabling model designers to integrate any graph-based ranking algorithm. However, for

discussion and demonstration purposes, we only explore PageRank and HITS.

3.2.3.1 Identifying the Instance-level Sensitivity

The first component of our framework is designed to support instance-level sensitivity

analysis (or auditing) for nodes in the graph. Kang et al. (J. Kang et al. 2018) defined sensitiv-

ity auditing as finding the k graph elements (nodes or edges) that have the largest influence

on the overall ranking changes of a given graph. This approach identifies themost influential

element, removes this element, updates the graph structure, identifies the most influential

element from the new graph structure, and continues repeating this process until k elements

are found. While such a process is useful for identifying themost sensitive nodes, it does not

directly incorporate a mechanism for measuring sensitivity for an individual node. In order

to define sensitivity per node, we modify the definition of sensitivity auditing fromKang et

al. (J. Kang et al. 2018).

Definition 1. Given a graph G, an element (a node or an edge) to be removed elrm and a

graph ranking method f , the graph ranking sensitivity auditing can be defined as finding

the sensitivity index for each graph element of G. We denote the sensitivity index of element

elrm as the degree of ranking method f ’s sensitivity to the perturbation caused by the removal

of this element elrm. The sensitivity index of this element elrm is represented as:

s[elrm] = sen(f, elrm) = L(rp, rp′) (3.1)

where rp and rp′ denote the ranking positions for each node before and after the pertur-

bation respectively (elrm is not included in both rp and rp′), and L stands for a generic

difference/distance measure between the ranking vectors before and after perturbation. s
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as the result represents the vector that contains the sensitivity index for every instance, and

s[elrm] denotes the sensitivity index of elrm.

Our proposed sensitivity index is used to help analysts compare sensitivities across re-

movals of graph elements. As we focus on node removal in this work, elrm can be replaced

by vrm, which denotes the removednode. While there aremanymetrics available for calculat-

ingL, we apply theL1 norm as the sensitivity metric as it directly measures the accumulated

ranking position changes over all nodes. Figure 10 (A) illustrates how the Instance-level sen-

sitivity module performs the initial sensitivity index check on each instance. Applying Defi-

nition 1, our framework first calculates the ranking change for every node by removing each

node (and its corresponding edges) from the graph and calculates the rankingmethod on the

perturbed graph. The removal of a node may cause the ranking of other nodes to change in

both ranking directions (increase or decrease). As such, the sensitivity can be summarized in

multiple ways. For example, we could compute the overall positive/negative ranking change

(or influence) that occurs when removing a node could be summarized or the class-specific

positive/negative influence, where classes of nodes are defined based on their attributes and

labels. In our framework, we calculate both a positive sensitivity index senp and a negative

sensitivity index senn with respect to class labels as follows:

sbpos[vrm] = senp(f, vrm, b) =


∑
|rpv − rp′v|, rpv − rp′v > 0

0, otherwise

(3.2)

sbneg[vrm] = senn(f, vrm, b) =


∑
|rpv − rp′v|, rpv − rp′v < 0

0, otherwise

(3.3)

where v ∈ V ∧ v ̸= vrm ∧ label(v) = b, V is the set of all nodes in the graph, b is the

class label, and rpv and rp′v are the ranking positions of node v before and after the perturba-
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tion respectively. spos and sneg represent the vectors of positive and negative sensitive index

for each instance, in which spos[vrm] =
∑

b∈B sbpos[vrm] and sneg[vrm] =
∑

b∈B sbneg[vrm],

where B is a set of labels. Eq. 3.1, Eq. 3.2 and Eq. 3.3, are applied in Algorithm 2 to realize

the the initial sensitivity index check for every node and every available label. The system

then visualizes the output in the sortable sensitivity index list (D1), which shows each node’s

current ranking and sensitivity indices with respect to the node’s class label(s).

3.2.3.2 Diagnosing the Perturbation Effects

The second component of our framework is designed to supportwhat-if analysis. In this

module, analysts begin by selecting a node from the sensitivity index list to further explore

the perturbation effects. Several linked views are deployed:

Influence Overview: The influence overview provides basic information on changes caused

by removing a specific node (D2.1). These changes include 1) the number of influenced

nodes which have ranking changes after the perturbation; 2, 3) the number of influenced

nodes whose ranking increased/decreased after the perturbation; 4, 5) the max/min of in-

creased/decreased ranking changes; 6, 7) themedian of increased/decreased ranking changes;

and 8) the degrees of the node. These 8metrics provide the analyst with a statistical overview

of the ranking influence of nodes due to perturbations. The radar chart is used to provide

an overview of the sensitivity metrics with respect to the effects of a perturbation. (Figure 9

(3)) The radar chart allows for the further addition of new metrics and can also preserve the

overall information of the perturbation when the analyst switches betweenmultiple pertur-

bation diagnoses through the tabs on the top of the view.

Influence Distribution View (D2.2): In addition to showing the snapshot of ranking
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Algorithm 2 Sensitivity Index Initial Check
1: Inputs: graph dataG; ranking method f ; node labels B;
2: Outputs: overall SI vector s; positive/negative SI vector spos/sneg; positive/negative SI

vector in terms of labels Spos/Sneg;
3: roriginal ← f(G)
3: for each node v inG.nodes do
4: remove v and all connected edges e fromG
5: rremoved ← f(G)
6: calculate rdiff with roriginal for each node in rremoved

6: for each rdiff [i] in rdiff do
6: if rdiff [i] > 0 then
7: sbpos[v]← sbpos[v] + abs(rdiff [i]) for b = label(i)
7: end if
7: if rdiff [i] < 0 then
8: sbneg[v]← sbneg[v] + abs(rdiff [i]) for b = label(i)
8: end if
9: s[v]← s[v] + abs(rdiff [i])
9: end for
10: spos[v]← sum(sbpos[v]); sneg[v]← sum(sbneg[v]) for b in B
11: add all sbpos[v] to Spos[v] and all sbneg[v] to Sneg[v] for b in B
12: add v and e back toG
12: end for
13: Return s, spos, sneg, Spos, Sneg =0

changes, we also provide a ranking change distribution view and the top-k proportional dis-

tribution view.

Ranking Change Distribution View: A bar chart (Figure 11) is used to show the ranking

change distribution. Each bar is a node. The position of the bar on the x axis denotes the

original ranking position for the node. The height of the bar on the y axis denotes the rank-

ing change for the node. Colors represent the node labels. We scale the axes of the bar chart

such that a 90-degree clockwise rotation of the bar also allows the analyst to infer the future

rank of the node.

Top-k Proportional Distribution View: Chartier et al. (Chartier et al. 2011) noted that when

applying graph-based ranking algorithms for search engines, there couldbe an argument that
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ranking changes of webpages that are not part of the top-k ranking are less important than

those in the top-k. This argument can be extended to any general graph ranking problem,

where the analyst can choose a k for which elements below this ranking will not be consid-

ered. For example, a hiring manager may not be interested in resumes ranked outside of the

top-25, but it important tounderstandwhether certainnode attributes are underrepresented

in the top-k. In the Top-k Proportional Distribution View, we use two donut charts to rep-

resent the proportions of nodes of different categories belonging to ranking 1 to ranking k

before and after the perturbation (Figure 9 (5)), and k is interactively specified.
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Figure 11. Visual encoding of the Ranking Change Distribution View. We use a bar chart to
show the ranking change distribution. Each bar is a node. The position of the bar on the x
axis denotes the original ranking position for the node. The height of the bar on the y axis
denotes the ranking change for the node. Colors represent the node labels. We scale the axes
of the bar chart such that a 90-degree clockwise rotation of the bar also allows the analyst to
infer the future rank of the node.

Influence Detail View: In the influence detail view, a data table is used to give the exact details

about the node name, previous ranking, perturbed ranking, ranking difference, and labels.

The analyst can sort all columns in the table, and, by hovering over a row, the location of the

corresponding node will be highlighted in the local influence graph.

Influence Graph View: While summarizing the changes in rank is important, our domain
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experts also required the ability to explore the impacts on the graph topology caused by per-

turbations. Note that for the graph-based ranking algorithm, such as PageRank and HITS,

the underlying logic propagates the ranking value until convergence. In other words, the

probability value for each node is propagated via a directed link connected between a node

and its predecessors 2. In our case, perturbation is equivalent to removing the designated

node and the links associated with it. As such, perturbation may cause two types of influ-

ence: direct influence and indirect influence. We consider direct influence to be the ranking

changes of nodes due to the perturbation of their predecessors. Indirect influence is the

ranking changes of nodes due to perturbations of any nodes that are not their predecessors.

Understanding the direct and indirect influence is critical as analysts are interested in nodes

that cause limited direct influence but have larger amounts of indirect influence. These types

of nodes are prime candidates for shadowing banning and other types of attacks as their re-

moval can greatly influence the ranking results, but the removal will be relatively unnoticed

by their direct connections, making such an attack difficult to quickly identify.

To perform the direct/indirect influence analysis, we begin by building the influence

graph which contains the topological relationships between the influenced nodes and the

removed node. Here we introduce the concept of influence distance, which we define as

the geodesic distance 3 between two nodes. We denote the influenced nodes, which are suc-

cessors 4 of the removed node, as hop-1 influenced nodes, which are also represented as the

directly influenced nodes. Hop-1 influenced nodes have an influence distance of 1. Similarly,

from the influenced nodes, we denote the hop-1 influenced nodes’ successors as hop-2 in-
2A node that has a link that points to a given node in a directed path.

3The length of the shortest directed path connecting the two nodes. For an unweighted graph, the length is
the number of edges in the shortest path. The distance is infinite if there is no path between two nodes.

4Any node whose geodesic distance is equal to one from a path starting at i.
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fluenced nodes, which have an influence distance 2, and so on and so forth. We define the

influence distance to be the shortest distance between the removed node and the influenced

node, which means that a hop-1 influenced node may also be a hop-3 influenced node’s suc-

cessor, but we only consider it as hop-1. Finally, for those nodes whose influence distance

is infinite, we denote them as hop-inf influenced nodes. Algorithm 3 details our influence

graph construction algorithm.

Algorithm 3 Influence Graph Construction
1: Inputs: graph dataG; removed node vr; influenced nodes V ′

2: Outputs: influence graphG′

3: initializeG′

4: initialize queue q
5: G′.addNode(vr, hop=0)
6: q.push(vr)
6: while q is not empty do
7: v ← q.pop()
7: for vneighbor in v.neightbors() do
7: if vneighbor is influenced and not visited then
8: visited(vneighbor)← true
9: G′.addNode(vneighbor, hop=v.hop + 1)
10: G′.addEdge(v, vneighbor)
11: q.push(vneighbor)
11: end if
11: end for
11: end while
11: if any influenced node not inG′ then
11: for vremain in remained influenced nodes do
12: G′.addNode(vremain, hop=inf)
13: G′.addEdge(v, vremain)
13: end for
13: end if
14: Return G′ =0

We visualize the influence caused by removing/perturbing a node (D2.4) as a customized

radial graph layout (Figure 12). In this customized layout, the removed node is set as the
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Figure 12. Visual encoding of the Influence Graph View. The perturbed node is placed at
the left top of the graph and all successors which have ranking changes are grouped as hop-1
nodes. The successors of any hop-1 nodes which have ranking changes are grouped as hop-2
nodes, so on and so forth. Thenodes’ colors encode their categories (using colored filling and
black strokes for regular nodes, and white filling and colored strokes for hop-inf nodes), and
the nodes’ sizes and thickness of their incoming edges encode the absolute value of ranking
changes of nodes. The orange and light blue edge colors denote a ranking decrease/increase
respectively. Nodes that do not have connections with any of the nodes in the influence
graph are hop-inf nodes and are connected to the perturbed node with a dashed arrow line.

center of the force, and the strength of the charge force for each type of the node (hop-1 node,

hop-2 node, etc.) is increased gradually based on the number n of hop-n. In this way, all the

nodes are clustered, and the influence graph forms a tree-like structure where the root of the

tree starts from the top-left of the view and the branches spread towards the bottom-right of

the view. Compared with a traditional force directed layout, this layout has two advantages:

1) All the influenced nodes are organized and positions of the nodes are relatively fixed in this

layout, which enables the analyst to preserve their mental model. 2) Nodes of the same type

are clustered in this view, enabling the analyst to explore the composition for each cluster, i.e.,

each group of hop-n nodes. The color of the edges is encoded with light blue and orange,

which shows whether the influenced node increased/decreased. The nodes’ colors encode

their categories (using colored filling and black stroke for regular nodes, and white filling

and colored stroke for hop-inf nodes), and the nodes’ sizes and thickness of their incoming
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edges encode the absolute value of the ranking changes of nodes. We also provide interactive

graph filtering so that analysts can filter by nodes whose rankings have increased/decreased,

or nodes within certain influence distance ranges. The ranking change distribution viewwill

also automatically update based on the ranges, Figure 9 (6) (7). By filtering, the analysts can

answer questions related to the perturbation, such as whether the node has a large direct

influence on specific categories, or whether the node has a large indirect influence on nodes

that are far away.

3.2.3.3 Customized Constraints Filtering

Aswe hinted at with the discussion of exploring ranking changes with respect to node at-

tributes, in real-world applications, measures of sensitivitymay need to be donewith respect

to domain specific constraints. Consider theGoogle search engine as an example, where each

website is more concerned about reaching the first page of search results as well as climbing

the ranking on that first page. It is reported thatGoogle traffic is capturedby 91.5%of the first

page search results (How Valuable Is The First Page of Google?), and there are also reports

suggesting that top-3 results capture upwards of 75% of the clicks (We Analyzed 5 Million

Google Search Results. Here’s What We Learned About Organic CTR). In such a setting, a

domain owner would be interested in how sensitive their website is to ranking changes as a

change in ranking from the first page of the search results to the second can have disastrous

implications for web traffic.

Our framework enables customized constraints filtering functionality that allows ana-

lysts to add constraints to the sensitivity index list. Specifically, the analyst can define con-

straints that prevent selected nodes’ rankings from increasing/decreasing by a certain degree.

As Figure 10 (C) shows, the analystmay have domain knowledge of the data andmaywish to
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Figure 13. Facebook sensitivity analysis on PageRank. (1) The sensitivity index list shows
that user 136 has the 4th largest influence on the Sensitivity Index while its ranking score
is 312 out of 734 nodes, which is considerably low for such a large influence. (2) The influ-
ence overview shows that the removal of user 136 influences 644 of the 734 nodes, with 482
of them being positively influenced (ranking increased) while 162 are negatively influenced
(ranking decreased). (3) The ranking change distribution view shows that negatively influ-
enced nodes see a larger ranking decrease in comparison to positively influence nodes. (4)
The top-k distribution view shows that as k increases from 10 to 100, the proportion of gen-
der 2 increases, which means nodes of gender 1 are ranked relatively higher than nodes of
gender 2. (5) The influence graph view further explains that most of those nodes who have
large ranking changes are the neighbors of the removed user 136, and (6) the corresponding
distribution view shows that those neighbors’ rankings are evenly distributed.

add constraints to the sensitivity index list to filter out any perturbations that would violate

the constraints. For example, if the analyst wants all the possible perturbations on the sen-

sitivity index list that do not cause the top-3 nodes to experience ranking drops, the analyst

can add a constraint: prevent top-3 nodes from ranking decreased by 0. The analyst can then

sort the sensitivity index list and add the top-3 ranked nodes to the protected list by clicking

the shield-like button for each of them and then configure a new rule “protect selected nodes

from ranking decreased by 0”. Finally, the analyst clicks the Update Constraints button to

add the new rule. The newly configured rule will then be displayed on the Rules section

(Figure 9 (1)) and the sensitivity index list will be automatically updated such that any poten-

tial perturbations in it will not result in the top-3 ranked nodes having their rank decreased.

The analyst can also addmore constraints as theymay find certain nodes need tobe protected
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from the perturbation during the diagnosis process. For example, if the analyst finds that a

perturbation causes a significant ranking drop on the node, the analyst can use the lasso tool

to select the node in the influence graph view (the node with significant ranking changes is

encoded as a large circle in this view), and add it to the protected nodes and then apply a new

rule. The analyst can then restart exploring the potential perturbations that do not violate

the new rule. In this way, the analyst is able to explore possible perturbations under a variety

of customized constraints.

3.2.4 Case Study

In this section, we present three case studies to demonstrate how our framework sup-

ports sensitivity auditing for graph-based ranking. We showcase how data scientists analyze

the sensitivity of the PageRank algorithm on Facebook social network data, how ranking

developers check the robustness of their graph-based ranking algorithms, how social scien-

tists analyze the exposure of blogs, and how the sensitivity of ranking algorithms can help

identify potential manipulations.

3.2.4.1 Facebook Ranking with PageRank

In social network analysis, ranking members based on the graph structure is essen-

tial to tasks such as advertising (Heidemann, Klier, and Probst 2010), social link predic-

tion (gleich2015pagerank), and recommendation (Gori:2007:IRB:1625275.1625720). Pertur-

bations in rankings may have a significant influence on the related business strategies. As

such, it is important to audit the sensitivity of such rankings as this may help uncover mali-

cious accounts, or reveal unintended biases in the algorithm. For example, analysts employ
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graph-based ranking methods to provide recommendations within a social network. These

recommendations are based on the ranking results which predict who in the social network

might be interested in the recommended products. Here, it may be important to under-

stand if one sub-population is being over-targeted with particular advertisements. In this

case study, we analyze ranking sensitivity in the Facebook social network dataset (Leskovec

andMcauley 2012). For demonstration purposes, the social network is down-sampled into a

graph with 734 nodes and 74254 edges. We use the gender of each network member (where

each member is a node in the graph) as the class label and explore if perturbations in the

network reveal ranking bias with respect to gender.

Identifying the Instance-level Sensitivity (T1): The sensitivity index table is displayed after

loading the graph data and choosing the ranking method, Figure 13. We sort the column

SI (Sensitivity Index) in order to explore which node (network member) is likely to have

the largest influence on the ranking result. After sorting by SI, it can be observed that the

nodes with the highest SI are also the highest ranked nodes. This phenomenonmatches the

explanation in Kang et al. (J. Kang et al. 2018) that the nodes with high influence are also

often highly ranked. Interestingly, though, we see that the 4th node, user 136, has a high

sensitivity index. However, the network member is ranked 312th out of 734 nodes. This

particular case is of keen interest to our analyst.

Diagnosing the Perturbation Effects (T2): By clicking ‘diagnose the perturbation effect’

on user 136, the details of the influence is depicted in the influence overview. In Figure 13 (2),

the influence overview shows that the perturbation caused by removing user 136 has influ-

enced 644 out of 734 nodes, where 482 nodes’ rankings increased and 162 nodes’ rankings

decreased. By further exploring the ranking change distribution view, we find that although

positively influenced nodes are 3 times more common than the negatively influenced nodes,

the negatively influenced nodes are subject to larger ranking fluctuations than the positively
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influenced nodes. While we expect that the nodes that were previously ranked lower than

user 136 would see a rise in ranking to fill the gap created by user 136, it is surprising to also

find large negative changes occurring. In the ranking distribution view and the top-k distri-

bution view, Figure 13 (3), we observe that the perturbation does not result in drastic changes

in the ranking distributions. Furthermore, if we split the top-k rankings by gender, the per-

turbation is not observed to impact one gender class’s rankings more than another.

In addition, our analyst is interested in the relationships between the ranking changes

and the topological structure. Specifically, the analyst wonders how the removed user 136 is

connected to the influenced nodes given the stronger impacts for decreased ranking. In the

local influence graph view, the nodes who have significant ranking changes in the perturba-

tion are directly connected to user 136 since all the large circles are hop-1 node, Figure 13 (4).

After selecting the range of influence distances, we can see that the decreases of rankings for

most of the nodes are caused by being the immediate successor of user 136. Furthermore,

most of the nodes outside the hop-1 circle have their ranks slightly increased. This may be

due to the fact that those nodes are not heavily influenced by the perturbation.

3.2.4.2 Subreddit Ranking with PageRank

In the second case study, we audit the sensitivity of PageRank results on the subreddit

community interaction graphdataset (Page et al. 1999). Kumar et al. (Kumar et al. 2018) stud-

ied the community interactions and conflicts between communities in Reddit to show that

a community can be mobilized by negative sentiment comments from another community.

Such conflicts between communities can potentially reduce the activities among community

members and may lead to people leaving the platform. In such cases, it is also possible that

other communities will be influenced due to chain effects in the network, which may cause
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Figure 14. Subreddit sensitivity analysis on PageRank. (1) The sensitivity index list shows
that the “r/CalgaryFlames” node belongs to the sports topics and has a large sensitivity in-
dex. (2) The influence view shows that removal influenced 426 out of 464 nodes, and 395
of them are positively influenced while only 31 are negatively influenced. (3) The ranking
change distribution view shows that a few nodes experience a large ranking decrease due to
the removal of “r/CalgaryFlames”, the majority of which are sports topics. (4) The top-k
distribution view shows that the subreddits for sports occupymore of the top-50 ranks than
other subreddit topics. (5) (6) The removed node has relatively few neighbors that are neg-
atively influenced, and there are more direct influences in the ‘General’ nodes than ‘Other’
nodes.

member churn and increased complaints about the platform. Thus, the Reddit community

managers and data analysts may be interested in inspecting the activities of communities to

make sure the content environment is benign and also be aware of any perturbations (dele-

tion of subreddit posts/activity reduction) that might influence ranking results during any

possible recommendation processes.

In this case, we sub-sampled the subreddit community interaction dataset (Kumar et

al. 2018) down to 464nodes and 6676 edges. Each node represents a subreddit, and a topic la-

bel is assigned to thenodes to identify theirmain categories, such as “r/basketball”, “r/soccer”

and “r/nfl” under the topic “Sport”. An edge between two nodes indicates there is a com-

ment in one subreddit which referred to the other subreddit in the content of the comment.

We select three topics to explore: Sports, General, and Others. In this case, comments with

a high page rank would receive more views, and if negative comments generate more clicks,

this could be of concern. Community administrators could utilize our framework to ex-
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plore the interactions between communities and identify potential issues of flaming, karma

farming, etc.

Identifying the Instance-level Sensitivity (T1): After the ranking results are loaded into

the system, we want to knowwhich subreddit in the “Sports” topic has the largest influence

on the reputation of other subreddits. By sorting the sensitivity index column, the ranking

result is listed in the sensitivity index table, and the subreddits are ordered by their sensitiv-

ity values in descending order. We believe that concrete entities such as sports players and

teams can have more controversial topics, but are less noticeable by community members

who are not interested in them. Thus, we skip the general subreddits such as “r/hockey”,

“r/baseball”, and “r/basketball” and focus on the “r/CalgaryFlames”, which has a relatively

large influence on the reputation rankings of the subreddits.

Diagnosing the Perturbation Effects (T2): The impact of removing the “r/CalgaryFlames”

node are shown on the right side of Figure 14. In the influence overview, the removal has in-

fluenced 426 out of 464 nodes. Among the 426 nodes, 395 of themhave their ranks increased

while 31 decreased. Specifically, the node “r/thebeach” has increased by 8 positions, and the

rank of node “r/coloradoavalanche” has dropped by 81 positions. This indicates that the

perturbation has triggeredmassive declines even though the average increase is relatively low.

In the ranking change distribution view, we observe that the ranking declines occur primar-

ily in the Sports subreddits whose original ranks are relatively low (around 255 out of 464).

Comparedwith the decrease, the overall distribution of the increased nodes covers a broader

range on the original rankings; however, a much smaller climbing effect in the ranking posi-

tions is observed. Thismay be due to the fact that the original rank of the “r/CalgaryFlames”

is very high (22nd), which could possibly bump many lower-ranked subreddits into higher

positions. In the distribution view, all three topics (sports, general and others) receive slight

increases in the median values. However, the overall distribution remains the same. We fur-
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ther query the top-50 since there are considerable ranking changes depicted in the ranking

change distribution view. This suggests that after removing the “r/CalgaryFlames”, the pro-

portion of subreddits in the category of Sports among the top-50 has increased from 48%

to 52%, while the proportion of “Other” subreddits has dropped from 18% to 14%. In the

influence graph view, we find that the removal results in large drops the to ranks of the hop-

1 nodes, which matches the patterns shown in the ranking change distribution view. That

is to say, the removal of “r/CalgaryFlames” only influences its neighbors with significant

ranking changes. By filtering on the influence distance values, we find that the perturbation

significantly influences the “Sports” subreddits.

3.2.4.3 Political Blogs Ranking with HITS

Graph-based ranking methods are widely used to rank webpages. Here, we consider a

scenario where removing certain pages from a website (either intentionally by the website

owner, or maliciously through shadow bans by an external party) can significantly change

the rankings of other pages. Consider a political web forumwhere members post views and

opinions on certain topics and issues. The search result rankings are determined by a graph

ranking algorithm, and higher-ranked opinions are more likely to be read and shared. Here,

one could imagine a nation-state actor that would want to promote biased content. The

nation-state actor can create webpages to add various links in the graph structure, or even

identify websites to shadow ban, which could manipulate the ranking results so that certain

political opinions are more exposed to the public. By using the articles in the forum as the

nodes and the hyperlinks between different articles as edges, the graph ranking methods can

recommend popular articles in the forum based on the graph structure. However, there

could be some nodes that are vulnerable and have high sensitivity indices with respect to the
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graph rankingmethod. Theybecome the target for the attackerswhowish tomanipulate the

article rankings and promote their own content. As such, blogmanagers and social scientists

maywish to collaboratewith ranking algorithmdevelopers tomake sure such ranking results

are fair and stable with respect to potential perturbations (deletion of blogs).

In this case study, we explore the sensitivity of the HITS algorithm on the political blog

dataset (Kleinberg 1999). The dataset includes a topic citation graph between liberal and

conservative blogs prior to the 2004 U.S. Presidential Election. We subsampled 397 nodes

(i.e, blogs) and 12,365 edges (i.e., hyperlinks between blogs), removing all nodes with degree

less than 30. Our goal was to explore the structural changes in the network that result in

drastic ranking changes in the HITS algorithm.

Identifying the Instance-level Sensitivity (T1, T3): Before the analysis, we made three as-

sumptions about ranking manipulation: 1) the top-k items in the ranking are much more

important than other nodes since readers typically only view the top results provided by

the search engine. 2) It is riskier to manipulate a node with a higher rank since the readers

may notice the changes. 3) To avoid having manipulations discovered, the attacker would

assume a posture of minimum risk. As such, our goal is to discover how we can manipulate

the ranking results by removing a node, while working under these constraints.

Based on our constraints, we apply selection rules to filter the sensitivity index table. We

first click the ranking column to sort the ranking order. Then, we add the top-5 nodes to

the protected nodes with constraints of protect selected nodes from their ranking decrease by

0%, which excludes all perturbations that would cause the rankings of these selected nodes

to decrease. The constrained sensitivity index table is shown on the left, which contains 1)

the ranking positions, 2) node names, 3) overall sensitivities, and 4) sensitivity details includ-

ing positive/negative influence to liberal/conservative blogs. After sorting the rows by the

sensitivity index column in decreasing order, a liberal blog, “liberaloasis.com” appears in the
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second row of the table. By observing the other columns, we find that “liberaloasis.com”

is not in the top-10 rank; however, its removal can increase the rankings of the conservative

blogs while decreasing the rankings of the liberal blogs.

Diagnosing the Perturbation Effects (T2): Next, we explore why this blog is so influential.

After selecting “Explore the Perturbation in Detail” by clicking the cross button in the first

column, all the details are listed on the right side of the interface (Figure 9). In the influence

view, the radar chart indicates that there are 368 out of 397 nodes influenced by the removal

of “liberaloasis.com”. 232 of the 368 nodes have their ranks increased while 136 decreased.

The largest increase in the ranking positions is 16, and the largest decrease is 30. From the

ranking change distribution (Figure 9 (6)), we find that most of the ranking changes hap-

pen in the range between 50 and 150. Since only mid-tier ranks are impacted, the effects of

removing this node are subtle, meaning this change is not easily observable. However, the

impact is significant. In the distribution changes view, we can observe that themedian of the

liberal blog ranking distribution decreases, while the conservative blog ranking distribution

increases. By further exploring the proportions of both liberal and conservative blogs in the

top-100 results, Figure 9 (5), we can see that the proportion of liberal blogs in the top-100

results has decreased by 5% (from 82% to 77%), thus subtlety shifting the site’s content.

In the ranking change distribution view, we also find that there are three liberal blogs

with considerable ranking decreases after the perturbation. We further check the detailed

view for information on the influenced nodes. We sort the original column to locate the

exact ranking position and notice that the first three liberal blogs, “sununes”, “boloboffin”,

and “elemming2”, have a large ranking decrease after the perturbation, which corresponds to

the three liberal blogs in the ranking change distribution viewmentioned above. Wewant to

further explore the relationship between the ranking changes with the topological structure.

The influence graph view (Figure 9 (8)) shows that the removed node influences a majority
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of liberal nodes, and as the influence distance increases, conservative nodes are indirectly

influenced.

3.2.5 Evaluation and Expert Review

Along with our case studies, we have conducted a group interview with our collabora-

tor (E0) and three additional domain experts in graph mining (E1, E2, and E3) to provide

feedback on our framework. We began the interview by introducing our visual analytics

framework, and the functionalities supported by each module. Then, we presented a demo

of the analytical flow across the three previously described case studies. After this, the ex-

perts are allowed to freely explore the perturbation results of the three datasets (Facebook,

Reddit, and Polblogs) over two ranking methods (Pagerank and HITS) in our system. The

interview lasted approximately 90 minutes, and we collected free-form responses to the fol-

lowing questions:

1. Does the system meet the design requirements and address the analytical tasks proposed

in our work?

2. Does our analytical pipeline match your daily workflow?

3. How is the information delivered through our system?

4. How would you perform the same tasks in conventional graph mining methods?

Framework: We received positive feedback from the experts in terms of our proposed

framework. The experts found the framework to be practical with respect to the proposed

problems. E1 appreciated that the framework is capable of handling the sensitivity issues that

are related to nodes’ attributes, andnoted that such a framework can support not only graph-

ranking developers but also experts in other fields evaluating whether the ranking algorithm
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is suitable for real-world ranking tasks. E2 appreciated our constraint filtering functionality

since such an iterative analysis is one of his preferred approaches.

Visualization: The overall visualization techniques were also well received. E1 mentioned:

“With the knowledge of understanding what the system is capable of doing, I found most

of the visualizations are straightforward and easy to understand. The newly designed influ-

ence graph is also intuitive once I learned what each encoding means.” E2 also appreciated

that the interactive effect is helpful for understanding the ranking change effects after the

perturbation. E3 suggested that we could add question-mark icons that link to descriptions

for each view.

Limitations: The experts also identified several limitations of our current framework. E1

andE2 noticed that there is only one perturbationmethod supported in our system,which is

the node removal. However, they all understood that the perturbation spaces (edge removal,

node/edge addition) are far larger than the node removal space. E3 also mentioned that the

visualizations may become crowded when the size of the influence graph is large.
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Chapter 4

MACHINE LEARNING FAIRNESS ANALYSIS

In previous chapter, we find that the manipulation of data can cause not only the ma-

chine learning security issues, but also potential societal problems in real-world applications.

In this chapter, a new framework has been introduced that focuses on fairness analysis in

graph mining models. This framework addresses the growing concern about algorithmic

bias and discrimination in machine learning models that rely on graph data. The fairness

analysis framework provides a systematic approach to evaluate the fairness of graph mining

models by examining the impact of sensitive attributes on themodel’s output. By integrating

this framework into the development process of graph mining models, we can ensure that

the models are fair and unbiased, which is crucial for making ethical and equitable decisions.

4.1 Fairness Analysis in Graph Mining Models

Common fairness definitions include individual fairness (Dwork et al. 2012) and group

fairness (Pedreschi, Ruggieri, and Turini 2009; Pedreshi, Ruggieri, and Turini 2008), where

individual fairness focuses on whether similar individuals are treated consistently and group

fairness focuses onwhether or notmembers of a protected class have the same probability of

being assigned a positive outcome (for example, the same probability of receiving a housing

loan). Difficulties arise due to the fact that the sensitive attributes5 vary from task to task.

Sensitive attributes may have commonalities across tasks, and there may be legally protected
5Sensitive attributes are generally defined to be traits of an individual which should not correlate with the
algorithmic outcome, for example, gender, ethnicity, age, etc.
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classes that need to be considered when measuring fairness. However, there is no single uni-

versal definition of fairness, and different applications of an algorithmmay need to alter the

definition of fairness depending upon the task at hand.

Recent work has focused on the development of a visual analytics framework designed

to enable the exploration of multi-class bias in graph mining algorithms. The framework

aims to answer critical questions in fairness. For example, how are biases reflected in the data

as well as the outcome? Do debiased models accidentally impose other issues of fairness?

The proposed framework is model agnostic, supports both group and individual fairness

levels of comparison, and consists of a suite of interactive visualizations for investigating

node attributes and topological features of graph elements to identify issues in algorithmic

fairness.

From our literature review on fairness in graph ranking and visualization, we have iden-

tified several research challenges and gaps in the literature. These challenges were then eval-

uated with three data mining researchers who specialize in debiasing algorithms for graph

learning models (two of which serve as co-authors on this paper). After iterative discussions

with the experts, two major research challenges for auditing fairness in graph mining algo-

rithms were identified:

Task-oriented Definitions of Groups. In conventional debiasing approaches, the defini-

tions of protected groups may vary across applications. Typical examples include personal

attributes associated with discrimination, such as gender, ethnicity, age, etc. However, iden-

tifying sensitive attributes and characterizing protected groups is a non-trivial task and de-

mands expert knowledge to identify potential discrimination (Q.Wang et al. 2021). As such,

there is a need for methods that can interactively define fairness, incorporate this definition

into a debiasing method, and audit the impacts of the debiasing. In this paper, we use the

term group to denote the protected groups characterized by sensitive attributes.
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Trade-offs Between Group and Individual Fairness. Ideally, fairness adjustments to a ma-

chine learning model will maintain fairness between groups of nodes with similar attribute

values. However, conflicting concepts of group and individual fairness (Binns 2020) can

lead to cases where an algorithm that has been debiased at the group level now introduces

bias at the individual level. Consider an employment recommendation system that meets

the criteria for group fairness. Applicants in protected groupsmay receivemore competitive

rankings in order to keep statistical parity on selected attributes (such as gender or ethnicity).

However, other candidates with similar abilities may now be de-ranked in order to ensure

group fairness. Thus, it is crucial that algorithm designers have themeans to explore individ-

ual and group fairness.

4.1.1 Analytical Tasks

We have also identified common ranking analysis and fairness auditing tasks that could

benefit from a visual analytics approach. These tasks were refined through discussions with

our co-authors who are the lead developers of several recent fairness aware graph mining

algorithms.

4.1.1.1 T1: Define Target Nodes and Groups

Analysts should be able to specify sensitive attributes and inspect protected groups by

defining:

• T1.1: Which portion of nodes are the most important, and;

• T1.2: Which attributes are critically important for fairness.
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Figure 15. Fairness diagnosis of InFoRM (a debiased ranking model) on Weibo social net-
work data. (A) The analyst selects the top-50 ranked nodes. (B) The analyst defines the “gen-
der” and “fans” attributes as protected classes of interest in the attributes setting. (C) The at-
tributes view shows that in the top-50 ranked nodes, the “gender” attribute (“female/male”)
is equally distributed. The view also shows the distribution of the “gender” attribute across
the entire dataset (C.1), where it can be observed that “females” make up a larger portion of
the entire dataset. The parallel sets portion of the attributes view (C.2) shows that nodes
with “more than 10 million” followers make up the largest component of the top-50 nodes.
(D) Selected nodes are groupedby the “gender” and “fans” attributes. (E)The rankmapping
view shows group proportions (E.1) and supports comparison between raking algorithms by
mapping the change (E.2) in each node’s rank between the two ranking algorithms being ex-
plored. The group proportion view (E.3) shows few proportional changes when comparing
the original ranking algorithm to the InFoRM model. The group shift view (E.4) shows
that the average ranking of the “group 02” with attributes of “male” and followers “under
10 thousand” has increased by 2 positions, which may indicate that the InFoRM model has
indirectly created a group preference.
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4.1.1.2 T2: Reveal the Impact of Topological Structures and Attributes on Ranking Fair-

ness.

Analysts should be able to diagnose the algorithmic fairness of graph ranking models by

understanding the impacts of their topological structures and attributes on ranking fairness.

Since the ranking results have no ground truth and are sensitive to changes in the graph

structure (T.Xie, Y.Ma,H.Tong, et al. 2021), a basemodel is needed as a reference in order to

explain the debiasing impact of a target model. Additionally, group fairness and individual

fairness may have conflicting rule sets. When comparing models, analysts want to explore:

• T2.1: Which nodes are advantaged/disadvantaged by the model?

• T2.2: Which groups are advantaged/disadvantaged by the model?

4.1.1.3 T3: Diagnose Content Bias in Ranking Results

Display space is a bottleneck for showing all individual rankings. For example, Google

searches list approximately 20 records per page, and the higher the rank, the more clicks.

However, records listed on later pages may have similar relevance to the top ranked pages.

This phenomenon has been studied by Pitoura et al. (Pitoura et al. 2018) which noted

that content bias may occur when information is displayed in different ways. There two

major analytical questions when diagnosing content bias:

• T3.1: Which nodes have similar relevance (ranking scores)?

• T3.2: What is each node’s position in the ranking result, and how likely is it that con-

tent bias has occurred in similar nodes?
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4.1.2 Design Requirements

Based on the analytical tasks, we engaged in an agile design process involving multiple

iterations of the FairRankVis framework in collaborationwith our domain experts. We have

identified several design requirements and mapped different analytic tasks to each require-

ment.

4.1.2.1 D1: Visualize the Attribute Compositions of Target Nodes.

The system should support the selection of target nodes from the graph (T1.1). To enable

the inspection of node attributes, the system should interactively visualize the composition

of attribute values among selected nodes and visualize necessary metrics to assist analysts in

selecting attributes for future diagnosis (T1.2).

4.1.2.2 D2: Visualize the Algorithmic Bias and Content Bias.

The system should visualize both algorithmic bias (T2) and content bias (T3) for selected

nodes and attributes with the following views:

• D2.1: Rank Mapping View, which integrates ranking results that are mapped from

the base model to the target model (T2.1) as well as the summary of nodes that have

similar ranking scores (T3.1, T3.2).

• D2.2: Group Proportion View, which compares the proportional difference in terms

of analyst-defined groups. The view should support a global proportion overview and

a pair-wise proportion difference in terms of each group (T2.2).
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Figure 16. The FairRankVis Framework consists of two stages: (A) the identification of tar-
get nodes and groups stage, and (B) the diagnosis of biases in ranking results stage. In stage
(A), the analyst can select the base model and the target model to be inspected. The ranking
results will be generated after model selection. The analyst then defines a range of nodes, ei-
ther the top-k nodes or nodes who have similar ranking scores, and then defines the groups
based on selected attributes. (B) The analyst can then explore and inspect both individual-
level and group-level bias. The framework also supportsmodifying the definition of fairness
at any time during the analysis process.

• D2.3: Group Shift View, which shows how analyst-defined group rankings shift from

the base model to the target model (T2.2).

4.1.3 Visual Analytics Framework

Based on the analytic tasks and design requirements, we have developed a visual analyt-

ics framework (Figure 16) to support fairness auditing in graph-based ranking algorithms.

The framework is designed to first load the graph data and then compute the ranking results

using the analyst selected targeted model and base ranking model (Figure 16 A). Then the

analyst can interactively define the target attributes for fairness auditing (Figure 16 B). As the

definition of group and target nodes are updated by the analyst, the ranking results are up-

dated across all views to support bias inspection. Analysts can modify the group definitions

at any time to explore issues of algorithmic fairness.
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The framework supports two major functionalities: 1) identifying the target nodes and

groups, and 2) diagnosing potential ranking biases. By identifying the target nodes and

groups, the analyst can select a portion of nodes according to their specific analytical goals

and explore the attribute distributions. The selected nodes are automatically categorized by

the analyst-defined groups. The analyst can also explore the ranking results of both the base

rankingmodel and the target rankingmodel to explore group/node shifts, proportions, and

distributions of similar nodes. The analyst can flexibly modify the definition of a group at

any time to explore both single andmulti-attribute fairness. Ourmodular design enables an-

alysts to freely integrate any graph-based ranking models for use as the target or base model.

For demonstration purposes, we apply PageRank as the base model and AttriRank and a

debiased PageRank (InFoRM) as the target models.

4.1.3.1 Background of Graph Ranking Models

AttriRank (Hsu et al. 2017) is a PageRank-basedmodel that uses the topological information

and node attributes to compute the ranking vector r:

r = cQr + (1− c)Pt (4.1)

where

Pij =



1
δj
, if directed edge(j, i) ∈ E

1
N
, ifδj = 0

0, otherwise

, Qij =
sij

Σk∈V skj
(4.2)

δj denotes the out-degree of node j, and sij the degree of similarity with respect to the at-

tribute values of the nodes. In AttriRank, the Radial Basis Function (RBF) kernel is defined

as the similarity measure:

sij = e−γ||xi−xj ||22 (4.3)
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where γ denotes the distance influence. In this way, external attribute values are integrated

into the ranking procedure which is more robust for handling nodes that have missing edge

information.

InFoRM (J. Kang et al. 2020) is a generic individual fairness framework for quantitatively

measuring the potential bias in graph mining tasks including graph ranking, clustering and

graph embedding. The InFoRM framework can perform three types of debiasing methods

including (1) debiasing the input graph, (2) debiasing the graph mining model, and (3) debi-

asing the mining result. We employ InFoRM to debias the ranking results of PageRank to

simulate a situationwhere the debiasedmodel does not have access to the input data and the

model. Mathematically, this process is realized with the following objective function:

Y ∗ = argminY J = ||Y − Ȳ ||2F + αTr(Y TLSY ) (4.4)

where Y ∗ denotes the debiased ranking result, Ȳ denotes the original ranking result. α >

0 is the regularization parameter, and LS is the Laplacian matrix of the similarity matrix

S6. This equation minimizes the sum of the squared Frobenius distance between ranking

results and the regularized tethnicity of the matrix produced by Y TLSY so that both the

difference of the ranking results before and after debiasing (Y and Ȳ ) and the bias (defined

as Tr(Y TLSY )) are minimized.

4.1.3.2 Identifying the Target Nodes

Our framework is designed to enable a flexible definition of ranks and attributes to be

consideredwhen diagnosing fairness. Recent research (chartier2011sensitivity; Zehlike_2017;

Yang and Stoyanovich 2017) emphasizes that the top-k elements will receive more attention,
6The similarity matrix S uses cosine similarity and Jaccard similarity.
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Figure 17. Different group definitions can lead to different fairness insights. Suppose there
are 100 nodes who have similar ranks. If we group the nodes only by ethnicity or gender, the
proportions are equal, whichmight imply that the outcome is fair in terms of both ethnicity
and gender. However, if we group the nodes by both ethnicity and gender, we may find
potential inequalities at the intersection of the two attributes.

and ranking bias is typically exploredwith respect to the top-k ranks. In our proposed frame-

work, a data setting panel (Figure 15.A) is configured to enable the analyst to select the top-k

nodes. This is facilitated by the Ranking Score Density Histogram (Figure 15.A.1), which

shows the ranking score distribution for the target ranking model. The analyst can interac-

tivelymodify the number of bins by clicking the gear icon, and the histogram supports brush

selection to select a specific ranking range (T1.1). For example, if the analyst cares about po-

tential biases of nodeswhohave similar ranking scores, then the analyst canbrush aparticular

bin on the histogram and all the nodes within that ranking score range are selected. If the

analyst wishes to select a specific ranking position, a slider is configured to enable the analyst

to select nodes from rank m to n. In this way, the analysts can explore how attributes are

distributed for any specific range of ranks.
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4.1.3.3 Defining Groups

Once a range of nodes is selected, the analyst is able to explore attribute information

and define groups through the attribute setting panel (Figure 15.B) and attribute view (Fig-

ure 15.C). Recent work (Dwork et al. 2012; Kilbertus et al. 2017) suggests that a general fair-

ness principle is based onwhether similar nodes will have a similar ranking. In other words,

defining a groupmeans defining individuals that are similar. Wang et al. (Q.Wang et al. 2021)

note that the definition of similarity is not easy to obtain andmay vary from task to task. The

wrong definition of similar nodes can lead towrong conclusionswith respect to bias and fair-

ness. Figure 17 shows a simple example of this phenomenon: nodes who have similar ranks

are distributed evenly ifweonly group themby either ethnicity or gender. However, the data

reflects a disproportionate distribution when we group the nodes by ethnicity and gender.

Our framework enables analysts to explore all available attributes and across combinations

of attributes. In our framework, the analyst selects one or more categorical attributes, and

each combination of category is now considered a group. From the example in Figure 17, if

the analyst selects gender and ethnicity, therewould be four groups to be audited for fairness.

Attributes View. To support the interactive definition of groups (T1.2), we have designed

an attribute setting panel (Figure 15.B) and an attribute view panel (Figure 15.C). The at-

tributes view panel employs a parallel set where each selected attribute is visualized with

multiple bars. Selected nodes are encoded as curveswith differentwidths. Both the height of

bars and the width of the curves encode the number of nodesmapping to a specific attribute

value. Additionally, the distribution of attributes across the selected nodes is visualized with

a histogram (Figure 15.C.1). We use a light grey color to show the attribute distribution for

the entire dataset, and the dark grey color histogram shows the distribution of attributes

for the selected nodes. The attribute setting panel (Figure 15.B) enables the flexible selec-
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tion of one or more attributes by clicking on the multiple selection area (Figure 15.B.1). All

corresponding views including the attributes view (Figure 15.C), the group table view (Fig-

ure 15.D), the rank mapping view (Figure 15.E), the group proportion view (Figure 15.E.3)

and the group shift view (Figure 15.E.4) are automatically updated as the selected attributes

are changed. Since group fairness is most often based on categorical attribute values, we also

include a customization feature that allows analysts to categorize attributes that may have

continuous values. For example, protected classes for age are often grouped into ranges, e.g.

under 18, 65+, etc..

We also provide another histogram (Figure 15.B.3) to facilitate the comparison of distri-

bution similarities on selected attributes between selected nodes and the entire dataset. The

metric formeasuring distribution similarities can be customized based on the analysts’ needs.

Currently, the framework supports Kullback-Leibler divergence for demonstration purpose.

The height of the bars are mapped to the differences of the between the distributions of the

selected nodes and the entire dataset on a specific attribute.

4.1.3.4 Diagnosing the Ranking Biases

Once the nodes are selected and sensitive attributes defined, the corresponding groups

are automatically generated, assigned a label and unique color, and displayed in the group ta-

ble (Figure 15.D).Once groups are defined, the fairness audit can begin. Here, it is important

to note that biases in machine learning models can arise due to issues with the Data and/or

issues with the Model.

Diagnosing Data Bias. Real-world data can be either insufficiently sampled or reflect ex-

isting prejudices. Thus, it is inappropriate to ask models to be fair when being optimized

on biased data. In terms of graph ranking, it is critical to understand how groups are dis-
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tributed prior to applying a debiased ranking model. Our system first ranks the data with

what we refer to as the base model. For demonstration purposes, we employ PageRank as

the base model.Exploring the base model can help reveal the underlying topological features

of the data. What we are interested in is if there are already signs showing disproportional

distributions for each group. From the base model ranking, we can explore whether certain

groups have higher ranking scores than others. For example, if the base model (PageRank)

shows that when evaluating node ranking based on gender, nodes that are marked as male

are ranked relatively higher than female nodes, then other PageRank-based models are very

likely to observe a similar distribution between themale group and the female group. In this

case, the gender bias is not inherited from the model but the data.

Diagnosing Model Bias. Our framework supports diagnosing three types of bias: Content

(T3.2), Group (T2.2) and Individual Bias (T2.1).

1. Content Bias. In real-world applications, a full ranking of millions of items simply

cannot be displayed, and is typically culled to some top-k rank. In this setting, even

the nodes who have the same ranking scores can have a large difference in ranking po-

sitions, and this problem is referred to as content bias. For example, imagine a list of

items where the second through the seventh item have identical ranking scores. The

method of display implies inequality in ranking even though ranks two through seven

have equal ranking scores. Here, the implicit ordering can lead to significant differ-

ences in their exposure rates. To help analysts explore this phenomenon, we group

nodes into clusters based on their ranking scores (T3.1). Algorithm 4 shows the k-

means-based clustering algorithm. The idea of the clustering algorithm is to group as

many nodes as possible into a cluster such that themaximumdifference between rank-

ing scores in this cluster is less than the analyst-defined similarity threshold. The algo-

rithm outputs the minimum number of clusters to satisfy the analyst-defined rules of
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similar ranking scores. The analyst can inspect the cluster for signs of possible content

bias.

2. Group Bias. Many fairness metrics have been proposed for measuring group fair-

ness (Hardt, Price, and Srebro 2016; Dwork et al. 2012). These methods attempt to

measure the degree of discrimination or bias (Tutorial99:online). However, there is

no single term that universally represents bias. We denote group bias as the bias that

reflects the ability of the model to achieve statistical parity between groups, where a

group is defined with respect to the analysts’ selected sensitive attributes. The goal of

the framework is to enable analysts to audit whether the ranking results of a model

exhibit direct or indirect preferences towards one or more groups, resulting in lower

ranking scores for the disadvantaged groups. Compared with the content bias, where

disadvantages can be due to display constraints, group bias can be mitigated algorith-

mically. To observe the impact on groups’ ranking between the base and the target

model, we formalize the ranking changes for each group by computing the average

ranking position change (T2.2) :

∆g =
1

n
Σv∈Vs,v∈g(r

′
v − rv), (4.5)

where∆g is the average ranking change of group g among selected nodes Vs, r′v is the

ranking position of node v in the target model, rv is the ranking position in the base

model, and n is the number of nodes in both the selected nodes and group g.

3. Individual Bias. Individual bias represents how themodel guarantees that nodeswith

similar attributeswill receive similar rankings. It is important to understand if individ-

ual nodes have been “sacrificed” or privileged by the model in order to reduce group

bias. To help analysts explore the individual biases among selected nodes, we label the
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selected nodes as advantaged/disadvantage nodes according to their ranking position

changes (increase/decrease) between the base and target model (T2.1).

Algorithm 4 Clustering Similar Ranking Scores
1: Inputs: similarity threshold δ; selected nodes V ;
2: Outputs: clusters C with maximum ranking score difference d ≤ δ
2: for k in range (1, V .length) do
3: C← kmeans(k, V )
3: if dc <= δ,∀c ∈ C then
4: returnC
4: end if
4: end for
5: Return C =0

Rank Mapping View. The rank mapping view (Figure 18) consists of two columns of

stacked rectangles, where the left column shows the ranking results of the base model, and

the right column shows the ranking results of the target model. For each column, small

squares that represent nodes of the analyst-defined groups are organized into large rectangles,

where each rectangle represents a cluster (fromAlgorithm 1) that contains nodeswith similar

ranking scores (T3.1, T3.2). From top to bottom, the nodes are ranked fromm to n, and in a

cluster, the nodes are mapped from left to right according to their rank (high to low). Each

cluster from the base model is connected to a corresponding cluster from the target model

by a grey line when they share the same node(s), which illustrates how the ranking of this

node changes between models (T2.1). The color of the square maps to the analyst-defined

groups. In this example, we can observe thatmembers in group 1 have a relatively higher rank

position than those in group 2 from the top-1 to top-10 ranks, In Figure 18, we can observe

that there are four nodes belonging to a cluster with a ranking score from the base model

ranging from 0.123 to 0.124. Three of the nodes are in “group 1”, while only one is in “group

2”. The node from “group 2” has been ranked in the sixth position. This means that even

87



though their ranks are functionally equivalent, the node belonging to “group 2” will likely

have a lower exposure rate than equivalent nodes in “group 1”, indicating that content bias

may occur.

Such phenomena can be significant when the size of the cluster is larger. Imagine a clus-

ter with 30 nodes whose ranking scores are functionally equivalent. The 30th node is so far

below the 1st node of this cluster that the differences in exposure are extremely uneven. Such

content bias is inevitable given the traditional ranked list displays in real-world applications;

however, the analyst should at least be aware of any content bias and can consider modifi-

cations to the display list to adjust for such biases. The rank mapping view also supports

rich interactions to facilitate analysts to discover more information. There are also switch

buttons that allow the analyst to highlight advantaged/disadvantaged nodes (Figure 15.E.5),

and analysts can hover on a single node to see the same node in the ranking result of another

model. The tooltip is used to shownode attributes onmouseover. If analysts click on a single

node, the view will highlight all nodes in the corresponding cluster and their corresponding

ranking positions in the debiased model.

Group Proportion View. The group proportion view is designed to illustrate the target

ranking model’s effects on each group’s proportion (T2.2). The group proportion view con-

sists of two sets of bars and each set shows the composition of selected nodes sorted by both

ranking models respectively (Figure 19). To facilitate inspection, we support switching the

viewmode between the proportionmode and the comparisonmode. The proportionmode

displays the stacked bars to summarize the overall group distribution of the selected nodes,

while the comparison mode supports a direct comparison of group proportions between

models. In otherwords, the comparisonmodehelps analysts performpair-wise comparisons

of the same group proportions between different models. Analysts can toggle between the
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Figure 18. Visual encoding of the rankmapping view. The ranking results of the base model
and target model are listed separately. Small squares represent nodes and are colored with
respect to the analyst-defined groups. These squares are organized into large rectangles, and
each rectangle represents a cluster that contains nodes with similar ranking scores. From top
to bottom, the nodes are ranked from m to n (in the example m = 1 and n = 30), and,
in a cluster, the nodes’ ranks from high to low are mapped from left to right. Each cluster
from the base model is connected to a corresponding cluster in the target model by a grey
line when they share the same node(s).

proportion and comparison mode by using the switch button on the right side of the title

bar of the rank mapping view (Figure 15.E).

Group Shift View. The group shift view (Figure 20) is designed to inspect both group

bias (T2.2) and individual bias (T2.1). For inspecting group bias, the bar chart on the left

shows the average ranking change of each group. The color of the bar encodes the identity

of the group. Thebar chart on the right shows the distributionof groupmembers in the base

model and targetmodel, and the analyst can diagnose group shifts in selected nodes to under-

stand the corresponding fairness trade-offs between models. For inspecting individual bias,

analysts can hover on the squares of the ranking mapping view to trigger the highlighting

of that node on the right side of the group shift view. This can help analysts to understand

how individual bias occurs when applying debiased algorithms to achieve group fairness.

Interactions. Our framework employs multiple coordinated views to allow analysts to in-
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spect group, individual, and content biases. These views are supported by a set of rich inter-

actions. The selection of data in the data summary view (Figure 15.A) directly updates the

content of the attribute view (Figure 15.C) and the rank mapping view area which includes

the group proportion view and the group shift view (Figure 15.E). The attribute view (Fig-

ure 15.C) is dynamically updated based on selected attributes in the attribute setting panel

(Figure 15.B), and selections in the attribute setting panel also updates the colors of the en-

tire system as the colors encode the analyst-defined groups. For the rank mapping view (Fig-

ure 15.E), analysts can adjust the similarity threshold slide bar to define how nodes are clus-

tered based on the ranking scores, and analysts can toggle advantaged/disadvantage nodes to

highlight nodes that have the rank increase/decrease. Analysts can also hover over squares in

the rankmapping view to highlight and locate the node’s position in both the vanilla and de-

biased algorithm, and tooltips are used to provide details of the node attributes. Along with

hovering, analysts can also click on a node to show how the ranking positions of all nodes in

the cluster change from the base model to the target model. Finally, analysts can toggle the

comparison model to enable pairwise comparison of the same group between two models

as shown in Figure 15.E.5.

4.1.4 Usage Scenarios

In this section, we present two usage scenarios to demonstrate how our framework sup-

ports fairness audits in graph-based rankingmodels. We first showhowgraph rankingmodel

developers analyze the potential bias in AttriRank model. Next, we illustrate how fair rank-
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Figure 19. Visual encoding of the group proportion view. Two sets of bars are visualized to
show the group proportion among selected nodes for the basemodel and target model. The
group proportion view has two modes: proportion mode and comparison mode. Propor-
tion mode uses a stacked bar to show the overall group distribution within a model. The
comparison mode splits the bars by group for between models.

Group 

Average Ranking Change

0 1-1 2-2 3-3 4-4 Rank 1 Rank 100

Base Model Ranking Distribution

Target Model Ranking Distribution

Rank IncreaseRank Decrease

Figure 20. Visual encoding of the group shift view. The bar chart on the left shows the
average ranking change of each group. The color of the bar encodes the identity of the group.
The bar chart on the right shows the distribution of group members in the base model and
target model, where the x-axis maps to the ranking position of selected nodes.

ingmodel developers inspect the trade-off by applying a debiased rankingmodel (InFoRM).

Finally, we report on an expert review of the system conducted with four domain experts.

4.1.4.1 AttriRank Bias Inspection on Facebook

In social network analysis, ranking algorithms utilize an account’s topological

structure and demographic information for a variety of tasks including link predic-
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Figure 21. AttriRank Bias Inspection on Facebook. (1) We select the top-25 nodes with rank-
ing scores ranging from 0.002105 to 0.005230. (2) We avoid selecting attributes that are sup-
pressed for most nodes, and choose to use “gender” and “locale” as our sensitive attributes
to divide nodes into groups. (3, 4)We notice that the “group 78127” in whichmembers have
“gender” value “feature 78” and locale value “feature 127” has the largest proportion, and
(5) the group proportion view shows that a large portion of “group 78127” is found in the
top-k ranking results from both models. (6) From rank mapping view, we find that clus-
ter (6.a) and (6.b) contains nodes with similar ranking scores from 0.0024 to 0.0027, while
these nodes have different ranking positions the difference in ranking scores is less than the
analyst-defined threshold ϵ = 0.0005, which has implications for content bias. (6.c) Finally,
we find that node “1199” experiences a large ranking drop from 11th to 21st, which has poten-
tial implications for individual fairness. For group bias, we find that “group 78127” in the
group shift view (6.c) was negatively influenced by AttriRank, with the average ranking and
top-k proportion decreasing when compared to their rankings from PageRank.
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tion (Gleich 2015), advertising (Heidemann, Klier, and Probst 2010) and recommenda-

tion (Gori:2007:IRB:1625275.1625720). Biases in rankings can have a huge impact with

regard to content exposure, personal opportunities, and business strategies. As such, au-

diting the ranking algorithms used in such systems can help analysts understand whether

the ranking results can comprehensively be considered to be unbiased under a variety of

fairness definitions. For example, in the recommendation-based social network application,

if accounts of male users are more likely to be recommended than female users, those male

users will have more opportunities for content exposure and networking opportunities.

Even in the case where male and female users have equal rankings, their level of exposure

might still be affected by the ranking position arrangement. Here, content bias can ef-

fectively drive more clicks to the top-1 account, when, in reality, the top-10 account may

have an equal ranking. Furthermore, when exploring group-level fairness, single attribute

fairness audits may show that results are balanced. However, the intersection of sensitive

attributes, e.g. gender, ethnicity, age, might reveal further biases in the rankings as it is

possible for a ranking model to learn biased patterns both implicitly or explicitly so that

certain groups are treated with advantages while others are disadvantaged. In this usage

scenario, we audit AttriRank (Hsu et al. 2017) when applied to a Facebook social network

dataset (NIPS2012_7a614fd0). The data is subsampled to a subgraph with 734 nodes and

74254 edges. Each node has 24 attributes that describe the demographics of a user. All

identifiable information is anonymized and some attribute values are suppressed. In this

usage scenario, we assume that the model developers have no prior knowledge about the

data.

Identifying the Target Nodes and Groups (T1): The data setting view displays the rank-

ing score density distribution (Figure 21.1.a). The majority of the nodes have a ranking score

ranging from 0.0017 to 0.0020. The analyst selects the top-25 nodes to explore the results of
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AttriRank. The analyst inputs 25 into the right-hand input box of the ranking range section,

and the bottom of the data setting view shows the information of the selected nodes. Next,

the analyst explores the attribute distributions in the attributes view and see that attributes

political and region have been suppressed for the majority the nodes. The analyst chooses

to remove such attributes from the analysis. Among the top-25 nodes, the analyst finds that

there are two attributes with heavily non-uniform distributions: (1) the ratio of the gender

value, which has two classes - “feature 78” and “feature 77”, and the ratio between the two

classes is 88% to 12% respectively. (2) The locale has five classes, and the selected nodes with

the locale value of “feature 127”make up a greater portion of the dataset than other locale val-

ues (Figure 21.3). The analyst then select gender and locale to serve as the sensitive attributes

that form the basis of our fairness audit.

Diagnosing the Ranking Biases (T2): After selecting gender and locale as the criteria for

defining target groups, all possible groups are generated and displayed in the groups view

as shown in Figure 21.4. Among the 6 generated groups, the analyst identified that “group

78127” (gender value “feature 78” and locale value “feature 127”) has 16members in the top-25

ranks, thereby occupying the majority of the top-k ranks. Given the disproportionate repre-

sentation by “group 78127”, the analyst decides to further explore the effects that AttriRank

had on the ranking distributions compared with the base model (PageRank). By exploring

the group proportion view (Figure 21.5.a), the analyst observes that “group 78127” was also

disproportionately favored in the top-25 rankings by the base model, PageRank. This indi-

cates that the reason that the nodes in “group 78127” have a higher rank is due to their topo-

logical features as opposed to the attribute rank based adjustments from AttriRank. The

group proportion view also shows that the proportion for each group in the top-25 rank-

ings saw no significant changes between the PageRank and AttriRank rankings, with only

“group 77127” and “group 78127” seeing small changes in representation.
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Next, the analyst inspects for content bias in the ranking results (Figure 21.6). Here, the

analyst considers nodes with ranking scores that are within ϵ = 0.0005 of each other to

have the same rank and sets this threshold number as the similarity threshold. By inspecting

the rank mapping view, the analyst observes that the top-25 nodes can be grouped into 5

clusters for both PageRank and AttriRank. The top-3 nodes have substantially different

rankings and form 3 unique clusters in both ranking models. For the remaining clusters,

two clusters (the fourth ones) of both models in Figure 21.6.a and Figure 21.6.b cover the

same ranking score range from 0.0024 to 0.0027. In other words, nodes in these clusters

have approximately the same relevance or utility. However, their ranking positions range

from 4th to 9th in PageRank and 4th to 10th in AttriRank, indicating that content bias is

occurring and it is slightly more pronounced in AttriRank than PageRank.

Finally, the analyst inspects the effect of AttriRank’s behavior on the top-25 nodes. By

exploring nodes of rankmapping view (Figure 21.6.c), the analyst finds that node “1199” expe-

riences a significant ranking drops from 11th to 21, which indicates that the AttriRank sacri-

fices the node during the ranking process, whichmay lead to individual bias. From the group

shift view (Figure 21.5) the analyst also observes that the “group 78127” is the only group that

has an average ranking decrease. AttriRank is designed to adjust rankings such that nodes

with similar attributes have similar ranking scores; however, this optimization may bias the

results towards specific groups. Thus, auditing tools, such as FairRankVis, can help analysts

evaluate tradeoffs between algorithms, inspect for biases, and audit fairness definitions.

4.1.4.2 InFoRM Bias Inspection on Sina Weibo

In the secondusage scenario, the analyst compares a debiased rankingmodel (InFoRM(J.

Kang et al. 2020)) to the vanilla version (PageRank (Page et al. 1999)) and explores tradeoffs
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between individual and group fairness. As described in Section 5.1, overemphasizing group

fairness can propagate issues of individual fairness, and it is difficult to balance the ranking

positions to guarantee both group fairness and individual fairness. As such, it is necessary for

rankingmodel developers and fairness researchers to understand the trade-offs of a debiased

ranking model when applied to a given dataset. Here, the analyst explore a social network

dataset collected from Weibo (UCIMachi16:online) where each node consists of four social

attributes (gender, fans, account level, and location) about the demographic information of

aWeibo user. For demonstration purposes, we subsampled the data down to 781 nodes and

2315 edges. Again, the analyst has no prior knowledge about the dataset.

Identifying the Target Nodes and Groups (T1): After themodels and the dataset are loaded,

the analyst inspects the Ranking Score Density Histogram and observes that the nodes are

concentrated at a ranking score of around 0.0073 (Figure 15.A.1). The analyst is interested

in how top-k nodes with different ranking scores are affected by InFoRM. The analyst se-

lects the top-50 nodes as the target nodes. In the data setting view (Figure 15.A.2), it can

be observed that most of the ranking scores for the selected nodes lie in the range between

0.004025 and 0.055131.

Then, the analyst explores the attributes in the attributes view. Here, the analyst ob-

serves that the proportions of “males” and “females” are nearly identical, i.e., 50%:50% (Fig-

ure 15.C.2). However, the global gender distributionon the entire dataset shows a completely

different pattern where the proportion of “females” is larger than “males” (Figure 15.C.1).

Next, when inspecting the attribute fans, which describes the number of followers for the

user, the attributes view shows that themajority of users (88%) have over 10 thousand follow-

ers, resulting in mismatched distributions between the selected group and the entire dataset

(Figure 15.C.2). Since these two attributes show contrasting proportions between the full

dataset and the top-50 nodes, the analyst decides to explore the ranking effects of nodes who
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have the same gender class and the same fans class. The group table view shows that there

are 8 groups generated by this split, and the analyst finds that the nodes with “more than 10

million” followers have the largest population in the top-50 rankings (Figure 15.D). Further-

more, most of the “female” users (82.61%) and the “male” users (55.56%) who have “more

than 10 million” followers appear in the top-50 user list.

Diagnosing the Ranking Biases (T2): To further understand how groups are affected by

a debiased ranking model which focuses on maintaining individual fairness, the analyst first

inspects how groups are distributed among the top-k nodes. By exploring the group shift

view (Figure 15.E.6), the analyst observes that the “group 13” (representing “female” users

who have “more than 10 million” followers) tends to have higher rankings than “group 03”

(representing “male” users who have “more than 10 million” followers). The analyst won-

ders whether it is the target model that favors “group 13” by increasing the ranking scores of

the nodes in “group 13”. By observing rank mapping view (Figure 15.E.2), the analyst finds

the “group 13” also has higher rankings than the “group 03” when nodes are ranked by the

PageRankmodel. This indicates that “group 13” receives better rankings in bothmodels and

is not favored only by the target model.

The analyst further inspects the changes of the group’s proportions in the group propor-

tion view (Figure 15.E.3), and the analyst observes the proportion of groups are quite similar

between ranking results in PageRank and those in InFoRM. By toggling the comparison

mode to enable pair-wise comparison, the analyst finds that the proportion of “group 13”

has slightly increased, and the proportion of “group 00” (representing male users who have

followers between 10 thousand and 1 million) slightly decreased. Other groups distribution

across the top-50 rankings maintain relatively the same proportion. When observing the

group shift view, the analyst finds that “group 03”’s average ranking decreased by 1 position
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and “group 02” (representing “male” users who have “less than 10 thousand” followers) has

its average ranking increased by 2 positions.

Here, the analyst wants to inspect the content bias of the ranking results from the tar-

get model. By tweaking the similarity threshold, the analyst finds that given the similarity

threshold 0.0035, the top-50 nodes are clustered into 6 clusters (Figure 15.E.1) and each clus-

ter has relatively more nodes compared with clusters of the base model. This indicates that

the debiased ranking results tend to manipulate nodes to have similar ranking scores and

reduce the potential for individual bias. However, this results in a larger content bias.

4.1.5 Evaluation and Expert Review

To further evaluate our framework, we conducted an interview with our collaborators

(E0, E1), two domain experts (E2, E3) in graph mining and two domain experts (E4, E5) in

machine learning and artificial intelligence. For the interview, we first introduced our sys-

tem by describing the analytical tasks supported in the framework. We then demonstrate

the components of our framework by walking through one of the two usage scenarios de-

scribed in Section 4.1.4.1 and 4.1.4.2. Finally, the experts were allowed to freely explore the

two datasets in the usage scenarios. The duration of the interview was approximately 90 to

100 minutes. On average, experts spent approximately 7 to 10 minutes to master the system

and were able to explore bias information based on their own. All experts were able to fully

understand the major functionalities of the system by asking a few questions during the ex-

ploration phase. After the free exploration stage was finished, we collected feedback from

the experts using the following questions:

1. How well are the proposed analytical tasks supported with our design? (Q1.)
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2. What are the traditional ways of addressing such tasks in conventional fairness audits

of graph mining models? (Q2.)

3. How effective is this framework in supporting fairness audits? (Q3.)

4. How would the framework fit into your development circle? (Q4.)

5. Please rate the user experience from 1 to 5 (poor to good) considering the intuitiveness

of the views, interactions and effectiveness of the analytic workflow. (Q5.)

Framework: We received positive feedback on the overall design of the framework. The ex-

perts noted that it is necessary tohave such a framework to explore and identify fairness issues

in graph mining models. E0 and E1 considered that the flexibility in defining target nodes

and groups vastly facilitates the task-oriented analysis by swapping the nodes and groups

on the fly. E1 appreciated the design of the rank mapping view, especially the support for

individual-level bias inspection. “Usually, only an aggregated measure is reported for the in-

dividual biases on all the nodes in a graph, and we also have to visualize the biased result for

each node to fully obtain the information of individual bias (Q2). With the help of interac-

tive visualizations, we can clearly observe the biases for eachnode in a detailedmanner, which

benefits the in-depth analysis and reasoning of fairness issues in different ranking algorithms.

(Q3)” E2 and E5 appreciated that the framework fits the general process of fairness auditing

since the fairness issues have attracted much attention; however, the definition of fairness is

always controversial. Thus, by enabling an interactive definition of sensitive attributes, this

framework can support a quick reanalysis of fairness under different constraints. (Q4)

Visualizations: The experts all agreed on the effectiveness of the visualization design in our

framework (Q1). They noted that the combination of rank mapping view, group propor-

tion view and group shift view can illustrate the impact of the ranking models on defined

groups and nodes. E2 noted that the two modes of the group proportion view can reveal
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information in both group proportions and group-wise comparisons between models. E3

appreciated the design of the rank mapping view which depicts both individual bias and

group bias simultaneously. “This view could assist us in checking how effective the debiasing

methods can be. The result can be easily observed in the rank mapping view.” The average

score for the user experience question is 4 out of 5 (with the lowest score being a three and the

highest a 5) (Q5). Experts agreed that the workflow is clear and was enthusiastic about the

ability to flexibly define protected groups. All of our domain experts felt that the interactions

were appropriate and provide the necessary information.

Limitations: The experts also offered several suggestions for improvements to the frame-

work. E0 discussed the possibility of supporting comparisons betweenmore than twomod-

els. “This can speed up the fairness-oriented model selection procedure if a number of mod-

els can be compared and analyzed at once.”. E2 recommended that for groups in the rank

mapping view, the details of the advantaged and disadvantaged nodes can be queried. For

example, the analyst would like to highlight specific nodes in a group. E3 and E4 found the

interface tobe initially challenging, and these experts required the longest amount of time for

training (10minutes). They also often needed a reintroduction to views, and E5 commented

that the framework has a relatively high learning curve for analysts who are not in the field

of graph mining. E5 suggested adding information panels for each view may, and we have

updated the system to incorporate this. Each view now contains a small question mark in

the upper-right corner that provides a description of the view functionality onmouse-over.
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Chapter 5

MACHINE LEARNING ROBUSTNESS ANALYSIS

So far, all of the previous chapters leverage visual analytics methods to explore and dis-

cover vulnerabilities in machine learning models and explain how these vulnerabilities may

be occurring. However, a key question that comes up when a vulnerability is discovered is

- now what? This chapter explores how we can suggest and highlight mechanisms for ad-

dressing machine learning vulnerabilities. Can the visual analytics system highlight example

data elements that are under or oversampled and suggest potential mechanisms for reducing

vulnerabilities? How can visual analytics best enable model developers to build and develop

strategies to make the model more robust? How can we leverage those insights to motivate

researchers to prevent the model from certain threats? Thus, the next step is to facilitate

defense from the potential vulnerabilities of machine learning models with visual analytics

approaches via human-in-the-loop analysis.

In this chapter, two new visual analytics frameworks have been introduced to enhance

the accuracy and reliability of machine learning models. The first framework is focused on

out-of-distribution detection based knowledge validation, which addresses the challenge of

detecting model errors caused by novel or unfamiliar data that is not included in the train-

ing set. By providing visualizations that enable the detection of such errors, this framework

allows for better model validation and improves the reliability of the model’s predictions.

The second framework is designed for data augmentation diagnosis, which is an essential

technique to overcome the problem of limited training data. This framework provides visu-

alizations that help to diagnose and evaluate the effectiveness of data augmentationmethods

used to expand the training data. By identifying the strengths and weaknesses of different
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Figure 22. Identifying and reasoning the known unknown instance toResNet-34 trained on
CIFAR-10. (A) The analyst selects Stage 0 as the base stage and Stage 1 as the current stage to
investigate how well the model performs and what aspects need to be improved. From the
InformationHighlight View (B), the analyst notices that both training accuracy and testing
accuracy has increased as 30,800 data instances are newly added to the training dataset, which
can be verified from the Performance Linechart (C). The DivergingMisprediction Barchart
(D) also indicates that the number of mispredicted instances reduced significantly, while the
analyst also finds that the number of instances that aremisclassified as “dog”s by theResNet-
34 is the largest among others (D.1). By filtering the Instance Gallery (E), the analyst further
notices that the instance “cifar10_test_61” is misclassified as “dog” twice from both the base
stage and current stage. To reason the instance “cifar10_test_61”, the analyst clicks the cor-
responding row and discovers that the similar instances are from either “dog” or “cat” (F),
and they are heavily overlapped on their softmax distribution similarity, which means the
ResNet-34 currently has difficulty in distinguishing some “dog”s and “cat”s. Such a hypoth-
esis can also be verified in the Instance Detail View as the selected instance “cifar10_test_61”
is difficult to be distinguished by humans as well.

data augmentation techniques, this framework enables the selection of themost appropriate

methods for specific machine learning tasks. Both of these frameworks are valuable tools for

improving the performance and reliability of machine learning models, and they represent

significant contributions to the field of visual analytics.

5.1 Machine Learning Knowledge Validation

Machine learning models are widely used in commercial systems in various applica-

tions (Covington, Adams, and Sargin 2016; Ronneberger, Fischer, and Brox 2015; Esteva et

al. 2017). These systems constantly collect new training data and update models in order to

match the up-to-date data distributions. However, the real-world data collection procedures

are challenging due to the formand size of the data. The collected datamaybe biased andnot

able to cover all the possible varieties in the feature space. While a model may perform well

on known data, the inherent unknowns in the real-world leave models open to various vul-
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nerability issues, including poor performance on out-of-distribution data (Hendrycks and

Gimpel 2018; Lee et al. 2018; Liang, Li, and Srikant 2020; C. Chen et al. 2020) and adversar-

ial examples (goodfellow2014explaining; Huang et al. 2011; Vorobeychik and Kantarcioglu

2018b; Das et al. 2020; Brown et al. 2018; Shamsabadi, Sanchez-Matilla, and Cavallaro 2020;

Zhao, Liu, and Larson 2020; Athalye et al. 2018). The former is when the model incorrectly

predicts unlabeled data that is out of training data’s distribution, while the latter is the case

that the model is fooled by artificially-crafted data with imperceptible subtle perturbations.

Essential to these vulnerability issues is that themodels cannot handle unknown data, which

requires analysts to understand and explore what has been learned in the black-box mod-

els. Although there are many existing works addressing the identified vulnerabilities (Das

et al. 2018; Rahnama, Nguyen, and Raff 2020; Xiao and Zheng 2019), new vulnerabilities

still arise as long as the models are not perfect and the training data is limited. In fact, it is

almost impossible to train a perfect model to cover known and unknown situations in prac-

tice, leaving us a question: how do we validate whether a model is well-trained or not? The

traditional statistical metrics such as accuracy and recall are not enough for revealing what

is learned in a model and how well it learns. Take an image classifier as an example. 100%

accuracy on training and testing datasets does not mean the model is perfect; instead, there

are always some new images the model cannot predict correctly. Even if we train models

that perform well on any known data, adversarial examples can be generated to confuse the

model. Thus, the key question becomes howwe validate the knowledge learned by a model,

i.e., how do we align what we think the model is performing and what the model is actually

learning.

We refer to the aforementioned challenges as Machine Learning Model Knowledge Val-

idation, meaning the process of alignment of what knowledge the machine learning model
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has learned and what human believes the model has learned. For simplicity, we use the term

Knowledge Validation to represent this concept throughout the paper.

In this paper, the main method of the knowledge validation is to infer the current de-

ficiencies of the model by analyzing the causes of the mispredicting certain data instances

and improve the model accordingly. For example, we infer a misclassified image as out-of-

distribution data, meaning that the model is not well trained for predicting such an anoma-

lous data instance. Correspondingly, some misclassified images are so confusing that even

humans cannot recognize them, making the model mispredict them with high confidence.

We categorize the former type of mispredicted data as unknown unknowns7 and the latter as

known unknowns8 where adversarial samples belong to.

The knowledge validation is a dynamic process for distinguishing and reasoning those

unknowns. It is required as long as the model accepts the new data and keeps evolving

since such validation requires human cognition and involvement at every stage of themodel,

which also implies that the knowledge validation is difficult to quantify and achieve with au-

tomated algorithms. Therefore, we employ a human-in-the-loop approach to address this

challenge. Our proposed visual analytics framework is developed under the model-agnostic

setting, allowing analysts to perform instance-level inspections to facilitate prediction reason-

ing across each stage of the model development. The fully-adaptive components convey in-

sights via both visualizations and text summarizations, whichmakes it easy tounderstand the

model’s behaviors and be guided for model improvement suggestions. Finally, we demon-

strate the proposed frameworkwith three usage scenarios to show the usability of the system

for identifying and reasoning new unknown unknowns, existing known unknowns, as well
7An unknown unknown is also referred to as Distribution Uncertainty (Malinin and Gales 2018) which is
caused by the mismatch between training and testing data distribution

8A known unknown is also referred as Data Uncertainty (Malinin and Gales 2018) caused by the complexity
in the dataset, such as overlapping between different classes.
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as adversarial examples generated by an attack algorithmFGSM (goodfellow2014explaining)

through validating a well-known deep learning model ResNet (He et al. 2016) trained with

an image dataset CIFAR-10 (Krizhevsky, Nair, and Hinton, n.d.). Contributions include:

• A visual analytics framework that supports analysts to perform machine learning

model knowledge validation of any machine learning model.

• Interactive methods for progressively syncing model’s instance-level prediction logic

with domain experts.

From our literature review on machine learning knowledge validation and knowledge

validation in visualization (C. Chen et al. 2020; Lee et al. 2018; Yuan et al. 2021), we have

identified several research challenges and gaps in the literature. These challenges were then

evaluated by four researchers in machine learning (two of which serve as co-authors on this

paper). After iterative discussions with the experts, two major research challenges for ma-

chine learning knowledge validation were identified:

Interactive Incremental Model Improvement Support. As Yuan et al. (Yuan et al. 2021)men-

tioned, current visual analytics techniques formachine learning fall into three categories that

provide support at different development stages: before machine learning model building,

during the model building, as well as after the model building. However, from the incre-

mental learning perspective, the model keeps evolving as long as there are new data to be

trained. In this case, even a well-trained model is deployed as a commercial application will

still suffer mispredicting the new data for many reasons, such as OoD data and adversarial

examples that are generated by the new attack algorithms. Thus, for some tasks such as im-

age classification, being deployed to real-world applications is not the end of the story. It

is necessary to understand the model’s behavior at every stage and obtain insights of what

every misprediction delivers to us.
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Instance-level Behavior Reasoning. Automatic strategies (Lee et al. 2018; Hendrycks and

Gimpel 2018; Guo et al. 2017; Shalev, Adi, and Keshet 2019; Lee et al. 2017; Lakkaraju et

al. 2016; Lakshminarayanan, Pritzel, and Blundell 2017) for mispredicted instances reason-

ing seem promising as they qualify them as either known unknown or unknown unknown.

However, sometimes we need the granularity of knowledge validation can be detailed down

to the instance level. Take image classification as an example, the model can have poor per-

formance on both OoD data and adversarial examples, which are both treated as unknown

unknowns. In this case, the analyst is not able to know the semantic context of those in-

stances unless inspects and reasons the model’s behavior on each one in detail, which can

be different from case to case. Therefore, instance-level behavior reasoning is also necessary

during knowledge validation.

5.1.1 Analytical Tasks

According to the aforementioned research challenges and gaps, we have identified three

essential analytical tasks with our collaborators. These analytical tasks are refined iteratively

during the framework development. In the end, we decided to employ image classification

as ourmajormachine learning task and summarized the following specific analytical require-

ments with regards to it.

5.1.1.1 T1: Organizing and Summarizing Model at Every Stage

Models of different stages should be summarized, which includes basic summarization

of models’ performance changes and dataset changes. In particular, the analysts should be

able to know:
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• T1.1: What is the performance of the model at each stage, and;

• T1.2: What is the dataset status at each stage.

5.1.1.2 T2: Identifying and Reasoning the Mispredicted Instances

Analysts should be able to identify the mispredicted instances and diagnose the reason

for thosemispredicted instances. Asmentioned earlier, themispredicted instances belong to

one of the two categories: known unknown and unknown unknown. Thus, analysts want

to understand:

• T2.1: What difficulty does the model currently have in predicting which classes?

• T2.2: What is the reason for a certain instance being misclassified? Does it belong to

known unknown or unknown unknown? Why?

5.1.1.3 T3: Enabling Stage-wise Comparison and Validation

The analysts should be able to notice the difference of the model’s behaviors through

stage-wise comparison. In particular, analysts want to get the answers to the following ques-

tions:

• T3.1: Compared with previous stages, what are new issues in predicting new encoun-

tered data?

• T3.2: Comparedwith previous stages, are existing issues fixed? Has themodel evolved

by improving its prediction logic?
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5.1.2 Design Requirements

Based on the analytical tasks, we engaged in an agile design process involving multiple

iterations of the framework in collaboration with our domain experts. We have identified

several design requirements and mapped different analytic tasks to each requirement.

5.1.2.1 D1: Summarize Model Performance with Highlights

The system should support the summarization ofmodel performance (T1.1). Highlights

of themodel performance and data information at each stage should be extracted for simplic-

ity (T1.2). In addition, the summarization should be standing out to guide analysts on what

issues may need to be concerned for each stage, where the summarization of each stage is

comparable (T3.1, T3.2) for validation with preferred reference.

5.1.2.2 D2: Summarize the Mispredicted Instances with Highlights

The system should visualize the overview of mispredicted instances (T2.1). Such an

overview should also be comparable (T3.1, T3.2) and provide useful highlights for potential

starting points of interest.

5.1.2.3 D3: Reason the Mispredicted Instance in Detail

The system should also be able to visualize detail of mispredicted instances (T2.2) for

reasoning and model behavior understanding. The design detail view is also comparable
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across themodel in different stages toprovide evidence of the diagnosis of thosemispredicted

instances (T3.1, T3.2).

In summary, we specify the views that need to be developed and map their functionality to

the analysis tasks that can be performed as follows:

• Information Highlight View, which integrates information including model perfor-

mance, dataset changes, and misprediction information (T1.1, T1.2, T2.1) of selected

stages (T3.1, T3.2).

• Performance Linechart, which compares the performance of the model across differ-

ent stages (T1.1, T3.1, T3.2).

• Diverging Misprediction Barchart, which summarizes how the model performs in

predicting each class of selected stages (T2.1, T3.1, T3.2).

• Instance Gallery & Instance Detail View, which shows mispredicted instances for

detailed analysis (T2.2).

• Instance Reasoning View, which is used for reasoning how/why the mispredicted in-

stance of interest is caused. (T2.2, T3.1, T3.2)

5.1.3 Visual Analytics Framework

Based on the analytic tasks and design requirements, we have developed a visual analytics

framework (Figure 23) to support machine learning knowledge validation. The framework

is designed to keep eachmodel stage as a snapshot. The analyst can check out any two stages

as the base stage and the current stage for diagnosis. The summarization is then automati-

cally generated to highlight the potential issues from mispredicted instances (Figure 23.A).

Then the analyst can interactively reason how and why certain instances of interest are mis-
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Figure 23. The designed framework considers the model at different stages as a stage chain.
It consists of two stages: (A) the stage summarization stage, and (B) the instance-level rea-
soning stage. In stage (A), the analyst can select the base stage and the current stage to be
inspected. All necessary information such as model performance and dataset changes is re-
trieved and integrated for inspection. The combined summarization view can automatically
highlight what is potentially interesting from mispredicted instances. In stage (B), the ana-
lyst can then explore and inspect instances of interest with the provided highlights. Through
examing how and why certain instances are mispredicted, the analysts can obtain insights of
the deficiency of the model and make improvements accordingly. The improved model can
be viewed as a new stage for future diagnosis.

predicted and obtain insights of the deficiency of the model. (Figure 23.B). The analyst can

leverage those insights to improve the model and record the improved model as a new stage

for future diagnosis.

The framework supports two major functionalities: 1) stage summarization and 2)

instance-level reasoning. The analysts are free to compare any two stages during the model

development to explore how the model evolves through the Performance Linechart and the

Diverging Misprediction Barchart. Our highlight algorithm can automatically provide rec-

ommendations for analysts to diagnose potential model deficiency. Analysts can then dive

into the instance-level reasoning of the mispredicted instances of interest. The instance rea-

soning view provides both visual and textual explanation integrated with state-of-art OoD

detection method (Lee et al. 2018) to show how the model sees the selected instance as. If

it is a known unknown, it may suggest that the model has difficulty distinguishing the se-

lected instance base on its knowledge. If it is an unknown unknown, it may suggest that the

model lacks such data to be trained as it is some pattern the model has not seen before. Our

modular design is model agnostic, which enables analysts to freely integrate any machine

learning models, corresponding OoD detection methods, as well as classification tasks. For

demonstration purposes, we employ image classification as our task.
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5.1.3.1 Background of Related Machine Learning Techniques

ResNet (He et al. 2016) is a well-known deep neural network invented by He et al.. The

ResNet model is designed with double- or triple-layer skips that contain nonlinearities and

batch normalization in between to address the vanishing gradients problem as well as the

degradation problem. The idea of ResNet is to build the network with the building block:

y = F(x, {Wi}) + x (5.1)

Here x and y are the input and output vectors of the layers considered, andWi is the weight

matrix. The function F(x, {Wi}) denotes the residual mapping to be learned, and the op-

eration F + x consists of a shortcut connection and element-wise addition. We utilize the

classical ResNet-34 model with 34 parameter layers as our major model to be validated for

demonstration.

UniOoDD (Lee et al. 2018) is refereed as the unified framework for detecting both OoD

data and adversarial examples proposed by Lee et al.. UniOoDD obtains the class condi-

tional Gaussian distributions with respect to levels of features of the deep models under

Gaussian discriminant analysis. The output represents a confidence score based on the Ma-

halanobis distance. In particular, the Mahalanobis distance-based confidence scoreM(x) is

represented as:

M(x) = maxc − (f(x)− µ̂c)
TΣ̂−1(f(x)− µ̂c) (5.2)

where µ̂c and Σ̂ is the class mean and covariance of training samples:

µ̂c =
1

Nc

Σi:yi=cf(xi), Σ̂ =
1

N
ΣcΣi:yi=c(f(xi − µ̂c))(f(xi)− µ̂c))

T (5.3)

UniOoDD has been proven to be significantly effective on OoD detection as well as

adversarial examples detection. We employ this method as an assisting algorithm to judge
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if a given mispredicted instance belongs to known unknown or unknown unknown, and

encode the measured value of each instance into our visualizations.

FGSM (goodfellow2014explaining) is refereed as Fast Gradient Sign Method of generating

adversarial examples proposed by Goodfellow et al.. The core idea of FGSM is to add fine-

tuned noise to original data, and the perturbed data is shown as a wrong prediction with a

high probability produced by the model. The added noise is represented as the following:

η = ϵsign(∇xJ(θ,x, y)) (5.4)

where θ be the parameters of a model, x the input to the model, y the targets associated

with x and J(θ,x, y) be the cost used to train the neural network. We use FGSM to gener-

ate adversarial examples in Section 5.1.4.3 to show how such instances can be identified and

reasoned by our framework.

5.1.3.2 Summarize the Model Performance with Highlights

In the development of machine learning models, the goal is to have the model to per-

form as expected at every stage. Therefore, we want the system we design to help analysts

quickly obtain information about the model’s performance. We start with the simplest met-

rics used to measure the performance of the model. We design the Performance Linechart

(Figure 22.C) to visually represent how themodel performs at each stage (T1.1). Weuse differ-

ent colors to represent different measures, and the Performance Linechart can be extended

to support any numerical metrics, so that the analyst can choose the metrics he or she wants

to examine by preference, such as accuracy, recall, etc. However, the line chart also has prob-

lems. Recently, Fan et al. (Fan et al., n.d.)mention thatmany factors of line charts can be con-

fusing and misleading. Small changes in model performance in percentages are sometimes
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difficult to detect, and such changes can be large in reality. For example, if the test accuracy

is reduced by 0.1%, but the size of the dataset is 1 million, then there are 1,000 mispredicted

instances. Therefore, in addition to the customizable Performance Linechart, we design In-

formation Highlight View (Figure 22.B) to record the changes in themodel between the two

model stages, including changes in the performance and the dataset (T1.1 & T1.2 & T3.1 &

T3.2). We use red 9 to indicate unfavorable information, such asworse performance, reduced

dataset, etc., and green for favorable information, such as better performance and increased

dataset. The analyst can obtain overall information on the model performance from the In-

formationHighlight View and the Performance Linechart by checking out the information

from the different stages.

5.1.3.3 Summarize the Mispredicted Instances with Highlights

We also want the system to help analysts quickly obtain information about the mispre-

dicted instances. Such information can tell us the shortcomings of the model at the selected

stage. Similarly, we use the Diverging Misprediction Barcharts (Figure 22.D) to show the

number of data that the model incorrectly predicts in the base and the current stages (T2.1

& T3.1 & T3.2). For example in an image classifier, each bar of theDivergingMisprediction

Barcharts indicates that themodel misclassified the instance into a certain category, and each

bar is stacked with training data portion and test data portion respectively. However, such a

design is not scalable with respect to the number of classes. We use CIFAR-10 as the dataset

for image classification, which has a total of 10 classes. However, real-world datasets can be

much more diverse, such as CIFAR-100 and ImageNet (Deng et al. 2009) that have 100 cat-
9For color-blind friendly consideration, we have also provided another set of color encoding alternatives to
improve the user experience.
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egories or more. Imagine so much statistical information being displayed in the Diverging

Misprediction Barchart, analysts can have difficulties in finding the information they need.

Therefore, we design a simple but effective highlighting algorithm to select the important

information from the Diverging Misprediction Barchart, mainly showing which classes the

model mispredict have the most noticeable changes. To do so, the challenge is to employ

what metric to represent the significance of changes. We can use the absolute difference to

represent the change of certain classes between the two stages, but the largest absolute dif-

ference does not necessarily represent the most noteworthy change (e.g., 1,000 instances are

misclassified as cats represent only 0.1% of all misclassified instances). Similarly, we can use

the ratio of a difference to represent relative changes, but the largest change ratio does not

necessarily represent themost noteworthy change as well (e.g., 1 new instancemisclassified as

a cat represents 50% of all instances misclassified as cats). Therefore, we employ the product

of the absolute difference and the ratio of the difference as the significance of the change,

which considers both absolute and relative changes. We sort each misclassification by the

computed significance and select the top-5 of them to be displayed in the InformationHigh-

light View. For example, the analysts will read that “the number of instances misclassified

as dogs have increased by 30% compared to the previous stage”. Such noteworthy changes

help guide the analyst to examine specific categories rather than browsing theDivergingMis-

prediction Barchart without a goal. Finally, each portion of the bar chart is also clickable.

Analysts can filter instances of error categories by clicking on the specified section. These

instances will be displayed in the Instance Gallery (Figure 22.E).

In addition to getting the statistical information by looking at the Diverging Mispre-

diction Barchart, we also design the Instance Gallery to display the mispredicted instances

(T2.2). The Instance Gallery consists of two parts, the upper shows a summary of the mis-

predicted instances aswell as the customizable filtering options, and the lower part shows the
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Table 1. Observation and Interpretation of Instance Reasoning View

Description Observation Interpretation
The selected instance is un-
known unknown

The selected instance is far
from the similar instances
horizontally

“I have never seen this im-
age before.”

The selected instance is
known unknown

The selected instance is
in between the similar
instances horizontally

“I know this species be-
cause I was trained with
similar ones, but this one is
confusing.”

The selected instance is
more unique to the model

The selected instance is far
from the similar instances
vertically

“To my best knowledge,
these are similar instances
that help me predict, al-
though they are subtly dif-
ferent from the given in-
stance.”

The selected instance is less
unique to the model

The selected instance is
close to similar instances
vertically

“According to what I have
learned, these instances
share the similar features.”

thumbnails of instances which are grouped by class. Because wewant to diagnose the reason

why the instances aremisclassified, we use theUniOoDD framework (Lee et al. 2018) to help

detect whether themisclassified instances are unknownunknown or known unknown. The

UniOoDD outputs the confidence score for each instance that denotes how confident the

model predicts the given instance. Since such a confidence score is multidimensional, the

OoDdetector can be achieved by training a classifier with the confidence score as the feature,

and the ID/OoD as the label. We retrain such classifier at every stage as an auxiliary method

to perform a cursory evaluation of the current misclassified instances, with the training data

as the In-Distribution (ID) data and the dataset that is rather than CIFAR-10 as the OoD

data (such as SVNH (Netzer et al. 2011)). We extract the proportion of unknown/known

unknowns and summarize it with text on the top of the Instance Gallery. In addition, these

two terms are colored in orange and yellow, and we use the same colors to fill the border of

the thumbnails to denote which unknowns the instance belongs to. We also design six fil-
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tering options to help analysts filter the mispredicted instances, which include the instance

label, the instance prediction is base/current stage, whether the instance is newly added, the

instance is from the training/testing set, and the instance is known unknown or unknown

unknown. Finally, all thumbnails support hovering to show the details with a tooltip.

5.1.3.4 Reason the Mispredicted Instance in Detail

Since we also want to reason themispredicted instances in details, we further employ the

Instance Reasoning View (Figure 22.F) to reason how and why the instance is diagnosed as

known/unknown unknown (T2.2). As mentioned before, Chen et al. (C. Chen et al. 2020)

consider misclassified instances as either known unknown or unknown unknown and show

that different kinds of misclassified instances essentially embody different problems of the

model. For example, the implication of an unknown unknown is that the model has low

confidence in predicting such an instance. We elaborate further on the relationship between

the properties of instances and model performance based on previous work. We propose

that model performance is reflected in three aspects of the mispredicted instance: (1) the

model’s confidence in predicting the instance, (2) the evidence/knowledge the model uses

for the prediction, and (3) the model’s ability to apply the learned knowledge.

1. Model’s confidence predicting the instance. The confidence of the model for the

predicted instance reflects how well the model knows this instance. Hendrycks et

al. (Hendrycks and Gimpel 2018) have demonstrated that the model’s output at the

softmax layer does not represent the model’s confidence level as the model also mis-

classifies OoD data with high values. Instead, the confidence score proposed by Lee

et al. (Lee et al. 2018) shows such a feature of the model. The confidence level of the

model outputting a misclassified instance has different meanings. High confidence
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but misclassified instances indicate that the model has learned similar instances but is

not yet able to distinguish themwell from other classes (known unknowns). Themis-

classified instanceswith low confidence indicate that themodel is unfamiliarwith such

instances (unknown unknowns). We utilize UniOoDD as an assisting method to ob-

tain the confidence score for each prediction. Instances marked as known unknown

mean that the model predicts them with high confidence, while instances marked as

unknown unknown show low confidence prediction.

2. The evidence/knowledge of model prediction. The evidence of model prediction rep-

resents the basis on which the model classifies an instance. Molnar (Molnar 2020) in-

troduces an instance-based interpretation,meaning that theway themodel judges this

instance is based on the fact that theway themodel also judges its similar instances. We

apply this interpretation to speculate on the evidence of the model prediction as such

an interpretation is easier to understand andmore likely to respond to the local behav-

ior of the model. Since the softmax layer is considered to be the knowledge learned

by the model (Hinton, Vinyals, and Dean 2015), we consider that the instances con-

sidered similar by the model have similar knowledge structures, i.e., similar softmax

distributions. We compute the KL divergence of the softmax distribution between in-

stances to obtain the similarity of knowledge. Ideally, instances of the same class have

similar softmax distribution in model understanding, and such a distribution makes

thempredicted to be in the same class. For theOoDdata or adversarial examples, their

softmax distribution is different from the ID data, and thus they are misclassified, al-

though humans think they are perceptually similar to the category they should belong

to.

3. The model’s ability to apply the learned knowledge. Finally, the ability of the model

to apply the knowledge indicates whether themodelmakes accurate judgments about
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Figure 24. Visual encoding of the Instance Reasoning View. We encode the circles to be
the instances from the testing data, and squares to be the instances from the training data.
The color of circles or squares denotes the prediction class of the instance. In addition, each
instance also contains a larger concentric circle. The color of this concentric circle represents
the label of the instance itself. We also use the x-axis to represent the Relative OoD Dis-
tance of the model for the instances. Among other similar instances, the further the selected
instance is from other similar instances, the more unfamiliar the model is to that instance.
Finally, we use the y-axis to represent the softmax distribution similarity, the closer to zero
means the instances are more similar to the selected instance in the model’s understanding.
The correctly predicted and themispredicted instances are separated on the top and the bot-
tom side respectively.

the acquired knowledge. Similar to the concept of underfitting, the low accuracy of

themodel for the training data is also the reasonwhy themodel predicts incorrectly for

a certain instance. Therefore, when we obtain the instances that the model considers

similar, it is critical that these instances are predicted correctly. If the model does not

performwell in predicting the vast majority of similar instances, then themodel is not

likely to be well trained.

Instance Reasoning View. Tobetter show the inference of incorrectly predicted instances for

the model, we designed the Instance Reasoning view to show those aspects in detail (T2.2).

As shown in Figure 24, we encode the instance information into a scatter plot. For a given
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model stage and the selected instance, we select 20 instances that are the most similar to the

selected instances by examining the softmax distribution of all instances, amongwhich 10 are

from the training set and 10 are from the testing set. We encode each instance as a circle if it

is from the testing set, or a square if it is from the training set. The color of circles or squares

denotes the prediction class of the instance. In addition, each instance also contains a larger

concentric circle. The color of this concentric circle represents the label of the instance itself.

We use the y-axis to indicate the similarity between the selected and similar instances (i.e., the

value of KL divergence between the two softmax distributions) such that a smaller distance

vertically indicates a more similar of those two instances. For clarity, we also separate the

instances into two portions, where instances above the selected instance mean that they are

correctly classified, and those below the selected instance mean that they are incorrectly clas-

sified. We also encode the x-axis to represent whether the model is confident to predict the

selected instance. Aswementioned before, Lee et al. (Lee et al. 2018) use the confidence score

extracted from the framework as a feature of the instances, using whether it is OoD data as a

label. we extract such confidence score of each instance as the encoding of the x-axis. When

the confidence score is multidimensional, we apply PCA to obtain a numerical confidence

score with the largest variance as the value of the x-axis for each instance, which here is called

Relative OoD Distance. In this way, we can determine the confidence level of the model

for a selected instance by observing the relative position of the levels of that instance and its

similar instances. As listed in Table 1, if the selected instance is in the middle of the training

set, then the model is familiar with the pattern of the current instance, but the model is not

accurate enough to make a correct prediction (known unknown). If the selected instance

is horizontally distant from the training set, the model is unknown to the current instance.

We also encode the circles that represent the instances. The circle and the texture and color

represent whether the instance belongs to the training set or the test set. In addition, we also
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Figure 25. Identifying and reasoning the unknown unknown instance to ResNet-34 trained
on CIFAR-10. The analyst selects Stage 0 as the base stage and Stage 1 as the current stage to
investigate how well the model performs and what aspects need to be improved. From the
Information Highlight View (A), the analyst notices that both training accuracy and test-
ing accuracy has increased as 30,800 data instances are newly added to the training dataset,
which is also shown in the Performance Linechart (A.1). The Diverging Misprediction Bar-
chart (A.2) indicates that the number ofmispredicted instances is reduced significantly. The
analyst wonders what are the newly mispredicted instances. Through filtering the Instance
Galley (B), the analyst further notices that the new instance “cifar10_train_33812” ismisclassi-
fied as “cat” with the label “frog”. By clicking the instance “cifar10_train_33812”, the analyst
discovers that the similar instances are from either “dog” or “cat” (C.2), and they are heavily
overlapped on their softmax distribution similarity, which means the ResNet-34 currently
has difficulty in distinguishing some “dog”s and “cat”s. Such a hypothesis can also be veri-
fied in the Instance Detail View as the selected instance “cifar10_train_33812” is difficult to
be distinguished by humans.

made a textual summary of these three observations to explain the phenomena presented

in the scatter plot. To facilitate the observation, we also design the Instance Detail View to

show the actual images of all the instances that appear in the scatter plot. Finally, the system

also dynamically adjusts to the stage in which the selected instance appears. If the instance is

present in both the base and current stages, the view automatically displays two scatter plots

representing two different stages. The analyst can observe the changes in the predictive logic

of the instance in the model evolution by performing pairwise comparisons (T3.1 & T3.2).

5.1.4 Usage Scenarios

We present three usage scenarios to demonstrate how our framework supports knowl-

edge validation during the model development process. We first show how analysts diag-

nose newunknown data of CIFAR-10 during evolving theResNet-34model, and then show

how analysts diagnose mispredicted CIFAR-10 instances existing throughout the stages. Fi-
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nally, we show the framework used for discovering and reasoning the adversarial examples

of CIFAR-10 generated by FGSM.

5.1.4.1 Inspecting New Unknown Unknown

A common usage scenario is when a model encounters new and unknown data during

its evolution. The model is usually unfamiliar with such data, but it can only be shown as a

decrease in accuracy in the traditional performance measurements. Thus, the analyst needs

to know how the model perceives such data and how to improve the model’s performance

based on what is reflected by such data. In this usage scenario, we simulate when the deep

learning model ResNet-34 trained with CIFAR-10 encounters new unknown data and pro-

duces the wrong prediction on that data. We want to know what such wrong predictions

tell us and how to improve. There are two stages in our simulation, where Stage 0 is the

ResNet-34 that is trained with part of the CIFAR-10 training data (19,200 instances), and

Stage 1 is when the ResNet-34 model is fully trained (50,000 instances). The purpose of this

setting is to simulate the progress that themodel is trainedwith newdata gradually and keeps

evolving.

Identifying the New Unknown Instances: After the simulation data is loaded, the analyst

inspects the Information Highlight View to obtain the overall information of the model

and data. As mentioned, the system automatically marks Stage 0 (not fully trained) as the

base stage and Stage 1 (fully trained) as the current stage. The Information Highlight View

shows that compared with the base stage, the current stage has increased the training accu-

racy by 20.110% (from79.59% to 99.7%) and the testing accuracy of 14.580% (from78.42% to

93.0%), which is reflected on the Performance Linechart (Figure 25.A.1). In terms of the size

of the dataset, the current stage has grown the training dataset from 19,200 of the base stage
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to 50,000, and the size of the test dataset has no change. The Information Highlight View

also indicates that the misprediction rate of almost all classes has dropped significantly. (Fig-

ure 25.A.2)The analyst then inspects theDivergingMispredictionBarchart to verify the sum-

marizations, which shows that every class has dropped the misprediction rate significantly

as bars of the current stage are much lower than those of the base stage. In addition, the an-

alyst can hardly see the bars that represent mispredicted instances in the training dataset of

the current stage, as the training accuracy is 99.7% nearly 100%. This shows the model is im-

proving overall as themodel is trainedwithmore new data. The analyst then is wondering if

therewere newly introducedmispredicted instances that areOoD instances or unknownun-

knowns. By filtering the Instance Gallery (Figure 25.B), the analyst discovers that 2 instances

aremisclassified, onebelongs to “frog” andonebelongs to “ship” (Figure 25.B.1). The analyst

finds that the first one (“cifar10_train_32812”) is interesting as it is currently misclassified as

“cat”. It seems that the frog does not share very many common features with the cat, which

makes the analyst curious about the reason for such misclassified instance (Figure 25.C).

Reason the New Unknown Instances: The analyst then wants to dive into instance “ci-

far10_train_32812” to reason how and why it is misclassified. By clicking the instance in the

Instance Gallery, details are shown on both the Instance Reasoning View and the Instance

Detail View. The former shows that the Relative OoD Distance between the selected in-

stance “cifar10_train_32812” and similar instances are large (Figure 25.C.1), which indicates

that the model is not confident to predict these instances compared with other similar in-

stances. In addition, the analyst further notice that the model tries to align the learned in-

stances of “cat” and “frog” topredict this instance, which indicates that theResNet-34model

currently believes some instances of “cat” are similar to instances of “frog” (Figure 25.C.2).

Finally, by looking at the Instance Detail View, the analyst finds the misclassified instance

“cifar10_train_32812” is visually confusing to humans, and the frog’s skin texture is also sim-
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ilar to some cats’ skin texture, which is a possible reason for such prediction (Figure 25.C.3).

As a result, the analyst can get the clue that currently the model is not good at classifying

such instances as not enough similar data is trained. Adding more similar data may help

improve the model.

5.1.4.2 Inspecting Known Unknown

The second usage scenario is when themodel encounters instances that aremispredicted

even after one ormore stages of improvement. The data is not new to themodel but still can

not make correct predictions. Traditional metrics such as accuracy only show one aspect of

performance and are inadequate for instance-level validation. In this case, the analyst needs

to know what limited the model of recognition of such instances, and why the predictions

are wrong. For example, if a picture of a cat is always classified by the model as a dog or a

horse, it is likely that the model is not fine-grained enough to distinguish quadrupeds. So

in this usage scenario, we continue to use the first usage scenario setting to explore those

instances where the performance is not improved by increasing the size of the dataset.

Identifying the Known Unknown Instances: Since the simulated stages are the same as

Section 5.1, we skip to the part when the analyst starts to look for the mispredicted instances

of interest after the simulation data is loaded. Through browsing, the analyst finds that

the model makes the mistake of misclassifying instances as “dog”s, and this misprediction

rate is the highest compared to other categories (Figure 22.D.2). The analyst wonders what

are the instances that model keeps mispredicting as “dog”s. The analyst then filters the In-

stance Gallery to select the instances that are mispredicted as the “dog” at both the base and

the current stage. From the Instance Gallery view, the analyst discovers that 22 out of 36

(61.111%) instances tend to be unknown unknown, and 14 out of 36 (38.889%) instances tend
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to be knownunknown (Figure 22.E). The analyst then finds in the table that the instance “ci-

far10_test_61” is labeled as “cat”, however, the model keeps predicting it as “dog” even after

the model is fully trained. The analyst then wonders what makes the model have difficulty

in correctly classifying such an instance.

Reasoning the Known Unknown Instances: The analyst clicks on the instance “ci-

far10_test_61” in the Instance Gallery to find out the reason why it is misclassified as the

“dog” twice. The Instance Reasoning View shows 2 scatter plots with corresponding sum-

marizations. The former represents the base stage and the latter represents the current stage

(Figure 22.F). The analyst finds that all similar instances of both scatter plots are horizontally

aligned on a line that is close to y = 0, and these instances originate from either the “cat” or

“dog” class. This indicates that the model considers the instance to be very similar to both

the cat and dog classes at both stages. the position of the x-axis indicates that the selected

instance is in the middle of similar instances. This indicates that the model is familiar with

such instances at both stages, but the model is just not accurate enough to distinguish be-

tween the two categories of “cat”s and “dog”s. The analyst further observed Instance Detail

View and found that the selected picture of a cat was also very confusing even to a human

(Figure 22.G). It can be presumed that the features such as the nose that can distinguish be-

tween cats and dogs are blurry and the model can only take a guess. With this finding, the

analyst can conclude that the reason the model misclassified the instance is that the instance

itself is confusing to be distinguished.
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Figure 26. Identifying and reasoning the adversarial examples encountered by ResNet-34
trained on CIFAR-10. The analyst selects Stage 1 as the base stage and Stage 2 as the current
stage to investigate what aspects caused the testing accuracy to decrease (A). From the In-
formation Highlight View (B), the analyst notices that the testing accuracy of Stage 2 has
dropped 0.921%, and the warning section shows that model has increased the misprediction
rate to incorrectly classify instances into classes such as “bird”, “deer”, etc. (C) The analyst
now wonders what are instances that are misclassified as “deer”. So the analyst filters the In-
stance Gallery and finds that the new instance “cifar10_test_10002” is misclassified as “deer”
with its original label “airplane” (D).To reason the instance “cifar10_test_10002”, the analyst
discovers in the Instance Reasoning View that the similar instances in the training set are far
from the selected instance both horizontally and vertically “cifar10_test_10002” (E), which
means the ResNet-34 currently consider the instance is more unfamiliar than any learned in-
stances. In the meanwhile, there are other instances that the model cannot correctly classify,
all of which are from the test dataset (F). This indicates that the quality of the new test data
needs to be reviewed.

5.1.4.3 Inspecting Adversarial Examples

The third usage scenario is when the model encounters adversarial examples. As men-

tioned earlier, models are vulnerable to adversarial attacks (Huang et al. 2011). The corre-

sponding adversarial examples are generated to avoid being correctly predicted by those vul-

nerable models. In this case, it is critical to identify such adversarial examples. In this usage

scenario, we add an additional stage base on the simulation used in Section 5.1.4.1 and Sec-

tion 5.1.4.2. We add 100 adversarial examples generated by FGSM in the test set to simulate

the scenario when the model encounters real-world data that is crafted by attackers with ma-

licious purposes. The goal is to identify and reason those adversarial examples so that the

machine learning researchers and developers can improve accordingly.

Identifying the Adversarial Examples: The analyst starts by setting Stage 1 as the base

stage and Stage 2 as the current stage to investigate the performance changes (Figure 26.A).

Through the Information Highlights View, the analyst finds that the current stage has its

testing accuracy dropped 0.921% (from 93% to 92.079%), as the testing data size increases
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100 (Figure 26.B). Automatically-generated warnings show that the misprediction rate that

the model mispredicts instances as “deer” is 48.24%, which is the highest among others

(Figure 26.C), making the analyst curious about what instances are misclassified by the

model. Through filtering the Instance Gallery, The analyst also notices that the instance “ci-

far10_test_10002” is interestingly classified as “deer” instead of “airplane”, and is diagnosed

as unknownunknown. Since the “deer” and the “airplane” are very visually different, the an-

alyst is curious how model performs such prediction, thus wants to investigate the instance

“cifar10_test_10002” in detail (Figure26.D).

Reasoning the Adversarial Examples: As the analyst clicks the instance “ci-

far10_test_10002”, the Instance Reasoning View shows the reason why the instance is

diagnosed as unknown unknown. The analyst noticed that the selected instance “ci-

far10_test_10002” is horizontally far from the training instances that the model believes

are similar, which indicates that the model has low confidence in predicting this instance

as it has never seen such image before. In addition, the analyst also notices that the most

similar instances (labeled as “deer”) of instance “cifar10_test_10002” are vertically far from it,

showing the model can hardly leverage the knowledge to predict the instance (Figure 26.E).

On the contrary, there are also instances that the model believes to be similar to the instance

“cifar10_test_10002”, but almost all of them aremispredicted and belong to different classes,

which indicates the model is already confused by the selected instance “cifar10_test_10002”.

Finally, the analyst finds in the Instance Detail View that the model has the same confusion

about those instances and predicts all of them as “deer” as well (Figure 26.F). Thus the

analyst can conclude that the selected instance is unfamiliar to the model of the current

stage, which can be treated as OoD data instance. One way to improve the model is to add
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similar instances to the training dataset for training. 10 In addition, the quality of the new

test data needs to be reviewed as the model performs poorly on it.

5.1.5 Evaluation and Expert Review

To further evaluate our framework, we conducted an interview with our collaborators

(E0, E1), 4 domain experts (E2, E3, E4, E5) inmachine learning and artificial intelligence. For

the interview, we first introduced our system by describing the analytical tasks supported

in the framework. We then demonstrate the components of our framework by walking

through all three usage scenarios described in Section 5.1.4.1, Section 5.1.4.2 and 5.1.4.3. Fi-

nally, the experts were allowed to freely explore and inspect different instances and stages.

The duration of the interview was approximately 90 minutes. On average, experts spent ap-

proximately 10minutes learning andmastering the system andwere able to explore different

instances of inspection under the different stages. All experts were able to fully understand

the major functionalities of the system by asking a few questions during the exploration

phase. After the free exploration stage was finished, we collected feedback with numeric

ratings from the experts using the following questions:

1. How effective is this framework in supporting model development? (Q1.)

2. How well our design supports the proposed analytical tasks? (Q2.)

3. Compared with other approaches, what are the pros and cons of the visual analytics

approach to address the knowledge validation problem? (Q3.)

4. How would the framework fit into your development circle? (Q4.)
10Training with adversarial examples is also a simple yet effective approach of post-defense, also known as ad-
versarial training, or retraining. (Vorobeychik and Kantarcioglu 2018b)
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5. Please rate the user experience from 1 to 5 (poor to good) considering the intuitiveness

and effectiveness of the framework. (Q5.)

Framework: We received mostly positive feedback on the overall design of the framework.

The experts agreed that it is necessary and useful to have such a framework to help the ma-

chine learning knowledge validation, as it helps to build the model for the sake of the long

term evolution. E0 and E1 considered that the design of keep tracking the model develop-

ment with stages is similar to version control software such as git (Q1). E1 appreciated the

design of the Instance Reasoning View, especially the scatter plot of the selected instance.

“I personally like the design of the Instance Reasoning View, as it visualizes the difference

between the selected OoD data and ID data. The metric for OoD detection (UniOoDD)

already shows a good performance of telling whether a given instance is OoD or not, but this

view further explains why this is the case, which is more helpful for improving the model.

(Q2, Q3) ” E2 and E5 also appreciated that the framework fits the general process of model

development since most of the work focuses on well training a model with a given dataset,

such as MNIST, SVHN, CIFAR-10, and ImageNet. However, the real-world data is not

limited to those fixed-sized datasets, and it has to be learned incrementally. Having such a

tool is helpful to address the issues. (Q4)

Visualizations: The experts all agreed on the effectiveness of the visualization design in our

framework (Q1). They noted that all visualization components are simple but intuitive. E3

noted that the learning curve of this system is relatively low since there are less complicated vi-

sual designs in the system which facilitates understanding of the model. E4 appreciated the

design of the Instance Reasoning View that can represent instance prediction/label, train-

ing/testing, andOoD Index and softmax distribution similarity at the same time. “This view

could assist us in checking how well the model learns in the current stage easily. The text
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description also helps us to gain insights in a narrative fashion.” The average score for the

user experience question is 4.1667 =3.5x2+5x2+4x2
6

(Q5). All of our domain experts felt that

the interactions were appropriate and provided the necessary information.

Improving Suggestions: The experts also offered several suggestions for improvements to the

framework. E0 discussed the possibility of supporting model comparisons between more

than two stages. “It would be more interesting to check a selected instance’s prediction changes

over time by looking at multiple scatter plots, each for one stage.”. E4 recommended that

the selected instances can be customized, given the current threshold of 20. For example, the

analyst would like to update the threshold to seemore related instances on the scatter plot of

the InstanceReasoningView. E3 and E0 found some components to be initially challenging,

for example, the Diverging Misprediction Barchart. They needed a reintroduction to this

view that the bar represents the model classifies the instances as certain classes, instead of

instances’ original classes. E4 suggested linking the instances of the InstanceReasoningView

and Instance Detail Viewmay helpmatch instances with actual pictures, and we have added

this feature accordingly.

129



5.2 Data Augmentation Diagnosis

The detection of out-of-distribution samples in machine learning plays a crucial role in

ensuring model reliability and generalization. Data augmentation, on the other hand, is

a widely used technique to increase the diversity of training data and improve the perfor-

mance of machine learningmodels. Interestingly, these two topics are interconnected in the

context of addressing out-of-distribution detection challenges. By incorporating data aug-

mentation techniques during the training phase, models are exposed to a broader range of

variations, making themmore capable of distinguishing between in-distribution and out-of-

distribution samples. Data augmentation introduces synthetic examples that expand the rep-

resentation space, enabling models to learn more robust and discriminative features. Con-

sequently, this augmentation enhances the ability of models to identify and reject out-of-

distribution samples by reducing the reliance on distribution-specific patterns. Thus, data

augmentation serves as a valuable tool in strengthening the out-of-distribution detection

capabilities of machine learning models.

The success of deep learning in natural language processing (NLP) (Devlin et al. 2018;

YinhanLiu et al. 2019; Vaswani et al. 2017) and computer vision (CV) (Krizhevsky, Sutskever,

and Hinton 2017; Simonyan and Zisserman 2014; He et al. 2016) is often attributed to the

increased amount of high-quality data (Deng et al. 2009; A. Wang et al. 2018). Data aug-

mentation, a method to generate synthetic data from existing data, has gained attention,

particularly in image augmentation (Jung et al. 2020; Hongyi Zhang et al. 2017; DeVries and

Taylor 2017; Hendrycks et al. 2019; Cubuk et al. 2018; X. Chen et al. 2020; Chen, Kornblith,

Norouzi, et al. 2020; Chen, Kornblith, Swersky, et al. 2020; Yang et al. 2020; Erichson et

al. 2022; Lim et al. 2021). Besides addressing data scarcity, data augmentation has regulariza-

tion effects that improve model quality (Hongyi Zhang et al. 2017; Hernández-Garcı́a and
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König 2018). Like other training and regularization techniques, such as Dropout (Srivastava

et al. 2014) and BatchNorm (Ioffe and Szegedy 2015), data augmentation provides another

parameter for practitioners to tune. However, selecting the optimal data augmentation or

combination can be challenging due to the vast search space of available techniques. In the

image domain alone, there are over twenty categories of datamanipulations that can be com-

bined in various strategies (Jung et al. 2020; Cubuk et al. 2018), making it difficult to identify

the best approach.

Data science engineers face the challenge of finding the optimal augmentation amongnu-

merous approacheswhendealingwithdata scarcity (Hendrycks et al. 2019; Cubuk et al. 2018).

Standard solutions like grid search or random search (Bergstra and Bengio 2012) rely on ac-

curacy tested on separate validation data. However, a lack of guidance for selecting correct

hyperparameters and making appropriate assumptions about augmentation methods can

result in significant resource costs in terms of time and computation. It is also important to

avoid excessive “peeking” at validation data (Martin, Peng, andMahoney 2021) when adjust-

ing multiple hyperparameters, as is common when exploring data augmentation. There is a

growing need for interpretable tools that offer guidance on improving models, such as data

augmentation, particularly in applications that require more than just analyzing training,

validation, and testing curves.

We present a visual analysis frameworkAugLens, which facilitates the process of explain-

ing, diagnosing, and validating11 deep learning models trained with data augmentation. We

address the challenge of interpreting data augmentation by connecting supplemental data12

11We refer to the process of visually checking a trainedmodel as “validating”. Validationmore commonly refers
to a procedure for model selection in statistical learning, which should be differentiated from our concept of
validating here.

12The term supplemental data denotes the synthetic data for data augmentation, which includes, but is not
limited to, synthetic corrupted data (hendrycks2019benchmarking).
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used in augmentation with the core property of neural networks, the loss function, visual-

ized through loss landscapes. To visualize high-dimensional loss functions, we display loss

landscapes (Yao et al. 2020; Yang et al. 2021) in low dimensions and its extracted structure in

high dimensions.

We study data augmentation in detail at three scales, corresponding to the designed views

in AugLens (Table 2): (1) local-model scale, including local model evaluations such as calcu-

lating leading Hessian eigenvalues (Yao et al. 2020), (2) two-model scale, featuring views of

the CKA similarity (Kornblith et al. 2019) of a pair of selected models in both model-wise

and layer-wise similarity, as well as loss landscape analysis using topological data analysis

tools (Cohen-Steiner, Edelsbrunner, and Harer 2005; Edelsbrunner and Harer 2022), and

(3) multi-model scale, which includes views of visualizing model parameter distribution and

prediction distributions of local loss minimum ensembles.

The first two scales are motivated by a recent paper (Yang et al. 2021) analyzing deep

learning model quality using loss landscape metrics. The third scale is a novel aspect of

our system, designed to complement the first two. Each scale offers interpretable mea-

surements, helping analysts gain insights during the image augmentation selection pro-

cess. To demonstrate and validate our framework, we employ three representative case

studies: MNIST augmentation on a multilayer perceptron (MLP) model (LeCun, Bengio,

and Hinton 2015) with corrupted MNIST (MNIST-C (Mu and Gilmer 2019)), CIFAR-

10 augmentation on ResNet-18 (DBLP:journals/corr/HeZRS15) with corrupted CIFAR-

10 (CIFAR-10C (hendrycks2019benchmarking)), and CIFAR-10 augmentation on Vision

Transformer (Dosovitskiy et al. 2020) with corrupted CIFAR-10C. Our contributions in-

clude:

• A multi-scale visual analytics framework, AugLens, measuring a model at the local-

model scale, the two-model scale, and the multi-model scale;
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Figure 27. Illustration of using our AugLens visual analytics system to diagnose the im-
age augmentation of a two-layer perceptron model trained on MNIST and MNIST-C. (A)
Browsing through the augmentation options, the analysts assume that the impact of an aug-
mentation approach called “scale”, i.e., adding scaled images, is minimal because simple scal-
ing does not change content or clarity of the images. Both the model ensemble view (B) and
the model similarity view (C) show that the un-augmented model “original” is similar to
the augmented model “scale”. However, the analysts observe significant performance differ-
ences in both the layer similarity view (D) and the evaluation view (E, F). The loss landscape
view (G, H, I, J) shows that the model “scale” “lost” the minimum area compared to the
model “original” on the validation dataset, which indicates that such augmentation does
not improve the model. In fact, it results in worse performance of the model. The model
parameter distribution view (K) further verifies that these two minimum areas do not have
an intersection, and themodel “scale” does notmake consistent predictions on scaled images
as evident in the prediction distributions view (L).

• A novel method for visualizing high-dimensional loss landscapes using topological

data analysis, incorporating persistence barcodes (Cohen-Steiner, Edelsbrunner, and

Harer 2005) and merge tree visualizations(Edelsbrunner and Harer 2022);

• Three case studies showcasing the application of AugLens in data augmentation for

computer vision models with varying architectural complexities.

Our framework employs a modular design, allowing each module to be replaced accord-

ing to analysts’ needs. While the visualization techniques, such as those inspired by loss land-

scape analytics (Yang et al. 2021), are applied to image data augmentation tasks, they can easily

be extended to support other tasks like model selection and model training. The data aug-

mentation problem serves as a “case study” to bridge the gap between the visualization and

machine learning communities. We expect our visualization system to be general enough for

other model selection and training purposes when analyzing only training, validation, and

testing curves is insufficient.
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Table 2. AugLens analytical scales and their corresponding views.

Scales Tasks Views

Local-model

Performance-based Evaluation Evaluation View (Performance, Fig. 27.E)

Hessian-based Evaluation Evaluation View (Hessian, Fig. 27.F)

Two-model

Loss Landscape Analysis

3D Loss Landscape (Fig. 27.G)

Loss Heatmap (Fig. 27.H)

Persistence Barcode (Fig. 27.I)

Merge Tree (Fig. 27.J)

Model-wise CKA Similarity Model Ensemble & Similarity View (Fig. 27.B & C)

Layer-wise CKA Similarity Layer Similarity Matrix (Fig. 27.I)

Multi-model

Parameter Distribution Analysis Parameter Distribution View (Fig. 27.K)

Prediction Distribution Analysis Prediction Distribution View (Fig. 27.L)
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Chapter 6

CONCLUSION

In this work, five visual analytics frameworks are proposed to enhance the performance

and reliability of machine learning models. These frameworks are designed to address dif-

ferent challenges in machine learning and provide valuable insights into the vulnerabilities

of these models. By utilizing advanced visualization techniques, these frameworks enable

users to identify potential vulnerabilities in machine learning models, as well as to evaluate

the effectiveness of different augmentation techniques.

The first framework is for adversarial machine learning analysis, which enables users to

identify andmitigate the potential vulnerabilities of machine learning models to adversarial

attacks. This framework provides visualizations that allow users to detect the presence of ad-

versarial attacks and to evaluate the robustness of machine learning models to these attacks.

The second framework focuses on sensitivity auditing of graphminingmodels, which is

critical in identifying and mitigating the potential biases that may exist in the model. This

framework enables users to visualize the sensitivity of the model’s predictions to changes in

the input data, allowing them to detect and correct biases that may be present in the model.

The third framework is for fairness analysis of graph mining models, which is an emerg-

ing area of research that seeks to understand andprevent algorithmic bias and discrimination

in machine learning models. This framework provides visualizations that enable users to

evaluate the fairness of graphminingmodels by examining the impact of sensitive attributes

on themodel’s output. By integrating this framework into the development process of graph

miningmodels, we can ensure that themodels are fair and unbiased, which is crucial formak-

ing ethical and equitable decisions.
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The fourth framework is for out-of-distribution detection based knowledge validation,

which addresses the challenge of detecting model errors caused by novel or unfamiliar data

that is not included in the training set. This framework provides visualizations that enable

the detection of such errors, allowing for better model validation and improving the reliabil-

ity of the model’s predictions.

The fifth framework is designed for data augmentation diagnosis, which is an essential

technique to overcome the problem of limited training data. This framework provides visu-

alizations that help to diagnose and evaluate the effectiveness of data augmentationmethods

used to expand the training data. By identifying the strengths and weaknesses of different

data augmentation techniques, this framework enables the selection of themost appropriate

methods for specific machine learning tasks.

In conclusion, the proposed visual analytics frameworks demonstrate the effectiveness of

these techniques in identifying vulnerabilities of machine learning models and improving

the models based on different types of augmentation techniques. These frameworks have

significant implications for the development of more reliable and robust machine learning

models and represent important contributions to the field of visual analytics.
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