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ABSTRACT

Infectious diseases spread at a rapid rate, due to the increasing mobility of human

population. It is important to have a variety of containment and assessment strategies

to prevent and limit their spread. In the on-going COVID-19 pandemic, telehealth

services including daily health surveys are used to study the prevalence and severity

of the disease. Daily health surveys can also help to study the progression and

fluctuation of symptoms as recalling, tracking, and explaining symptoms to doctors

can often be challenging for patients. Data aggregates collected from the daily

health surveys can be used to identify the surge of a disease in a community. This

thesis enhances a well-known boosting algorithm, XGBoost, to predict COVID-19

from the anonymized self-reported survey responses provided by Carnegie Melon

University (CMU)-Delphi research group in collaboration with Facebook. Despite

the tremendous COVID-19 surge in the United States, this survey dataset is highly

imbalanced with 84% negative COVID-19 cases and 16% positive cases. It is tedious

to learn from an imbalanced dataset, especially when the dataset could also be noisy,

as seen commonly in self-reported surveys. This thesis addresses these challenges by

enhancing XGBoost with a tunable loss function, α-loss, that interpolates between

the exponential loss (α = 1/2), the log-loss (α = 1), and the 0-1 loss (α = ∞).

Results show that tuning XGBoost with α-loss can enhance performance over the

standard XGBoost with log-loss (α = 1).
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Chapter 1

INTRODUCTION

COVID-19, a disease caused by a coronavirus, originated in November 2019 and

has now reached pandemic levels across the globe [2]. Within a span of one and a half

years, the disease has infected around 126M people worldwide, leaving 2.76M reported

deaths as of March 26, 2021. In the United States of America, this disease has affected

both the personal and professional lives of people with 30.1M cases and around 547K

deaths as of March 26, 2021. The current gold standard detection of COVID-19

is through Reverse Transcription Polymerase Chain Reaction (RT-PCR) testing [3].

RT-PCR testing is expensive, time-consuming (takes up to 48 hours to get results) and

requires a manual intervention which could violate social distancing. As the pandemic

continues to evolve, it is useful to have multiple modalities to assess exposure risk.

On university campuses, viral infections can spread very quickly from classrooms to

dorm rooms, and eventually to the broader population. At many universities including

ASU, students, staff and faculty on-campus are required to report their symptoms

daily. These rich symptom survey data can be used to build an additional diagnostic

tool to help users evaluate their COVID-19 exposure risk. This Master’s thesis is

a part of the NSF RAPID project - “Federated Analytics Based Contact Tracing”,

which involves building machine learning models from user’s health survey data to

help assess and prevent COVID-19 risk.

Symptom-based survey questions can be converted into diagnostic features and

fed into a machine learning model to predict the risk of exposure. Additional forms of

surveys such as phonation-based surveys [4] etc. can be used to explain the severity

of the disease. Data analytics in the healthcare setting are often built based on linear
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models. Given that healthcare datasets contain many continuous and categorical

features, it is typical to use simple linear models to allow ease of interpreting results

and explainability. Regularized regression, decision trees and random forests lend

themselves well to deriving insights and explaining patterns in data. With a large

high-dimensional dataset, it is common to use computationally efficient algorithms

such as boosting algorithms.

Boosting algorithms train by adding weak learners iteratively, each trying to

correct its predecessor. These algorithms are fast and accurate when the dataset is

reliable and not noisy. However, in self-reported health survey responses, humans may

input error responses either intentionally or unintentionally. Additionally, healthcare

datasets may be highly imbalanced especially in settings such as on-going pandemic

where a large fraction of the population is still not infected. Thus, machine learning

models need to be robust to noise and imbalances in the dataset. Boosting algorithms,

such as AdaBoost [5], perform well with imbalanced data but are not noise-resistant

[6]. State-Of-The-Art (SOTA) gradient boosting based XGBoost logistic loss algorithm

is believed to outperform other linear models due to its robustness, hardware, and

software optimizations. These boosting algorithms are dependent on decision trees.

Decision trees use tree-like representation, where nodes branch the samples, based on

a feature threshold, and the leaves assign a class label to each sample.

With emerging diseases, such as the COVID-19, where testing is still limited with

only a few people in the population being exposed to the disease, the survey responses

data is inherently imbalanced and could be noisy as well. Thus, it is important to

be robust to noise in such health survey datasets. This thesis addresses that problem

and enhances XGBoost by incorporating a custom tunable loss function. Recently,

custom tunable loss functions were found to suit well for imbalanced and noisy binary

classification problems, as they interpolate between exponential loss, log-loss and 0-1
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loss [7]. We incorporate α-loss, originally introduced by Liao et al. [1], with XGBoost

to compare the performance of the native XGBoost log-loss with α-loss.

1.1 Related Work

DeCapprio et al. used the medicare data to build a COVID-19 risk index predictor

[8]. The risk index is predicted using the hospitalization days as a dependant variable.

Menni et al. used the top features from an app-based symptom tracker that tracks

symptoms from symptomatic and asymptomatic individuals to predict COVID-19 in

UK [9]. CMU Delphi survey group conducts health surveys across the US, to identify

and track symptoms among healthy and infected individuals [10]. Prior work on α-

loss by Sypherd et al. studies the performance of α-loss with logistic regression and

Convolutional Neural Nets (CNN) in noisy label settings [7], [11]. This thesis extends

the previous work on α-loss and studies its performance on a real-world problem.

1.2 Organization of the Thesis

This thesis is organized as follows:

• In Chapter 2, we summarize the well-known algorithm of XGBoost as well

as its generalization to α-loss. We introduce an enhanced algorithm, called

XGBoost.α, that incorporates α-loss with the native XGBoost, thus utilizing

the hardware and software optimizations of XGBoost with α-loss.

• In Chapter 3, we highlight the transformation and preprocessing strategies

applied to the large Facebook-CMU survey dataset.

• In Chapter 4, we analyze the outcomes of using XGBoost.α in imbalanced and

noisy settings.

3



Chapter 2

XGBOOST.α

Boosting was first introduced by Schapire and Freund [12], [13]. The key idea

behind boosting is to combine weak learners (decision trees) iteratively to build a

strong linear model. AdaBoost was the boosting algorithm that was first developed

[5]. AdaBoost is an exponential loss algorithm. Exponential loss is convex and the

loss value grows exponentially for wrong predictions. Although AdaBoost does very

well in reliable datasets, its performance degrades with noisy datasets. To tackle this,

a class of boosting algorithms such as XGBoost was introduced [14].

2.1 XGBoost Logistic loss

XGBoost is a fast and accurate gradient boosting framework. The XGBoost

logistic regression is a powerful solution to classification problems. The combined

rule-based logic of many weak learners can detect reasonable and explainable patterns

for approaching and solving classification problems. Given a dataset with n samples,

the objective value of the dataset (L) is given as the sum of the objective value of

each data point (l(yi, ŷi)). The effectiveness of boosting is determined by the loss

function, l(yi, ŷi), that compares the predicted target ŷi and the ground truth yi.

L =
n∑
i=1

l(yi, ŷi)

Boosting is done through boosting rounds, T . In each round, an optimal tree ft is

picked by XGBoost and is added on top of existing (t − 1) trees with xi as input.

Mathematically, ft is represented as,

ft = wq(x), ft εR
T (2.1)
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where w is the leaf weight vector and q(x) is a function that maps each data point to

the leaf index. A regularization term, Ω(fk), is added to penalize complex individual

trees.

L =
n∑
i=1

l
(
(yi, ŷi

(t−1)) + ft(xi)
)

+
K∑
k=1

Ω(fk)

XGBoost uses a convex loss function that is twice differentiable in order to optimize

the objective using second-order approximation.

L(t) ≈
n∑
i=1

[
l(yi, ŷ

(t−1)
i ) + gift(xi) +

1

2
hift(xi)

2

]
+

K∑
k=1

Ω(fk) (2.2)

where, gi and hi are first and second-order derivatives of the objective function,

l(yi, ŷi). In this iterative process, learning is done over iterations from t = 1 to T . By

simplifying 2.2 and rewriting L̃(t) in terms of instance sets Ij, we get

L̃ = −1

2

T∑
j=1

(
∑

iεIj
gi)

2∑
iεIj

hi + λ
+ γT (2.3)

where, γ and λ controls the trade-off between local objective values and model

complexity. The logistic regression loss function used in XGBoost is

l(y, ŷ) = −y log σ(ŷ − y) log(1− σ(ŷ)) (2.4)

where σ(x) = 1
1+e−x , is the sigmoid function.

2.2 XGBoost.α: Using α-loss in XGBoost

The class of loss functions α-loss, parametrized by α ∈ (0, 1) ∪ (1,∞) with

continuous extensions at 1 and ∞, was introduced by Liao et al. in [1] to quantify

a class of adversaries in a data privacy setting. More recently, Sypherd et al. has

studied in depth the application of α-loss to machine learning, and in particular, to

the canonical problem of classification including the problem of optimizing the loss

landscape for various learning models. Building on this, we incorporate this loss

5



family and redefine it in the context of XGBoost logistic regression to create a new

class of algorithms, namely, XGBoost.α.

Definition 1 Let P(Y) be the set of probability distributions over Y. We define α-

loss for α ∈ (0, 1) ∪ (1,∞), lα : Y × P(Y)→ R+ as

lα(y, P̂ ) :=
α

α− 1

(
1− P̂ (y)1−1/α

)
, (2.5)

and, by continuous extension, l1(y, P̂ ) := − log P̂ (y) and l∞(y, P̂ ) := 1− P̂ (y).

Observe that for (y, P̂ ) fixed, lα(y, P̂ ) is continuous and monotonically decreasing in

α. Also note that l1 recovers log-loss, and plugging in α = 1/2 yields l1/2(y, P̂ ) :=

P̂−1(y)− 1.

The above definition of α-loss presents a class of loss functions whose probability

estimate changes as the value of α varies (figure 2.1). As α-loss is continuous, convex,

Figure 2.1: α-loss, as a Function of the Probability py(Y ) for a given Y ε Y . This

Figure is Taken from the Original Work of [1]

twice differentiable and decomposed over individual data points, it can be extended

to XGBoost by deriving the first and second order derivative as follows:

6



First derivative:

gi =
∂

∂z
lα(yi, z)|z=ŷt−1

i

= −yiσ(ŷ
(t−1)
i )−1/α.σ(ŷ

(t−1)
i ).σ(−ŷ(t−1)i ) + (1− yi)(1−σ(ŷ

(t−1)
i ))−1/α.σ(ŷ

(t−1)
i ).σ(ŷ

(t−1)
i )

= σ
′
(ŷ

(t−1)
i ).

[
− yiσ(ŷ

(t−1)
i )−1/α + (1− yi)σ(−ŷ(t−1)i )−1/α

]
(2.6)

Second derivative:

hi =
∂2

∂2z
lα(yi, z)|z=ŷt−1

i

= (1− yi).
[
σ(ŷ

(t−1)
i )σ(−ŷ(t−1)i )2−1/α − (1− 1/α)σ(ŷ

(t−1)
i )2.σ(−ŷ(t−1)i )1−1/α

]
+ yi.

[
σ(ŷ

(t−1)
i )2−1/ασ(−ŷ(t−1)i )− (1− 1/α)σ(ŷ

(t−1)
i )1−1/α.σ(−ŷ(t−1)i )2

]
(2.7)

The first and second derivatives are implemented on top of the XGBoost source code

and is made available at https://github.com/SankarLab/XGBoostPrivate.

By varying α, the loss function varies between exponential and sigmoid loss.

Theoretically, α < 1 performs better when there is a high class imbalance, as every

wrong prediction on the minority class returns a large loss value, which is a property

of the exponential loss. Similarly, α > 1, does better with outliers as the loss

function becomes quasi-convex. In the quasi-convex region, the loss values for wrong

predictions during training is not as high as the exponential loss. Thus, the model is

likely to become agnostic to the impact of noises in the data distribution.

Having defined XGBoost.α, we will now apply this enhanced version to the dataset

at hand. We will describe the dataset and the data preprocessing strategies in the

following chapter.
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Chapter 3

DATASET

3.1 COVID-19 Symptom Survey Data

Facebook introduced an online COVID-19 daily health survey, in collaboration

with the CMU-Delphi research group [15]. The survey responses dataset was collected

by our research team through registering for the symptom data challenge and signing

Data Use Agreements protecting the confidentiality of survey responses. To date,

this dataset contains about 53,000 daily survey participants and 18,513,000 total

responses. The data from the self-reported daily health survey is evolving and is

updated regularly to accommodate new survey results that are collected daily. The

dataset is anonymized, secure, and provides no means of tracing back the user. The

data is also revised each month to include questions that pertain to the on-going

trend of the virus spread.

Revisions to the survey questions are deployed in multiple waves, typically at

an interval of a month. The first wave was deployed in April 2020 and the most

recent wave(wave 10) was deployed on Mar 2, 2021. Additional questions prioritizing

the items that have greater efficacy in understanding the human’s behavior and the

nature of the virus are added in each revision. The recent wave contains information

on the symptoms, testing, contacts, risk factors, demographics, and the vaccination

preferences. Table 3.1 summarizes the question types and provides a few examples

for each question type.

This thesis focuses on using the daily health survey symptoms to build a risk

prediction model. The survey dataset has numerous features with large number of

8



Question Type Example

Yes/No (19

questions)

A1_1 - A1_5* : Presence of symptoms such as fever, cough, sore

throat, shortness of breath, and breathing difficulty; C6 : Travelled

outside state? B10 : Tested for COVID-19? V1 : Had vaccination?

Discrete choice

(47 questions)

C1 : Presence of comorbidities D1 : Gender D2 : Age D7 : Race C2 :

Frequency of wearing masks

Numeric (5

questions)

C10_1 - C10_4 : Number of people in direct contact with at work,

shopping, social gatherings A2 : Number of sick people in household

A3 : Zip Code

Table 3.1: Question Types with Examples in the Survey Dataset. (*) Represents

Arbitrary Labels That Map to Survey Questions

missing values as they were added in the later waves as shown in Figure 3.1. Only a

few survey items have lesser missing values as shown in Figure 3.2. Figure 3.3 shows

the distribution of the top 5 binary features, that can be reliably used to build a good

model. We only retain the questions that are present in all the waves, as the top 8

features, to build a classifier.

3.2 Preprocessing Techniques

The raw survey response data is converted into a classification dataset by filtering

out the non-binary COVID-19 test result responses. For the waves that we considered

in this dataset, a bulk of the population had not tested for COVID-19, as shown in

Figure 3.4. Since we want to use features to predict whether someone is COVID-19

infected or not, we prune the dataset further to include only those responses that have

9



Figure 3.1: Missing Data by Survey Item. X-axis Shows the Survey Item Labels

That Are Used for Mapping the Response to the Actual Questions. Note That Most

Features Have Many Missing Values as They Were Added in the Later Survey Waves

Figure 3.2: Features That Have Fewer Missing Values. These Features Form the Top

28 Features of the Symptom Survey Dataset

10



Figure 3.3: Distribution of Top 5 Symptoms from the Self-reported Surveys

tested for COVID-19 and get 951,851 responses. The dataset is split into train and

test by taking a stratified split, in which the train and test set have the same amount

of imbalance. The assumption here is that the disease is not spreading too fast to

make the dataset balanced soon. In a sense, the stratified split mimics the real-world

class imbalance in the COVID-19 infected patients. The symptoms from the survey

data are converted into binary values to indicate their presence or absence. Discrete

choice features that rank the severity of fever, cough, shortness of breath from 1 to

5 are converted into binary values with a mean value threshold of 2.5. If-then type

questions are skipped to include only the top-level features. For example, the survey

asks for the fever temperature only if the respondent has a fever. In this case, the

temperature is ignored and only the presence of fever is used as a symptom feature

by the model.

In an effort to remove spurious responses, we filter out a few responses based on

the answer value to certain questions. For example, a response stating that there

are more than 10 sick people in households is filtered out based on the fact that

the average family size in the USA is 3.15. Even a family with three generations

would mostly have only 10 people at most. To simplify the dataset, we ignore survey

responses showing symptoms more than 24 days as they might contain unrealistically

11



Figure 3.4: Distribution of COVID-19 Rt-pcr Test Result Responses from the Survey

large values. However, only a small portion of the population shows symptoms for

more than 24 days. Similarly, we overlook responses that record meeting more than

1000 people in a social gathering. In few cases, the numeric responses contained

negative values for "how many" type questions and we ignore those responses as well.

The resultant dataset contains generic user demographics such as name, age,

diagnostic information and the COVID prediction label. This pruned dataset contains

about 864,154 responses with approximately 84% COVID-19 negative and 16% COVID-

19 positive labels.
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Chapter 4

EXPERIMENTAL RESULTS

4.1 Applying XGBoost.α to the FB-CMU dataset

This chapter compares α-loss and SOTA XGBoost log-loss results and highlights

the effectiveness of α-loss in class imbalance and noisy settings that could be prevalent

in an online survey. Given that the dataset is highly imbalanced, the right metrics

to compare would be F1 score, Fbeta(beta = 2) score and Area Under the Receiver

Operating Characteristic curve (AUROC) score.

The F1 score is measured in terms of precision and recall. Precision quantifies

the number of correct positive predictions made. Recall quantifies the number of

correct positive predictions made out of all positive predictions that could have been

made. As F1 score is the harmonic mean between precision and recall, it punishes

the extreme values, such as low precision or low recall.

F1 =
2× precision× recall
precision + recall

We use the Fbeta score to give higher importance to recall directly and to false

negatives indirectly. In our scenario, a false negative represents classifying an infected

patient as not infected. Fbeta score considers recall β times more important than

precision. This chapter uses F2 and Fbeta(beta=2) interchangeably, to mean the

same. As far as the COVID-19 survey dataset is concerned, it is important to reduce

the false negatives because the model should not predict an individual as not infected

when they are infected in reality.

Fbeta =
(1 + β2)× precision× recall

(β2 × precision) + recall

13



As part of this thesis, we extend the open-sourced XGBoost source code to

implement α-loss in C++. Custom loss function implementation in C++ helps tackle

the floating point precision limitations with Python. In our experiments with α-loss

implementation, in both Python and C++, the latter had a higher precision value

and hence gave better results. This new loss function is implemented as per the

standards of XGBoost. Testcases were written using the C++ Google tests framework

to verify the validity of the loss function. The loss function can be invoked while

training by setting the objective to "binary:alpha_logistic". The α value is set by

alpha_value hyperparameter. Implementing the α-loss in XGBoost C++ backend

gives the advantage of utilizing the hardware and software optimizations of XGBoost.

The native XGBoost log-loss uses the hyperparameters listed in Table 4.1. With

the log-loss, we obtain the best F1 score with a learning rate of 0.71, L2 regularization

of 10−3 and a maximum tree depth of 2. The optimal learning rate (0.71) was

identified from grid search with the search space values ranging from 0.1 to 1.0. a

range To provide the fairest comparison, we use the same hyperparameter values with

α-loss and only tune over α. In addition to the fixed set of hyperparameters, we use

the scale_pos_weight hyperparameter to upweight the minority class samples. As

this dataset is highly imbalanced, upweighting aids in giving significant importance

to the positive labels.

4.1.1 Comparing Native XGBoost and XGBoost.α in Non-noisy Settings

As described in the previous chapter , we use the preprocessed Facebook-CMU

dataset to compare the performance of native XGBoost log-loss and XGBoost.α α-

loss. As the reader may recall, the preprocessed dataset uses only the top 8 features,

namely, age, gender, presence of fever, cough, shortness of breath, tiredness, aches

and loss of smell or taste. In our experiments, we find that α ε [0.3, 1) seems to

14



Hyperparameter Description Value

objective

(logistic regression)
Loss function binary:logistic

learning_rate Controls step size 0.71

lambda L2 regularization 10−3

max_depth Maximum possible depth of tree 2

eval_metric
Evaluation metric for validation

data

aucpr (Area Under

Precision Recall curve)

scale_pos_weight
Controls the balance of positive

and negative weights
5.09 (optional)

Table 4.1: Optimal Hyperparameters for the Native XGBoost Log-loss

Learning rate α F1 F2 AUROC

0.71
1 57.91 50.76 71.97

0.6 57.91 50.75 71.96

Table 4.2: Comparison of the Performance of Log-loss(α=1) and α-loss(α 6= 1,) with

the Optimal Learning Rate of Log-loss

be doing slightly better than native XGBoost log-loss. However, with an optimal

learning rate of 0.71, log-loss has slightly better gains than α-loss as shown in table

4.2. In contrast, if we tune the learning rate with respect to α-loss, α 6= 1 performs

better as shown in table 4.3. By just varying learning_rate and α, α-loss outperforms

log-loss. With other hyperparameter combinations, the gain can potentially be even

more significant.
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Learning rate α F1 F2 AUROC

0.41
0.7 58.08 51.03 72.10

1 57.86 50.69 71.94

Table 4.3: Comparison of the Performance of Log-loss(α=1) and α-loss(α 6= 1,) with

the Optimal Learning Rate of α-loss

4.2 Comparing Native XGBoost and XGBoost.α in Noisy Settings

Prior work by Sypherd et al. [16], who studied α-loss in classification problems,

motivates us to restrict α ε [.8, 4] as it is sufficient to handle the label noise. In

our exploration, we increase α in a step size of 0.1 for α ε [.8, 2] and a step size of

0.2 for α ε (2, 4]. As discussed in Chapter 2, Small α values become sensitive to

minority classes due to convexity and large α values become agnostic to the data

distribution due to quasi-convexity. We add random noise, with a seed, to the labels

and run each experiment 5 times. To generate a fair comparison, the 5 different seed

values are repeated across different α to generate the same noise. The test results

are averaged across the 5 iterations and the α that generates the maximum score is

chosen. Calculation of the relative gain in terms of F1, Fbeta (beta = 2) and AUROC

metrics as:

relative X gain% =
|α-loss X − log-loss X |

log-loss X
× 100 (4.1)

where X can be F1, Fbeta or AUROC metric.

In the following sections, we will dive into the results from different types of

experiments.

• Noisy class labels: Comparing the results of XGBoost log-loss and XGBoost.α

by adding random noise to the train data binary class labels and measure the

16



performance on clean test data.

– Stratified Label noise: maintains the imbalance by flipping equal number

of positive and negative labels.

– Non-stratified label noise: improves or worsens the imbalance by randomly

flipping the labels.

• Noisy features: Comparing the results of XGBoost log-loss and XGBoost.α

by adding random noise to the train data binary features train data and measure

the performance on clean test data.

4.2.1 Noisy Class Labels

We extend the scenario of adding noise to the class labels, into two sub-categories:

• Stratified Noising: The same number of positive and negative labels are

flipped in the dataset thus maintaining the original imbalance of 86% negative

and 14% positive labels. Since the whole dataset has only 14% positive positive

samples, we restrict ourselves to adding noises from 1% to 6% in steps of 1%.

In the worst case, the dataset has only 8% real positive labels and 6% noisy

positive labels. We randomly select an equal number of train samples from both

the positive and negative labels and flip their COVID-19 diagnosis test results.

We noise the train data and compare the robustness of log-loss and α-loss with

the non-noised test data.

Theoretically, the conjecture is that α > 1 should do better as we tune away

from log-loss to make the loss function quasi-convex. In this region, α-loss is

less sensitive to outliers/noisy samples. To verify this in practice, we add noise

to the COVID-19 survey dataset, as there is a high possibility of encountering

spurious responses in a self-reported online survey.
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Label Flip % LL F1 α∗ F1 α∗ Rel F1 Gain %

1 57.54 57.58 0.9 0.08

2 56.68 56.80 1.3 0.22

3 55.74 55.76 1.3 0.04

4 54.30 55.27 3.8 1.78

5 51.31 54.26 3.8 5.74

6 43.52 48.75 3.4 12.01

Table 4.4: Stratified Binary Noisy Label Experiment on COVID-19 Survey RT-PCR

Results Comparing F1 Metric. Note That Ll F1 and α F1 Stand for Log-loss and α-

loss F1 Score for α∗, Respectively. Rel F1 Gain Is Calculated According to Equation

4.1. Also Note That Each Reported F1 Is Averaged over 5 Runs with Different Noise

Distributions

In our experiments, we use α∗ to denote the optimal α. From tables 4.4, 4.5

and 4.6, it is noticeable that with increase in noise, α > 1 values outperform

the logistic loss in terms of F1, Fbeta (beta = 2) and AUROC metrics. For

very little noise, α slightly less than 1 (0.9) performs better. With an increase

in noise, the relative gain increases non-linearly. Fig.4.1 compares the relative

gain between the metrics that are used to measure the model’s performance.

The growth of F2 aligns with our initial goal of reducing the False Negatives

by increasing the recall of the model. The gain in α-loss performance is non-

monotonic. With more and more noise, the performance of α-loss, or any other

loss function for that matter, deteriorates.

α 6= 1 favors reducing False Negatives when there is no upweighting on the
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Label Flip % LL F2 α∗ F2 α∗ Rel F2 Gain %

1 50.13 50.20 0.9 0.15

2 48.79 48.97 1.3 0.37

3 47.50 47.52 1.3 0.06

4 45.66 47.09 3.8 3.15

5 42.11 45.63 3.8 8.35

6 33.91 39.32 3.4 15.96

Table 4.5: Stratified Binary Noisy Label Experiment on COVID-19 Survey RT-PCR

Results Comparing F2 Metric. Note That Ll F2 and α F2 Stand for Log-loss and

α-loss Fbeta (Beta = 2) Score for α∗

Label Flip % LL AUROC α∗ AUROC α∗ Rel AUROC Gain %

1 71.68 71.71 0.9 0.05

2 71.06 71.14 1.3 0.12

3 70.45 70.46 1.3 0.02

4 69.58 70.23 3.8 0.93

5 67.93 69.57 3.8 2.42

6 64.17 66.62 3.4 3.83

Table 4.6: Stratified Binary Noisy Label Experiment on COVID-19 Survey RT-PCR

Results Comparing Auroc Metric. Note That Ll Auroc and α Auroc Stand for Log-

loss and α-loss Area under Roc Curve Score for α∗
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Figure 4.1: Relative Gain Percentage for Metrics F1, F2 and Auroc as a Function

of Noise Levels, in a Stratified Noise Setting. Note That the Gain Increases with

Increase in Noise

positive classes. With extreme upweighting values, the False positive count

on test data is too high and hence the model has a higher alarm rate. With

intermediate upweighting values, α favors reducing the False positives, in noisy

settings. Table 4.7 compares the relative gain on F1 for both the losses. α∗ gives

a standard reduced false positive count of 6382 across all noise levels. This is

probably the closest that we can get to the optimal Bayes risk with α-loss.

Whereas, α = 1, gives almost twice that of α∗ False Positive count.

• Non-Stratified Noising: The labels are chosen and flipped randomly from the

whole dataset without maintaining the imbalance. With an increase in noise,

the imbalance reduces, as more negative samples tend to be flipped in this

highly imbalanced setting. We add noises from 1% to 50%. We randomly select

x% of train samples, where x is the noise percentage, and flip the chosen train

labels and compare the effectiveness of α-loss with the log-loss. As mentioned
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Label Flip % LL F1 α∗ F1 α∗ Rel F1 Gain %

1 57.58 59.37 2.6 3.11

2 57.80 59.37 2.8 2.73

3 57.86 59.37 3.2 2.62

4 57.92 59.37 3.2 2.51

5 58.08 59.37 3.6 2.22

6 58.21 59.37 2.6 2.01

7 58.41 59.37 2.2 1.64

Table 4.7: Stratified Binary Noisy Label Experiment by Upweighting Positive Labels

with a Factor of 4

in the stratified noise experiment, the conjecture is that α > 1 increases the

robustness to noises. From the experiments recorded in tables 4.8, 4.9 and 4.10,

similar pattern to that of stratified noise experiments is noticed. The relative

gain has a slight fluctuation initially, which could be due to the convoluted

case of varying the imbalance and the noise percentage simultaneously. In our

stratified noise experiments, only the noise percentage varied, whereas in non-

stratified noisy settings, two variables(imbalance and noise) interplay with α to

fluctuate the gain. Nevertheless, with more noise, the gain increases as shown

in fig.4.2. Similar to the stratified experiment, α 6= 1 favors reducing the False

positive count with intermediate upweighting, as shown in Table 4.11.
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Label Flip % LL F1 α∗ F1 α∗ Rel F1 Gain %

1 57.89 57.91 0.8 0.02

2.5 57.89 58.01 1.2 0.20

5 57.93 58.00 1.3 0.13

7.5 57.88 57.98 1.2 0.17

10 57.87 57.97 1.3 0.17

15 57.86 58.00 1.4 0.25

20 57.79 58.02 1.5 0.40

25 57.83 58.02 1.8 0.32

30 57.84 57.86 0.4 0.03

35 57.77 57.83 1.2 0.10

40 57.64 57.65 1.5 0.01

50 26.22 27.55 3.8 5.09

Table 4.8: Non-stratified Binary Noisy Label Experiment on COVID-19 Survey RT-

PCR Results Comparing F1 Metric

4.2.2 Noisy Features

We add noise to the features to mimic the real-world scenario in which survey

respondents may enter erratic values to the questions. We use two hyperparameters

to control the noise addition:

• row_noise: This hyperparameter controls the number of samples to which noise

is added randomly. It varies from 1% to 50%.

• feature_noise: A respondent can answer few or all questions dishonestly. This
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Label Flip % LL F2 α∗ F2 α∗ Rel F2 Gain %

1 50.74 50.76 0.8 0.04

2.5 50.74 50.95 1.2 0.43

5 50.79 50.95 1.3 0.32

7.5 50.71 50.93 1.2 0.43

10 50.72 50.89 1.3 0.33

15 50.72 50.95 1.4 0.45

20 50.63 50.99 1.5 0.71

25 50.71 51.11 1.8 0.79

30 50.72 50.76 0.4 0.08

35 50.66 50.76 1.2 0.20

40 50.56 50.58 1.5 0.05

50 38.05 40.14 3.8 5.48

Table 4.9: Non-stratified Binary Noisy Label Experiment on COVID-19 Survey RT-

PCR Results Comparing F2 Metric

hyperparameter is a probability measure that controls the addition of noise

to each feature. Feature_noise can take values ranging from 0.25 (meaning

some features are noisy) to 1 (meaning all features are noisy), representing the

probability of flipping each feature.

We add noise to each feature depending upon the threshold value of feature_noise

hyperparameter M%. We generate a random noise probability value for each feature,

say m1 to m8, and flip only those features, mi, whose values are less than M. In our

experiment with noisy features, we compare the F1 scores of XGBoost log-loss and
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Label Flip % LL AUROC α∗ AUROC α∗ Rel AUROC Gain %

1 71.96 71.97 0.8 0.01

2.5 71.96 72.06 1.2 0.14

5 71.98 72.05 1.3 0.10

7.5 71.95 72.04 1.2 0.13

10 71.95 72.03 1.3 0.11

15 71.94 72.05 1.4 0.15

20 71.90 72.07 1.5 0.24

25 71.94 72.11 1.8 0.25

30 71.94 71.96 0.4 0.02

35 71.91 71.96 1.2 0.06

40 71.85 71.86 1.5 0.02

50 51.18 52.68 3.8 2.92

Table 4.10: Non-stratified Binary Noisy Label Experiment on COVID-19 Survey RT-

PCR Results Comparing Auroc Metric

Label Flip % LL F1 α∗ F1 α∗ Rel F1 Gain %

1 58.64 59.37 1.9 1.25

2.5 58.47 59.37 2.4 1.54

5 58.15 59.37 2.8 2.10

7.5 57.67 59.37 3.2 2.96

Table 4.11: Non-stratified Binary Noisy Label Experiment by Upweighting Positive

Labels with a Factor of 3
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Figure 4.2: Relative Gain Percentage for Metrics F1, F2 and Auroc as a Function of

Noise Levels, in a Non-stratified Noise Setting. For Less Noise, the Gain Fluctuates

Initially Due to the Interplay of Noise and Imbalance with α. As Noise Increases

above 40%, the Relative Gain Increases

α-loss for different feature_noise probability values. From Figures, 4.3, 4.4, 4.5, and

4.6, it is noticeable that with increase in noise, the relative gain in terms of F1 score

increases for α > 1. It is also important to note, α slightly greater than 1, performs

better in most of the cases.

The highlighted experimental results from the imbalance, label noise and feature

noise settings suggest that, α-loss yields significantly better test results when compared

to the native log-loss. For the noisy label experiments, we find that most α∗ > 1 give

better gains. Similarly, for the noisy feature experiments, we find that all α∗ > 1

give better gains. In imbalanced setting, we find that most α∗ < 1 give better

gains. Consequently, α-loss can be utilized to build a robust classification algorithm in

healthcare online survey scenarios, where the dataset could be noisy and imbalanced.
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Figure 4.3: Comparison of F1 Scores of the Native XGBoost Log-loss and XGBoost.α

for 25% Feature_noise Value. Note That the Gain Increases with Increase in the

Amount of Noisy Samples

Figure 4.4: Comparison of F1 Scores of the Native XGBoost Log-loss and XGBoost.α

for 50% Feature_noise Value
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Figure 4.5: Comparison of F1 Scores of the Native XGBoost Log-loss and XGBoost.α

for 75% Feature_noise Value

Figure 4.6: Comparison of F1 Scores of the Native XGBoost Log-loss and XGBoost.α

for 100% Feature_noise Value
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Chapter 5

CONCLUSION AND FUTURE ENHANCEMENTS

This work utilizes the tunable nature of α-loss to improve the robustness and

performance of the XGBoost classification algorithm. It is important to note that,

just by tuning over α, the results are significantly better, despite using the fixed set

of hyperparameters that are optimal to native XGBoost log-loss. By tuning the other

hyperparameters together, it is highly possible to get far more better and robust

results.

As future work, studying the performance of α-loss in other imbalanced healthcare

datasets can be explored. The influence of other XGBoost hyperparameters and α

can be studied deeper. The impact of the dimension of the dataset in the loss of

accuracy when the noise is introduced should be analyzed. The performance of α-loss

with feature noises needs to be explored.

From the experiments, it is evident that the models trained with α-loss can be

more robust to outliers than the SOTA XGBoost. Thus, we argue that α-loss can

be used in highly imbalanced settings to improve robustness and performance of

classification models.
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