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ABSTRACT 

 

Extensive efforts have been devoted to understanding material failure in the last several 

decades. A suitable numerical method and specific failure criteria are required for failure 

simulation. The finite element method (FEM) is the most widely used approach for material 

mechanical modelling. Since FEM is based on partial differential equations, it is hard to solve 

problems involving spatial discontinuities, such as fracture and material interface. Due to their 

intrinsic characteristics of integro-differential governing equations, discontinuous approaches 

are more suitable for problems involving spatial discontinuities, such as lattice spring method, 

discrete element method, and peridynamics. A recently proposed lattice particle method is 

shown to have no restriction of Poisson’s ratio, which is very common in discontinuous 

methods. In this study, the lattice particle method is adopted to study failure problems. In 

addition of numerical method, failure criterion is essential for failure simulations. In this study, 

multiaxial fatigue failure is investigated and then applied to the adopted method. Another 

critical issue of failure simulation is that the simulation process is time-consuming. To reduce 

computational cost, the lattice particle method can be partly replaced by neural network model. 

First, the development of a nonlocal maximum distortion energy criterion in the framework 

of a Lattice Particle Model (LPM) is presented for modeling of elastoplastic materials. The 

basic idea is to decompose the energy of a discrete material point into dilatational and 

distortional components, and plastic yielding of bonds associated with this material point is 

assumed to occur only when the distortional component reaches a critical value. Then, two 

multiaxial fatigue models are proposed for random loading and biaxial tension-tension loading, 
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respectively. Following this, fatigue cracking in homogeneous and composite materials is 

studied using the lattice particle method and the proposed multiaxial fatigue model. Bi-phase 

material fatigue crack simulation is performed. Next, an integration of an efficient deep 

learning model and the lattice particle method is presented to predict fracture pattern for 

arbitrary microstructure and loading conditions. With this integration, computational accuracy 

and efficiency are both considered. Finally, some conclusion and discussion based on this study 

are drawn. 
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1. INTRODUCTION 

1.1 Motivation and Objects 

Material failure is a catastrophic issue for many practical engineering structures and 

components. Accurate fracture prediction is necessary to ensure the safety of these structures 

and components. Since material failure problems involves a couple of complex stress states, 

different orientation of crack and randomness of material microstructure, it is a challenge to 

simulate material failure precisely and efficiently. A suitable numerical method and specific 

failure criteria are required for failure simulation. Besides, computational cost of simulation 

should be considered.  

For materials mechanical modeling, both continuous and discontinuous approaches have 

been extensively and intensively developed. The continuous approaches assume that the 

material is continuous in the domain. Numerical methods such as finite element methods 

(FEM), finite difference methods (FDM), and many other schemes belong to this category. 

The FEM is the most widely used approach for material mechanical modelling. Since FEM is 

based on partial differential equations, it may be hard to solve problems involving spatial 

discontinuities, such as fracture and material interface. Because there is singularity issue due 

to the spatial derivative at the discontinuities. Some techniques are required before continuous 

approaches can solve the discontinuous problems. Most of techniques treat every new 

configuration as every new problem with the crack surface and boundary conditions change 

by crack propagation. The adaptive remeshing technique[1], cohesive element[2], the level set 

methods and crack tip/front enrichment are among the most frequently used techniques in 

continuous approaches. 
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Due to their intrinsic characteristics of integro-differential governing equations, 

discontinuous approaches are more suitable for problems involving spatial discontinuities. 

Numerical methods such as discrete element methods (DEM)[3], lattice spring methods 

(LSM)[4], Peridynamics[5], and other discrete formulations belong to this category. One group 

of models in the discontinuous approach is the lattice models. The origin of lattice models can 

be traced back to the work by Hrennikoff[6], in which framework method has been firstly used 

to solve elasticity problems. Comparing continuous approaches, lattice models are natural for 

crack propagation with bond breakage between two lattices. There is a well-known restriction 

on effective Poisson’s ratio for discontinuous approached[7], due to using only one spring 

parameter. The Poisson’s ratio is fixed to 1/4 for plane strain and 1/3 for plane stress. Chen has 

developed a non-local lattice particle method LPM)[8], which has no restriction of Poisson’s 

ratio. Because the interaction is determined by not only local two particles but also nonlocal 

neighbors. LPM is adopted in this study as a numerical method for failure simulation. However, 

the proposed model is limited to simulate brittle or quasi brittle material behavior, because 

there is not rigorous plasticity theory for the model. Thus, in order to widely using LPM in 

ductile or general material, a rigorous plasticity is needed, including equivalent yield criterion, 

flow rule and strain hardening rule. 

It has demonstrated that the fracture failure process can be simulated using LPM[9], [10]. 

Bonds in LPM are set to be broken once they reach a critical value, which can be a specific 

bond stretch or bond force. Currently, there is not a fatigue criterion for LPM to simulate 

fatigue failure process under cyclic loadings. Fatigue is a major failure mode, and multiaxial 

fatigue is a complex problem. It is commonly seen in many mechanical and structural 

components. Extensive models have been proposed for the multiaxial fatigue life prediction, 
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especially during the past two decades. In general, the multiaxial fatigue models can be 

classified into four major categories: stress-based [11], [12], strain-based [13], [14], energy-

based [15], [16], and fracture mechanics-based approaches [17] In recent years, fatigue models 

based on the critical plane approach for multiaxial fatigue evaluation have been gaining 

popularity due to their success in accurately predicting lives. Many models assume the 

maximum shear stress range plane as the critical plane which is suitable for ductile failure 

[18]–[20]. Other models assume that the maximum normal stress range plane as the critical 

plane which is mostly suitable for brittle failure [21]–[23]. However, when these two failure 

modes mix or the material is neither ductile nor brittle, it is hard to select an appropriate mode. 

Several attempts trying to solve these issues have been proposed in the past. One successful 

approach is to let the critical plane change its orientation for different failure modes, i.e., along 

the maximum normal stress range plane for brittle materials and along the maximum shear 

stress range plane for ductile materials. The concept was initially done by an empirical function 

[24]–[27]. Liu and Mahadevan [28], [29] proposed an analytical solution for the critical plane 

orientation based on the material ductility in stress and strain terms. Wei and Liu extended the 

Liu-Mahadevan critical plane concept in energy terms, which includes out-of-phase hardening 

without additional calibration[30]. Previous investigation of the Liu-Mahadevan critical plane 

concept focuses on constant loadings. The Liu-Mahadevan critical plane concept extension for 

random loadings is in demand. The authors observed that most critical plane-based approaches 

ignore the damage contribution from axial stress/strain parallel to the critical plane (in another 

words, hydrostatic stress/strain components). This approach may be appropriate under uniaxial 

loadings and tension-torsion loadings but is questionable for biaxial tension-tension loading. 
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It should be noticed that the stress state in LPM is more complex than uniaxial or tension-

torsion loadings. A universal multiaxial fatigue model is still lacking for LPM. 

Failure simulation is a nonlinear process, because material stiffness is decreasing during 

crack propagation. An integration of incremental method with numerical method is needed to 

solve nonlinear problems, which involving a lot of iterations. Therefore, the incremental 

method brings high computational cost. Besides, in order to obtain accurate failure simulation, 

a large number of particles is required in LPM, which makes the LPM simulation time-

consuming. Neural network is a hot topic since it shows the power to solve many complicated 

problems, in which nonlinear process is included. LPM can be partly replaced by neural 

network to reduce simulation time. 

Based on the discussion above, the objectives of this research work are summarized 

below:  

• Propose a rigorous plasticity formulation for LPM. The formulation is based on the 

maximum distortional energy. The corresponding equivalent strain hardening rules 

are also developed. 

• Investigate multiaxial fatigue model. The Liu-Mahadevan critical plane concept is 

extended for random loading scenario, and a universal multiaxial fatigue model is 

proposed to address fatigue damage under complex loading rather than tension-

torsion loading. 

• Combine the proposed universal fatigue model and LPM to investigate fatigue 

problems, such as fatigue initiation and fatigue crack propagation. LPM scheme 

with the fatigue model can simulate fatigue behavior of material with arbitrary 
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geometries, under complex loading conditions. Furthermore, microstructural effect 

on fatigue problem can also be studied. 

• Propose a neural network working with LPM to reduce computational cost of 

fracture simulation. The LPM is used for linear elastic deformation, and the neural 

network handles the following nonlinear fracture process. This integration of LPM 

and neural network takes advantages of accuracy of LPM and efficiency of neural 

network. 

1.2 Outlines of the Dissertation 

This report contains four chapters and is organized as follows: 

Chapter 2 presents the development of a nonlocal maximum distortion energy criterion in 

the framework of a Lattice Particle Model for modeling of elastoplastic materials. Similar to 

the maximum distortion energy criterion in continuum mechanics, the basic idea is to 

decompose the energy of a discrete material point into dilatational and distortional components, 

and plastic yielding of bonds associated with this material point is assumed to occur only when 

the distortional component reaches a critical value. Formulation of equivalent strain hardening 

rules for the nonlocal yield model were also developed. 

Chapter 3 focuses on the development of a multiaxial fatigue life prediction model under 

general multiaxial random loadings. The new model development based on the Liu-

Mahadevan critical plane concept for random loading is presented. The key concept is to use 

two-steps to identify the critical plane: identify the maximum damage plane due to normal 

stress and calculate the critical plane orientation with respect to the maximum damage plane 

due to normal stress. The equivalent stress is then used for fatigue life predictions.  
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Chapter 4 proposes a new energy-based fatigue life prediction model for arbitrary 

multiaxial constant loadings in this paper. The proposed multiaxial fatigue model includes 

damage contributions of equivalent tensile energy, torsional energy, and hydrostatic energy, 

which can handle not only tension-torsion loadings but also tension-torsion loadings. The 

proposed model is validated with extensive experimental data under both tension-torsion 

loadings and biaxial tension-tension loadings from open literature. Comparison with several 

widely used multiaxial model is also given to show the model performance with respect to 

different biaxial tension-tension loadings.  

Chapter 5 studied fatigue cracking in homogeneous and composite materials using LPM. 

The proposed energy-based fatigue criterion in Chapter 4 is implemented in LPM scheme to 

analysis fatigue crack initiation and propagation. Bi-phase material fatigue crack simulation is 

performed.  

Chapter 6 proposed an integration of an efficient deep learning model and LPM to predict 

fracture pattern for arbitrary microstructure and loading conditions. LPM and the proposed 

deep learning model are combined for the linear stage and nonlinear stage, respectively. LPM 

is also used here to generate a training dataset of fracture pattern. With this integration, 

computational accuracy and efficiency are both considered. Several scenarios of various 

microstructure and random loading are studied. 

Chapter 7 is devoted to some conclusion of the research work in this dissertation and scope 

of potential work in the future. 
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2. A LATTICE PARTICLE MODEL FOR ELASTOPLASTIC MATERIAL 

In virtue of their intrinsic integro-differential formulation of underlying physical behavior 

of materials, discontinuous computational methods are more beneficial over continuum-

mechanics-based approaches for materials failure modeling and simulation. However, 

application of most discontinuous methods is limited to elastic/brittle materials, which is 

partially due to their formulations are based on force and displacement rather than stress and 

strain measures as are the cases for continuous approaches. In this paper, we formulate a 

nonlocal maximum distortion energy criterion in the framework of a Lattice Particle Model for 

modeling of elastoplastic materials. Similar to the maximum distortion energy criterion in 

continuum mechanics, the basic idea is to decompose the energy of a discrete material point 

into dilatational and distortional components, and plastic yielding of bonds associated with this 

material point is assumed to occur only when the distortional component reaches a critical 

value. However, the formulated yield criterion is nonlocal since the energy of a material point 

depends on the deformation of all the bonds associated with this material point. Formulation 

of equivalent strain hardening rules for the nonlocal yield model were also developed. 

Compared to theoretical and numerical solutions of several benchmark problems, the proposed 

formulation can accurately predict both the stress-strain curves and the deformation fields 

under monotonic loading and cyclic loading with different strain hardening cases. 

2.1 Introduction 

For materials mechanical modeling, both continuous and discontinuous approaches have 

been extensively and intensively developed. Due to their intrinsic characteristics of integro-

differential governing equations, discontinuous approaches are more suitable for problems 

involving spatial discontinuities, such as crack and material interface. Detailed review and 
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comparison of these two approaches is beyond the scope of this paper and can be found 

elsewhere, such as Refs[31], [32]. A brief review on relevant studies is given below. 

One group of models in the discontinuous approach is the lattice models. The origin of 

lattice models can be traced back to the work by Hrennikoff[6], in which framework method 

has been firstly used to solve elasticity problems. Subsequent developments have been focused 

on studying the elastic/brittle behavior of solid materials. A large volume of research on this 

topic can be found in the literature[33]–[41].  Detailed review on lattice models can be found 

in Refs[4], [42]–[44].  

Compared to the large amount of research for elastic problems using lattice models, there 

are very few studies focus on the development of elastoplastic modeling capability for lattice 

models. Buxton et al.[45] introduced plasticity into the classical Born spring model[46] by 

decreasing the elastic moduli locally whilst maintaining stress continuity. This model has the 

problem of fixed upper bound of a quarter for the Poisson’s ratio irrespective of volume 

conservation for plastic deformation. Zhao et al.[47] recently implemented a modified 

Drucker-Prager model in the lattice spring model for plasticity and fracture problems. The 

basic idea was to construct displacement fields for each lattice point using the least square 

technique and the strain field was then obtained to develop the plasticity model. Plasticity has 

also been developed for other discontinuous lattice-like models, such as discrete element 

method[48], [49] and peridynamics[5], [50], [51]. 

Among various lattice models, the Lattice Particle Model (LPM)[52], [53] is a recently 

developed nonlocal reformulation of the conventional lattice model. LPM is distinct from other 

lattice models at least in following aspects: (1) only axial bonds is used to maintain both 

formulation and implementation simplicities of the conventional lattice models while being 
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able to model advanced complex material behavior; (2)  inspired by the Embedded Atom 

Method (EAM)[54], a multi-body potential is introduced in addition to the pair-wise potential 

to fix the issue of limited range of materials Poisson’s ratio; (3) rather than material stiffness 

matrix transformation, material anisotropy can be represented uniquely in LPM by lattice 

rotation scheme[10]. Similar to other lattice models, LPM discretizes the domain of interest 

into regularly packed particles (or material points) system. The motion of each discrete 

material point is governed by integro-differential equations rather than partial differential 

equations, which better avoids the spatial discontinuities resulted singularity issues. Crack 

nucleation and propagation can be modelled using the breakage of active bonds connecting 

material points. LPM is nonlocal in the sense that the interaction between two neighboring 

material points depends on not only the deformation states of the material points themselves 

but also all the neighboring material points surrounding these two material points. This 

nonlocality is a direct result of the introduction of a nonlocal multi-body energy term in 

addition to the local pair-wise energy in the potential formulation at each discrete material 

point. 

Developments of LPM have been focused on elastic materials[52], [53], [55], however, a 

rigorous formulation of LPM for ductile materials is still lacking. Chen et al.[56] proposed a 

local bond stretch based yield criterion for modeling elastoplastic materials using LPM. This 

bond stretch based yield criterion is local and only depends on the deformation states of the 

two material points, which is inconsistent with the nonlocality formulation of LPM. Also, the 

critical value needs to be calibrated based on a given material’s yield stress and it is lattice 

structure dependent. What’s more important, deformation isotropy cannot be guaranteed 

during elastoplastic modeling of an isotropic material. This bond stretch-based yield criterion 
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can only be used to simulate elastoplastic deformation where the nonlocal contribution is 

negligible. For arbitrary geometries and multiaxial loading, bond stretch-based yield criterion 

is difficult to be used as no explicit yielding condition is defined and trial-and-error method is 

needed for model calibration. 

Based on the above discussion, it is the goal of this study to develop a rigorous yield 

criterion to model elastoplastic material using the three-dimensional LPM. Since the focus of 

this study is to develop a valid yield criterion and establish its validity and prediction accuracy, 

application of the developed yield criterion to study fracture of ductile materials is out of the 

scope of this study. The remainder of this paper is organized as follows: First, a brief review 

of LPM formulation for elastic materials is presented in Section 2. Derived LPM parameters 

in terms of material constants for different lattice structures are provided. Following this, the 

proposed nonlocal maximum distortion energy criterion is formulated based on the concept of 

energy separation into dilatational and distortional parts, in which the distortion energy governs 

the state of plastic deformation. Important ingredients including additive decomposition of 

bond stretch, incremental LPM formulation for plastic analysis, yield function, consistency 

conditions and equivalent strain hardening rules are discussed. Implicit solution scheme for 

plastic analysis in LPM is outlined in Section 4. In Section 5, numerical examples considering 

different geometries and loading scenarios are studied using the proposed nonlocal yield 

criterion. LPM predictions are compared with theoretical benchmarks and numerical solutions. 

Discussions and conclusions based on the proposed study are drawn in Section 6. 

2.2 Brief Review of Lattice Particle Model for Elastic Materials 

Similar to other lattice models[44], the LPM formulation depends on the lattice structure 

used to discretize the solution domain. So far, five different types of lattice structures have 
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been used in LPM. These lattice structures are triangular and square lattice structures for two-

dimensional analyses and simple cubic, body-centered cubic and face-centered cubic lattice 

structures for three-dimensional analyses. In LPM, a typical material point can interact with its 

neighboring material points up to certain distance via bonds. For a given interaction distance, 

different unit cells are identified for different type of neighbors (e.g., a unit cell for the first 

nearest neighbors and a second unit cell for the second nearest neighbors etc.). The potential 

energy for a material point is the summation of the energy associated with all these unit cells. 

For each unit cell, its energy is the summation of a local pairwise energy corresponding to the 

stretch of the bond connecting two material points and a non-local multi-body energy 

associated with volume change of a unit cell.  For a material point I, the energy in one of its 

unit cell can be generally written as 

  (2.1) 

with the local energy  can be expressed in terms of bond length change between material 

point I and its neighbors of the same unit cell as 

  (2.2) 

and the nonlocal energy  as 

  (2.3) 

In Eqs.(2.2) and (2.3),  is the local parameter for bond IJ,  is the nonlocal parameter 
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bond IJ,  is the total number of neighboring material points interacting with material point 

I or bonds connected with material point I for the same unit cell. 

Equating the energy of a material point in LPM to its continuum counterpart, the material 

stiffness tensor can be obtained by theory of hyperelasticity as 

  (2.4) 

where  is the continuum strain tensor at a material point. 

For small deformation problem, the bond length change can be related to the strain tensor 

using following relationship[57] 

  (2.5) 

where  is the initial length,  and  are the components of unit vector in the bond 

direction. 

LPM parameters can be determined by comparing the material stiffness tensor given in 

Eq.(2.4) with that of generalized Hooke’s law. Certain constraint(s) needs to be imposed 

between LPM parameters for different neighbors, such as  and  should be the same for 

the same type of neighbors for an isotropic material. For isotropic materials, the derived LPM 

parameters in terms of material constants for different lattice structures are given in Table 2-1. 
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Square lattice   

Simple cubic lattice   

Face-centered cubic 
lattice   

Body-centered cubic 
lattice   

 

Given the LPM parameters, the interaction in bond IJ between material point I and its neighbor 

J can be determined by differentiating the total energy with respect to its length change as 

  (2.6) 

In LPM, the equation of motion for a material point I at time  is given by 

  (2.7) 

where  is the mass scalar,  is the displacement vector,  is the interaction force from 
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formulation for plastic deformation analysis is presented. Next, the energy of an LPM material 

point is separated into dilatational and distortional components. Yield function is formulated. 

Lastly, the consistent conditions and different equivalent strain hardening rules are presented. 

Additive decomposition of bond stretch 

The initial work by Chen et al.[56] linearly estimated elastic and plastic stretches without 

considering the non-local effect inherently existed in LPM. In this subsection, the elastic and 

plastic components of bond stretch are decomposed based on non-linear relationship between 

stretch and interaction. 

From Eq. (2.6), the value of interaction force between material point I and its neighbor J, 

i.e., force of bond IJ, under elastic deformation can be calculated using 

  (2.8) 

where expressions for parameters  and  are given in Table 2-1 for isotropic materials. 

For material points under plastic deformation, the incremental interaction for bond IJ can be 

calculated using 

  (2.9) 

The superscript p of parameters  and  in above Eq. (2.9) indicates these parameters needs 

to be evaluated using materials plastic properties. Determination of these parameters will be 

discussed in Section 3.2. 

The incremental stretch can be decomposed into elastic and plastic components as 

  (2.10) 
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Elastic stretch  is reversible, while plastic stretch  is permanent even after 

unloading.  

The summation of incremental stretches from all neighbors also can be decomposed into elastic 

part and plastic part as 

  (2.11) 

Due to the incompressibility of plastic deformation, the following condition must be satisfied 

  (2.12) 

Therefore, 

  (2.13) 

For material points under plastic deformation, it is assumed that the incremental interaction 

between these material points is the result of elastic stretch only. Thus, the increment 

interaction also can be expressed in terms of elastic stretch as 

  (2.14) 

The superscript e indicates the parameters  and are evaluated using materials elastic 

properties.  

Equating Eq. (2.9) to Eq. (2.14), the incremental elastic stretch can be determined as 
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Given the incremental elastic stretch, the incremental plastic stretch is then obtained as 

  (2.16) 

 Incremental formulation for plastic analysis 

In order to calculate the elastic bond stretch using Eq. (2.15), the model parameters  and 

 need to be determined for the corresponding plastic deformation stage. Similar to  and 

 for elastic deformation, the values of   and  for isotropic materials can be evaluated 

using the same expression given in Table 2-1 but in terms of plastic material properties for the 

corresponding deformation. For elastic deformation stage, the Young’s modulus   and 

Poisson’s ratio  are used to evaluate  and . For plastic deformation stage, the tangent 

modulus  and Poisson’s ratio  for corresponding load increment are used. The tangent 

modulus  for a given bilinear stress-strain curve is always known. The Poisson’s ratio  

is load increment dependent and will be determined in following content. 

Under elastoplastic deformation, the effective Poisson’s ratio for a specific load increment 

can be calculated as  

  (2.17) 
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Consider a uniaxially loaded material under plastic deformation, the incremental axial 

strain and transverse strain can be calculated as 

  (2.18) 

  (2.19) 

where  is a stress increment in axial direction. 

Therefore, the incremental Poisson’s ratio can then be obtained as 

  (2.20) 

It can be observed from Eq. (2.17) that the effective Poisson’s ratio is deformation 

dependent since it depends on both elastic and plastic strain components. However, the 

incremental Poisson’s ratio is a constant for a given bilinear stress-strain curve, as can be seen 

from Eq. (2.20). 

Non-local yield function and yield criterion 

For now, the force increments within bonds connect material point I and its neighbors under 

both elastic and elastoplastic deformation can be calculated. Next, we need to determine 

whether a bond is under plastic deformation or not based on the deformation states of all its 

neighbors. For this purpose, a nonlocal maximum distortion energy criterion is developed in 

this section. A bond is plastic yielding if and only if when the distortion energy reaches a 
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For a discrete material point I, its energy can be decomposed into dilatational and 

distortional parts as 

  (2.21) 

The distortion energy associates only with distortional deformation. Thus, using Eqs. (2.2) 

and (2.3), the distortion energy can be expressed as 

  (2.22) 

in which is distortional stretch and  due to the fact of zero volume change under 

distortional deformation. 

Therefore, the distortion energy can be rewritten as 

  (2.23) 

Next, we need to calculate the distortional stretch. Considering the regularity of unit cells 

for each material point, the dilatational deformation can be calculated in terms of average bond 

length change, which is the volume change. So, the dilatational stretch is given as 

   (2.24) 
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stretch as 

   (2.25) 
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   (2.27) 

Based on Eqs. (2.6) and (2.23), the incremental interaction due to incremental distortional 

stretch under plastic deformation can be obtained as  

  (2.28) 

The total interaction due to distortional stretch is the summation of the incremental 

interactions at each load step as 

  (2.29) 

Identical to Eq. (2.23), the incremental distortion energy also can be calculated as the 

product of total distortional interaction and elastic incremental distortional stretch as 

  (2.30) 

where  is the elastic part of the incremental distortional stretch calculated using Eqs. 
(2.15) and (2.26). 

Given the incremental distortion energy at each load step, the total distortion energy is the 

summation as 

  (2.31) 

According to the maximum distortion energy density criterion, plastic yielding occurs 

when total distortion energy density reaches the critical value. Thus, the nonlocal yield function 

is defined as 

  (2.32) 
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where is the volume of a material point and  is the critical distortion energy density 

which relates to the material yielding stress  as 

  (2.33) 

When , all bonds associated with the material point are under elastic deformation. The 

plastic stretch rate for bond IJ is zero due to no plastic deformation. 

  (2.34) 

When , all the bonds associated with the material point is under plastic deformation. 

For a given time increment , the plastic stretch rate for bond IJ is expressed in terms of 

incremental plastic stretch as 

  (2.35) 

where  can be calculated using Eq. (2.16). 

Consistency conditions and equivalent strain hardening rules 

Restricted by the Kuhn-Tucker conditions, loading-unloading conditions for the plastic 

deformation in LPM are described as  

  (2.36) 

where  is the plastic multiplier in the classical plasticity theory for a continuous medium, 
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theory. But the status (yield or not) of a bond is determined by the distortion energy densities 

of the two end material points. 

The consistency condition for LPM can be obtained by taking time derivative of the third 

equation in Eq. (2.36) for plastic response as 

  (2.37) 

Above Eq. (2.37) can be rewritten as 

  (2.38) 

Therefore, 

  (2.39) 

where the total distortion energy is a function of plastic deformation rate, , and 

the explicit form of this function is dependent on strain hardening rules. 

Above Eq. (2.39) can be rewritten in incremental form as 

  (2.40) 
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Eq. (2.41) is identical to Eq. (2.30) and shows that plastic deformation has no contribution 

to yield surface expansion for isotropic hardening. As an example to demonstrate the change 

of yield surface during plastic deformation, Figure 2-1 shows the stress-strain curve and yield 

surface in two dimensional isotropic hardening. As can be seen from figure 2-1, area ① 

represents elastic strain energy density, so the distortional part of area ① is the initial yield 

point. With stress changing from  to  , the distortional part of area ② and ③ indicates 

yield point after isotropic strain hardening, which is only related with elastic deformation. The 

area ② and area ③ are the same, which means the same yield surface change in tension and 

compression for isotropic hardening. 

 

Figure 0-1 Illustration of Elastic Strain Energy Density and Yield Point Update 

Substituting Eq. (2.40), the incremental yield surface for isotropic hardening is given as 

  (2.42) 
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Isotropic hardening is widely used in monotonic loading conditions due to its simplicity. 

However, it is not suitable for cyclic loading conditions. Kinematic hardening is more suitable 

to be used for strain hardening under cyclic loading. For kinematic hardening, it is assumed 

that if an incremental change  in tension state occurs, an incremental change  in 

compression state occurs correspondingly, and vice versa. But the elastic region for one cyclic 

loading keeps the same range. In order to capture kinematic hardening response, the 

counterpart concepts of back force and back stretch to the back stress in kinematic hardening 

in continuum mechanics are introduced in LPM. 

For materials with kinematic hardening, the incremental distortion energy under plastic 

deformation can be expressed as 

  (2.43) 

where  and  are the back force and back stretch of a bond, respectively. 

The total back force is the summation of incremental back force of a bond as 

  (2.44) 
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It can be observed that  is zero in plastic stage, so the incremental yield 

surface for kinematic hardening can be obtained by substituting Eq. (2.43) into Eq. (2.40) as 

  (2.47) 

in which the yield surface range for one complete cyclic loading remains unchanged. 

The mixed hardening rule combines isotropic and kinematic hardening by introducing a 

factor who range is from 0 to 1. For two extremes of ,  represents isotropic 

hardening and  represents kinematic hardening. 
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points system can be expressed as a function of position vectors of all material points in the 

system. 

  (2.50) 

where position vector is ,  is the coordinates of material point I and 

 is a external force vector. 

Using Taylor expansion to expand the system total energy with respect to the initial state 

position vector  and apply the energy minimization condition  , which 

yields 

  (2.51) 

with 

  (2.52) 
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step. The elastic predictor-plastic corrector solution procedure[60]using LPM for elastoplastic 

problems is outlined in following content. The idea is to calculate the distortion energy at a 

material point by assuming elastic deformation for a load step. Then the calculated distortion 

energy is used to determine the material real deformation stage (elastic or plastic) using the 

proposed yield criterion. If the material point is under plastic deformation, model parameters 

 and  are then chosen for the actual deformation solution for the same load step. 

Otherwise, simulation proceeds to next load step.  

(1) At step [n+1], assuming the material is under elastic deformation, linear equations 

system is formulated using parameters and . The displacements of each discrete 

material point is obtained and the incremental stretch of each bond is calculated. The 

total stretch is the summation of previous total stretch and incremental stretch of step 

[n+1] 

  (2.54) 

(2) Decompose the incremental bond stretch into elastic and plastic parts as 

  (2.55) 

Due to initial elastic assumption in (1), the incremental plastic stretch is zero. The 

elastic stretch is same as total stretch 

  (2.56) 
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  (2.57) 
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(4) The incremental interaction due to incremental distortional stretch can be calculated 

as 

  (2.58) 

(5) The incremental distortional potential energy can be calculated as 

  (2.59) 

where back force  and back stretch  is zero for assumed elastic deformation. 

 is dependent on hardening rule and is a given material parameter. 

(6) The total distortion energy can be calculated as 

  (2.60) 
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  (2.63) 

(9) Go on next load step. 

2.5 Numerical Examples 

Several benchmark elastoplastic problems are investigated using the proposed nonlocal 

maximum distortion energy criterion in LPM. To verify the proposed yield criterion, LPM 

predictions are compared with theoretical and ABAQUS solutions. The first example studies 

the stress-strain curve prediction accuracy under tensile and cyclic yielding. The second 

example checks the yielding surface with von Mises yielding surface for biaxial loading. The 

last example verifies the prediction accuracy of both deformation and plastic zone for a 

localized yielding case. Specimens in all these examples are loaded slowly such that quasi-

static assumption is valid. 

Bilinear constitutive material model is used in this section, which can be characterized 

using following material properties: Young’s modulus , Poisson’s ratio , 

hardening modulus , and yield stress . For all the examples in 

this section, the simple cubic lattice structure is used to discretize the solution domain with 

material point diameter of 0.0001 m. It should be noted that the stress and strain presented in 

this section for LPM are converted from corresponding force and displacement for comparison 

purpose. 

Three-dimensional beam under tensile tests 

In this example, a vertically positioned three-dimensional beam that has dimension of 0.01 

m x 0.01 m cross section and 0.03 m height is studied under two yielding cases: tensile yielding 

and cyclic yielding with different strain hardening. The top face of the beam is fixed in the 
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vertical z- direction while the bottom face is applied with downward uniform distributed loads. 

The left and back faces are fixed in the y- and x- directions, respectively. 

Case I: Tensile yielding 

Two loading scenarios are considered in this case, see Figure 2-2. The first loading scenario 

is to monotonically load the specimen to 300 MPa. For this loading, material starts to yield 

when the applied load reaches 200 MPa and yielding continues as the load increases. The 

second loading scenario is to firstly load the specimen to 250 MPa, then unload to 150 MPa, 

and reload to 300 MPa. For this loading, during the first loading phase, material yielding occurs 

at the stress level of 200 MPa and continues to yield before unloading starts at 250 MPa. Elastic 

unloading occurs during decreasing of stress level from 250 MPa to 150 MPa. During the 

reloading from 150 MPa to 300 MPa, materials yielding occurs at the new yielding stress of 

250 MPa which is the starting point of previous unloading. Since the specimen doesn’t undergo 

reverse compressive yielding, strain hardening doesn’t play a role in these cases.  

Comparison of predicted stress-strain curves with theoretical curves for both loading 

scenarios are shown in Figure 2-2. As can be seen, for both loading scenarios, the predicted 

stress-strain curves in the axial direction and the history of transverse strains agree very well 

with their theoretical values, respectively. A slight delay in the occurrence of unloading in 

LPM. This is possibly due to the implementation of the elastic predictor-plastic corrector 

solution scheme for LPM, since no cut in load step size was used by assuming the pre-assigned 

uniform load step size is already small enough. Overall, LPM can accurately reproduce the 

theoretical results in both axial and transverse directions under both tensile yielding scenarios 

for elastoplastic materials. Thus, the proposed nonlocal maximum distortion energy criterion 

is valid. 
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under monotonic loading 

  
under load-unload-reload loading 

Figure 0-2. Loads History and Comparison of Axial Stress-strain Curve and Transverse 
Strain for 3D Beam 

Case II: Cyclic yielding 

The same specimen as for Case I is subjected to cyclic loading is studied in this example to 

verify the developed equivalent strain hardening rules, i.e., isotropic hardening, kinematic 

hardening and mixed isotropic-kinematic hardening. For mixed hardening case, different 

values of the factor  are used. 

The load history and comparison of stress-strain curves for the case of isotropic hardening are 

shown in Figure 2-3. For materials of isotropic hardening under the given load, yielding occurs 

ϕ
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at the stress level of 200MPa and continues until the commence of unloading. The yield stress 

is reset to the value of 250 MPa, which is the start point of unloading. Elastic unloading 

continues up to stress level of -250 MPa. Continuing reverse loading beyond -250 MPa renders 

the reverse yielding of the specimen. A new yield stress of 300 MPa is reset and specimen is 

elastically loaded from -350 MPa to 350 MPa. Plastic yielding occurs again at the stress level 

of 350 MPa and beyond. From the comparison, the proposed equivalent isotropic strain 

hardening rule can accurately capture the material’s isotropic hardening response, i.e., yield 

surface dilatation, under cyclic loading. Small discrepancies at the turning points may results 

from the constant load step size. 

  
Figure 0-3. Load History and Comparison of Stress-strain Curve for Isotropic Hardening 

The load history and comparison of stress-strain curves for the case of kinematic hardening 

are shown in Figure 2-4. Different from isotropic hardening, kinematic hardening resets the 

yield stress while keep the range between tensile yield stress and immediate compressive yield 

stress the same, i.e., yield surface translation, during cyclic loading. In this case, the yield stress 

initially was (200 MPa, 200 MPa) and reset to (250 MPa, -150 MPa) and (-250 MPa, 150 MPa) 

during the subsequent loading. From the comparison, the proposed equivalent kinematic strain 
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hardening rule can accurately capture the material’s kinematic hardening response under cyclic 

loading. 

  
Figure 0-4. Load History and Comparison of Stress-strain Curve for Kinematic Hardening 

The load history and comparison of stress-strain curves for the case of mixed isotropic-

kinematic hardening are shown in Figure 2-5. Three values of factor , i.e., 0.2, 0.5 and 0.8, 

are investigated in this study. If  is small, the material response is close to isotropic 

hardening. In contract, if  is large, the material response is close to kinematic hardening. As 

expected for the simulation results, after one loading cycle, the case of  has the largest 

elastic region and  has the smallest elastic region. This further confirms the validity 

and accuracy of the proposed nonlocal yield criterion and equivalent strain hardening rules for 

LPM. 

ϕ

ϕ

ϕ

ϕ  = 0.2

ϕ  = 0.8
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Figure 0-5. Load History and Comparison of Stress-strain Curve for Mixed Hardening 

Based on above verification studies in this example, it can be observed that the proposed 

yield criterion for LPM can be used to successfully predict elastoplastic deformation under 

loading, unloading and cyclic loading for different strain hardening rules. 

Three-dimensional cube under biaxial tensile test 

In this example, the two-dimensional yield surface of the proposed nonlocal maximum 

distortion energy criterion was verified against von Mises yield surface. A three-dimensional 

cube of edge length 0.01 m is used in this example. The cube is constrained such that a biaxial 

tensile test is mimicked in the y and z directions. The left and top faces are fixed in the y and 

z directions, respectively. The center point of the top-left edge is fixed in all three directions. 

Uniformly distributed tensile loadings are applied on the right and bottom faces in the positive 

y and negative z directions, respectively. 

Multiple simulations are performed with different combinations of the y-direction load  

and the z-direction load . Stress states were plotted based on the two principle directions. 

A comparison of LPM yield surface against von Mises yield surface is shown in Figure 2-6. 

As expected, the predicted different loading combinations using the formulated yield criterion 

σ yy

σ zz
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scatter slightly around the von Mises surface. This further verifies the formulated nonlocal 

maximum distortion energy yield criterion for modeling plastic deformation using LPM. 

 
Figure 0-6. Comparison of LPM Yield Surface with von Mises Yield Surface under Biaxial 

Loading 

 

Three-dimensional beam with a hole under loading and unloading tests 

A three-dimensional beam which has the same dimension as the one used in example 5.1 

but with a through-thickness hole of diameter 0.004 m at the center of front face is tested in 

this example. The top face of the beam is fully clamped, and a uniformly distributed load is 

applied on the bottom face in the downward direction. The beam was firstly loaded to 150 MPa, 

then unloaded to 0 MPa and reversely loaded to -150 MPa. Both isotropic and kinematic strain 

hardenings were studied. Model predictions are compared with finite element method (FEM) 

solutions from ABAQUS using C3D8 linear brick element with reduced integration with 

hourglass control[61], i.e., C3D8R element. 
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Comparisons of the distributions of y- displacement at three load levels, i.e., 100 MPa, 125 

MPa and 150 MPa, during the loading stage are shown in Figure 2-7. It should be noted that 

since the specimen is under loading up to 150 MPa, both strain hardenings yield the same 

prediction results. For easiness of comparison, all the LPM results are colored based on the 

legend for the 150 MPa case, and the same for FEM results. As can be seen from the 

displacement plots, the hole introduces deformation localization in the specimen. And this 

localized deformation continues to develop with the increase of applied load. Small 

discrepancy in terms of deformation are observed between LPM prediction and FEM result. 

One source for this difference is the surface effect[57] in LPM due to incomplete neighbors 

for material points near the surfaces. Increasing number of material points for discretization 

will mitigate the surface effect and reduce the difference. 
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100 MPa 125 MPa 150 MPa 

Figure 0-7.  Comparison of Displacement Uy Distributions (One Legend for all LPM 
Results and the Other One for All FEM Results) 

Comparisons of the plastic zone distributions at the same load levels are shown in Figure 

2-8. As can be seen, the specimen undergoes considerable plastic deformation during the initial 

loading phase. Due to localization, plastic deformation initiates at the hole boundary in the 

direction perpendicular to the loading. With the increase of load, larger plastic deformation 

develops and expands the plastic zone around the hole. The butterfly shape plastic zone around 

the hole at the stress level of 150 MPa has been observed in both LPM and FEM models. Due 

to the fully clamped boundary condition, corner and edge areas of the top face deforms 

plastically. For regions around the hole geometry, the difference between results from LPM 

and FEM are very subtle. Due to aforementioned skin effect in LPM, regions near the edges 

of the top face have small amount of plastic deformation. 
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100 MPa 125 MPa 150 MPa 

Figure 0-8.  Comparison of Plastic zone Distributions (Top Row: LPM, Bottom Row: 
FEM; Red Color: Plastic Zone, Blue Color: Elastic Zone) 

The force-displacement curves for the complete load history of both strain hardening rules 

are shown in Figure 2-9. As can be seen, the LPM curves match very well with FEM curves. 

Small difference exists after reverse yielding for the case of kinematic hardening. 
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Figure 0-9. Comparison of Force-displacement Curve for Isotropic and Kinematic 

Hardenings 

The deformed shapes of the center hole are plotted for different stress levels and compared 

with the initial shape. With current discretization, there are total 32 material points representing 

the boundary of the hole. Deformed positions of these material points are plotted by 

magnifying their displacements by 50 times. Figure 2-10 shows the comparison of the initial 

hole shape and shapes at loading to 150 MPa and unloading to 0 MPa with isotropic hardening. 

Among these hole shapes, the shape of loading to 150 MPa captures the elastoplastic 

deformation of the hole, and the shape of unloading to 0 MPa represents the residual plastic 

deformation of the hole. The stretch of the hole in the loading direction and compression in the 

other direction can be obviously observed in the plots. 
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Figure 0-10. Comparison of Hole Shapes under Elastoplastic Deformation 

A comparison of the hole shapes between isotropic hardening and kinematic hardening 

under reverse loading to -150 MPa is presented in Figure 2-11. The initial undeformed shape 

is also provided. As expected, the hole is compressed in the compression direction while 

expanded in the other direction, and kinematic hardening case has larger deformation than 

isotropic case because of the low reverse yield stress after initial tensile yielding. 
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Figure 0-11. Comparison of Hole Shapes between Isotropic Hardening and Kinematic 
Hardening 

2.6 Discussion and Conclusions 

Lattice Particle Model (LPM) is a discontinuous nonlocal reformulation of classical solid 

mechanics using integro-differential governing equations rather than partial differential 

equations. Hence, LPM is more beneficial for mechanics problems involving spatial 

discontinuities such as crack and interface. LPM has been successfully applied to elastic/brittle 

materials without limit of Poisson’s ratio. Initial attempt has been made by the coauthors to 

formulate a local bond-based critical stretch yielding criterion for LPM. However, the 

determination of the critical stretch is an ad-hoc, and the deformation isotropy is not guaranteed 

for homogeneous isotropic materials. 

In this paper, following the basic idea of its formulation in classical continuum mechanics, 

a maximum distortion energy criterion was formulated for LPM. Important ingredients for this 

nonlocal yield criterion including additive decomposition of bond stretch, incremental 

formulation of LPM for plastic analysis, nonlocal yield function, consistency conditions and 

equivalent strain hardening rules were developed. An implicit solution scheme for static or 

quasi-static elastoplastic problems using the developed yield criterion in LPM was outlined. 

Several benchmark problems including monotonic tensile yielding and cyclic yielding with 

isotropic, kinematic and mixed strain hardenings were tested and model predictions were 

compared against theoretical and numerical solutions. From the comparison, the developed 

nonlocal maximum distortion energy criterion is valid and can yields accurate results for 

elastoplastic materials. In addition, following conclusions can be made: 
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(1) For homogeneous isotropic materials, the deformation isotropy is guaranteed in the 

proposed model. In the proposed model, all bonds associated with one material point 

change parameters from elastic stage to plastic stage when its distortion energy density 

reaches the critical value, which keeps isotropy of the model. 

(2) The example studied in this work was based on simple cubic packing. For other 3D 

lattice packings, the developed model can be readily applied. 

Future work is to apply the developed scheme to model fracture of ductile materials and 

extend the proposed formulation to anisotropic ductile materials.  
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3. MULTIAXIAL FATIGUE MODEL FOR RANDOM SPECTRUM LOADINGS 

A multiaxial fatigue life prediction model under general multiaxial random loadings is 

proposed in this paper. First, a brief review for existing multiaxial fatigue models is given with 

a special focus is on the Liu- Mahadevan critical plane concept, which can be applied to both 

brittle and ductile materials. Next, the new model development based on the Liu-Mahadevan 

critical plane concept for random loading is presented. The key concept is to use two-steps to 

identify the critical plane: identify the maximum damage plane due to normal stress and 

calculate the critical plane orientation with respect to the maximum damage plane due to 

normal stress. Multiaxial rain-flow cycle counting method with mean stress correction is used 

to estimate the damage on the critical plane. Equivalent stress transformation is proposed to 

convert the multiaxial random load spectrum to an equivalent constant amplitude spectrum. 

The equivalent stress is then used for fatigue life predictions. The proposed model is validated 

with both literature and in-house testing data generated using an Al 7075-T6 alloy under 

various random uniaxial and multiaxial spectrums. Comparison between experimental and 

predicted fatigue life lives showed good agreements; thus, demonstrating efficacy of the 

proposed model. Finally, concluding remarks and future work based on the results obtained 

are discussed.  

3.1 Introduction  

Multiaxial fatigue models can be classified into four major categories: stress-based [11], 

[12], [62], strain-based [13], [14], energy-based [15], [16], and fracture mechanics-based 

approaches [17]. Employed under any of these categories, there is a criterion that offers a 

physical interpretation of the fatigue damage by relating the crack orientation (initiation and 

propagation) to a plane of critical loading, known as the “critical plane approach”. 
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The basic concept of the critical plane approach is to use the stress/strain components on a 

plane to calculate the fatigue damage of material under general multiaxial cyclic loadings. 

Many models assume the maximum shear stress plane as the critical plane, which is suitable 

for ductile failure [18], [19]. Other models assume that the maximum normal stress range plane 

as the critical plane which is mostly suitable for brittle failure[21]–[23]. However, when these 

two failure modes mix, or the material is neither ductile nor brittle, it is difficult to select an 

appropriate model. Furthermore, material’s failure mode can also change with respect to the 

the fatigue life regime (i.e. low-cycle or high-cycle) [24]. Several attempts trying to solve this 

issue have been proposed in the past. One successful approach is to let the critical plane change 

its orientation for different failure modes, i.e., along the maximum normal stress range plane 

for brittle materials and along the maximum shear stress range plane for ductile materials. The 

concept was initially proposed using an empirical function [25], [26], [63]. 

Liu and Mahadevan [28], [29] proposed an analytical solution for the critical plane 

orientation based on the material ductility, known as Liu-Mahadevan critical plane concept. 

The concept was first applied using the stress-based approach for high-cycle fatigue [28] and 

was later extended for low-cycle fatigue using a strain-based model [29]. Extensive model 

validations for this concept have been performed for both brittle and ductile materials at the 

material and component level. However, since only the strain terms are used in the model [29], 

it cannot include the out-of-phase hardening behaviour explicitly. Out-of-phase loading causes 

rotation of the direction of the principal stresses. The rotation brings additional hardening to 

the material due to the activation of more slip planes compared to other types of loading.  Thus, 

the rotation causes an increase in stress response and thus reduces the fatigue life. In order to 

compensate for out-of-phase hardening some empirical parameters are used [29], [64]. 
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Calibration of these parameters requires several out-of-phase multiaxial fatigue tests. Recently, 

Wei and Liu [30] proposed an energy-based model integrating the Liu-Mahadevan critical 

plane concept. The energy-based model can be applied to a wide range of materials (both brittle 

and ductile) under both proportional and non-proportional loadings without the need of 

calibration parameters. This is because that both stress and strain terms are used in the energy-

based criteria and the out-of-phase hardening effect is automatically included.  Only constant 

amplitude loading is considered in [30]. In this paper, the Liu-Mahadevan critical plane 

concept is extended for random fatigue loading. 

The main new development will consider the damage accumulation under general random 

multiaxial loadings in the Liu-Mahadevan model framework. Many existing fatigue criteria for 

random loading are either in time domain [65] or frequency domain [66]. Usually, time domain 

approaches are based on a cycle counting method and a cumulative damage rule. Rainflow 

cycle counting method is widely used for analysis and simplification of random fatigue load 

paths. Amongst other cycle counting models proposed, a new cycle counting procedure for 

normal stress on critical plane model was introduced by Carpinteri et al. [67]. Across all the 

fatigue damage accumulation rules, the linear damage accumulation rule (LDR), also known 

as Miner’s rule, is probably the most commonly used due to simplicity [68]. For critical plane-

based multiaxial fatigue model, enumeration of all possible plane orientation is usually used 

for damage evaluation. The maximum damage along a certain plane is identified. This is 

certainly possible, but usually very time consuming as exhaust search is required. In addition, 

cycle counting for both normal and shear stress may be required. In the current study, the 

authors attempt to develop a multiaxial fatigue model for random loading by integrating the 

Liu-Mahadevan critical plane approach along with Rainflow counting and Miner’s damage 
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rule. For computational efficiency, a maximum damage plane is estimated first, and an 

equivalent stress transformation is proposed to determine fatigue life.  

The remaining of the paper is organized as follows. First, a brief review of the Liu-

Mahadevan model concept is given. Extension from constant amplitude loading to random 

spectrum loading is done by replacing the maximum normal stress amplitude plane with a 

maximum normal damage plane. Derivation of this maximum damage plane is discussed in 

detail. Next, an equivalent constant stress transformation of the random multiaxial spectrum 

loading is proposed for the fatigue life prediction. Following this, both literature data and in-

house testing data are used to validate the proposed methodology. Finally, discussion and 

conclusions are provided based on the proposed method.  

3.2 Brief Review of Liu-Mahadevan Model under Constant Amplitude Loading 

The Liu-Mahadevan critical plane approach for stress-based fatigue life prediction under 

constant multiaxial loading condition[28] is given in Eq. (3.1),  

  (3.1) 

where , ,  are the normal, shear, and hydrostatic stress amplitudes acting on the 

critical plane, respectively.  and  are uniaxial and torsional fatigue stress limits for fully-

reversed constant amplitude loading, respectively. Parameters k and β are material constants 

determined from uniaxial and pure torsional fully-reversed tests. Eq. (3.1) represents the 

summation of the damage caused by normal, shear and hydrostatic stress components. Most of 

critical plane approaches assume that the critical plane only depends on the stress state, which 

indicates that such models account the fatigue damage accumulation in the same way for 

different materials under the same stress state. Their applicability generally depends on the 
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material’s properties.  However, in the Liu-Mahadevan critical plane concept, the critical plane 

does not only depend on the stress state but also on the material properties. The critical plane 

is theoretically determined by minimizing the damage introduced by the hydrostatic stress 

amplitude, which has almost no applicability limitations with respect to different metals. The 

key concept to achieve this wide applicability of the model is to let the critical plane rotates 

with respect to the material ductility. A schematic illustration is shown in Figure 3-1. The 

critical plane has angle of  with respect the maximum normal stress plane. The angle  is 

zero for brittle materials and is 45 degrees for ductile materials. Instead of empirically 

interpolating the angle between these two extremes, an analytical solution is obtained (see 

details in[28]).  The results for model parameters are shown in Table 3-1 [28]. 

 

Figure 0-12 Orientation of Maximum Damage Plane and Critical Plane 
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Table 0-2 Liu-Mahadevan Material Parameters 
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The Liu-Mahadevan fatigue prediction model under constant loading has been validated by 

different materials with a wide range of ductility, from extremely brittle steels to ductile steels 

[28]. 

3.3 Proposed Model for Arbitrary Random Loading 

The above discussion and review are only for constant amplitude loading. It should be noted 

that the relationship of critical plane with maximum normal stress amplitude plane is no longer 

valid under random loading as the final fracture plane may not be the same as the maximum 

stress amplitude plane. Now the question is: how to define the critical plane under general 

random loadings?  

The definitions of the fatigue fracture plane and the critical plane should be clarified first 

before determining the critical plane orientation. In the fatigue model under constant amplitude 

loading proposed by Liu and Mahadevan [28], [29], the fatigue fracture plane refers to the 

crack plane observed at the macro level. The critical plane is not an actual crack plane. It is a 
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material plane on which the fatigue damage is evaluated. The two planes may or may not 

coincide with each other. The fatigue fracture plane is assumed to be the plane, which 

experiences the maximum normal stress amplitude. The critical plane orientation may differ 

from the fatigue fracture plane for different materials, which is depended on material ductility.  

In the proposed model, it is assumed that, under variable loading condition, the fatigue 

fracture plane is the maximum damage plane, and damage occurs due to the normal stress 

amplitude acting on the plane. Normal stress spectrum on all possible orientations is computed 

and then the plane with maximum damage due to normal stress amplitude is found using the 

rainflow counting algorithm and Miner’s rule. Next, the proposed study will replace the 

maximum normal stress amplitude plane (under constant amplitude loading) with the 

maximum normal damage plane (in general random loading) for all calculation steps in section 

2.1. It is noted that the maximum normal damage plane definition is the same as the maximum 

normal stress amplitude plane under constant amplitude loading cases. Thus, the proposed 

extension can be considered as generalization of the Liu-Mahadevan model concept. The 

maximum damage plane under random loading (the same maximum normal stress plane under 

constant amplitude loading) and the critical plane are shown in Figure 1. 

For the proposed fatigue model under variable loading, all parameters from material 

properties keep the same value as those under constant amplitude loadings (i.e., Table 3-1). 

However, the formula of the fatigue model under constant loading cannot be directly applied, 

because under a variable amplitude loading the stress components on the critical plane are not 

constant. There are two approaches to solve this issue. One is to calculate the cumulative 

fatigue damage cycle-by-cycle, which could be time consuming, specifically for random high 

cycle fatigue loading. The other one is to transfer a variable loading condition to an equivalent 
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constant loading condition, then the equivalent stress components will be used following the 

same procedure in [28]. The detailed procedure for computing the equivalent stress on the 

critical plane is shown below. 

 First, fatigue damage of normal stress  and shear stress  on the critical plane can be 

computed using Miner’s rule and rainflow accounting algorithm as presented in Eq. (3.2): 

  (3.2) 

where  and  are number of cycles of normal and shear stress spectrum on critical plane 

based on rainflow counting algorithm, respectively. The term  is the fatigue life function 

of the normal or shear stress on the critical plane, which computes the number of cycles under 

a given loading case . It should be noticed that the fatigue life function is fitted by uniaxial 

and pure torsional S-N curves. For example, could be in power form (Basquin’s model) 

given by Eq. (3.3). 

  (3.3) 

Thus, the term  is the fatigue damage in the ith cycle of normal or shear loading. Eq. (3.2) 

represents a summation of the fatigue damage of a random spectrum with zero mean stress.  

Next, the mean stress effect of arbitrary random spectrum is included. It is well known that 

the mean normal stress has an important effect on fatigue life. Generally, tensile mean stress 

reduces the fatigue life, while compressive mean stresses are said to increase fatigue life or 

considered to be neutral. Under constant amplitude loading conditions, the mean stress value 
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is defined as the algebraic mean of the maximum and minimum stress value in one cycle. For 

the random loading, mean stress is determined by the average of normal stress spectrum on the 

maximum damage plane at ith cycle [69], [70], presented in the integral form in Eq. (3.4): 

  (3.4) 

Mean stress is introduced into the fatigue model with a correction factor , where  

is material coefficient, which can be obtained from uniaxial fatigue test with the same mean 

stress ratio, and  is the yield stress. It should be noticed that  is defined as acting on the 

maximum damage plane. Thus, the damage of normal and shear stress on the critical plane can 

be calculated using Miner’s rule based on the rainflow accounting algorithm, given in Eq. (3.5) 

as: 

  (3.5) 

where  is mean stress at ith cycle, and  are normal and shear stress amplitude on 

critical plane at ith cycle, respectively.  

Following this, an equivalent stress transformation is proposed. The main objective of this 

paper is to convert a complex multiaxial variable amplitude load path to a simpler constant 

amplitude multiaxial loading condition in order to predict the fatigue life using Liu-Mahadevan 

model. Equivalent stress transformation from random loading to constant loading has been 

investigated for fatigue crack propagation [71], which is based on crack growth rate 
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equivalence. In this section, an equivalent stress transformation for fatigue life prediction is 

proposed, which is based on fatigue damage equivalence on the critical plane. 

For stationary variable amplitude loading, damage from normal stress amplitude , shear 

stress amplitude , and hydrostatic stress amplitude  on the critical plane for one block is 

investigated using rainflow accounting algorithm and Miner’s rule. Mean stress correction 

factor is also included. The equivalent normal stress  and shear stress  is defined as 

they have the same normal and shear damage on the critical plane with a given equivalent 

number of loading cycles, which can be expressed using damage mechanics concept given in 

Eq. (3.6): 

  (3.6) 

where  is number of loading cycles for equivalent normal and shear stresses. For 

consistency,  is assumed to be the total number of cycles or reversals of tensile spectrum 

from the rainflow accounting algorithm. According to the definition of equivalent stress, the 

damage components on the critical plane in Eq. (3.5) and Eq. (3.6) are same. Thus, combining 

Eq. (3.5) and Eq. (3.6), there are two equations and two unknowns,  and , which can 

be solved, as 
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  (3.7) 

The equivalent hydrostatic stress  can be computed from the average of the hydrostatic 

stress spectrum since it is not dependent on the critical plane orientation. Therefore, a random 

loading block can be converted to a constant loading condition with equivalent normal and 

shear stress, , , on the critical plane with number of cycles. Comparing with the 

original random loading condition, the equivalent constant loading condition has the same 

orientation of the critical plane and the same fatigue damage on the critical plane. Thus, the 

equivalent normal, shear and hydrostatic stress can be used for fatigue life prediction as shown 

in the constant completed loading cases by Liu and Mahadaven [28]. Eq. (3.1) is modified by 

replacing the constant amplitude loading with the equivalent constant amplitude loading as 

shown in Eq. (3.8), 

  (3.8) 

where   and  are the equivalent normal, shear, and hydrostatic stress amplitudes 

acting on the critical plane, respectively. 

Finally, life prediction can be performed following the similar procedure shown in [28]. Eq. 

(3.8) can be rewritten as Eq. (3.9) 
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  (3.9) 

The left-hand side of Eq. (3.9) can be treated as an effective stress term and can be related to 

uniaxial S-N curve for fatigue life prediction. Thus, the fatigue model for variable loading 

condition of finite life N is expressed in Eq. (3.10) as: 

  (3.10) 

where N means the predicted fatigue life under the equivalent constant loading. Eq. (3.10) is 

the general formulation for finite life prediction under general random multiaxial loading 

spectrums.  

3.4 Experimental Testing 

Fatigue testing was conducted and the test system used was an MTS 809 close-loop 

servohydraulic axial-torsion load frame with a load capability of 100 kN and 1100 N m. 

Axial/Torsion tests were conducted at a frequency of 5 Hz, using different sinusoidal load 

spectrums in force and torque control. The experimental setup and test system are presented in 

Figure 3-2. The load spectrum was repeated until failure, which was defined as either a 5% 

increase in the maximum displacement or angle amplitude; or the appearance of a visible crack 

length of 2~5 mm on surface. A representative image of the observed fatigue failure and 

resultant crack orientation is presented in Figure 3-3. Duplicate tests for proportional loading 

conditions were performed to verify the results obtained.  
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Figure 0-13. Experimental Testing Setup. 
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Figure 0-14 Optical Microscope Image of Fatigue Failure under Multiaxial Random 
Loading and Crack Orientation 

Testing material is Al-7075-T6 from a commercial vendor.  The specimen design follows 

ASTM standard E2207-15 (shown in Figure 3-4). A tubular thin-walled specimen geometry is 

used to minimize the stress gradient effect across the thickness direction.  

 

Figure 0-15. Specimen design for multiaxial fatigue testing 

 

~13°
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Nonlinear, nonstationary standard fatigue spectra were generated. Table 3-2 lists the 

characteristics of the selected spectra. A linear nonstationary fatigue spectrum, also generated 

using Auto Regressive (2) (AR(2)) process where the stationarity of spectrum was tested via 

Hinch method [72].  

The equation used for linear nonstationary spectrum generation is, 

  (3.11) 

where 

  (3.12) 

  (3.13) 

with 𝑀!=6 for non-stationary conditions and . 

Table 0-3 Standard Fatigue Spectra. 

Name 
 

Purpose Structural 
details 

Description 
of load 
history 

Block 
size 

(cycles) 

Equiv. 
usage 

No. of 
load 
levels 

Ref 

FELIX Helicopters 
fixed 
rotors 
 

Rotor 
blade 
bending 

Blocks of 
cycles with 
different 
amplitude 
and mean 
stress levels 
 

2.3×
10" 

140 33 [73] 

FALSTAFF Fighter 
aircraft 

Wing root Maneuver 
dominated 
spectrum, 
moderate 
fluctuation 
of mean 
stress 
 

18000 200 32 [74] 

1 2( ) ( ) ( 1) ( 2) h= - - - +x n a n x n a x n

1 2

1 2
2( ) 2cos( ) ,
( )
p - -

= =T Ta n e a e
T n

mod

2( ) sin( )p
= +e T

tT n T M
T

~ (0,1)h N
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Mini 
TWIST 
 

Shortened 
version of 
TWIST 

Wing root 
bending 
moment 

Omission of 
low gust 
load cycles 

62000 4000 20 [75] 

 
 

Fatigue spectra for uniaxial, in phase and out of phase axial-torsion test cases are shown in 

Figure 3-5. FELIX and linear spectra that are shown in Figure 3-5 (a) and (b), respectively. 

Non-proportional loading spectrum was generated based on FALSTAFF spectrum. Figure 3-5 

(c) and (d) show the proportional and non-proportional fatigue spectra.  
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Figure 0-16. Generated Spectra for Fatigue Experiments (a) Axial Spectrum Based on 
FELIX, (b) Linear Spectrum Based on AR(2), (c) Proportional Spectrum Based on FELIX, 

and (d) Non-proportional Spectrum Based on FALSTAFF. 

（a） 

（b） 

（c） 

（d） 
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Fatigue test results of all finished specimen are presented in Table 3-3, which includes the 

test number, the load spectrum used, and number of reversals to failure. 

Table 0-4 Experimental Testing Summary. 

Test 
No. Load Number of 

reversals 
Test 
No. Load Number of 

reversals 

1 Multiaxial 
(Proportional) 1,340,500 7 Uniaxial 5,956,555 

2 Multiaxial 
(Proportional) 1,748,119 8 Uniaxial 1,971,920 

3 Multiaxial 
(Non-proportional) 1,221,030 9 Uniaxial 2,905,820 

4 Multiaxial 
(Proportional) 2,553,210 10 Uniaxial 1,196,807 

5 Multiaxial 
(Non-proportional) 405,053 11 Uniaxial 2,112,921 

6 Uniaxial 736,909    

 

3.5 Model Validation 

The proposed fatigue model is applied to predict the fatigue life of Al-7075-T6 under 

uniaxial and multiaxial variable amplitude loading conditions. The basic material properties 

used are from open literature [76]. Young’s modulus is 71GPa. Poisson’s ratio is 0.3. Yield 

stress is 503MPa. The proposed fatigue model predicts fatigue live under multiaxial constant 

loading condition based on experiment data from literature [76] and under random loading 

based on our in-house fatigue testing data. In order to validate the variable fatigue model, the 

predicted fatigue lives are compared with the experimentally obtained fatigue lives. The 

comparison is shown in Figure 3-6. 

The solid line indicates that the predicted results are identical with experimental results, i.e., 

the perfect fit line. The dashed lines are the bounds of fatigue life scatter with a factor of 2. 

The comparison considers different loading conditions including uniaxial and multiaxial 
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loading, proportional and non-proportional loading. As can be seen in the figure, the predicted 

results are in good agreement with experimental results not only under constant loading but 

also under random loading with or without mean stress.  

 

Figure 0-17. Comparison of Model Prediction with Experimental Results 

3.6 Conclusion and Future Work 

In this paper, a stress-based fatigue model under arbitrary random multiaxial loading is 

proposed using the Liu-Mahadeven critical plane concept and an equivalent stress 

transformation method. To validate the proposed model, Al-7076-T6 are tested under different 

loading conditions. It is shown that the proposed model predictions have satisfactory accuracy 

without systematic errors for both random uniaxial loading and multiaxial loading. Several 

major conclusions can be drawn from the proposed study 
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- The fracture plane is determined under variable loading condition by using the 

maximum damage plane concept. 

- The proposed equivalent stress transformation can reduce a random loading case to a 

simple constant loading case for easy fatigue life prediction, which avoids cycle-by-

cycle calculation of fatigue damage. 

- The current model validation shows that the linear damage accumulation rule, i.e., the 

Miner’s rule, provides a satisfactory result for the investigated random spectrum.  

The current investigation focuses on the high cycle fatigue (HCF). Future work to extend the 

concept to low cycle fatigue (LCF) and to mixed HCF+LCF is needed. Linear damage 

accumulation is shown to have satisfactory results and the used spectrum are not highly 

nonstationary, such as high-low and low-high step loading. Further confirmation of the 

applicability of linear damage accumulation rule is needed under other types of multiaxial 

random loading. Probabilistic modeling considering both material randomness and loading 

randomness needs further study. Special focus should be on the uncertainty quantification and 

modeling with limited number of fatigue data is needed as it will be very time consuming and 

expensive to design and repeat the testing all possible combinations (e.g., loading conditions, 

material surface finish).  



 62 

4. MULTIAXIAL FATIGUE MODEL FOR TENSION-TENSION AND 

TENSION-TORSION LOADINGS 

A new energy-based fatigue life prediction model is proposed for arbitrary multiaxial 

constant loadings in this paper. First, a brief review for existing multiaxial fatigue models is 

given, especially focusing on energy-based models. It is observed that most multiaxial model 

formulation and validation are suitable for axial-torsional loadings but may not be appropriate 

for biaxial tension-tension loading. One possible reason is the ignorance of hydrostatic stress-

state difference under these two types of loadings. In view of this, a new model is proposed by 

including fatigue damage contributions of equivalent tensile energy, torsional energy, and 

hydrostatic energy. Next, a loading transformation is proposed to transfer a complicated three-

dimensional loading to an effective loading for life prediction. Detailed discussion of different 

types of multiaxial loading and its relationship with the ratio of distortional energy and 

dilatational energy is given. The hysteresis energy can be calculated integrating the proposed 

model with the Garud cyclic plastic model, which is directly linked to the damage 

accumulation and fatigue life prediction. The proposed model is validated with extensive 

experimental data under both tension-torsion loadings and biaxial tension-tension loadings 

from open literature. Comparison with several widely used multiaxial model is also given to 

show the model performance with respect to different biaxial tension-tension loadings. Finally, 

concluding remarks and future work based on the investigated materials are discussed.  

4.1 Introduction  

Multiaxial fatigue is a common issue for many practical engineering structures and 

components. Accurate fatigue life prediction is necessary to ensure the long-term integrity of 

these structures and components. Extensive multiaxial fatigue models have been proposed to 
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predict fatigue life. These multiaxial fatigue models can be classified into four categories: 

stress-based[11], [12], strain-based[13], [14], energy-based[15], [16] and fracture mechanics-

based[17]. 

Stress-based models are mostly used to predict fatigue life for high cycle fatigue. Strain-

based models are suitable for low cycle fatigue in which plastic deformation is significant. 

Since only the strain terms are used, it cannot include the out-of-phase hardening behaviour 

explicitly. The direction of principal stress is rotating under out-of-phase loading. Comparing 

with proportional loading, the rotation brings additional hardening to material which causes 

stress amplitude increase and thus reduces the fatigue life. In order to compensate for the out-

of-phase hardening, empirical calibration parameters are used[64]. Energy-based models can 

consider this effect because both the stress and strain terms are inherent in the energy 

expression. Critical plane is a well-known approach of fracture mechanics-based models which 

is based on experimental observation of fatigue crack nucleation growth direction. Many 

models[18], [19] assume the maximum shear stress range plane as the critical plane which is 

suitable for ductile failure. Other models assume the maximum normal stress range plane as 

the critical plane which is mostly suitable for brittle failure[21]–[23]. Carpinteri [24] presented 

an empirical function to let the critical plane change its orientation for different failure modes, 

i.e., along the maximum normal stress range plane for brittle materials and along the maximum 

shear stress range plane for ductile materials. Liu and Mahadevan proposed an analytical 

solution for the critical plane orientation based on the material ductility using stress term[77] 

and strain term[29]. Several energy-based models[20], [30], [78] using the critical plane 

concepts are shown to be successful for multiaxial fatigue life prediction under non-

proportional loading. Comprehensive reviews were conducted by Han et al.[79] and Lei et 
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al.[80] to evaluate various fatigue damage models. The use of Varvani's energy-based damage 

model through involvement of axial and shear energy components on the critical plane was 

found vigorously applicable for various multiaxial loading conditions. 

The authors observed that most critical plane-based approaches ignore the damage 

contribution from axial stress/strain parallel to the critical plane (in another words, hydrostatic 

stress/strain components). This approach may be appropriate under uniaxial loadings and 

tension-torsion loadings but is questionable for biaxial tension-tension loading. Either 

direction axial stress/strain (e.g., perpendicular or parallel to the critical plane) may or may not 

be ignored. Extensive multiaxial fatigue models using the critical plane approach were 

validated under tension-torsion loading conditions. However, if the loading condition is 

complicated, such as biaxial tension-tension loadings and hydrostatic loadings, the critical 

plane approach might be hard to determine the orientation of the critical plane and usually 

leads to large error of the fatigue life prediction [81]. 

In view of the above-mentioned difficulties, the motivation of the current study is to develop 

a universal multiaxial fatigue formulation which is capable to both tension-torsion and tension-

tension loadings. We are particularly interested in the energy-based approach as it is suitable 

for both high-cycle and low-cycle fatigue. In addition, out-of-phase hardening can be naturally 

included. Thus, the following discussion only focuses on energy-based models. In the open 

literature, many existing energy-based models are introduced by different authors. Morrow[82] 

offered an accumulated plastic work as a parameter for fatigue failure. Ellyin[83]–[85] 

suggested using total strain energy density for multiaxial fatigue prediction under proportional 

loading. Garud[86] modified Mróz’s cyclic plastic model to calculate the plastic work per 
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cycle, which can predict multiaxial fatigue life under non-proportional loading. These plastic 

work-based models are not suitable for high cycle fatigue region in which plastic deformation 

is negligible. Glinka et al.[19] proposed a damage parameter which is a summation of normal 

energy density and shear energy density. Later, Glinka et al.[87] modified this parameter by 

including the mean stress effect. Chen et al.[78] suggested using two different energy 

parameters for different failure modes. They proposed to use the maximum normal stress range 

plane for brittle failure mode and to use the maximum shear stress range plane for ductile 

failure mode. Glinka’s and Chen’s models both use the critical plane approach, which have 

same problems under biaxial tension-tension loading as abovementioned. Varvani-Farahani 

and his coworkers[20], [88], [89] developed energy-based multiaxial models to evaluate 

fatigue damage and life of various materials under multiaxial loading conditions. 

Based on the above review and discussion, the objective of the proposed study is to develop 

an energy-based multiaxial model subjected to complicated constant loading conditions, e.g. 

torsion-tension loading and biaxial tension-tension loading. The developed model can be 

applied to different materials under both proportional and non-proportional loadings without 

calibration using additional out-of-phase multiaxial testing results. The paper is organized as 

follows. First, the energy-based model is formulated for arbitrary constant amplitude loadings, 

and the model parameters are analytically derived. Following this, in order to apply the 

developed model, the relationship in terms of energy parameters and distortional/dilatational 

energy components is studied for fatigue life prediction. Next, several experimental data 

available from open literature are used to validate the proposed model. Fatigue lives are 

compared between computational results and experimental observations. For the biaxial 

tension-tension loadings, the predicted fatigue lives from the proposed model are compared 
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with some existing fatigue models. Finally, discussions and conclusions are drawn based on 

the proposed study. 

4.2 Proposed Energy-based Multiaxial Fatigue Model  

The proposed study includes three major components. First, distortional (𝑊#$% ) and 

dilatational energy (𝑊#$&) components are calculated under general three-dimensional cyclic 

conditions. A cyclic-plasticity model is needed for this purpose and any available models can 

be used based on users’ preference. We choose Garud’s model due to its simplicity and it has 

been shown to yield very good results for fatigue analysis in Ref[30].  Next, the distortional 

(𝑊#$%) and dilatational energy (𝑊#$&) components are used to calculate the proposed energy-

related damage parameters and the proposed damage criterion. The equivalent tensile energy 

(𝑊'()), torsional energy (𝑊'*+), and hydrostatic energy (𝑊,) are proposed to formulate an 

energy-based criterion, which depends on the fatigue limits in terms of energies using classical 

uniaxial and pure torsional fatigue testing (e.g., 𝑊-.
'() and 𝑊-.

'*+). Following this, the proposed 

fatigue damage criterion is extended to fatigue life prediction model by using an effective 

tensile energy term and uniaxial energy-N curve for life prediction[28]–[30]. A flow 

chart, shown in Figure 4-1, illustrates the procedures and details are discussed in the following 

sections.  
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Figure 0-18Flowchart of the Proposed Multiaxial Fatigue Life Prediction Model 

Distortional and Dilatational Energy Calculation 
The stress and strain hysteresis loops are required before calculating the distortional and 

dilatational energy components. If both stress and strain components are measured and 

reported from experimental testing, they can used directly for energy calculation. If not, a 

cyclic constitutive model is required to calculate one of them given the other. For example, the 

stress response under the displacement-controlled lab testing needs to be calculated for the 

application of the proposed energy-based life prediction model. The calculation algorithms for 

general multiaxial cyclic loadings are discussed below. 

In the elastic stage, the calculation of the stress and strain response is straightforward. A 

cyclic stress-strain relationship can be described by Hooke’s law as: 

𝜀$/ =
.01
2
𝜎$/ −

1
2
𝜎33𝛿$/                                         (4.1) 

where 𝜎$/ and 𝜀$/ stress and strain tensor, and 𝛿$/ is Kronecker delta. 

For the cyclic elastoplastic deformation, the above-mentioned solution is no longer valid. 

In order to calculate the stress/strain hysteresis, the Garud incremental cyclic plasticity model 

is employed for low cycle fatigue region[86]. Mróz introduced the field of plastic moduli [90].  

Input of 3D stress/strain history 

Calculation of distortional and dilatational energy, 𝑊!"#and 𝑊!"$ 

Energy-based damage parameters 𝑊%&', 𝑊%(), 𝑊*  

and failure criterion 

Effective tensile energy 𝑊&++
%&' transformation for fatigue life prediction 
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The key concept in the Mróz model is that the Ramberg-Osgood curve can be regarded as a 

baseline stress-strain relation and is approximates by the piecewise several line segments. The 

plastic modulus for each segment is the slope of the line which is different for different 

segments. The flow rule, determining the incremental strain, is based on these plastic moduli. 

The approximation is illustrated in Figure 4-2. This approach can be applied to arbitrary stress-

strain curves and is illustrated here using the Ramberg-Osgood function. According to the 

approximated stress-strain curve, plasticity surfaces are defined in the stress space 

corresponding to the stress points on the approximation lines. The material is considered to be 

isotropic. Thus, all the surfaces are concentric. For the hardening rule in Mróz model, the 

surface movement is defined as in the direction of the incremental stress. Garud modified the 

hardening rule in Mróz model as the surface movement is not only depend on the incremental 

stress but also the surface exterior normal, which ensures all the surfaces are non-intersecting 

and have a common exterior normal. Mróz model and Garud model have similar results under 

proportional loading and Garud modification let the cyclic plasticity model can be applied to 

the non-proportional loading condition. Garud model has been validated by arbitrary non-

proportional loading conditions with different materials[30], [91].  
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Figure 0-19 Stain-stress Curve Approximation 

 Detailed derivation for the Mróz model and Garud model is not given here and interested 

readers can refer to the original work in Refs[86], [90]. Integrating Garud model, the 

stress/strain responses can be obtained for the following calculation. 

The distortional and dilatational energy components are necessary for the proposed damage 

model and are calculated here. The total energy can be decomposed into distortional and 

dilatational energy as:  

𝑊' = 𝑊#$% +𝑊#$&                                    (4.2) 

where 𝑊' is the total energy. The distortional and dilatational energy terms per cycle are given 

by: 

𝑊#$% = 0 𝑆$/𝑑𝜀$/#$%454&(
                                   (4.3) 

𝑊#$& = 0 𝜎33𝛿$/𝑑𝜀$/#$&454&(
                                 (4.4) 

where  

(a) stress-strain curve (b) isotropic hardening through Garud 
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𝑆$/ = 𝜎$/ −
.
6
𝜎33𝛿$/                                (4.5) 

𝜀$/#$% = 𝜀$/ −
.
6
𝜀33𝛿$/                                 (4.6) 

Eqs. (4.3) and (4.4) can be rewritten in incremental form as: 

𝑊#$% =3 𝑆$/𝛥𝜀$/#$%
454&(

                             (4.7) 

𝑊#$& =3 𝜎33𝛿$/𝛥𝜀$/#$&
454&(

                        (4.8) 

If the plastic deformation occurs, Eq. (4.7) includes both elastic energy and plastic energy. 

However, Eq. (4.8) only contains the elastic energy, because the plastic deformation is assumed 

to be incompressible. It should be noticed that all energy terms in the proposed model are 

defined as the work done by the applied load, which means the energy of the elastic reversible 

deformation during a cycle is not included, 

𝑊#$% =3 𝐻[𝑠𝑖𝑔𝑛;𝑆$/<𝑠𝑖𝑔𝑛(𝛥𝜀$/#$%)]𝑆$/𝛥𝜀$/#$%
454&(

                    (4.9) 

𝑊#$& =3 𝐻[𝑠𝑖𝑔𝑛;𝜎33𝛿$/<𝑠𝑖𝑔𝑛(𝛥𝜀$/#$&)]𝜎33𝛿$/𝛥𝜀$/#$&
454&(

             (4.10) 

where 𝐻(𝑥) is the Heaviside function state as: 

@𝐻
(𝑥) = 1												𝑥 ≥ 0

𝐻(𝑥) = 0												𝑥 < 0                                             (4.11) 

Eqs. (4.9) and (4.10) are used to calculate the distortional and dilatational energy components 

in the proposed methodology based on the stress/strain hysteresis loops.  

Energy-based Damage Parameter and Failure Criterion 
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Above discussion is more from a pure mechanics point of view for the different energy 

component calculation. Distortional and dilatational energy is difficult to be used directly to 

develop a damage model as the material response under these two energy components are hard 

to be measured in fatigue testing. Instead, most fatigue testing and material properties are 

measured under uniaxial or pure torsional loading. Thus, the energy-based damage parameters 

and corresponding failure criterion are more convenient to be expressed using experimentally 

measurable quantities. A new fatigue criterion considering contributions of equivalent tensile 

energy term, torsional energy term, and hydrostatic energy term is proposed as 

7!"#

7$%!"#
+ 7!&'

7$%!&'
+ 7(

7$%(
≥ 1                                           (4.12) 

where 𝑊'() , 𝑊'*+ , and 𝑊,  are the equivalent cyclic tensile energy, equivalent cyclic 

torsional energy, and equivalent cyclic hydrostatic energy, respectively. 𝑊-.
'()  , 𝑊-.

'*+ , and 

𝑊-.
,  are tensile, torsional, and hydrostatic fatigue limit in terms of energy, respectively. The 

equivalent tensile energy term, torsional energy term, and hydrostatic energy term can be 

computed using the proposed loading transformation based on the distortional energy and 

dilatational energy. Eq. (4.12) is a general mathematical expression of the proposed criterion, 

which has three terms. It should be noticed that Eq. (4.12) is reduced to two terms after loading 

transformation. The details are included in the discussion of the loading transformation later. 

In an earlier work by Jahed et al.[88] an energy-based multiaxial fatigue model at which 

both components of tensile and torsional energies were introduced. Fatigue limit under 

hydrostatic stress amplitude is hard to measure and it is expressed using a ratio 𝑘 parameter 

with the fatigue limit under uniaxial tensile loading as 
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𝑊-.
, = 7$%!"#

3
                                                      (4.13) 

The parameter k is the ratio of hydrostatic fatigue limit and uniaxial tensile fatigue limit. Thus, 

it is material dependent an estimation procedure is discussed later. Substituting Eq. (4.13) to 

Eq. (4.12), one can obtain  

7!"#

7$%!"#
+ 7!&'

7$%!&'
+ 𝑘 7(

7$%!"#
≥ 1                                          (4.14) 

Eq. (4.14) shows that the final damage is a combination of normalized damage of equivalent 

tensile energy, torsional energy, and hydrostatic energy. This is the proposed damage criterion. 

The remaining question is how to calculate each energy term and how to determine the model 

parameters. The third term in Eq. (4.14) presents the normalized damage of the hydrostatic 

energy. Usually, fatigue test only provides tensile and torsional fatigue limits and cannot 

estimate three unknown parameters in Eq. (4.14). Thus, a simple hypothesis is made to estimate 

the relationship between the hydrostatic fatigue limit and tensile fatigue limit to facilitate the 

fatigue calculation.  

Let us consider one metallic material under a hypothetical uniaxial tensile and hydrostatic 

fatigue loading. The uniaxial and hydrostatic loading will lead to the fatigue limit in term of 

stress as 𝜎-.'() and 𝜎-., , respectively. If the fatigue loading is extrapolated to the extreme case 

under static loading (e.g., fatigue failure in one cycle), the tensile stress will approach the yield 

strength 𝜎5 of the material. In case of hydrostatic loading, if the fatigue loading is extrapolated 

to the extreme case under static loading, we assume 𝜎-.,  will approach the ultimate strength of 

the material (i.e., equivalent to the maximum normal stress failure theory). Thus, the following 

proportional rule is assumed to hold true 
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8)

8*
= 𝑟 = 8$%!"#

8$%(
                                     (4.15)                 

where r is the ratio of the yield strength and ultimate strength. The ratio r ranges from 0 to 1. 

r approaches 0 when the yield strength is much less than the ultimate strength. r approaches 1 

when the yield strength approaches the ultimate strength. It should be noted that this is a 

hypothesis/assumption in the proposed model. The validation section later in this paper shows 

good accuracy for all investigated materials for this hypothesis. Future study is required to 

extend the validation or modification for other material systems. For elastic deformation at the 

fatigue limit stage, the tensile and hydrostatic fatigue energy limit can be expressed as: 

𝑊-.
'() = (8$%!"#)+

;2
                                     (4.16) 

𝑊-.
, = 6<8$%( =

+
(.-;1)

;2
                                     (4.17) 

where E is the Young’s modulus, G is the shear modulus, and 𝜈 is Poisson’s ratio. Substituting 

Eq. (4.15) and Eq. (4.17) into Eq. (4.13), the parameter 𝑘 can be solved as: 

𝑘 = (+)+

6(.-;1)
                                     (4.18) 

The parameter k is a material constant related to the Poisson’s ratio and yield-to-ultimate 

strength ratio. 

Next step is to derive the relationship in terms of energy damage parameters with respect 

to the distortional and dilutional energy under arbitrary loading conditions. Before we start the 

detailed formulation, a general description of difference between tension-torsion and tension-

tension loading is discussed in terms of the ratio of distortional and dilatational energy. Let us 
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consider the pure uniaxial tension loading first. The ratio t of distortional and dilatational 

energy under tensile loading is defined as 

𝑡 = 7,-.

7,-/                               (4.19) 

Under pure uniaxial tension loading, the ratio t is a constant ;0;1
.-;1

, irrespective of the applied 

loading levels. For other multiaxial loading cases, this ratio is not a constant and depends on 

the loading. For larger value of t (𝑡 = 7,-.

7,-/ >
;0;1
.-;1

), it indicates larger contribution from 

distortional energy. The extreme value is infinity which corresponds to the pure torsional 

loading (i.e., 𝑊#$& =0). For smaller value of t ( 𝑡 = 7,-.

7,-/ <
;0;1
.-;1

) , it indicates smaller 

contribution from distortional energy. The extreme value is zero which corresponds to the 

hydrostatic loading (i.e., 𝑊#$&=0). It is interesting to see that the three special values 0, ;0;1
.-;1

, 

and +inf are three special loading conditions (e.g., hydrostatic loading, pure tensile loading, 

and pure torsional loading). The three special values divide the t range into two segments: one 

segment can be treated as a combined tensile + torsional loading and the other can be treated 

as the combined tensile + hydrostatic loading. A schematic illustration is shown in Figure 4-3.  
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Figure 0-20 Graphic Illustration for Equivalent Loading Combination Based on t Range 
Based on this graphic representation, we proposed the following concept to develop a 

multiaxial fatigue model. First, calculate the equivalent tensile energy by maximizing the 

extraction of proportional distortional energy and dilatational energy from the system. 

Mathematically, 

𝑊'() = min	{ 6
.-;1

𝑊#$& , 6
;0;1

𝑊#$%}         (4.20)                                    

After this extraction, there may be remaining energy (either dilatational energy or distortional 

energy). The equivalent torsional energy is the remaining distortional energy and the 

equivalent hydrostatic energy is the remaining dilatational energy. It should be noticed that the 

equivalent torsional energy and the equivalent hydrostatic energy does not equal to the 

distortional energy and dilatational energy. They are the remaining energy after the extraction. 

When 𝑡 = 7,-.

7,-/ ≥
;0;1
.-;1

, we calculate the tensile energy using the dilatational energy as 

𝑊'() = 6
.-;1

𝑊#$&                             (4.21) 
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Since there is remaining distortional energy after extracting the tensile energy, the equivalent 

torsional energy is defined as 

𝑊'*+ = 𝑊#$% − 𝑡𝑊#$&                                   (4.22) 

All dilatational energy is used to calculate the equivalent tensile energy and there is no 

remaining portion. Thus, the equivalent hydrostatic energy is  

𝑊, = 0                                    (4.23) 

When 𝑡 = 7,-.

7,-/ ≤
;0;1
.-;1

, we calculate the tensile energy using the distortional energy as 

𝑊'() = 6
;0;1

𝑊#$%                             (4.24) 

Since there is remaining dilatational energy after extracting the tensile energy, the equivalent 

hydrostatic energy is defined as 

𝑊, = 𝑊#$& − 7,-.

'
                                    (4.25) 

Since there is no distortional energy left after extracting, the torsional energy is  

𝑊'*+ = 0                                    (4.26) 

As a summary, the calculation of equivalent energy terms is summarized in Table 4-1. In 

practice, the ratio of dilatational and distortional t, is calculated first. Table 4-1 is then used to 

find equivalent energy terms and substituted to proposed multiaxial fatigue model (Eq. (4.12)) 

for fatigue analysis. 

Table 0-5 Summary of the Equivalent Energy Term Calculation in the Proposed Model 

𝑡 
𝑡 =

𝑊#$%

𝑊#$& ≥
2 + 2𝜈
1 − 2𝜈 𝑡 =

𝑊#$%

𝑊#$& ≤
2 + 2𝜈
1 − 2𝜈 

𝑊'() 𝑊'() =
3

1 − 2𝜈𝑊
#$& 𝑊'() =

3
2 + 2𝜈𝑊

#$% 
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𝑊'*+ 𝑊'*+ = 𝑊#$% − 𝑡𝑊#$& 𝑊'*+ = 0 

𝑊, 𝑊, = 0 
𝑊, = 𝑊#$& −

𝑊#$%

𝑡  

Failure 

criterion 

7!"#

7$%!"#
+ 7!&'

7$%!&'
≥ 1                                      𝑊'*+

𝑊-.'*+
+ 𝑘

𝑊,

𝑊-.'()
≥ 1 

 

In order to illustrate the calculation details, three special loading conditions are shown below 

to show that the proposed method can successfully reproduce the extreme cases.  

Case 1: Pure torsional loading 

If the dilatational energy is zero, the loading is considered as pure torsional loading in which 

the distortional energy equals torsional energy density, i.e. 𝑊'*+ = 𝑊#$%. The tensile energy 

density and hydrostatic energy are both zero. Eq. (4.14) reduces to  

>
7$%!"#

+ 7!&'

7$%!&'
+ 𝑘 >

7$%!"#
= 7!&'

7$%!&'
≥ 1                                        (4.27) 

It is clearly shown that the proposed damage criterion (Eq. (4.14)) satisfies the case for pure 

torsional loading and correctly predict the failure case (e.g., applied 𝑊'*+equals to the 

material fatigue limit 𝑊-.
'*+). 

Case 2: Hydrostatic loading 

In case of hydrostatic loading (no distortional energy), the tensile and torsional energies are 

zero. The fatigue model has only the third term as 

>
7$%!"#

+ *
7$%!&'

+ 𝑘 7(

7$%!"#
= 𝑘 7(

7$%!"#
= 7(

7$%(
≥ 1                             (4.28) 

Again, this reproduces the failure condition. 
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Case 3: Uniaxial tensile loading 

If the ratio 𝑡 of distortional and dilatational energy equals the ratio in Eq. (4.19), the loading 

is considered as an equivalent uniaxial tensile loading. The fatigue model keeps the first term 

as: 

7!"#

7$%!"#
+ >

7$%!&'
+ 𝑘 >

7$%!"#
= 7!"#

7$%!"#
≥ 1                             (4.29) 

In this case, it also successfully reproduces the failure condition. The two scenarios in Table 

4-1 give the same solution (i.e., solution is continuous when 	

𝑡 = 7,-.

7,-/ =
;0;1
.-;1

) and the equivalent tensile energy can be calculated either using dilatational 

or distortional energy as 

𝑊'() = 6
;0;1

𝑊#$% = 6
.-;1

𝑊#$&                            (30) 

Fatigue Life Prediction Model 

Above discussion is for the fatigue failure criterion at the fatigue limit stage. Following the 

same methodology in Refs[28]–[30], the fatigue limit criterion can be extended to finite fatigue 

life prediction by a transformation. For finite fatigue life prediction, the damage parameter 

should be correlated with the life (i.e., number of loading cycles). Eq. (4.14) can be rewritten 

as 

𝑊'() + 𝑠𝑊'*+ + 𝑘𝑊, ≥ 𝑊-.
'()        (31) 
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where 𝑠 = 7$%!"#

7$%!&'
. The left-hand side of the equation can be treated as the effective energy term 

𝑊(??
'() and can be used to correlate with the fatigue life using the uniaxial energy–N curve 

𝑓(𝑁?) as 

𝑊(??
'() = 𝑊'() + 𝑠𝑊'*+ + 𝑘𝑊, = 𝑊@0

'() = 𝑓(𝑁?)      (4.32) 

where the ratio s is redefined as 𝑠 =
710
!"#

710
!&'. 𝑁? is the certain cycle number to failure. The 𝑊-.

'() 

and 𝑊-.
'() are replaced by 𝑊@0

'() and 𝑊@0
'*+, respectively, which are fatigue strengths at finite 

fatigue life 𝑁?. Eq. (4.32) is a nonlinear equation about 𝑁? and numerical method and can be 

used to solve for 𝑁?	[28]–[30]. It should be noted that 𝑓(𝑁?) in Eq. (4.32) can be any functions 

from data fitting and the current study uses power law fitting.  

As a short summary, there are few material constants and loading parameters are required in 

the proposed model. The parameter r is the yield-to-ultimate strength ratio of the material, 

which is calculated using Eq. (4.15). k is a material constant depending on r and Poisson’ ratio, 

which is calculated using Eq. (4.18). The parameter s is the ratio of tensile and torsional fatigue 

limits. The parameter t is a loading parameter and depends on the applied distortional and 

dilatational energy, which is calculated using Eq. (4.19).  

4.3 Model Validation  

Available experimental testing data on multiaxial fatigue lives from open literature are 

collected and used for model validation. One of the major contributions of the proposed method 

is that it is a universal model applicable to both tension-torsion and tension-tension loading. 

Thus, two major types of experimental data are collected. The proposed energy fatigue model 
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is firstly validated with different materials under tension-torsion constant loading conditions 

which are commonly used for most existing multiaxial fatigue model validation. Following 

this, the proposed fatigue model is also validated under the biaxial tension-tension constant 

loading condition. Model performance is also compared with several other models using 

reported values. 

Validation for tension-torsion loading 

Five different materials have been investigated under tensile, torsional and tension-torsion 

loading. A summary of the collected experimental data is shown in Table 4-2. The normal to 

shear fatigue limit ratio (s) and cyclic stress-strain coefficients in Ramberg-Osgood equation 

(K and n) are also reported. The loading waveforms include uniaxial (tensile and torsional) 

loading, in-phase, and out-phase multiaxial loading. Thus, the selection of these materials is to 

validate the applicability of the proposed model for different materials experiencing different 

loading conditions. In Table 4-2, the abbreviation for the multiaxial loading paths is illustrated 

in Figure 4-4. 

Table 0-6 Summary of Collected Experimental Data 

Material Multiaxial loading path s K(MPa)/n Reference 

AISI Type 304 stainless steel Pro, sin90, box, box2 0.594 1660/0.278 [18] 

SAE-1045 steel Pro, sin90, box 1.108 1258/0.208 [92] 

A533B pressure vessel steel Pro, sin90 0.997 827/0.13 [93] 

Al-6061-T6 Pro 1.575 410/0.05 [94] 

SM45C steel Pro, sin22, sin45, sin90, box 0.707 1246/0.99 [95] 

Al 7075 Pro 0.899 400/0.17 [76] 
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S460N Pro, sin90 0.868 1115/0.16 [96] 

 

 

Figure 0-21  Schematic Illustration of the Investigated Loading Waveforms： (a) uni, (b) tor, 
(c) pro, (d) sin90, (e) sin45, (f) sin22.5, (g) box and (h)box2 

Figure 4-5 shows the comparison of the proposed model predictions with experimental 

measurements. The x-axis is the experimental measurements of fatigue lives and the y-axis is 

the predicted lives. Both axes are in log scale. Solid diagonal line indicates the perfect 

prediction and a life factor of 2 is also shown as the dashed lines. All points are experimental 

data and different loading waveforms are shown in the legend. It is shown that most of the data 

falls in the scatter bands of life factor two. Thus, the proposed energy fatigue model is valid 

for uniaxial loading and multiaxial tension-torsion loading.  
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(a) AISI 304 Steel (b) SAE 1045 Steel 

(c) A533B 
Steel 

(d) Al 6061 

(e) SM45C Steel (f) Al 7075 

(g)S460N 
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Figure 0-22 Comparison of Fatigue Life Predictions and Experimental Measurements under 
Tension-torsion Loadings: (a) AISI 304 Steel, (b) SAE 1045, (c) A533B, (d) Al 6061, (e) 

SM45C Steel, (f) Al 7075 and (g)S460N. 
 

Validation for biaxial tension-tension loading 

Compared with extensive available tension-torsion experimental data in the open literature, 

biaxial tension-tension fatigue tests are rarely reported. Two different materials are collected 

and studied under biaxial tension-tension loading. The axial stress amplitude 𝛥𝜎A and 𝛥𝜎5 in 

x and y directions are chosen so as to get the biaxiality ratio 𝐵, defined as: 

𝐵 = B8)
B82

                           (4.33) 

Material 1: Aluminium A1050 H14 

Cláudio et al.[81] performed fatigue tests on Aluminum A1050 H14 under proportional and 

non-proportional biaxial loading conditions. The biaxiality 𝐵 is 0 for the uniaxial loading, and 

𝐵  is 1 for proportional and non-proportional biaxial loading. The comparison between 

predicted fatigue lives and experimental fatigue lives is presented in Figure 4-6. Similar with 

Figure 4-5, the solid line in Figure 4-6 indicates that the predicted life is exactly same as the 

experimental lives, and the two dashed lines show life factor of 2. The non-proportional 

loading phase shift is shown in legend. It should be noted that the non-proportional loading 

with phase shift 180° is equivalent to torsional loadings. As can be seen, the predicted lives 

agree very well with the experimental lives. 
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Figure 0-23 Comparison of Fatigue Life Predictions and Experimental Measurements under 
Biaxial Tension-tension Loadings for Aluminium A1050 H14 

Because the biaxial fatigue tests are in high cycle fatigue regime, Cláudio et al. compared 

the experimental results with model prediction from some well-known stress-based multiaxial 

fatigue models (Findley[97], Fatemi and Socie (F-S)[98], Minimum Circumscribed Circle 

(MCC)[99], Minimum Circumscribed Ellipse (MCE)[100] and Carpinteri-Spagnoli (modified 

C–S)[24]) and the multiaxial fatigue model proposed by themselves (modified C-S and 

MCE)[81]. All selected models provide results close to the experimental data, but most of them 

are non-conservative. The details of the comparison can be found in Ref [81]. An error index 

𝐼 used for quantitative comparison is defined as: 

𝐼 = .
)
∑ |D-D"2|

D"2
100%)

$E.                           (4.34) 

where 𝜆 and 𝜆(A are predicted and experimental fatigue strength for a certain number of cycles, 

respectively. The fatigue strength at a certain number of cycles 𝑁? is defined as: 
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𝜆(𝑁?) = 𝐴(𝑁?)F                           (4.35) 

where 𝐴 is the fatigue strength coefficient and 𝑏 is the fatigue strength exponent. Both 𝐴 and 

𝑏 can be obtained from uniaxial fatigue test. Because the proposed model in this paper is 

energy-based, the square root of the energy-based strength is used to compute the error index 

before comparing with other stress-based models. The error index for different models are 

presented in Table 4-3 including the proposed model in this paper in the last column. Fig. 7 is 

the plot of the error index.  

Table 0-7 Error Index for All Selected Criterion with Average and Standard Deviation 

Phase 

(°) 

Findley 

(%) 

F-S 

 (%) 

MCC 

(%) 

MCE 

(%) 

Mod. C-S 

(%) 

Mod. C-S and 

MCE (%) 

Proposed 

model (%) 

0 7 11 4 4 7 7 2 

30 12 18 12 10 16 5 4 

45 2 8 7 13 14 4 4 

60 20 7 5 18 8 3 2 

90 26 7 5 10 10 7 3 

180 34 9 3 3 9 9 2 

Avg 16.7 10.1 5.8 9.5 10.5 5.6 2.8 

S. dev. 12.0 4.0 3.2 5.7 3.5 2.3 2.1 
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Figure 0-24 Comparison of Error Index for All Aelected Criteria 
The proposed multiaxial fatigue model shows better accuracy for biaxial tension-tension 

test as seen in Figure 4-7. In the Table 4-3, the worst prediction of the proposed model has 4% 

error index under the loading with 45° phase shift. It appears that predictions for different load 

paths have similar error index, which indicates the proposed model has no systematic errors 

with respect to loading waveforms. Some other models do tend to have different errors with 

respect to different load forms. 

Material 2: 2.5%Cr–1%Mo steel 

2.5%Cr–1%Mo steel is tested by Gaur et al.[101] under cyclic proportional biaxial tension-

tension loading. Gaur et al. tested fatigue life under four different biaxiality ratio 𝐵 values: 0 

(uniaxial), 0.25, 0.5 and 1. The R ratio (𝜎G$)/𝜎GHA) in the test is 0.25 and the positive mean 

Findley F-C MCC MCE Mod. C-S Mod. C-S 
and MCE 

Propose
d model 
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stress effect is significant. The positive mean stress in general reduce fatigue life. In the 

proposed model, the effect of the positive mean stress is considered naturally, because with 

same stress amplitude, the work done by applied load with positive mean stress is greater than 

the work done by the applied load with zero mean stress. Therefore, the effect energy in the 

model, which is used to compute the fatigue life, is larger for positive mean stress. The 

comparison between predicted results and experimental results are plotted in Figure 4-8.  

 

Figure 0-25 Comparison of Fatigue Life Predictions and Experimental Measurements under 
Biaxial Tension-tension Loadings for 2.5%Cr–1%Mo Steel 

Four different biaxiality ratios are shown in the legend. It is shown that the predicted results 

are close to the mean value experimental data with a large scatter. The authors noticed that the 

experimental data reported by Gaur et al.[101] shows significant scatter, especially at longer 

fatigue lives. For example, 129,972 and 1,908,883 (two points of solid triangle in Figure 4-8) 

are the two fatigue lives for same loading condition of 270 MPa stress amplitude and 0.25 

biaxiality. This is more than a magnitude difference (i.e., life factor of 10) from experimental 
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data. Stochastic fatigue prediction may be more appropriate for this level of uncertainties and 

needs further study in the future. 

4.4 Discussion 

The proposed multiaxial fatigue criterion is a universal model applicable to both tension-

torsion and tension-tension loading. The validation shows that the predicted results have a good 

agreement with experimental data under tension-torsion loading, and the proposed model 

shows a better accuracy than some existing multiaxial fatigue life models under biaxial tension-

tension loading. The effect of hydrostatic energy density amplitude is more significant under 

biaxial tension-tension loading than tension-torsion loading. The proposed multiaxial fatigue 

criterion considers whole hydrostatic contribution, because the distortional and dilatational 

energy densities are used in the loading transformation. Most multiaxial fatigue models based 

on critical plane approach tend to ignore the hydrostatic damage contribution parallel to the 

critical plane, which is the equivalent hydrostatic energy in the proposed criterion. A case study 

is presented to show the influence of the hydrostatic energy component in damage and life 

assessment. The material is Aluminium A1050 H14. Results are shown in Figure 4-9. The 

equivalent tensile and torsional energy densities in Eq. (4.12) are given as 46800Pa and 0Pa, 

respectively. The equivalent hydrostatic energy density increases from 0Pa to 40000Pa. It can 

be seen that the equivalent hydrostatic energy reduces the predicted fatigue life. 
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Figure 0-26 The Influence of the Equivalent Hydrostatic Energy Density 
4.5 Conclusion and Future Work 

In this paper, a new energy-based fatigue model is developed to assess fatigue life under 

various multiaxial constant amplitude loading conditions with different loading paths. The 

energy-based model considers three fatigue damage contributions of tensile energy term, 

torsional energy term, and hydrostatic energy term. In case of only stress or strain reported, 

Garud cyclic plasticity model is integrated to calculate stress or strain hysteresis. The proposed 

multiaxial energy-base model is validated by five different materials under tension-torsion 

loading and two materials under biaxial tension-tension loading. Both proportional and non-

proportional loading are considered in the validation. several major conclusions are 

- Separation of tensile energy, torsional energy, and hydrostatic energy is able to explain 

the different multiaxial loading conditions (e.g., tension-torsion and biaxial tension-
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tension). The ratio of applied distortional and dilatational energy appears to be an 

important factor to sperate these two types of multiaxial loadings; 

- Garud cyclic plasticity model is shown to be successful to integrate with the proposed 

multiaxial damage model for hysteresis energy calculation; 

- The proposed energy model naturally includes the mean stress effect and does not 

require cycle counting. Direct load path integration is used to calculate the energy terms 

and has the potential to be directly applied to random variable loadings. 

Since the proposed model is based on the energy concept, it can be integrated with both 

continuous and discrete computational mechanics models for complex material and structural 

fatigue analysis. Detailed investigation of the proposed model’s correlation with the fatigue 

damage mechanism in the material (e.g., state I/II of fatigue crack growth, tensile/shear fatigue 

cracks) is required. As shown in one validation example, extension to probabilistic multiaxial 

fatigue analysis is critical in order to successfully address the huge uncertainties observed in 

the experiments.  
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5. FATIGUE ANALYSIS FOR MICROSTRUCTURES USING A LATTICE 

PARTICLE METHOD AND A MULTIAXIAL FATIGUE MODEL 

Fatigue cracking in homogeneous and composite materials is studied using a non-local 

lattice particle method (LPM). The LPM defines the particle potential, which involves the 

pairwise and volume-related energy in the discretized system. Integrating with an energy-based 

fatigue criterion, LPM performs the power of fatigue simulation. Brief review of the 

formulation of LPM and the energy-based fatigue criterion are presented. Following this, the 

energy-based fatigue criterion is implemented in LPM scheme to analysis fatigue crack 

initiation and propagation. The key idea is to decompose the non-local energy into dilatational 

and distortional components, and the dilatational and distortional components can be used for 

the fatigue criterion to determine whether a particle is failure or not. In order to validate the 

proposed LPM fatigue scheme, fatigue crack propagation simulation from LPM scheme is 

comparing the experimental results in open literatures. The energy-based fatigue criterion with 

LPM performs fatigue analysis for bi-phase material. Several conclusions are drawn based on 

the proposed formulation and the validation results. 

5.1 Introduction 

Fatigue is a very common failure mode in many mechanical components. However, it is 

still a challenge to simulate fatigue failure under cyclic loadings. Because the fatigue failure 

introduces material discontinuity, and the material discontinuity is changing with fatigue crack 

propagation. Besides, material scientists are making great efforts to understand multiaxial 

fatigue problems, which involves complex stress states, loading histories and different 

orientations of fatigue crack. 
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Finite element method (FEM) is the most widely used approach to model and simulate 

mechanics-related problems. FEM is based on the partial differential equations in classical 

continuum mechanics theory. Therefore, it cannot simulate discontinuous problems directly, 

such as crack growth and multi-phase material interface. One major algorithm in FEM for 

crack growth simulation is remeshing techniques[1], [102].  However, remeshing techniques 

bring high computational cost, and it is not easy to apply remeshing techniques in three 

dimension models[103]. Extended finite element method (XFEM) is another algorithm to solve 

crack growth problems, which allows crack pass though elements without remeshing[104].  

Due to the intrinsic nature, discrete approach is more suitable for problems involving 

discontinuities, such as fracture/fatigue failure problems. One major group in discrete method 

is the particle method/lattice method. Among various particle methods, one unique group is 

the so-called non-local particle methods, such as [40], [105]. Lattice Particle Model (LPM) 

[53], [56] is a recently developed nonlocal approach that treats material under study as a 

collection of interacting discrete elements or particles. And each discrete element or particle 

interacts with neighboring discrete elements or particles up to certain distance. Different from 

conventional continuum theory, LPM describes the motions of discrete elements or particles 

using integral differential equations rather than partial differential equations. Thus, LPM 

doesn’t have any spatial singularity related issues even when discontinuities such as cracks 

exist within the domain of interests. Besides, LPM models crack nucleation by removing the 

interactions between interacting particles and crack propagates as a natural outcome of this 

successive interaction removal process [52]. Different from other meshfree methods, such as 

bond-based peridynamics [106] and lattice spring models[3], [42]. LPM is formulated only 

using the distance change between particles and doesn’t pose any restrictions on material 
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Poisson’s ratio. Materials with arbitrary value of Poisson’s ratio can be accurately modeled 

within LPM framework [53], [56]. The uniqueness of LPM with respect to other meshfree 

methods is the inclusion of both pair-wise local and multi-body nonlocal potentials in the 

formulation. The interaction between two interacting particles has contribution from not only 

the two interacting particles, but also all their neighboring particles [56]. In addition to brittle 

materials, Wei et al. proposed a systematic formulation for elastoplastic materials for 

LPM[107], which is a necessary step for the accurate fatigue and fracture simulation.  

For multiaxial fatigue modelling, these multiaxial fatigue models can be classified into four 

categories: stress-based[11], [12], strain-based[13], [14], energy-based[15], [16] and fracture 

mechanics-based[17]. Stress-based models are mostly used to predict fatigue life for high cycle 

fatigue. Strain-based models are suitable for low cycle fatigue in which plastic deformation is 

significant. Critical plane is a well-known approach of fracture mechanics-based models which 

is based on experimental observation of fatigue crack nucleation growth direction. Many 

models[18], [19] assume the maximum shear stress range plane as the critical plane which is 

suitable for ductile failure. Other models assume the maximum normal stress range plane as 

the critical plane which is mostly suitable for brittle failure[21]–[23]. Several energy-based 

models[20], [30], [78] using the critical plane concepts are shown to be successful for 

multiaxial fatigue life prediction under non-proportional loading. It is observed that most 

critical plane-based approaches ignore the damage contribution from axial stress/strain parallel 

to the critical plane (in another words, hydrostatic stress/strain components). This approach 

may be appropriate under uniaxial loadings and tension-torsion loadings but is questionable 

for biaxial tension-tension loading. Either direction axial stress/strain (e.g., perpendicular or 

parallel to the critical plane) may or may not be ignored. Extensive multiaxial fatigue models 
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using the critical plane approach were validated under tension-torsion loading conditions. 

However, if the loading condition is complicated, such as biaxial tension-tension loadings and 

hydrostatic loadings, the critical plane approach might be hard to determine the orientation of 

the critical plane and usually leads to large error of the fatigue life prediction [81]. Wei and 

Liu developed a universal energy-based multiaxial fatigue formulation which is capable to both 

tension-torsion and tension-tension loadings[108].  

The  new multiaxial fatigue criterion proposed by Wei and Liu[109] can be implemented in 

LPM, because the fatigue criterion is based on distortional and dilatational energy terms. In 

LPM scheme, the particle and bond fatigue damage can be computed according to distortional 

and dilatational energy using the new multiaxial fatigue criterion. In particular, integrating the 

new fatigue criterion, LPM is able to simulate fatigue crack propagation naturally with bonds 

break, and the fatigue criterion has power to calculate fatigue damage of each particle and bond 

in LPM. 

Based on the above discussion, the study in this paper focuses on fatigue analysis using the 

multiaxial energy-based fatigue criterion integrating with LPM. In this work, a framework of 

fatigue damage criterion using LPM based on distortional and dilatational energy terms is 

proposed to enhance the modeling capability of LPM for fatigue crack initiation and 

propagation. This energy-based nonlocal yield criterion is consistent with the energy 

composition of LPM particles. The remainder of this paper is organized as follows: First, a 

brief review of LPM formulation and the energy-based multiaxial fatigue criterion is presented. 

LPM parameters in terms of material constants for different lattice structures are provided. 

Following this, a method is derived to calculate the distortional and dilatational energy terms 
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in particles and bonds. Next, the fatigue damage criterion is integrated with LPM. Bond energy 

terms governs the bond fatigue damage and then it used to determine bond states, broken or 

not. After that, numerical examples of fatigue crack initiation and propagation considering 

different materials and loading scenarios are modeled using the proposed framework. LPM 

predictions are compared with experimental results. Bi-phase material fatigue analysis is 

performed. Discussions and conclusions based on the proposed study are drawn at the end. 

5.2 Method 

Formulation of LPM 

LPM formulation depends on the lattice structure used to discretize the solution domain. 

Various lattice structures have been employed in LPM, such as triangular and square lattice 

structures for two-dimensional analyses and simple cubic, body-centered cubic and face-

centered cubic lattice structures for three-dimensional analyses. In LPM, a typical particle can 

interact with neighboring particles and remote particles depending on how many layers of 

particles is involved in the interaction distance. For a given interaction distance, unit cell is 

identified for each type of neighbor. And the potential energy for a particle is the summation 

of the energy associated with these unit cells. For each unit cell, the stored energy can be 

separated into two parts, a local pairwise energy corresponding to the stretch between two 

particles and a non-local multi-body energy associated with its volume change. For particle I, 

the stored energy in one of its unit cell can be written as 

     (5.1) 

with the local energy  can be expressed in terms of distance change between particle I 

and its neighbors for current unit cell as 

local nonlocal
I I IU U U= +

local
IU
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    (5.2) 

and the nonlocal energy  for current unit cell is calculated as 

    (5.3) 

In Eqs. (5.2) and (5.3),  is the local parameter for each pair of interacting particles,  is 

the nonlocal parameter,  is the distance change between particle I and its neighbor J,  

is the total number of neighboring particles interacting with particle I for current unit cell. 

Equating the energy of a particle in LPM to its continuum equivalent, the material stiffness 

tensor can be obtained by theory of hyperelasticity as 

     (5.4) 

where  is the strain tensor at a particle. 

For small deformation, the distance change between particles can be mapped to the strain 

tensor using following relationship 

     (5.5) 

where  is the initial distance between particle I and its neighbor J,  and  are the 

components of unit vector connecting particle I and it neighbor J. 

LPM parameters can be determined by comparing the material stiffness tensor given in Eq. 

(5.4) with generalized Hooke’s relationship. Certain constraint(s) needs to be imposed between 

LPM parameters for different neighbors, such as  and  should be the same for the same 

type of neighbors for an isotropic material. 
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Given the LPM parameters, the interaction between particle I and its neighbor J can be 

calculated by differentiating the total stored energy with respect to its distance change as 

      (5.6) 

In LPM, the equation of motion for a particle I at time  is given by 

   (5.7) 

where  is mass,  is the displacement vector,  is the interaction force between 

particles I and J, and  is external force vector. 

Energy-based damage parameter and failure criterion 

Wei and Liu proposed a new fatigue criterion based on Distortional and dilatational energy 

terms[109], which can be implemented in the LPM framework. The new fatigue criterion 

considering contributions of equivalent tensile energy term, torsional energy term, and 

hydrostatic energy term is proposed as 

7!"#

7$%!"#
+ 7!&'

7$%!&'
+ 7(

7$%(
≥ 1                                          (5.8) 

where 𝑊'() , 𝑊'*+ , and 𝑊,  are the equivalent cyclic tensile energy, equivalent cyclic 

torsional energy, and equivalent cyclic hydrostatic energy, respectively. 𝑊-.
'()  , 𝑊-.

'*+ , and 

𝑊-.
,  are tensile, torsional, and hydrostatic fatigue limit in terms of energy, respectively. 

Fatigue limit under hydrostatic stress amplitude is hard to measure, so a ratio 𝑘 parameter is 

used with the fatigue under uniaxial tensile loading as 

𝑊-.
, = 7$%!"#

3
                                                     (5.9) 

 Substituting Eq. (5.8) to Eq. (5.9), one can obtain  
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7!"#

7$%!"#
+ 7!&'

7$%!&'
+ 𝑘 7(

7$%!"#
≥ 1                                         (5.10) 

the parameter 𝑘 can be solved as: 

𝑘 = (+)+

6(.-;1)
                                     (5.11) 

where r is the ratio of the yield strength and ultimate strength. The parameter k is a material 

constant related to the Poisson’s ratio and yield-to-ultimate strength ratio. 

𝑊'() , 𝑊'*+ , and 𝑊,  can be calculated based on distortional and dilatational energy 

terms. A parameter t, the ratio of distortional and dilatational energy, is introduced before 

calculating 𝑊'() , 𝑊'*+ , and 𝑊,  . The ratio t of distortional and dilatational energy under 

tensile loading is  

𝑡 = 7,-.

7,-/ =
;0;1
.-;1

                               (5.12) 

As shown in Eq. (5.12), the ratio t is a constant, irrespective of the applied loading levels. For 

other multiaxial loading cases, this ratio is not a constant and depends on the loading. For larger 

value of t (𝑡 = 7,-.

7,-/ >
;0;1
.-;1

), it indicates larger contribution from distortional energy. The 

extreme value is infinity which corresponds to the pure torsional loading (i.e., 𝑊#$&=0). For 

smaller value of t (𝑡 = 7,-.

7,-/ <
;0;1
.-;1

), it indicates smaller contribution from distortional energy. 

The extreme value is zero which corresponds to the hydrostatic loading (i.e., 𝑊#$&=0). It is 

interesting to see that the three special values 0, ;0;1
.-;1

, and +inf are three special loading 

conditions (e.g., hydrostatic loading, pure tensile loading, and pure torsional loading). The 

three special values divide the t range into two segments: one segment can be treated as a 

combined tensile + torsional loading and the other can be treated as the combined tensile + 

hydrostatic loading.  
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Based on this representation, we proposed the following concept to develop a multiaxial 

fatigue model. First, calculate the equivalent tensile energy by maximizing the extraction of 

proportional distortional energy and dilatational energy from the system. Mathematically, 

𝑊'() = min	{ 6
.-;1

𝑊#$& , 6
;0;1

𝑊#$%}         (5.13)                                    

After this extraction, there may be remaining energy (either dilatational energy or distortional 

energy). The equivalent torsional energy is the remaining distortional energy, and the 

equivalent hydrostatic energy is the remaining dilatational energy.  

As a summary, the calculation of equivalent energy terms is summarized in Table 1. In 

practice, the ratio of dilatational and distortional t, is calculated first. Table 1 is then used to 

find equivalent energy terms and substituted to proposed multiaxial fatigue model (Eq. (5.8)) 

for fatigue analysis. 

Table 1 Summary of the equivalent energy term calculation in the proposed model 

𝑡 
𝑡 =

𝑊#$%

𝑊#$& ≥
2 + 2𝜈
1 − 2𝜈 𝑡 =

𝑊#$%

𝑊#$& ≤
2 + 2𝜈
1 − 2𝜈 

𝑊'() 𝑊'() =
3

1 − 2𝜈𝑊
#$& 𝑊'() =

3
2 + 2𝜈𝑊

#$% 

𝑊'*+ 𝑊'*+ = 𝑊#$% − 𝑡𝑊#$& 𝑊'*+ = 0 

𝑊, 𝑊, = 0 
𝑊, = 𝑊#$& −

𝑊#$%

𝑡  

Failure 

criterion 

7!"#

7$%!"#
+ 7!&'

7$%!&'
≥ 1                                      𝑊'*+

𝑊-.'*+
+ 𝑘

𝑊,

𝑊-.'()
≥ 1 

 

The details of the fatigue criterion derivation can be seen in Ref[109]. 
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For finite fatigue life prediction, the damage parameter should be correlated with the life 

(i.e., number of loading cycles). Eq. (5.10) can be rewritten as 

𝑊'() + 𝑠𝑊'*+ + 𝑘𝑊, ≥ 𝑊-.
'()        (5.14) 

where 𝑠 = 7$%!"#

7$%!&'
. The left-hand side of the equation can be treated as the effective energy term 

𝑊(??
'()  and can be used to correlate with the fatigue life using the uniaxial energy–N curve 

𝑓(𝑁?) as 

𝑊(??
'() = 𝑊'() + 𝑠𝑊'*+ + 𝑘𝑊, = 𝑊@0

'() = 𝑓(𝑁?)      (5.15) 

where the ratio s is redefined as 𝑠 =
710
!"#

710
!&'. 𝑁? is the certain cycle number to failure. The 𝑊-.

'() 

and 𝑊-.
'() are replaced by 𝑊@0

'() and 𝑊@0
'*+, respectively, which are fatigue strengths at finite 

fatigue life 𝑁?. Eq. (5.15) is a nonlinear equation about 𝑁? and numerical method can be used 

to solve for 𝑁?	[28]–[30].  

5.3 Implementation 

The aforementioned energy-based criterion can be implemented in LPM scheme to analysis 

material fatigue problems. In particular, the fatigue criterion used is bond-based, in which the 

critical energy on is defined. Once the critical energy is reached by a bond during the 

simulation step, the bond is considered broken and removed from future simulation steps. The 

entire fatigue process can be tracked by the bond breaking process. Because the energy fatigue 

criterion is based on the distortional and dilatational energy components, we first calculate the 

energy components on bonds, and then use the fatigue criterion to determine the bond fatigue 

damage. 
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Bond energy components calculation in LPM 

For any particle I, the interaction between particle I and its neighbor J, i.e., force of bond 

IJ, is 

    (5.16) 

The increment formulation at the nth loading step is 

    (5.17) 

where . 

The interaction between particle I and its neighbor J at the nth loading step can be rewritten as 

     (5.18) 

 Thus, the energy increment for particle I at the nth loading step can be calculated as 

    (5.19) 

and the total energy at particle I at the nth loading step is 

     (5.20) 

The total energy in Eq. (5.20) can be decomposed into dilatational and distortional parts which 

are correspondent to volume change and shape change, respectively. Due to the regularity of 

unit cells for each particle, the volume change can be calculated in terms of average bond 

length change. And the average bond length change is 

        (5.21) 

The shape change of each unit cell is . Therefore, the distortional energy can be 

obtained by subtracting the volumetric change portion from Eq. (5.21) as 
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    (5.22) 

Thus, the force increment associated with this distortion energy can be expressed as 

    (5.23) 

Similar to above process, the bond force between particle I and J associated with shape 

change at the nth loading step and the distortional energy of particle I can be expressed as 

    (5.24) 

    (5.25) 

    (5.26) 

The bond distortional energy between particle I and J at the nth loading step and the total 

distortional energy has similar process as  

    (5.27) 

    (5.28) 

The bond dilatational energy is associated the volume bond stretch as 

    (5.29) 

    (5.30) 

Bond fatigue damage calculation 

The bond fatigue damage can be computed after we obtained the bond energy components. 

Following the process of the energy-based fatigue criterion, first the parameter t of the bond 

between particle I and J, the ratio of distortional and dilatational energy, is calculated as 

𝑡IJ =
K34
,-.

K34
,-/                              (5.31) 
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According to Table 1, the parameter t is used to find the suitable equivalent tensile, torsional 

and hydrostatic energies on the bond. The effective tensile energy, which is determined by 

these three energies, is used to solve the bond fatigue life as 

(𝑈(??'())IJ = (𝑈'())IJ + 𝑠(𝑈'*+)IJ + 𝑘(𝑈,)IJ = 𝑈@0
'() = 𝑓(𝑁?)     (5.32) 

LPM process for fatigue simulation with the energy-based fatigue criterion 

Due to material fatigue often involves a large number of loading cycles in range from 

thousands to millions, we divide loading cycles to several segments, which have corresponding 

cycle numbers N. We assume that bonds are only broken at the end of each segment, i.e., we 

simulate one cycle load for the ith segment, and the ith iteration of the ith segment in LPM is 

equivalent to applying N cycles loading. The number of loading cycles N is set to 1000 in this 

study. The bond fatigue damage is computed in the end of each segment iteration. If the damage 

is greater than 1, the bond is broken and the particles-bonds system in LPM is updated for the 

next segment iteration. The scheme detail of LPM for fatigue is illustrated using a flowchart 

in Fig. 5-1. The bond fatigue damage is calculated once in each segment. Fatigue failure can 

be defined as the critical number of particles involving bond breakage or critical crack length. 
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Figure 0-27Flowchart of Fatigue Simulation in LPM Scheme 
5.4 Numerical Examples 

In this section, several benchmark elastoplastic problems are modeled using LPM with the 

energy-based multiaxial fatigue criterion. In order to obtain the static solution, the Atomic-

scale Finite Element Method (AFEM) [58] is used as an implicit solution scheme. For all the 

examples in this section, the simple cubic lattice structure is used to discretize the solution 

domain. 

Fatigue crack propagation 
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In this example, we further demonstrate the modeling capability of the energy-based 

multiaxial fatigue criterion for fatigue crack simulation. Material used in this section is 

Aluminum 7075 with Young’s modulus , Poisson’s ratio . The specimen 

has dimension of 0.01x0.01x0.001 m. The initial crack is 0.002m. The top left edge is fixed in 

all three directions. Uniformly distributed cyclic tensile loadings from 0 kN to 0.5 kN are 

applied on the top and bottom surfaces in the y and negative y directions, respectively. The 

load ratio R = 0. Fig.6 (a) shows the geometry of the specimen with an initial crack. The red 

particles indicate the initial crack. Fig. 5-2 (b) shows the crack growth under the applied cyclic 

loading.  

 

Figure 0-28 Snap Shots of the Fatigue Crack Propagation 
 

In this example, the Paris law curve of the crack growth rate and the range of stress intensity 

factor is compared with experimental data. The experimental data are from the open 

70 GPa=E 0.32=v



 106 

literature[110]. The comparison between the LPM results and the experimental data is shown 

in Fig. 5-3.  

 

Figure 0-29 Comparison of Fatigue Crack Growth Rate 

LPM simulation curve is matched with the experimental Paris law curve in Fig. 5-3 as 

expected. It validates that the energy-based multiaxial criterion integrated with LPM can 

simulate the fatigue crack propagation. 

Fatigue cracks of composites 

In this section, bi-phase materials fatigue damage is studied to demonstrate the LPM has 

the capability of complex material and structural fatigue analysis. It is hard to find experimental 

results of bi-phase material fatigue damage in open literature. In the future, if experimental 

data of such complex material is available, the LPM simulation results will be compared and 

validated with it. The purpose of this section is to show the flexibility of the LPM for complex 
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material in fatigue analysis. There is an assumption used in this section that the properties of 

the interface bonds taken as the arithmetic average of the two different material phases.  

The microstructure of statistical bi-phase materials can be modeled by the following 

random field [111] which is obviously non-Gaussian, 

𝐼(𝒙, 𝜃) = @0,			𝑖𝑓	𝑡ℎ𝑒	𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙	𝑎𝑡	𝒙	𝑖𝑠	𝑖𝑛	𝑏𝑙𝑎𝑐𝑘	𝑝ℎ𝑎𝑠𝑒	1,			𝑖𝑓	𝑡ℎ𝑒	𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙	𝑎𝑡	𝒙	𝑖𝑠	𝑖𝑛	𝑤ℎ𝑖𝑡𝑒	𝑝ℎ𝑎𝑠𝑒  (5.33) 

This non-Gaussian random field is widely simulated using the translation theory based on 

Karhunen–Loève expansion [112], which represents the second-order statistics. A general 

random field can be expressed as, 

𝑤h(𝑥, 𝜃) = 𝑤i(𝑥) +3𝜆$𝑓$(𝑥)𝜉$

L

$E.

 (5.34) 

where, and are eigen pairs solved form the second Fredholm integral equation,  

k𝐶(𝑥., 𝑥;)𝑓$(𝑥.)𝑑𝑥.
M

= 𝜆$𝑓$(𝑥.) (5.35) 

where, 	𝐶(𝑥., 𝑥;)  is the covariance function. The covariance function of the real material 

microstructure can be characterized by the two-point correlation function [113]. 𝜉$ contains a 

set of uncorrelated random variables with zero mean and unit variance. For fixed 𝑀 terms, it 

has been proved that the K-L approximation is optimal among series expansion methods with 

respect to the global mean square error. For the Gaussian random field, 𝜉$ are independent 

standard normal variables. But for non-Gaussian cases, the distribution of 𝜉$ is non-Gaussian 

and unknown. The main idea is to find an underlying Gaussian random field that can match 

il ( )if x
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the statistics of the target random field after a nonlinear mapping. The expression of a general 

random field is given as, 

𝑤(𝒙, 𝜃) = 𝑇(𝐺(𝒙, 𝜃)) (5.36) 

where,  𝐹@(⋅) represents the CDF of the target marginal distribution. 𝑇(⋅) = 𝐹@-.{Φ(⋅)} is the 

nonlinear translation form the underlying Gaussian distribution to the target non-Gaussian 

distribution. More specifically, the used nonlinear translation is defined as, 

𝑇(𝐺(𝒙))

= @0, 𝑖𝑓	𝐺(𝒙) ≤ Φ-.(𝑝>), 𝑡ℎ𝑒	𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙	𝑎𝑡	𝑥	𝑖𝑠	𝑖𝑛	𝑏𝑙𝑎𝑐𝑘	𝑝ℎ𝑎𝑠𝑒	
1, 𝑖𝑓	𝐺(𝒙) > Φ-.(𝑝>), 𝑡ℎ𝑒	𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙	𝑎𝑡	𝑥	𝑖𝑠	𝑖𝑛	𝑤ℎ𝑖𝑡𝑒	𝑝ℎ𝑎𝑠𝑒

 
(5.37) 

where, 𝑝> denotes the volume fraction of material in black phase. Determining the optimal 

covariance function of the underlying Gaussian random field follows the iterative 

approximation algorithm in [114]. The major benefit of reconstructing microstructure by non-

Gaussian random fields is the high efficiency. And it can also satisfy the first and second-order 

statistics. 

Bi-phase material samples are generated with two different materials: Aluminum 7075 (red 

particles in Fig. 5-4) and A533B steel (blue particles in Fig. 5-4). The geometry has dimension 

of 0.01x0.01x0.001m. Uniformly distributed cyclic tensile loadings from 0 kN to 0.8 kN are 

applied on the top and bottom surfaces in the y and negative y directions, respectively with the 

load ratio R = 0. Fig. 5-4 (a) show the microstructures of 3 bi-phase materials before cyclic 

loading. There is no initial crack. Fatigue crack initiation are presented as white particles 

shown in Fig. 5-4 (b). Fig. 4 (c) shows the fatigue failure pattern after fatigue crack 
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propagation. Since the samples are in three-dimensions, we rise the transparency of particles 

to show inner fatigue crack patterns. 
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(a) (b) (c) 
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Figure 0-30 Fatigue Crack Initiation and Propagation in Bi-phase Material 
It can be seen that the crack initiations occur near material discontinuities and force 

boundaries as expected. For the fatigue crack propagation, most fatigue failure particles are 

Aluminum 7075, which has smaller fatigue strength than A533B steel.  

5.4 Discussion and Conclusions 

Lattice Particle Method (LPM) is a discontinuous approach for modeling of solid materials. 

It removes the restriction of Poisson’s ratio in traditional lattice spring models by introducing 

only axial interactions among discrete particles. The fatigue criterion based on distortional and 

dilatational energy can be integrated with LPM to do fatigue analysis. By comparing LPM 

simulation results with experimental data, several conclusions based on this study are 

concluded as follows. 

(1) For fatigue crack propagation, LPM predictions have a good agreement with experimental 

Paris law curve. The fatigue criterion can predict fatigue crack propagation with discrete 

computational mechanics models; 

(2) Bi-phase material fatigue analysis shows the potential of LPM for complex material and 

structural fatigue simulation. 

The energy-based fatigue criterion is capable of modeling fatigue crack initiation and 

propagation using LPM. The current study was based on simple cubic packing. For other 3D 

packing patterns, similar fatigue criterion can also be proposed but may need further validation. 

Future work is to apply the developed scheme to model fatigue and fracture of more complex 

materials. 
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6. FRACTURE ANALYSIS FOR MICROSTRUCTURES USING DEEP 

NEURAL NETWORKS AND LATTICE PARTICLE METHOD 

6.1 Introduction 

Material fracture failure is a catastrophic issue for many practical engineering structures 

and components. Accurate fracture prediction is necessary to ensure the safety of these 

structures and components. The finite element method (FEM) is the most widely used approach 

for material mechanical modelling. Since FEM is based on partial differential equations, it may 

be hard to solve problems involving spatial discontinuities, such as fracture and material 

interface. Lattice particle method (LPM) is a recently developed discontinuous approach[53]. 

It treats material under study as a collection of interacting discrete elements or particles. And 

each discrete element or particle interacts with neighbour discrete elements or particles up to 

a certain distance. Due to the intrinsic characteristics of integro-differential governing 

equations in LPM, it is naturally suitable for discontinuous problems[10]. The development of 

LPM initially have been focused on elastic material[52], [53]. LPM has been demonstrated the 

capability of brittle material fracture simulation[10]. Chen et al. has extended LPM for 

simulations of heterogenous materials[115], composite materials[116]. Wei et al. proposed a 

rigorous formulation of LPM for ductile materials simulation[107].  

For material fracture simulation, there are two stages, elastic deformation and crack 

propagation. The elastic deformation is linear process, while crack propagation is a nonlinear 

process, because material stiffness is decreasing during fracture. An integration of incremental 

method with LPM is needed to solve nonlinear problems, i.e., LPM tracks nonlinear 

deformation using many time steps, which involving a lot of iterations. Therefore, the 
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incremental method brings high computational cost. Besides, in order to obtain accurate 

fracture simulation, a large number of particles is required in LPM, which makes the LPM 

simulation time-consuming. To reduce computational time, deep learning is considered with 

LPM in this paper. In the past decade, deep learning has been successfully used in many 

complex tasks, such as computer vision[117], natural language processing (NLP)[118],  and 

system control[119]. Deep learning also has been used by materials and mechanics scientist 

for material reconstruction[120] and material property prediction[121], [122]. For material 

fracture problems, most researchers have applied deep learning to predict fracture parameters, 

such as fracture energy[123] and stress intensity factor (SIF)[124]. Few works have been done 

to predict fracture patterns using deep learning. To authors’ knowledge, only research done by 

Hsu et al.[125] and Kim et al.[126] is related to fracture patterns prediction, which includes 

fracture’s spatial information. Hsu et al. simulated fracture crack propagation for both mode I 

and mode II loading conditions with an initial crack. Kim et al. predicted collision fracture 

patterns on a disk. Both these two works used convolutional neural networks (CNNs), an 

algorithm of deep learning suitable for images processing. However, for arbitrary geometries 

and loading conditions, a deep learning model based on CNNs is still lacking. 

Inspired by the above-mentioned works, an integration of an efficient deep learning model 

and LPM is proposed in this paper to predict fracture pattern for arbitrary geometries and 

loading conditions. LPM and deep learning model has different advantages for different stages 

in fracture simulations. Comparing LPM, a deep learning model is more efficient which is 

suitable for nonlinear crack simulation. For the linear elastic stage, LPM has better accuracy, 

and the computational cost is not high for the linear stage. Thus, we combine LPM and a 

proposed deep learning model for the linear stage and nonlinear stage, respectively. Figure 6-
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1 shows an example of the aforementioned linear-nonlinear process of material stress-strain 

curve to illustrate the proposed computational framework. It should be noticed that the 

geometry and loading conditions in our study are more complex than this example. LPM is 

used here to 1) simulate material elastic deformation in linear stage as input for the proposed 

deep learning model; 2) generate a training dataset of fracture pattern. With this integration, 

computational accuracy and efficiency are both considered.  

 

Figure 0-31 Illustration of Linear-nonlinear Process and the Proposed Framework. 
This chapter is organized as follows. First, a brief review of LPM formulation and a CNNs 

algorithm is present in Section 2. Following this, the proposed model of combining LPM and 

a deep neural network is developed in Section 3. Next, the details of model implementation 

and experimental results are in Section 4. In Section 5, some conclusions are drawn.  
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6.2 Related Works 

The investment in this paper proposes a computational framework for the process that 

involves a linear stage at the beginning and a nonlinear stage following the linear stage. Brittle 

material fracture belongs to this linear-nonlinear process. Under a specific loading, the 

deformation of the material is linear elastic before an occurrence of crack nucleation, and then 

with crack propagation, the deformation becomes nonlinear until fracture failure. It is 

demonstrated that LPM has the capacity to simulate both linear and nonlinear material 

behaviors[52], [107]. For the nonlinear simulation, incremental method is integrated with LPM 

to track the nonlinear process. The incremental method brings a large number of iterations; 

therefore, the nonlinear simulation is time-consuming. Here we propose a surrogate way to 

utilize a deep learning model to replace LPM for nonlinear simulation, which allows us to 

predict the fracture process efficiently. Comparing the deep learning model and LPM, the deep 

learning model has lower computational cost, however, the simulation of LPM is more 

accurate. Thus, considering both computational efficiency and accuracy, we combine LPM and 

the deep learning model for linear elastic stage and nonlinear fracture stage, respectively.  

Lattice particle method 

LPM formulation depends on the lattice structure used to discretize the solution domain. 

Various lattice structures have been employed in LPM, such as triangular and square lattice 

structures for two-dimensional analysis, and simple cubic, body-centered cubic and face-

centered cubic lattice structures for three-dimensional analysis, as shown in Figure 6-2.  
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Figure 0-32 LPM Lattice Packings 
In LPM, a typical particle can interact with neighboring particles and remote particles 

depending on how many layers of particles is involved in the interaction distance. For a given 

interaction distance, unit cell is identified for each type of neighbor. And the potential energy 

for a particle is the summation of the energy associated with these unit cells. For each unit cell, 

the stored energy can be separated into two parts, a local pairwise energy corresponding to the 

stretch between two particles and a non-local multi-body energy associated with its volume 

change. The details of the LPM theory can be found in Chapter 2 and Refs[56]. 

Convolution neural networks and fully convolution networks 

A L-layer deep neural network can be expressed as a function as,  

   (6.8) 

with parameters W = {W1, W2, ..., WL} and input x. The function σ is called activation 

function, which acts on all components of the input vector. During the training phase, the 

network weights are determined by minimizing the difference between network output and 

observations. It is found that, given enough nodes, neural networks with non-linear activation 

function have the potential to approximate any complicated functions[127]. 

CNNs, an algorithm of deep neural networks, has achieved a great success on image 

learning tasks in the computer vision domain. The strength of feature extraction gives CNNs 

2 2 1 1( | ) ( ,..., ( , ( , )))L Ly x W W W W xs s s=
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enormous computational power when dealing with domain specific features. While the sharing 

of network parameters reduces the computational complexity without compromising feature 

extraction capabilities.  

The development of CNNs originated from the competition of handwritten digit 

recognition in the early 90s. LeNet[128] is one of the pioneering frameworks but the following 

research standstill for a while due to the computing power of computer hardware. 

AlexNet[117] is credited as the first work in the field of computer vision with the significant 

advancement of computational capabilities and GPUs. AlexNet is much bigger than LeNet in 

considering the network size and achieved great improvement on image classification 

accuracy. The next milestone work is GoogLeNet[129] architecture namely Inception-v1 that 

gives more network utilization with fewer parameters than AlexNet. Further refinement of the 

Inception model led to the newer version[130]–[132] with the use of batch normalization. The 

universal use of a small 3x3 convolutional filter was first introduced in VGGNet[133] to deal 

with the parameter exploding issue when adding the depth factor in CNNs. Deep residual 

learning[134] is another milestone work where the layers can learn residual functions with 

respect to inputs. Deep residual learning is proved that is especially useful when training of 

much deeper networks with much performance gain. 
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Figure 0-33 Structure of FCN. Source: Figure adopt from the Ref[135] 
In our deep learning model, we adopt a fully convolution network (FCN)-based 

model[136], a special type of convolution neural network (CNN), that only contains 

convolution layers. CNNs are investigated to replace some fully connection layers in a typical 

deep neural network with convolution layers, which take advantage of visual imagery[135]. 

An architecture of an FCN is shown in Figure 6-3. It can be seen that the outputs of FCNs are 

pixelwise labeled images with same revolution of inputs. This specialty allows FCNs to 

commonly be applied to semantic segmentation of images. 

5.3 Proposed Models 

Problem statement 

Fracture propagation is stochastic with random state of microstructure. The fracture pattern 

is often considered highly relating with material microstructures and loading conditions. Thus, 

our goal is to predict fracture pattern efficiently with given material microstructures and 

loading conditions. In this paper, we investigate fracture patterns in two-dimensional 

representative volume elements (RVEs), with the dimension of 0.01m by 0.01m. Figure 6-4 

shows the loading conditions in this study. Top and left surfaces are fixed along vertical and 

horizontal axes, respectively, and the bottom and right surfaces are applied with uniform 

distributed displacement-controlled loads in downward and rightward directions, respectively. 

The ratio of these two loads magnitudes is random, which introduces randomness from loading. 

For LPM simulation, specimens are loaded slowly such that quasi-static assumption is valid.  
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Figure 0-34 Loading Condition of RVEs 
Some stochastic microstructures and corresponding fracture patterns under uniaxial loads 

are shown in Figure 6-5. Red circles in microstructures represent holes in RVEs. It can be seen 

that positions of holes are stochastic and the total number of holes in one RVE is a constant of 

16. We assign the holes radius at 0.0006m and avoid overlap of holes for RVEs generation. 

Fracture is represented in red color. We aim to predict fracture patterns using LPM and a deep 

neural network with a specific microstructure and a loading condition. 
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Figure 0-35 Microstructures and Corresponding Fracture Pattern 
Our approach draws on success of LPM for the accuracy of simulation and deep learning 

for efficient nonlinear prediction. LPM can be used to compute elastic deformations of RVEs 

and then the proposed deep learning model takes elastic deformations and microstructures into 

account for fracture patterns prediction. For the proposed deep learning model, the elastic 

deformation and microstructures are considered as information of loading and material 

properties, respectively. Fracture pattern data is generated by LPM for training of the deep 

learning model.  

LPM for fracture simulation 

In order to generate training data of fracture patterns and elastic deformation, a fracture 

criterion is implemented in LPM. As discussed at the beginning, the fracture simulation is one 

of the most important advantages of LPM. Critical energy/force/elongation criteria can be 
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derived based on different material properties, such as fracture toughness and material strength. 

In particular, the fracture criterion used in this paper is bond-based, in which the critical 

elongation is set as 0.45% bond length. Once the critical elongation is reached by a bond during 

the simulation step, the bond is considered broken and removed from future simulation steps. 

The entire fracture process can be tracked by the bond breaking process. The flowchart of LPM 

fracture simulation is shown in Figure 6-6.   
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Figure 0-36 Flowchart of LPM Scheme for Fracture Simulation 
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In our study, each RVE consists of 26187 particles, in which particle structure is triangular. 

We define the failure of particle is that the particle has broken bonds. Once the number of 

failure particles reaches 5% of total number of particles, the material is considered as fracture 

failure and then material fracture pattern is collected, where particle status is labeled as 1 or 0, 

representing failure or not failure.  

The FCN details 

Fracture pattern prediction can be regarded as a task of semantic segmentation, which 

involves pixel-wise labeling to represent fracture failure or not. The proposed deep learning 

model adopts the concept of FCNs, in which data in the network is operated as images. Input 

data is a three-dimensional array of size 𝑐$) × ℎ × 𝑤, where 𝑐$) denotes channels number and 

ℎ × 𝑤 is image dimension. The size of output array is 𝑐*N' × ℎ × 𝑤, where image dimension 

is same as input, but channels number can be different. In our investigation, the input channels, 

𝑐$) , is three including a binary image of microstructure and two displacement images in 

horizontal and vertical directions, respectively. The output channels number is one, which only 

has one binary image of fracture pattern.  
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Figure 0-37 The Architecture of the Proposed FCN 
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The proposed neural network has three components, a convolution network, a 

deconvolution network, and an output network. The convolution network extracts features, and 

the deconvolution network labels pixels based on the features from the convolution network.  

The structure of the proposed FCN is shown in Figure 6-7, For the FCN, a batch normalization 

layer normalizes input distribution to standard Gaussian distribution. The convolution network 

has convolutional layers of a fixed filter size (5×5) with ReLU activation functions. The ReLU 

function is expressed as,  

     (6.9) 

After each convolutional layer, there are batch normalization layers and max-pooling 

layers. Each pooling layer is of stride 2, down-sampling these layers by a factor of 2 along both 

width and height. The deconvolution network consists of up-sample layers and convolution 

layers following batch normalization layers. In deconvolution networks, up-sample method is 

bilinear interpolation with a factor of 2, and activation functions are ReLU. Because the output 

of the deep network is used for binary classification, the output network is a convolution layer 

with a logistic activation function of sigmoid. The sigmoid function in the output layer is given 

as, 

     (6.10) 

The output from the proposed network is probability of fracture failure, and the threshold 

is set to 0.5, i.e., the pixel is labeled as fracture failure if its output value is great than 0.5, 

otherwise, it is labeled as no fracture. 

( ) max{0, }ReLU x x=

1( )
1 exp( )

sigmoid x
x

=
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Training the FCN model involves minimizing a binary cross entropy loss function as: 

  (6.11) 

where N is total number of samples, represents label target and represents 

probability.  

Physical constraint in FCN 

There is a physical constraint in this problem that the fracture failure cannot occur in hole 

area, i.e., output pixels in hole area has zero probabilities of fracture failure. In order to improve 

the accuracy of the network, we apply this physical constraint following the output layer in the 

deep learning model by pixelwise multiplying the microstructure array as 

     (6.12) 

where y is the output after physical constraint, T is the function representing the proposed 

deep network, x is the input of the deep network, xm is the microstructure channel in the input. 

In the microstructure array, pixels in hole area are represented as zero, therefore, the output 

values of pixels in hole area are fixed to zero by the pixelwise multiplication.  

5.4 Experiments and Results 

In this section, we implement LPM and the deep learning to predict fracture pattern. Firstly, 

a dataset for the network training is generated by LPM. Then, we tune the neural network with 

the training dataset. Nest, the proposed model is evaluated in many aspects. 

Model training 

1

1 log( ( )) (1 ) log(1 ( ))
N

BCE n n n n
n
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LPM is carried out to simulate 900 fracture patterns of different RVEs under random 

loadings. Thereinto, 80% of them are used for model training, and 20% of them are testing 

data. To be compatible with format of deep network implementation, all arrays from LPM 

simulations are converted to two-dimensional grids of size 128×128, based on the spatial 

coordinates corresponding to array elements, in which the nearest extrapolation method is 

used. The training dataset contains a binary array of RVEs’ microstructures, two arrays of 

elastic deformations in horizontal and vertical directions and a binary array of fracture pattern. 

The microstructures and elastic deformations arrays are inputs, and the fracture patterns are 

output targets.  

During training, the model performance is evaluated on testing dataset after each epoch. 

The detail of accuracy metric used for evaluation is discussed in next subsection. Given a large 

number of epochs for model training, overfitting phenomenon is found, i.e., the training 

accuracy metric is increasing while testing accuracy metric is decreasing. To avoid it, we adopt 

an early stopping approach that the training is decided to be stopped when the testing accuracy 

metric is smaller than its maximum value over ten epochs. For model tuning, the standard 

ADAM optimization algorithm and backpropagation are implemented in Pytorch. The learning 

rate for the ADAM optimizer was initialized to 0.0001 with a geometric decay rate of 0.9 and 

0.999 for first and second moment estimates, respectively.  
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Figure 0-38 Loss History of Training and Testing Datasets 
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Figure 0-39 Predictions of the Deep Learning Model with Corresponding Microstructures 
and Truths 

Figure 6-8. depicts the loss history in the training process. Figure 6-9 shows the deep 

learning model predictions with ground truths. The first row represents microstructures of 

RVEs, and the second and third rows are fracture patterns from LPM simulations and the 

network, respectively. It can be observed that the prediction has a good agreement with the 

ground truth. This verifies the predictive ability to make a solid prediction for fracture pattern. 

Model evaluation 

It should be noticed that fracture pattern is a kind of unbalance data that fracture pixels is 

around 5% of total pixels as we defined, therefore, F1 score is used as an accuracy metric to 

evaluate the model prediction performance. F1 score is the harmonic mean of the precision and 

recall, which is suitable for binary skew classification. The precision is the proportion of 

correct positive predictions, as 

     (6.13) 

where TP is true positives, FP is false positives. The recall is the proportion of true 

positives which can be predicted, as 

      (6.14) 

where NP False negatives. Thus, the expression of F1 score is given as 

    (6.15) 

TPprecision
TP FP

=
+

TPrecall
TP NP

=
+

1 2 precision recallF
precision recall

´
= ´
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Figure 0-40 F1 Score History of Training and Testing Datasets 
Figure 6-10. shows the F1 score history in the model training process. After tuning the 

proposed model, the F1 scores for training and testing datasets can reach to 0.8 and 0.5, 

respectively. However, the F1 score metric is not sufficient to evaluate the model performance 

in this study, because F1 score metric computes the prediction as a one-dimensional flatten 

array and ignores spatial information in prediction. To explain this issue, we use a typical 

example of two-dimensional array of size 8×8. In Figure 6-11, a ground truth and two 

predictions are given. The F1 scores for two predictions are 0, because both two predictions 

have no positives correctly predicted. While the left prediction is considered much more 
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accurate than the right prediction, since the predicted positives in the left prediction is spatially 

closer to the true positives in the ground truth. We then adopt max pooling with a factor of 2 

to extract the spatial accuracy of the ground truth and two predictions, as shown in Figure 6-

12. After max pooling, the F1 scores for the left and right predictions are changed to 1 and 0, 

respectively.  

 

Figure 0-41 An Example of F1 Score Calculation without Max Pooling Operation 
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Figure 0-42 An Example of F1 score Calculation after Max Pooling Operation 

This indicates that max pooling operation can be used for spatial accuracy evaluation, and 

the F1 score is higher with max pooling if the prediction has better spatial accuracy. Therefore, 

we perform max pooling for the predictions from the proposed model and the ground truths 

generated by LPM, and then we compare the F1 scores to show the spatial accuracy. The array 

size is changed from 128×128 to 64×64. It can be seen in Figure 6-13, the F1 score is improved 

to 0.6, which demonstrates the spatial accuracy of the proposed model.  
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Figure 0-43 F1 Score History of Training and Testing Datasets after Max Pooling 

Effect of physical constraints 

The contribution of the physical constraint can be obtained via accuracy metric, shown in 

Figure 6-14. Comparing the F1 scores with and without the physical constraint, it can be 

observed that the physical constraint improves the model accuracy and accelerates the tuning 

process by reducing the model training iterations before overfitting. This work shows that the 

potential of utilizing physics prior knowledge to help designing neural network for physics 

problems. 
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Figure 0-44 The Physical Constraint Effect Shown by F1 Scores 

Comparison of different loadings 

A benchmark is investigated to verify the predictive power of the proposed model, which 

has a given arbitrary microstructure under two different loadings. The microstructure is shown 

in the first row in Fig. 15. The first loading scenario is to load the specimen on right surface in 

horizontal direction, and the second loading scenario applies load on the bottom surface 

downward. The boundary conditions for two scenarios are same that left and top surfaces are 

clamped in horizontal and vertical directions, respectively, see the second row in Figure 6-15. 

The third and fourth rows in Figure 6-15. present the ground truths and the predictions. As 

expected, the predicted fracture patterns are similar with the ground truths, meanwhile, with 
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same microstructure is predicted patterns are different for different loadings. This benchmark 

demonstrates that the proposed model is able to predict the fracture pattern without a limitation 

of material microstructure and loading conditions. 

 

 

Figure 0-45 Fracture Patterns under Different Loadings with Same Microstructure 



 136 

5.5 Conclusion 

In this paper, a new computational framework is developed to predict fracture pattern under 

various loading conditions with different microstructures. The framework includes LPM for 

elastic linear deformation simulation and a proposed deep learning model for nonlinear fracture 

simulation, which considers both computational accuracy and efficiency. LPM is used to 

calculate material elastic displacement as the inputs for the deep learning model, and also 

generate dataset to tune the deep network. The proposed deep learning model is based on the 

concept of FCNs. A physical constraint is integrated to improve the deep learning model 

predictive performance. The proposed model is evaluated by different microstructures and 

loading conditions. Several major conclusions are 

- The proposed computational framework takes advantages of LPM and the deep learning 

model and can predict fracture pattern efficiently without losing accuracy. Predicted 

fracture patterns of different microstructures and different loading conditions have good 

agreement with ground truths; 

- The proposed deep learning model with a physical constraint has better predictive 

performance. The applied physical constraint improves the F1 score 10% higher and 

reduces iteration number of the model training; 

- Using max-pooling operation, we demonstrate that the proposed model considers the 

spatial accuracy of prediction. 

The proposed deep learning model is integrated with LPM in this study. It should be 

mentioned that the deep learning model has potential to integrating with other mechanics 

models to predict material fracture patterns. Future work will be toward extending the proposed 

model to fracture analysis of ductile materials and composite materials, which will require 
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more complex mechanics models. The performance of the deep learning network has potential 

to be improved by modifying the network structure with CNNs algorithms, such as 

ResNet[134] and Feature Pyrimad Networks (FPN)[137]. 
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7. SUMMARY AND FUTURE WORK 

7.1 Conclusions 

In this dissertation, we make a lot of efforts to simulate material failure. First, a yield 

criterion based on maximum distortional energy is developed for LPM, which is suitable for 

failure analysis due to its discontinuity. Then we investigate multiaxial fatigue models for 

random and constant biaxial loadings. Following this, the multiaxial fatigue model is integrated 

with LPM for fatigue simulation of bi-phase material. Finally, a surrogate model based on 

neural network is proposed to reduce computational cost of fracture failure simulation with 

various microstructures. 

In Chapter 2, following the basic idea of its formulation in classical continuum mechanics, 

a maximum distortion energy criterion was formulated for LPM. Important ingredients for this 

nonlocal yield criterion including additive decomposition of bond stretch, incremental 

formulation of LPM for plastic analysis, nonlocal yield function, consistency conditions and 

equivalent strain hardening rules were developed. An implicit solution scheme for static or 

quasi-static elastoplastic problems using the developed yield criterion in LPM was outlined. 

Several benchmark problems including monotonic tensile yielding and cyclic yielding with 

isotropic, kinematic and mixed strain hardenings were tested and model predictions were 

compared against theoretical and numerical solutions. From the comparison, the developed 

nonlocal maximum distortion energy criterion is valid and can yields accurate results for 

elastoplastic materials. 

In Chapter 3, a stress-based fatigue model under arbitrary random multiaxial loading is 

proposed using the Liu-Mahadeven critical plane concept and an equivalent stress 

transformation method. The current investigation focuses on the high cycle fatigue (HCF). 
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Linear damage accumulation is shown to have satisfactory results and the used spectrum are 

not highly nonstationary, such as high-low and low-high step loading.  

In Chapter 4, a new energy-based fatigue model is developed to assess fatigue life under 

various multiaxial constant amplitude loading conditions with different loading paths. The 

energy-based model considers three fatigue damage contributions of tensile energy term, 

torsional energy term, and hydrostatic energy term. In case of only stress or strain reported, 

Garud cyclic plasticity model is integrated to calculate stress or strain hysteresis. Both 

proportional and non-proportional loading are considered in the validation. 

In Chapter 5, The fatigue criterion based on distortional and dilatational energy can be 

integrated with LPM to do fatigue analysis. The energy-based fatigue criterion is capable of 

modeling fatigue crack initiation and propagation using LPM. For fatigue crack propagation, 

LPM predictions have a good agreement with experimental Paris law curve. Bi-phase material 

fatigue analysis shows the potential of LPM for complex material and structural fatigue 

simulation. 

In Chapter 6, a new computational framework is developed to predict fracture pattern under 

various loading conditions with different microstructures. The framework includes LPM for 

elastic linear deformation simulation and a proposed deep learning model for nonlinear fracture 

simulation, which considers both computational accuracy and efficiency. LPM is used to 

calculate material elastic displacement as the inputs for the deep learning model, and also 

generate dataset to tune the deep network. The proposed model is evaluated by different 

microstructures and loading conditions. Predicted fracture patterns of different microstructures 

and different loading conditions have good agreement with ground truths.  
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7.2 Future Work 

There are many future works in the remainder of the investigation. It includes the following 

issues: 

1. Extension of LPM to more complex nonlinear constitutive laws of solids, such as 

viscoelasticity, cohesive zone model and crystal plasticity. This will make LPM to be 

applied to more different kinds of materials. 

2. Investigation of fracture failure criterion for LPM. Comparing with the fatigue criterion 

used in LPM, the fracture criterion is naïve depending on either critical bond stretch or 

bond force. More rigorous fracture criterion is needed for general facture failure 

problems, such as maximum normal stress and maximum shear stress fracture. 

3. Modifying the neural network with state-of -the-art CNNs algorithms, such as 

ResNet[134] and Feature Pyrimad Networks (FPN)[137] to improve the predictive 

performance. 
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