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ABSTRACT

Recent advances in Artificial Intelligence (AI) have brought AI closer to laypeople

than ever before. This leads to a pervasive problem: how would a user ascertain

whether an AI system will be safe, reliable, or useful in a given situation? This

problem becomes particularly challenging when it is considered that most autonomous

systems are not designed by their users; the internal software of these systems may be

unavailable or difficult to understand; and the functionality of these systems may even

change from initial specifications as a result of learning. To overcome these challenges,

this dissertation proposes a paradigm for third-party autonomous assessment of black-

box taskable AI systems. The four main desiderata of such assessment systems are: (i)

interpretability: generating a description of the AI system’s functionality in a language

that the target user can understand; (ii) correctness: ensuring that the description of

AI system’s working is accurate; (iii) generalizability creating a solution approach that

works well for different types of AI systems; and (iv) minimal requirements: creating

an assessment system that does not place complex requirements on AI systems to

support the third-party assessment, otherwise the manufacturers of AI system’s might

not support such an assessment.

To satisfy these properties, this dissertation presents algorithms and requirements

that would enable user-aligned autonomous assessment that helps the user understand

the limits of a black-box AI system’s safe operability. This dissertation proposes a

personalized AI assessment module that discovers the high-level “capabilities” of an

AI system with arbitrary internal planning algorithms/policies and learns an accurate

symbolic description of these capabilities in terms of concepts that a user understands.

Furthermore, the dissertation includes the associated theoretical results and the

empirical evaluations. The results show that (i) a primitive query-response interface
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can enable the development of autonomous assessment modules that can derive a

causally accurate user-interpretable model of the system’s capabilities efficiently; and

(ii) such descriptions are easier to understand and reason with for the users than the

agent’s primitive actions.
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Chapter 1

INTRODUCTION

The growing deployment of AI systems ranging from personal digital assistants to

self-driving cars leads to a pervasive problem: how would a user ascertain whether an

AI system will be safe, reliable, or useful in a given situation? This problem becomes

particularly challenging when we consider that most autonomous systems are not

designed by their users; their internal software may be unavailable or difficult to

understand, and it may even change from initial specifications as a result of learning.

Such scenarios feature black-box AI agents whose capability descriptions, or models

may not be available in terminology that the user understands.

This issue becomes even more complex when we have an AI agent that is evolving

and adapting to changes in the environment it is operating in? And how do we ensure

its reliable and safe usage? Numerous factors could cause unpredictable changes in

agent behaviors: sensors and actuators may fail due to physical damage, the agent

may adapt to a dynamic environment, users may change deployment and use-case

scenarios, etc. Most prior work on the topic presumes that the functionalities and

the capabilities of AI agents are static, while some works start with a tabula-rasa and

learn the entire model from scratch. However, in many real-world scenarios, the agent

model is transient and only parts of its functionality change at a time.

To alleviate these issues, in addition to developing better AI systems, we need

to develop new algorithmic paradigms for assessing arbitrary AI systems and for

determining the minimal requirements for AI systems in order to ensure interpretability

and to support such assessments (Srivastava, 2021).
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Ongoing research on the topic focuses on the significant problem of how to answer

users’ questions about the system’s behavior while assuming that the user and AI

share a common action vocabulary (Chakraborti et al., 2017a; Dhurandhar et al., 2018;

Anjomshoae et al., 2019; Barredo Arrieta et al., 2020). Furthermore, most non-experts

hesitate to ask questions about new AI tools (Mou and Xu, 2017) and often do not

know which questions to ask for assessing the safe limits and capabilities of an AI

system. This problem is aggravated in situations where an AI system can carry out

planning or sequential decision making. Lack of understanding about the limits of

an imperfect system can result in unproductive usage or, in the worst-case, serious

accidents (Randazzo, 2018). This, in turn, limits the adoption and productivity of AI

systems.

This dissertation presents a new paradigm for third-party assessment of black-box

taskable AI systems. It develops algorithms for estimating interpretable, relational

models of AI agents by querying them. In doing so, it requires the AI system to

have only a primitive query-response capability to ensure interpretability. Consider

a situation where Hari(ette) (H) wants a grocery-delivery robot (A) to bring some

groceries, but s/he is unsure whether it is up to the task and wishes to estimate A’s

internal model in an interpretable representation that s/he is comfortable with (e.g.,

a relational STRIPS-like language (Fikes and Nilsson, 1971; Fox and Long, 2003)). If

H was dealing with a delivery person, s/he might ask them questions such as “would

you pick up orders from multiple persons?” and “do you think it would be alright to

bring refrigerated items in a regular bag?” If the answers are “yes” during summer,

it would be a cause for concern. Naïve approaches for generating such questions to

ascertain the limits and capabilities of an agent are infeasible.1

1Just 2 actions and 5 grounded propositions would yield 72×5 ∼ 108 possible STRIPS-like models
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Most current approaches to learn such interpretable descriptions in form of STRIPS-

like languages use observations of the AI system’s interaction with the environment

as input. In this dissertation, we show that such approaches end up learning spurious

correlations as part of the description. A few approaches that generate the observations

themselves are not sample efficient and hence require more time and observations

than the methods we introduce in this dissertation to learn an accurate description

of the AI system. Finally, all these approaches do not specifically perform any kind

of assessment of the AI systems, but focus on learning STRIPS-like models of the

AI systems. We use this idea of learning such models, but use active interrogation

of these AI systems to learn the models so as to have finer control over the data

generation (in form of observations) process. This novel idea of using responses to

well-directed queries about the AI systems’ behavior leads to learning accurate models

with fewer data. Additionally, we also define what is third-party assessment of an AI

system, and use model learning as a tool to assess black-box taskable AI systems.

Before delving deeper into the specific problem settings, algorithms and results, I

will first present the important properties that a third-party assessment system should

satisfy and the outline of the contents of this thesis.

1.1 Desiderata for Third-Party Assessment

As mentioned earlier, there are four desiderata for a third-party assessment system

that must be developed for any black-box AI systems.

– each proposition could be absent, positive or negative in the precondition and effects of each action,
and cannot be positive (or negative) in both preconditions and effect simultaneously. A query
strategy that inquires about each occurrence of each proposition would be not only unscalable but
also inapplicable to simulator-based agents that do not know their actions’ preconditions and effects.
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Interpretability An autonomous assessment system should be able to compute a

user interpretable model of the black-box AI system’s capabilities. Here “interpretable”

may refer to a description that a user understands, it can be in terms of concepts that

(i) a user understands, or (ii) a user can be easily trained on.

Correctness The output generated by the assessment system should be accurate.

At least the most accurate description that can be generated in terms of concepts that

a user understands. This is important because when something about the AI system’s

working is described to the user and it has errors, then the user’s trust on the system

might be affected, which will be detrimental to the adoptability of the system.

Generalizability The autonomous assessment system should be able to work with

wide variety of AI systems. Hence its working should be independent of the internals

of the black-box AI system. It should also not depend on the deployed environment

and should be able to work with reasonable designs for any taskable AI system.

Minimal Requirements Since the assessment system is intended to be used by

people who have not developed the AI systems being assessed, it should not put a

lot of requirements on the design or implementation of the black-box AI systems to

support the assessment. Otherwise, the manufacturers would not want to support

such an assessment at the cost of throttling innovation.

To fulfill these desiderata we leverage (i) the framework of state abstractions to

discover the high-level interpretable capabilities of a taskable AI system; and (ii)

the framework of planning domain descriptions to learn and express the symbolic

models of each of the discovered capabilities. This dissertation builds algorithms and

techniques to use these frameworks for assessment and the next section presents this

dissertation’s high level outline.
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1.2 Thesis Outline

The next chapter gives a background of the kind of interpretable models that

are learned as output of the assessment system. This deals with the desideratum

of interpretability discussed in the previous section. The rest of the dissertation is

organized as follows.

• Chapter 3 discusses the design and formal requirements that an assessment sys-

tem should satisfy, defines a query-response interface, and presents an algorithm

for assessment of an AI system in deterministic, stationary, and fully observable

settings. The desideratum of minimal requirements is set up and discussed in

this chapter.

• Chapter 4 extends the framework for assessment in settings where the AI system’s

model is not stationary, i.e., it is an adaptive AI system. Rest of the assumptions

of deterministic and fully observable system still holds. This and the next three

chapters show how we address the desiderata of correctness and generalizability.

• Chapter 5 discovers the high-level capabilities of the agent and then learn their

description, instead of learning the description of low-level actions of the agent.

• Chapter 6 describes the assessment framework for the stochastic settings and

learns the description of its probabilistic capabilities.

• Chapter 7 combines shows that the models we learn for deterministic, full

observable, stationary settings are causally accurate. This chapter also defines

the notion of causal accuracy for our setting. This chapter also addresses the

desideratum of correctness in more detail as compared to the previous chapters.

• Chapter 7 performs an extended analysis of complexity of the queries we use for

deterministic, full observable, stationary settings.
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• Chapter 9 uses the description learned for assessment to direct exploration of

reinforcement learning agents to make it sample efficient.

Chapter 10 concludes the thesis with my learnings and possible extensions of this

dissertation work.
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Chapter 2

BACKGROUND

We express the descriptions of an AI system’s capabilities using a STRIPS-like

representation (Fikes and Nilsson, 1971). This is because, when used with a user’s

vocabulary, such a representation can be readily transcribed into statements such as

“in situations where X holds, if the agent executes actions a1, . . . , ak it would result

in Y ”, where X and Y are in the user’s vocabulary (Camacho and McIlraith, 2019).

Such representations have been shown to be intuitive for humans in understanding

deliberative behaviors of other agents (Malle, 2004; Miller, 2019).

In this chapter, we briefly discuss the formalism of the planning models and then

describe some of the common terminology that we use in the thesis.

2.1 Planning Models

We start with the deterministic models expressible in the Planning Domain Defi-

nition Language (PDDL) (McDermott et al., 1998), then explain the Probabilistic

Planning Domain Definition Language (PPDDL) models, followed by the Fully Ob-

servable Non-Deterministic (FOND) models.

2.1.1 PDDL Models

Deterministic models expressed using the Planning Domain Definition Language

(PDDL) (McDermott et al., 1998) are formally defined as:
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Definition 1. A deterministic planning model is a tuple M = ⟨P,A⟩, where

P = {pr11 , . . . , prnn } is a finite set of predicates with arities ri, i ∈ [1, n]; A = {a1, . . . , ak}

is a finite set of parameterized actions (operators). Each action aj ∈ A is represented as

a 3-tuple ⟨header(aj), pre(aj), eff(aj)⟩, where header(aj) is the action header consisting

of action name and action parameters, pre(aj) represents the set of positive and

negative predicate atoms that must be true or false, respectively in a state where

aj can be applied, eff(aj) is the set of positive or negative predicate atoms that will

change to true or false, respectively as a result of execution of aj.

In the rest of the dissertation, we use the term “model” to refer to planning models.

Given a model M and a set of objects O, let SM,O be the space of all states defined

as maximally consistent sets of literals over the predicate vocabulary of M with O

as the set of objects. We omit the subscript when it is clear from the context. An

action a ∈ A is applicable in a state s ∈ S if s |= pre(a). The result of executing

a is a state a(s) = s′ ∈ S such that s′ |= eff(a), and all atoms not in eff(a) have

literal forms as in s. We extend this notation to express the result of executing a plan

π = ⟨a1, a2, . . . , an⟩ in a state s, i.e., an(. . . a2(a1(s)) . . . ) = sn as π(s) = sn.

2.1.2 PPDDL Models

Younes and Littman (2004) formalized as Probabilistic Planning Domain Definition

Language (PPDDL). We assume that the model of the agent A can be represented in

PPDDL as MA, and it is formally defined as:

Definition 2. A probabilistic-planning model is a tuple M = ⟨P,A⟩, where

P = {pr11 , . . . , prkk } is a finite set of predicates with arities rj, j ∈ [1, k]; and

A is a set of parameterized actions. Each a ∈ A is represented as a 3-tuple

8



⟨header(a), pre(a), eff(a)⟩, where header(a) is the action header consisting of the action

name and parameters, pre(a) represents a set of positive and negative predicates that

must be true or false, respectively, in a state where a can be applied, and eff(a) is a set

of effect pairs ⟨ei(a), pri(a)⟩. Here ei(a) is a set of positive or negative predicate atoms

that will change to true or false, respectively, each with a probability pri(a) ∈ [0, 1] as

a result of execution of the action a.

The only major difference between PDDL and PPDDL models that we learn is that

in PPDDL, effect is a set of conjuctive formula, each with an associated probability,

whereas in PDDL the effect is just one conjunctive formula.

2.1.3 FOND Models

We also use a fully-observable non-deterministic (FOND) planning model (Cimatti

et al., 1998). This can be viewed as a probabilistic planning model without the

probabilities associated with each effect pair. Hence on executing an action, one of its

possible effects is chosen with an equal probability. The solution to these planning

models is a partial policy Π : S → A that maps each state to an action that the agent

should execute in that state. As shown by Cimatti et al. (1998) and Daniele et al.

(1999), the solution is a (i) weak solution if the resulting plan may achieve the goal

without any guarantee; (ii) strong solution if the resulting plan is guaranteed to reach

the goal; and (iii) strong cyclic solution if the resulting plan is guaranteed to reach the

goal under the assumption that in the limit, each action will lead to each of its effects.
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2.2 Common Terminology

This section describes some of the common terminology that we use throughout

the thesis.

2.2.1 Lifted Instantiated Predicate

Each predicate can be instantiated using the parameters of an action. The number

of action parameters is bounded by the maximum arity of the action. E.g., consider the

action load_truck(?v1, ?v2, ?v3) and predicate (at ?x ?y) in the IPC Logistics

domain. The predicate (at ?x ?y) can be instantiated using action parameters

?v1, ?v2, and ?v3 as (at ?v1 ?v1), (at ?v1 ?v2), (at ?v1 ?v3), (at ?v2 ?v2),

(at ?v2 ?v1), (at ?v2 ?v3), (at ?v3 ?v3), (at ?v3 ?v1), and (at ?v3 ?v2).

We represent the set of all such possible predicates instantiated with action parameters

as lifted instantiated predicates P ∗.

2.2.2 Observations

We compare our approach to the class of model learners that use the observations

generated by the agent to learn the agent model. Such observations are defined as:

Definition 3. Given a state space S, and a set of actions A, an observation trace o is

an alternating sequence of states and actions of the form ⟨s0, a1, s1, a2, . . . , sn−1, an, sn⟩

such that si ∈ S, ai ∈ A, and ∀i ∈ [1, n] ai(si−1) = si.

These observation traces can be split into multiple action triplets (Stern and Juba,

2017a) as defined below.
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Definition 4. Given an observation trace o = ⟨s0, a1, s1, a2, . . . , sn−1, an, sn⟩, an

action triplet is a 3-tuple sub-sequence of o of the form ⟨si−1, ai, si⟩, where i ∈ [1, n]

and applying an action ai in state si−1 results in state si, i.e., ai(si−1) = si.

The states si−1 and si are called pre- and post-states of action ai, respectively.
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Chapter 3

AGENT INTERROGATION

This chapter proposes a new approach for estimating an interpretable and relational

model of a black-box autonomous agent that can plan and act. Our main contributions

are a new paradigm for estimating such models using a rudimentary query interface

with the agent and a hierarchical querying algorithm that generates an interrogation

policy. Empirical evaluation of our approach shows that despite the massive number

of possible agent models, our approach results in the correct and scalable estimation

of interpretable agent models for a wide class of black-box autonomous agents. Our

results also show that this approach can use predicate classifiers to learn interpretable

models of planning agents that represent states as images.

3.1 Personalized Assessment

In this section, we propose a personalized agent-assessment module (AAM), shown

in Fig. 1, which can be connected with an arbitrary AI agent that supports a rudimen-

tary query-response capability: the assessment module connects A with a simulator

and provides a sequence of instructions, or a plan as a query. A executes the plan in the

simulator and the assessment module uses the simulated outcome as the response to

the query. Thus, given an agent, the assessment module uses as input: a user-defined

vocabulary, the agent’s instruction set, and a compatible simulator. These inputs

reflect natural requirements of the task and are already quite commonly supported:

AI systems are already designed and tested using compatible simulators, and they

12
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Figure 1. The agent-assessment module uses its user’s preferred vocabulary, queries
the AI system, and delivers a user-interpretable correct causal model of the AI system’s
capabilities. The AI system does not need to know the user’s vocabulary or modeling
language.

need to specify their instruction sets in order to be usable. The user provides the

predicates or concepts that they can understand and these concepts can be defined as

functions on simulator states.

This fundamental framework (Sec. 3.4) can be developed to support different types

of agents as well as various query and response modalities. E.g., queries and responses

could use a speech interface for greater accessibility, and agents with reliable inbuilt

simulators/lookahead models may not need external simulators. This would allow the

assessment module to pose queries such as “what do you think would happen if you

did ⟨query plan⟩”, and the learned model would reflect A’s self-assessment. The “agent”

could be an arbitrary entity, although the expressiveness of the user-interpretable

vocabulary would govern the scope of the learned models and their accuracy. Using

the assessment module with such agents would also help make them compliant with

Level II assistive AI – systems that make it easy for operators to learn how to use

them safely (Srivastava, 2021).

Our algorithm for the assessment module (Sec. 3.4) generates a sequence of queries

(Q) depending on the agent’s responses (θ) during the query process; the result of

the overall process is a complete model of A. To generate queries, we use a top-down

process that eliminates large classes of agent-inconsistent models by computing queries

13



that discriminate between pairs of abstract models. When an abstract model’s answer

to a query differs from the agent’s answer, we effectively eliminate the entire set of

possible concrete models that are refinements of this abstract model. Sec. 3.4 presents

our overall framework with algorithms and theoretical results about their convergence

properties.

Our empirical evaluation (Sec. 9.4) shows that this method can efficiently learn

correct models for black-box versions of agents using hidden models from the Interna-

tional Planning Competition (IPC)2. It also shows that the agent assessment module

can use image-based predicate classifiers to infer correct models for simulator-based

agents that respond with an image representing the result of query plan’s execution.

3.2 Preliminaries

Models learned by the agent assessment module are in the form of PDDL models

defined in chapter 2. In the rest of the chapter, we use the term “model” to refer to

planning models. Given a model M and a set of objects O, let SM,O be the space of

all states defined as maximally consistent sets of literals over the predicate vocabulary

of M with O as the set of objects. We omit the subscript when it is clear from the

context. An action a ∈ A is applicable in a state s ∈ S if s |= pre(a). The result of

executing a is a state a(s) = s′ ∈ S such that s′ |= eff(a), and all atoms not in eff(a)

have literal forms as in s. We extend this notation to express the result of executing a

plan π = ⟨a1, a2, . . . , an⟩ in a state s, i.e., an(. . . a2(a1(s)) . . . ) = sn as π(s) = sn.

Lifted instantiated predicate Each predicate can be instantiated us-

ing the parameters of an action. The number of action parameters is

2https://www.icaps-conference.org/competitions

14



bounded by the maximum arity of the action. E.g., consider the action

load_truck(?v1, ?v2, ?v3) and predicate (at ?x ?y) in the IPC Logis-

tics domain. The predicate (at ?x ?y) can be instantiated using action pa-

rameters ?v1, ?v2, and ?v3 as (at ?v1 ?v1), (at ?v1 ?v2), (at ?v1 ?v3),

(at ?v2 ?v2), (at ?v2 ?v1), (at ?v2 ?v3), (at ?v3 ?v3), (at ?v3 ?v1), and

(at ?v3 ?v2). We represent the set of all such possible predicates instantiated with

action parameters as lifted instantiated predicates P ∗.

3.3 Formal Framework

As noted in introduction, the agent assessment module uses the following informa-

tion as input: (i) the instruction set from the agent in the form of header(a) for each

a ∈ A; and (ii) a predicate vocabulary P from the user with functional definitions of

each predicate. This gives the assessment module sufficient information to perform a

dialog with A about the outcomes of hypothetical action sequences. This dialog is

performed in terms of queries and responses.

3.3.1 Form of Agent Queries

As mentioned earlier, the assessment module poses queries to the agent and based

on A’s responses θ it infers A’s agent model. We express queries as functions that

map models to answers.

Definition 5. Given a set of predicates P and a set A of actions, let U be the set of

all possible planning models (ref. Def. 1) expressible using P and A. Let Θ be the set

of possible responses. A query q is a function q : U → Θ.
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In this chapter, we utilize only one class of queries: plan outcome queries (QPO),

which are parameterized by a state sI and a plan π. Let P ∗ be the set of predicates P

instantiated with objects O in an environment. QPO queries ask A the length of the

longest prefix of the plan π that it can execute successfully when starting in the state

sI ⊆ P ∗ as well as the final state sF ⊆ P ∗ that this execution leads to. E.g., “Given

that the truck t1 and package p1 are at location l1, what would happen if you executed

the plan ⟨load_truck(p1,t1,l1), drive(t1,l1,l2), unload_truck(p1,t1,l2)⟩?”

A response to such queries can be of the form “I can execute the plan till step ℓ

and at the end of it p1 is in truck t1 which is at location l1”. Formally, the response

θPO for plan outcome queries is a tuple ⟨ℓ, sF ⟩, where ℓ is the number of steps for

which the plan π could be executed, and sF ⊆ P ∗ is the final state after executing

ℓ steps of the plan. If the plan π cannot be executed fully according to the agent

model MA then ℓ < len(π), otherwise ℓ = len(π). The final state sF ⊆ P ∗ is such

that MA |= π[1 : ℓ](sI) = sF , i.e., starting with a state sI , MA successfully executed

first ℓ steps of the plan π. Thus, QPO : U → N × 2P , where N is the set of natural

numbers.

3.3.2 Requirements for Independent Assessment

The requirements in an AI agent might change depending on the type of queries

the agent is capable of answering. This is because we define the set of requirements

as a function of the agent. Formally, we define the requirements on an agent as:

Definition 6. Given a query class Q, with an associated response set Θ, the assess-

ment requirement ρA on an autonomous agent A is a relation between Q and Θ,

and is represented as ρA⟨Q,Θ⟩.
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Given a plan-outcome query q = ⟨s0, π⟩, where π = ⟨a1, . . . , an⟩, an autonomous

agent A is said to support the set of requirements ρA if its response θ = ⟨ℓ, sℓ⟩ satisfies:

ρA(⟨s0, ⟨a1, . . . , an⟩⟩, ⟨ℓ, sℓ⟩) ≜ ℓ < n∧

∀i ∈ 1, . . . , ℓ− 1, ∃si A |= ai(si−1) = si ∧ A |= ¬(pre(aℓ+1) ∧ sℓ)
(3.1)

We now define the overall problem of agent interrogation as follows. Given a class

of queries and an agent with an unknown model supports the plan outcome query

requirement above (1), determine the model of the agent. This can be formally defined

as:

Definition 7. An agent interrogation task is defined as a quadruple

⟨A, Q, P,AH , ρA⟩, where A is the agent being interrogated, Q is the class of

queries that can be posed to the agent by the assessment module,P and AH are the

sets of predicates and action headers that the assessment module uses based on inputs

from H and A, and ρA is the assessment requirement that A must satisfy.

The objective of our solution to the the agent interrogation task is to derive A’s

agent model MA using Q, P , and AH . We now introduce a running example which

we’ll use throughout the chapter.

Running Example Consider a driving robot with a single action drive(?t ?s ?d),

parameterized by the truck it drives, source location, and destination location. Assume

that all locations are connected, hence the robot can drive between any two locations.

The predicates available are (at ?t ?loc), representing the location of a truck; and

(src_blue ?loc), representing the color of the source location. Instantiating at

and src_blue with parameters of the action drive gives four instantiated predicates

(at ?t ?s), (at ?t ?d), (src_blue ?s), and (src_blue ?d).
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3.3.3 Distinguishability and Prunability

Not all queries are useful, as some of them might not increase our knowledge of the

agent model at all. Hence, we define some properties associated with each query to

ascertain its usability. A query is useful only if it can distinguish between two models.

More precisely, a query q is said to distinguish a pair of models Mi and Mj, denoted

as Mi
qMj, iff q(Mi) ̸= q(Mj).

Definition 8. Two models Mi and Mj are said to be distinguishable , denoted as

Mi Mj, iff there exists a query that can distinguish between them, i.e., ∃Q Mi
QMj.

Given a pair of abstract models, we wish to determine whether one of them can be

pruned, i.e., whether there is a query for which at least one of their answers is incon-

sistent with the agent’s answer. Since this is computationally expensive to determine,

and we wish to reduce the number of queries made to the agent, we first evaluate

whether the two models can be distinguished by any query, independent of consistency

of their response with that of the agent. If the models are not distinguishable, it won’t

be possible to try to prune one of them under the given query class.

Next, we determine if at least one of the two distinguishable models is consistent

with the agent. When comparing the responses of two models at different levels of

abstraction, we must consider the fact that the agent’s response may be at a different

level of abstraction if the given pair of models is abstract. Taking this into account,

we formally define what it means for an abstract model Mi’s response to be consistent

with that of agent model MA:

Definition 9. LetQ be a query such thatMi
QMj ; Q(Mi) = ⟨ℓi, si⟩, Q(Mj) = ⟨ℓj, sj⟩,
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and Q(MA) = ⟨ℓA, sA⟩. Mi’s response to Q is said to be consistent with that of

MA, i.e., Q(MA) |= Q(Mi) iff ℓA = len(πQ), len(πQ) = ℓi and si ⊆ sA.

Using this notion of consistency, we can now reason that given a set of distinguish-

able models Mi and Mj, and their responses in addition to the agent’s response to

the distinguishing query, the models are prunable if and only if exactly one of their

responses is consistent with that of the agent. Formally, we define prunability as:

Definition 10. Given an agent-interrogation task ⟨MA, Q, P,AH⟩, two models Mi

and Mj are prunable , denoted as Mi♢Mj , iff ∃Q ∈ Q :Mi
QMj ∧ (Q(MA) |= q(Mi)

∧ Q(MA) ̸|= Q(Mj)) ∨ (Q(MA) ̸|= Q(Mi) ∧ Q(MA) |= Q(Mj)).

3.3.4 Components of Agent Models

In order to formulate our solution approach, we consider a modelM to be comprised

of components called palm tuples of the form λ = ⟨p, a, l,m⟩, where p is an instantiated

predicate from the vocabulary P ∗; a is an action from the set of parameterized actions

A, l ∈ {pre, eff}, and m ∈ {+,−, ∅}. For convenience, we use the subscripts p, a, l, or

m to denote the corresponding component in a palm tuple. The presence of a palm

tuple λ in a model denotes the fact that in that model, the predicate λp appears in an

action λa at a location λl as a true (false) literal when mode λm is positive (negative),

and is absent when λm = ∅. This allows us to define the set-minus operation M \λ on

this model as removing the palm tuple λ from the model. We consider two palm tuples

λ1 = ⟨p1, a1, l1,m1⟩ and λ2 = ⟨p2, a2, l2,m2⟩ to be variants of each other (λ1 ∼ λ2)

iff they differ only on mode m, i.e., λ1 ∼ λ2 ⇔ (λ1p = λ2p) ∧ (λ1a = λ2a) ∧ (λ1l =

λ2l) ∧ (λ1m ̸= λ2m).
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We also define the notion of pal tuples which are represented a 3-tuple ⟨p, a, l⟩. Each

pal tuple γ = ⟨p, a, l⟩ corresponds to three pal tuples λm, m ∈ {+,−, ∅}, such that

γp = λmp , γa = λma , and γl = λml
. A mode assignment to a pal tuple γ = ⟨p, a, l⟩ can

result in 3 palm tuple variants γ+ = ⟨p, a, l,+⟩, γ− = ⟨p, a, l,−⟩, and γ∅ = ⟨p, a, l, ∅⟩.

For a model M = ⟨P,A⟩, the set of all possible palm tuples and pal tuples that

can be generates using p ∈ P and a ∈ A are represented as Λ and Γ, respectively.

Example 1. Based on the running example, possible pal tuples are:

• ⟨(at ?t ?s), drive(?t ?s ?d), pre⟩

• ⟨(at ?t ?s), drive(?t ?s ?d), eff⟩

• ⟨(at ?t ?d), drive(?t ?s ?d), pre⟩

• ⟨(at ?t ?d), drive(?t ?s ?d), eff⟩

• ⟨(src_blue ?s), drive(?t ?s ?d), pre⟩

• ⟨(src_blue ?s), drive(?t ?s ?d), eff⟩

• ⟨(src_blue ?d), drive(?t ?s ?d), pre⟩

• ⟨(src_blue ?d), drive(?t ?s ?d), eff⟩

3.3.5 Model Abstraction

We now define the notion of abstraction used in our solution approach. Several

approaches have explored the use of abstraction in planning Sacerdoti (1974a); Helmert

et al. (2007a); Bäckström and Jonsson (2013a); Srivastava et al. (2016a). The definition

of abstraction used in this work extends the concept of predicate and propositional

domain abstractions Srivastava et al. (2016a) to allow for the projection of a single

palm tuple λ. An abstract model is one in which all variants of at least one pal tuple

are absent. We define abstraction of a model as:
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Figure 2. (b) Lattice segment explored in random order of γi ∈ Γ; (a) At each node, 3
abstract models are generated and 2 of them are discarded based on query responses;
(c) An abstract model rejected at any level is equivalent to rejecting 3 models at the
level below, 9 models two levels down, and so on.

Definition 11. Let Λ be the set of all possible palm tuples which can be generated

using a predicate vocabulary P ∗ and an action header set AH . Let U be the set of

all consistent (abstract and concrete) models that can be expressed as subsets of Λ,

such that no model has multiple variants of the same palm tuple. The abstraction

of a model M with respect to a palm tuple λ ∈ Λ, is defined by fλ : U → U as

fλ(M) =M \ λ.

We extend this notation to define the abstraction of a set of models M with respect

to a palm tuple λ as X = {fλ(m) : m ∈ M}. We use this abstraction framework

to define a subset-lattice over abstract models (Fig. 2(b)). Each node in the lattice

represents a collection of possible abstract models which are possible variants of a

pal tuple γ. E.g., in the node labeled 1 in Fig. 2(b), we have models corresponding

to γ+1 , γ−1 , and γ∅1 . Two nodes in the lattice are at the same level of abstraction if

they contain the same number of pal tuples. Two nodes ni and nj in the lattice are
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connected if all the models at ni differ with all the models in nj by a single palm

tuple. As we move up in the lattice following these edges, we get more abstracted

versions of the models, i.e., containing less number of pal tuples; and we get more

concretized models, i.e., containing more number of pal tuples, as we move downward.

We now define this model lattice:

Definition 12. Let Λ = Γ×{+,−, ∅} be the set of all palm tuples. A model lattice

L is a 5-tuple L = ⟨N,E,Γ, ℓN , ℓE⟩, where N is a set of lattice nodes, Γ is the set of

all pal tuples ⟨p, a, l⟩, ℓN : N → 22
Λ is a node label function mapping nodes to sets of

abstract models, E is the set of lattice edges, and ℓE : E → Γ is a labeling function

mapping edges to pal tuples such that for each edge ni → nj, ℓN (nj) = {ξ ∪ {γk}| ξ ∈

ℓN(ni), γ = ℓE(ni → nj), k ∈ {+,−, ∅}}, and ℓN(⊤) = {ϕ} where ⊤ is the supremum

containing the empty model ϕ.

A node n ∈ N in this lattice L can be uniquely identified by the sequence of pal

tuples that label the edges leading to it from the supremum. As shown in Fig. 2(a),

even though theoretically ℓN : N → 22
Λ , only three requirements of parent abstract

models are stored. Additionally, in these model lattices, every node has an edge going

out from it corresponding to each pal tuple that is not present in the paths leading

to it from the most abstracted node. At any stage during the interrogation, nodes

in such a lattice are used to represent the set of models consistent with the agent’s

responses up to that point. At every step, our algorithm creates queries that help us

determine the next descending edge to take from a lattice node; corresponding to the

path 0, 1, 2, . . . , i in Fig. 2(b). This also avoids generating and storing the complete

lattice, which can be doubly exponential in number of predicates and actions.
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3.4 Solving the Agent Interrogation Task

Let Θ be the set of possible answers to queries. Thus, strings θ∗ ∈ Θ∗ denote the

information received by the assessment module at any point in the query process.

Query policies for the agent interrogation task are functions Θ∗ → Q ∪ {Stop} that

map sequences of answers to the next query that the interrogator should ask. The

process stops with the Stop query. In other words, for all answers θ ∈ Θ, all valid

query policies map all sequences xθ to Stop whenever x ∈ Θ∗ is mapped to Stop. This

policy is computed and executed online.

We now discuss how we solve the agent interrogation task by incrementally adding

palm variants to the class of abstract models and pruning out inconsistent models by

generating distinguishing queries.

Example 2. Consider the case of a delivery agent. Assume that AAM

is considering two abstract models M1 and M2 having only one action

load_truck(?package ?truck ?loc) and the predicates (at ?package ?loc),

(at ?truck ?loc), (in ?package ?truck), and that the agent’s model is MA

(Fig. 1). AAM can ask the agent what will happen if A loads package p1 into truck

t1 at location l1 twice. The agent would respond that it could execute the plan

only till length 1, and the state at the time of this failure would be (at t1 l1) ∧

(in p1 t1).

3.4.1 Agent Interrogation Algorithm

Algorithm 1 shows AAM’s overall algorithm. It takes the agent A, the set of

instantiated predicates P ∗, the set of all action headers AH , and a set of random states
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Model Precondition Effect

MA (at ?truck ?loc) ∧
(at ?package ?loc)

→ (in ?package ?truck)
∧¬(at ?package ?loc)

M1 (at ?truck ?loc) ∧
(at ?package ?loc)

→ (in ?package ?truck)

M2 (at ?truck ?loc) → (in ?package ?truck)
M3 (at ?truck ?loc) → ()

Table 1. load_truck(?package ?truck ?loc) actions of the agent model MA (un-
known to H) and three abstracted models M1, M2, and M3.

S as input, and gives the set of functionally equivalent estimated models represented

by poss_models as output. S can be generated in a preprocessing step given P ∗. AIA

initializes poss_models as a set consisting of the empty model ϕ (line 3) representing

that AAM is starting at the supremum ⊤ of the model lattice.

In each iteration of the main loop (line 4), AIA maintains an abstraction lattice

and keeps track of the current node in the lattice. It picks a pal tuple γ corresponding

to one of the descending edges in the lattice from a node given by some input ordering

of Γ. The correctness of the algorithm does not depend on this ordering. It then

stores a temporary copy of poss_models as new_models (line 5) and initializes an

empty set at each node to store the pruned models (line 6).

The inner loop (line 7) iterates over the set of all possible abstract models that

AIA has not rejected yet, stored as new_models. It then loops over pairs of modes

(line 8), which are later used to generate queries and refine models. For the chosen pair

of modes, generate_query() is called (line 9) which returns two models concretized

with the chosen modes and a query Q which can distinguish between them based on

their responses. Sec. 3.4.1.1 describes this process in detail.

AIA then calls filter_models() which poses the query Q to the agent and the two

models. Based on their responses, AIA prunes the models whose responses are not
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Algorithm 1: Agent Interrogation Algorithm (AIA)
Input :A, AH , P ∗, S
Output : poss_models

1 Initialize poss_models = {ϕ}
2 for γ in some input pal ordering Γ do
3 new_models ← poss_models
4 pruned_models = {}
5 for each M ′ in new_models do
6 for each pair {i, j} in {+,−, ∅} do
7 Q, Mi, Mj ← generate_query(M ′, i, j, γ, S)
8 Mprune ← filter_models(Q,MA,Mi,Mj)
9 pruned_models← pruned_models ∪Mprune

10 if pruned_models is ∅ then
11 update_pal_ordering(Γ, S)
12 continue

13 poss_models← new_models× {γ+, γ−, γ∅} \ pruned_models
14 return poss_models

consistent with that of the agent (line 11). Then it updates the estimated set of

possible models represented by poss_models (line 18). This process is explained in

Sec. 3.4.1.2 in detail.

If AIA is unable to prune any model at a node (line 14), it modifies the pal tuple

ordering (line 15). Sec. 3.4.1.3 explains this modification in detail. AIA continues this

process until it reaches the most concretized node of the lattice (meaning all possible

palm tuples λ ∈ Λ are refined at this node). The remaining set of models represents

the estimated set of models for A. The number of resolved palm tuples can be used as

a running estimate of the accuracy of the derived models. AIA requires O(|P ∗| × |A|)

queries as there are 2× |P ∗| × |A| pal tuples. However, our empirical studies show

that we never generate so many queries. The rest of the section describes each of the

submodules used in AIA.
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3.4.1.1 Query Generation

The query generation process corresponds to the generate_query() module in AIA

which takes a model M ′, the pal tuple γ, and 2 modes i, j ∈ {+,−, ∅} as input; and

returns the models Mi =M ′ ∪ {γi} and Mj =M ′ ∪ {γj}, and a plan-outcome query

Q distinguishing them, i.e., Mi
QMj.

Plan-outcome queries have two components, an initial state sI , and a plan π. AIA

gets sI from the input set of random states S ∈ S (line 4). Using sI as the initial

state, the idea is to find a plan, which when executed by Mi and Mj will lead them

either to different states or to a state where only one of them can execute the plan

further. Later we pose the same query to A and prune at least one of Mi and Mj.

Since the models Mi and Mj are abstract models, we need to ensure that we

make accurate inferences based on their response to a query and compare it with A’s

response. Hence we cannot directly use Mi and Mj to ask questions. We illustrate

this using the example below:

Example 3. Consider an empty model ϕ with two actions unload(?package ?truck

?loc) and load(?package ?truck ?loc). Now consider that it is being concretized

with the pal tuple γ = ⟨(in ?package ?truck), unload(?package ?truck ?loc),

pre⟩. The two models possible in this case are M1 and M2 shown in Tab. 2. It can

be clearly seen that the model M2 (without pu) is an abstraction of MA. Now

consider a query q = ⟨sI , π⟩ where sI = {(at p1 loc1), (at t1 loc1)}, and

π = ⟨load(p1 t1 loc1), unload(p1 t1 loc1)⟩. Now the response to this query

by the agent A with model MA in Tab. 2 will be q(MA) = ⟨2, {(at p1 loc1),

(at t1 loc1)}⟩. On the same query, the response of the abstract model M1 will
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Model Action Precondition Effect

MA
unload(?package ?truck ?loc)

(at ?truck ?loc) ∧ → (at ?package ?loc) ∧
(in ?package ?truck) ¬(in ?package ?truck)
(at ?truck ?loc) ∧ ¬(at ?package ?loc)

∧
load(?package ?truck ?loc)

(at ?package ?loc)
→

(in ?package ?truck)

M1
unload(?package ?truck ?loc) ¬(in ?package ?truck) → ()
load(?package ?truck ?loc) () → ()

M2
unload(?package ?truck ?loc) (in ?package ?truck) → ()
load(?package ?truck ?loc) () → ()

M1+inu
unload(?package ?truck ?loc)

((inu ?package ?truck)∨ → (inu ?package ?truck)¬(in ?package ?truck))
load(?package ?truck ?loc) (inu ?package ?truck) → (inu ?package ?truck)

M2+inu
unload(?package ?truck ?loc)

((inu ?package ?truck)∨ → (inu ?package ?truck)
(in ?package ?truck))

load(?package ?truck ?loc) (inu ?package ?truck) → (inu ?package ?truck)

Table 2. load(?package ?truck ?loc) and unload(?package ?truck ?loc) ac-
tions of the agent model MA (unknown to H) and two abstracted models M1 and M2,
with and without the dummy predicate inu.

be q(M1) = ⟨2, {(at p1 loc1), (at t1 loc1)}⟩, whereas M2’s response will be

q(M2) = ⟨1, {(at p1 loc1), (at t1 loc1)}⟩. Hence according to these responses,

the M2 will be discarded which is actually the correct model.

This inconsistency happens because the model ϕ is only partially concretized in

terms of the predicate (in ?package ?truck), and this information is not captured

in M1 and M2. To alleviate this issue, we add a predicate pu to the models M1

and M2 as shown in Tab. 2. So pu in any location (precondition or effect) helps

capture the information that it is not known how a predicate p appears in that

action’s precondition (or effect). Without pu, the planning problem can generate a

plan as a query such that a model’s response on it may be consistent with the agent

even though the model is not an abstraction of MA. Now in the example above,

with pu added to the models M1 and M2, the response to the query for both the
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Algorithm 2: Query Generation Algorithm
Input :M ′, i, j, γ, S
Output :Q,Mi,Mj

1 Mi,Mj ← add_palm(M ′, i, j, γ)
2 for sI in S do
3 dom, prob ← get_planning_prob (sI ,Mi,Mj)
4 π ← planner(dom, prob)
5 Q ← ⟨sI , π⟩
6 if π then break end if

7 return Q, M ′ ∪ {γi}, M ′ ∪ {γj}

models will be q(M1) = q(M2) = ⟨1, {(at p1 loc1), (at t1 loc1)}⟩, and hence q

will no longer be a distinguishing query for these models. A possible distinguishing

query in this case will be q′ = ⟨sI , π⟩ where sI = {(in p1 t1), (at t1 loc1)}, and

π = ⟨unload(p1 t1 loc1)⟩.

Generating plan outcome queries by reduction to planning We reduce

the problem of generating a plan-outcome query from Mi and Mj to a planning

problem. We add the pal tuple γ = ⟨p, a, l⟩ in modes i and j to M ′ to get M ′
i and

M ′
j, respectively. If the location l = eff, we add the palm tuple normally to M ′, i.e.,

M ′
m = M ′ ∪ ⟨p, a, l,m⟩, where m ∈ {i, j}. We modify these concretized models M ′

j

and M ′
j further to reflect unknown effects on p as follows. Intuitively, an action makes

an auxiliary predicate pu (representing an unknown effect on p) true iff it does not

have p in any mode as a precondition. To achieve this, we add the tuple ⟨pu, a, eff,+⟩

for all actions a that don’t have p in any mode as an effect, and the tuple ⟨pu, a, eff,−⟩

for all other actions. Similarly, we further modify the model to reflect the unknown

form of the preconditions in terms of p by adding pu to the preconditions of all actions

that do not have p in any mode in their precondition.

Note that pu is added only for generating a distinguishing query and is not part of

the models Mi and Mj returned by the query generation process.
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We now show how to reduce plan-outcome query generation into a planning problem

P(M ′′
i ,M

′′
j ) (line 5). P(M ′′

i ,M
′′
j ) uses conditional effects in its actions (in accordance

with PDDL (McDermott et al., 1998)). The model used to define P(M ′′
i ,M

′′
j ) has

predicates from both models M ′′
i and M ′′

j represented as PM ′′
i and PM ′′

j respectively,

in addition to a new auxiliary 0-ary predicate pψ. The action headers are the same as

AH . Each action’s precondition is a disjunction of the preconditions of M ′′
i and M ′′

j .

This makes an action applicable in a state s if either M ′′
i or M ′′

j can execute it in s.

The effect of each action has two conditional effects; the first applies the effects of

both M ′′
i and M ′′

j ’s action if preconditions of both M ′′
i and M ′′

j are true, whereas the

second makes the auxiliary predicate pψ true if precondition of only one of M ′′
i and

M ′′
j is true. Note that pψ is initially false. Adding pψ helps identify the goal state sP .

Reason for adding pψ Formally, we express the planning problem PPO(M
′′
i ,M

′′
j ) as

a 3-tuple ⟨MPO, sI , G⟩, where MPO is a model with predicates P PO = PM ′′
i ∪ PM ′′

j ∪

{pψ}, and actions APO where for each action a ∈ APO, pre(a) = pre(aM ′′
i ) ∨ pre(aM

′′
j ),

and

eff(a) = (when (pre(aM
′′
i ) ∧ pre(aM

′′
j ))(eff (aM

′′
i ) ∧ eff (aM

′′
j )))

(when ((pre(aM
′′
i ) ∧ ¬pre(aM ′′

j )) ∨ (¬pre(aM ′′
i ) ∧ pre(aM

′′
j ))) (pψ)),

The initial state sI = s
M ′′

i
I ∧ sM

′′
j

I , where sM
′′
i

I and s
M ′′

j

I are copies of all predicates in

sI , and G is the goal formula expressed as ∃p (pM
′′
i ∧ ¬pM ′′

j ) ∨ (¬pM ′′
i ∧ pM ′′

j ) ∨ pψ.

With this formulation, the goal is reached when an action in M ′′
i and M ′′

j differs

in either a precondition (making only one of them executable in a state), or an effect

(leading to different final states on applying the action). E.g., consider the models with

differences in load_truck(p1 t1 l1) as shown in Fig. 1. From the state (at t1 l1)

∧ ¬(at p1 l1), M2 can execute load_truck(p1 t1 l1) but M1 cannot. Similarly,

in state (at t1 l1) ∧ (at p1 l1), executing load_truck(p1 t1 l1) will cause

29



MA and M1 to end up in states differing in predicate (at p1 l1). Hence, given the

correct initial state, the solution to the planning problem PPO will give the correct

distinguishing plan.

We will formally prove in Sec. 3.5 that (i) this planning problem will always

generate a solution query when using two models M ′′
i and M ′′

j that differ only in one

palm tuple (Thm. 1), and (ii) any inferences about the consistency of models wrt. the

agent model MA based on responses to these queries are correct (Thm. 2).

3.4.1.2 Filtering Possible Models

This section describes the filter_models() module in Algorithm 1 which takes as

input MA, Mi, Mj, and the query Q (Sec. 3.4.1.1), and returns the subset Mprune

which is not consistent with MA.

First, AAM poses the query Q to Mi, Mj , and the agent A. Based on the responses

of all three, it determines if the two models are prunable, i.e., Mi♢Mj. As mentioned

in Def. 10, checking for prunability involves checking if the response to the query Q

by one of the models Mi or Mj is consistent with that of the agent or not.

If the models are prunable, then the palm tuple being added in the inconsistent

model cannot appear in any model consistent with A. As we discard such palm tuples

at abstract levels (as depicted in Fig. 2(a)), we prune out a large number of models

down the lattice (as depicted in Fig. 2(c)), hence we keep the intractability of the

approach in check and end up asking less number of queries.
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3.4.1.3 Updating PAL ordering

This section describes the update_pal_ordering() module in AIA (line 15). It is

called when the query generated by generate_query() module is not executable by A,

i.e., len(πQ) ̸= ℓA. E.g., consider two abstract models M2 and M3 being considered

by AAM (Fig. 1). At this level of abstraction, AAM does not have knowledge of

the predicate (at ?p ?l), hence it will generate a plan-outcome query with initial

state {(at ?t ?l)} and plan ⟨load_truck(p1 t1 l1)⟩ to distinguish between M2

and M3. But this cannot be executed by the agent A as its precondition (at ?p ?l)

is not satisfied, and hence we cannot discard any of the models.

Recall that in response to the plan-outcome query we get the failed action aF

= π[ℓ+1] and the final state sF . Since the query plan π is generated using Mi and Mj

(which differ only in the newly added palm tuple), they both would reach the same

state sF after executing first ℓ steps of π. Thus, we search S for a state s ⊃ sF where

A can execute aF . Similar to Stern and Juba (2017a), we infer that any predicate

which is false in s will not appear in aF ’s precondition in the positive mode. Next,

we iterate through the set of predicates p′ ⊆ s \ sF and add them to sF to check if A

can still execute aF . Thus, on adding a predicate p ∈ p′ to the state sF , if A cannot

execute aF , we add p in negative mode in aF ’s precondition, otherwise in ∅ mode. All

pal tuples whose modes are correctly inferred in this way are therefore removed from

the pal ordering.
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3.5 Formal Analysis of the AIA

In this section, we present a comprehensive theoretical analysis of AIA (Alg. 1).

We show that AIA will always terminate and that the models returned by AIA are

consistent with the agent’s model and any model that is discarded by AIA is not

consistent with that of the agent model.

To show this we prove the main theorem of this chapter (Thm. 3) which shows that

the algorithm will terminate and the models returned by the algorithm are consistent

with the agent’s model. To prove it, we will prove that the approach prunes away

models that are not consistent with the agent’s model, and that the models returned

by the algorithm are consistent with the agent’s model. We will also show that the

algorithm will terminate.

We will first show that a model no pal tuples is consistent with the agent model

according to Def. 9. When starting with an empty model, i.e., in which the correct

mode is not known for any pal tuple, the only way we can concretize the model is

when a predicate is added to the precondition. This is because we cannot reason about

the effects of an action on a predicate if we are not sure about the cases under which

that action is applicable in terms of that predicate. Proving this is important because

we will use this property as an important step in our proof by induction later on.

Lemma 1. Consider an empty model M having 0 palm tuples, and that Alg. 1

concretizes M by adding a new pal tuple γ = ⟨p, a, l⟩ to M to generate models M ′
i

and M ′
j, for i, j ∈ {+,−, ∅}. The planning problem P(M ′

i ,M
′
j) has a solution if and

only if l = pre.

Proof. We prove this in two parts. First, we show that if l = pre then P(M ′
i ,M

′
j) has
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a solution. Then, we show that if l ≠ pre (l = eff) then P(M ′
i ,M

′
j) does not have any

solution.

We prove the first part by construction. Recall that we add the pal tuple γ =

⟨p, a, l = pre⟩ in modes i, j ∈ {∅,−,+} to M to get Mi and Mj. Here M = {}, and

pal tuple being added is γ = ⟨p, a, l = pre⟩ (line 9 of Alg. 1). Hence in the model for

P(M ′
i ,M

′
j), (i) precondition of all actions except a will be pu; (ii) precondition of a

will be p ∨ pu in M+, ¬p ∨ pu in M−, and M∅ will have empty precondition; and (iii)

effects of all actions will be pu. Now if {i, j} ∈ {{+, ∅}, {+,−}} then P(M ′
i ,M

′
j) has a

solution if the initial state does not have p. Similarly if {i, j} ∈ {{−, ∅}, {+,−}} then

P(M ′
i ,M

′
j) has a solution if the initial state has p. In both these cases, the solution

plan π will be ⟨a⟩. Hence if l = pre then P(M ′
i ,M

′
j) has a solution.

Now we show that if l ̸= pre then P(M ′
i ,M

′
j) does not have any solution. Here

M = {}, and pal tuple being added is γ = ⟨p, a, l = eff⟩. Hence in the model for

P(M ′
i ,M

′
j), (i) effect of all actions except a will be pu; (ii) effect of a will be p in M+,

¬p in M−, and M∅ will have empty effect; and (iii) precondition of all actions will be

pu. Since pu is not present in the initial state, no action is executable. So there is no

plan possible; hence there is no solution for P(M ′
i ,M

′
j) in this case.

We will now formalize and show that the solution to the planning problem

PPO(Mi,Mj) we just created is possible if the two modelsMi andMj have a distinguish-

ing query. To formulate this, we will first define some additional notation. Consider

the example 3 shown earlier. The initial state sI used in PPO will be (ati t1 l1) ∧

(atj t1 l1), where (atx t1 l1) corresponds to (at t1 l1) predicate in the model

Mx. We also represent the projection of a state s in planning problem P ij
PO according

to models Mi and Mj as [s]Mi
and [s]Mj

, respectively. Here projection of a state s

in planning problem P ij
PO according to models Mi is the set of predicates with the
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subscript i, without their subscripts. E.g., consider if s = {(ati t1 l1), (atj p1 l1),

pψ, (atu t1 l1)}, then [s]Mi
= {(at t1 l1)}, and [s]Mj

= {(at p1 l1)}.

We now formalize an important property of the planning problem PPO(Mi,Mj)’s

solution. For brevity, we will represent PPO(Mi,Mj) as P ij and the set of actions

in P ij as Aij. We will show that the result of executing any action according to

P ij will be such that if aij(s) = s′ for any aij ∈ Aij, then ax([s]Mx) = [s′]Mx , for all

x ∈ {i, j}, where header(aij) = header(ax). This property is important to ensure that

the responses to the queries by the models Mi and Mj are consistent with what was

expected from the query generation process. Note that this will not hold for the final

action in the plan if the action was executable according to only one of the models.

This is because the final action will make the predicate pψ true in this case, whereas

the model according to which the action was not executable will fail to execute the

action, and the other model will make the correct effects true or false. We formalize

this property as follows:

Lemma 2. Consider a model M ′ that is an abstraction of the agent model MA,

and Mi and Mj are two models concretized from M ′ such that they differ in mode

of a single pal tuple ⟨p, a, l⟩. Consider P ij
PO(Mi,Mj) be a planning problem used

to distinguish Mi and Mj with an initial state sI , such that its solution is π, and

|π| = k. If the result of executing any action aij ∈ π according to P ij will be such

that if aijb (s) = s′ for any aijb ∈ Aij and b ∈ [1, k − 2], then ax([s]Mx) = [s′]Mx , for all

x ∈ {i, j}, where header(aij) = header(ax).

Proof. Recall that the goal to the planning problem P ij
PO(Mi,Mj) contains pψ in

disjunction. So we will never execute an action in a state where pψ is true. Also recall

that in the problem P ij, pre(aij) = pre(aM ′′
i ) ∨ pre(aM

′′
j ), where M ′′

x , x ∈ {i, j} were

the intermediate models used to create the planning problem P ij. Now, pre(aM ′′
x )
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cannot be false here, as b ∈ [1, k − 2], so we are considering all the actions other than

the last action. So if pre(aM ′′
x ) was false for any ab such that b < k − 1, then that

would’ve been the last action, which is not the case.

Now we will consider two cases: first, where we execute an action in a state without

pu, and second, in a state containing pu. We analyze them one by one.

Case 1 : Executing an action a in a state s, that does not have pu predicates. This is the

trivial case where the action a is executed when the precondition is satisfied according

to at least one of the two models. Now when pre(aM ′′
x ) is true (the precondition

corresponding to model Mx is satisfied), then the same precondition pre(a) (projected

version) is true in the actual model Mx too. This is because by construction the

precondition can only have pu predicates in addition to the normal predicates. Since

projection removes pu, if we project pre(aM ′′
x ), we’ll get pre(a) according to Mx. Hence

Similar argument holds for the effect, hence the projection of effect eff(aM ′′
x ) will

be same as eff(a) according to Mx. Additionally, This implies that if ab(s) = s′ for

the case where pu is false in s, the projection of states s and s′ will be such that

ax([s]Mx) = [s′]Mx .

Case 2 : Executing an action a in a state s, that has pu predicates. This condition

means that the action is being executed in the state s where it is not known if

the predicate p is true or false. Now, projecting s according to Mi (or Mj) would

result in [s]Mi
(or [s]Mj

) where p is not true. Similarly, p would also be absent from

the precondition of ai (or aj). Hence if a was executable in s, ai (or aj) would be

executable in [s]Mi
(or [s]Mj

).

In both these cases, the effects of the action will change the states in an exact

manner except for the pu predicates. And since the projection of states according

to a model anyway removes the pu predicates, the resulting state s′ according to the
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planning problem’s action and [s′]Mi
([s′]Mj

) according to the model Mi (or Mj) will

be the same.

We will next show that the solution plan to P(M ′
i ,M

′
j) always ends up with the

action that is part of the pal tuple being concretized at that time. This will help us

in limiting our analysis to, at most, the last two actions in the plan.

Lemma 3. Let Mi,Mj ∈ {M+,M−,M∅} be the models generated by adding pal tuple

γ = ⟨p, a, l⟩ to M ′. Suppose starting in a state sI , π is a solution to P(Mi,Mj). The

last action in the plan π will be a.

Proof. We prove this by contradiction. Consider that the last action of the solution

plan π is aF ̸= a, where a is the action in pal tuple γ = ⟨p, a, l⟩. Now, by construction,

P(Mi,Mj) has a solution if after executing aF (i) pψ is true, or (ii) ∃p (pM
′′
i ∧¬pM ′′

j )∨

(¬pM ′′
i ∧ pM ′′

j ) is true. Here M ′′
x are the intermediate models used in creating the

planning problem P(Mi,Mj). We will now consider both the cases.

Case 1 : pψ is true after executing aF . As mentioned earlier, pψ becomes true when

((pre(aM
′′
i

F ) ∧ ¬pre(aM
′′
j

F )) ∨ (¬pre(aM
′′
i

F ) ∧ pre(a
M ′′

j

F )). This means that when aF is

executed in a state s such that either [s′]Mi
̸|= pre(aMi

F ) ∧ [s′]Mj
|= pre(aMj

F ) or

[s′]Mi
|= pre(aMi

F ) ∧ [s′]Mj
̸|= pre(aMj

F ). This means that pre(aMi
F ) ̸= pre(aMj

F ). This is

not possible as Mi and Mj are constructed from same model M ′ by making changes

to action a. So pre(aMi
F ) must be equal to pre(aMj

F ). This means that our assumption

that the last action of the plan must be aF ̸= a, must be false.

Case 2 : ∃p (pM
′′
i ∧¬pM ′′

j )∨(¬pM ′′
i ∧pM ′′

j ) is true. This means that when aF is executed

in a state s such that [s′]Mi
|= pre(aMi

F ) ∧ [s′]Mj
|= pre(aMj

F ), their effects are not the

same, i.e., eff(aMi
F ) ̸= eff(aMj

F ). This is not possible as Mi and Mj are constructed

from same model M ′ by making changes to action a. So eff(aMi
F ) must be equal to
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eff(aMj

F ). This means that our assumption that the last action of the plan must be

aF ̸= a, must be false.

Since for both the cases, aF ̸= a was false, hence aF = a, i.e., the last action of

the plan π will be a.

We will next show that if the agent can execute the query successfully, then each

intermediate state that each of the models generate on executing the plan in the query

will be an abstraction of the states that the agent will generate as part of executing

the same query. Additionally, all the intermediate states generated by both models

will be identical.

Suppose Q = ⟨sQI , πQ⟩ is a distinguishing query for two distinct models Mi,Mj,

i.e., Mi
QMj . Let Q1...z represent the query with same initial state sQI , and plan πQ

1...z,

i.e., first z (z < len(πQ)) actions from plan πQ.

Lemma 4. Let Mi,Mj ∈ {M+,M−,M∅} be the models generated by adding pal tuple

γ to M ′ which is an abstraction of MA. Suppose Q = ⟨sQI , πQ⟩ is a distinguishing

query for two distinct models Mi,Mj, i.e., Mi
QMj. Let the agent’s response to

the query Q(MA) be ⟨ℓA, ⟨pA1 , . . . , pAk ⟩⟩, where ℓA = len(πQ). Let the response

of models Mi,Mj, and MA to the query Q1...z be: Q1...z(Mi) = ⟨ℓi, ⟨pi1, . . . , pim⟩⟩,

Q1...z(Mj) = ⟨ℓj, ⟨pj1, . . . , pjn⟩⟩, andQ1...z(M
A) = ⟨ℓA, ⟨pA1 , . . . , pAh ⟩⟩. If z ≤ len(πQ)−1,

then m = n, {pi1, . . . , pim} = {pj1, . . . , pjn} and {pi1, . . . , pim} \ {pu} ⊆ {pA1 , . . . , pAh }.

Proof. We first show that if the agent is able to execute the distinguishing query q

successfully (i.e., ℓA = len(πq)), then all the intermediate states generated by both

the models while on executing the plan πQ starting in the initial state sQ are the

same, and then show that the projection of these states are an abstraction of the

corresponding intermediate state generated by the agent on executing the same query.
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Note that since q is a distinguishing query, |ℓi− ℓj| ∈ {0, 1}, also z ≤ ℓi and z ≤ ℓj .

We now prove the first part by contradiction. The query Q used to distinguish

between Mi and Mj is generated using the planning problem P ij . Suppose there exists

z′ < len(πQ) for which the intermediate states generated after executing the plan

q1...z′ are not same according to Mi and Mj. Recall that P ij has a solution if Mi and

Mj have different preconditions or different effects for the same action (by definition

of goal of P ij). According to this, the plan πq1...z′ should also be a solution to P ij . But

this is not possible as any subsequence of πQ cannot be a solution otherwise πQ would

never have been returned as the solution to P ij. Hence all the intermediate states

generated by both the models while on executing the plan πQ starting in the initial

state sQ are the same.

Now we prove the second part that the intermediate states generated by both the

models on executing the plan πQ starting in the initial state sQ are a subset of the

corresponding projection of the intermediate state generated by the agent on executing

the same query. Since M ′ is an abstraction of MA, all the palm tuples already present

in it are also present in MA. The only new palm tuples in Mi and Mj are the ones

involving pal tuple γ or involving predicate pu. Now, as shown above, only the last

action in the plan πQ will be a (corresponding to γ), and all the actions prior to that

will not be a. Now, all the actions other than a, have the same preconditions and

effects as they were in M ′ (which is an abstraction of MA), and since those actions in

M ′ were consistent with that of MA, the effect of executing them will also be consistent

with the agent A. Thus, if sq is the starting state, z ≤ len(πQ) − 1, and πQ
1...z(s)

= s′ij according to P ij, and πQ
1...z(s) = s′A according to MA, then [s′ij]Mi

⊆ s′A and

[s′ij ]Mj
⊆ s′A. Note that in this notation, [s′ij ]Mi

= {pi1, . . . , pim}, [s′ij ]Mj
= {pj1, . . . , pjn},

and s′A = {pA1 , . . . , pAh }.
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Now we will see how these lemmas we proved so far combines to show that the

planning problem created as part of Alg. 1 is guaranteed to generate a distinguishing

query, if exists.

Theorem 1. Consider a model M ′ that is an abstraction of the agent model MA,

and Mi and Mj are two models concretized from M ′ such that they differ in mode

of a single pal tuple. Given such pair of models Mi and Mj and an initial state

sI , the planning problem P ij
PO has a solution iff Mi and Mj have a distinguishing

plan-outcome query QPO.

Proof. We first show that if the planning problem PPO has a solution, then Mi and

Mj have a distinguishing plan-outcome query QPO comprising of an initial state sI

and plan πPO. By construction, the initial state sI in QPO and PPO is same. Suppose

P (Mi,Mj) has a solution plan π, which is a sequence of actions a1, a2, . . . , ak where

ax ∈ AP ij , such that on executing this plan, the goal condition is met. Consider the

trace of this execution be ⟨sI , a1, s1, a2, s2, . . . , sk−1, ak, sG⟩. Recall that the goal is

either the predicate pψ is true, or the final state according to the two models on

executing the plan does not match. We will consider these cases individually.

Case 1 : The predicate pψ is true on executing the plan, i.e., sG |= pψ. By the

construction of P ij, it means that ak made pψ true. It implies that only one of Mi’s

or Mj’s preconditions were met in sk−1. Consider that model whose preconditions

were not met to be Mi. Now using lemma 4, we know that [sk−1]Mi
= [sk−1]Mj

, hence

we will refer it as [sk−1]Mx for brevity. Using Lemma 2, this also means that in the

original models Mi and Mj, when executing the corresponding action aik (or ajk) in

the state [sk−1]Mx , [sk−1]Mx ̸|= pre(aik), and [sk−1]Mx |= pre(ajk). Hence, if P ij has a

solution such that sG |= pψ, then Mi Mj.

39



Case 2 : One of the predicates is true according to one of the model, and false according

to another in the goal state, i.e., sG |= ∃pi, pj ∈ P ij(pi ∧ ¬pj) ∨ (¬pi ∧ pj). By the

construction of P ij, it means that ak made this condition true. It implies that both

of Mi’s or Mj’s preconditions were met in sk−1. Now using lemma 4, we know that

[sk−1]Mi
= [sk−1]Mj

, hence we will refer it as [sk−1]Mx for brevity. Using Lemma 2, this

also means that in the original models Mi and Mj , when executing the corresponding

action aik (or ajk) in the state [sk−1]Mx , [sk−1]Mx |= pre(aik) ∧ pre(ajk). Since, in the

predicate after executing ak differs, [sk]Mi
̸= [sk]Mj

. Hence, if P ij has a solution such

that sG |= ∃pi, pj ∈ P ij(pi ∧ ¬pj) ∨ (¬pi ∧ pj), then Mi Mj.

Equivalent Models It is possible for AIA to encounter a pair of models Mi and Mj

that are not prunable. In such cases, the models Mi and Mj are functionally equivalent

and cannot be discarded. Hence, both the models end up in the set poss_models in

line 18 of AIA.

We will next prove that a model is not an abstraction of the agent model if it

is not consistent with that of the agent. But to prove that, we will use a couple of

smaller results. We first start by showing that we can only prune an abstract model

based on a query’s responses if the agent can execute all actions in the query plan

successfully.

We will next show that if an agent’s response is not consistent with such a model,

then that model (without the pus) is not an abstraction of the agent. But to prove

that we first show that if the agent cannot successfully execute all the actions in the

query plan, then we cannot decide if an abstracted model is consistent with the agent.

Lemma 5. Let Mi ∈ {M+,M−,M∅} be the model generated by adding the pal

tuple γ to M ′ which is an abstraction of the true agent model MA. Suppose Q is
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a distinguishing query for two distinct models Mi and Mj ∈ {M+,M−,M∅} \Mi. If

MA cannot execute all the actions in the query successfully, then we cannot decide

consistency of the Mi (or Mj) response with that of the agent.

Proof. Suppose Q = ⟨sQI , πQ⟩ is a distinguishing query for two distinct models Mi,Mj ,

i.e. Mi
QMj , and the response of models Mi,Mj, and MA to the query Q are Q(Mi) =

⟨ℓi, ⟨pi1, . . . , pim⟩⟩, Q(Mj) = ⟨ℓj, ⟨pj1, . . . , pjn⟩⟩, and Q(MA) = ⟨ℓA, ⟨pA1 , . . . , pAk ⟩⟩. We

show that when ℓA ≠ len(πQ), i.e., MA cannot execute all the actions in the query

successfully, then we can make incorrect inferences about the consistency of the Mi

(or Mj) response with that of the agent.

We prove this by counterexample. When ℓA ̸= len(πQ), consider the models M1

with pu, and M2 with pu in Tab. 2. Consider the initial state to be {(in package1

truck1)}, and the plan be ⟨unload(package1 truck1 location1)⟩. Now the re-

sponses of MA and M1 to this query will be ⟨0, {(in package1 truck1)}⟩, whereas

that of M2 will be ⟨1, {pu}⟩. This happens because the first action in the plan failed

for MA because of the precondition (at truck1 location1) that is not satisfied in

the initial state. On the other hand, the first action for M1 failed because of the

precondition ¬(in package1 truck1). This happens because an action may execute

successfully in an abstract model (M2 here), but fail in the model which is an accurate

concretization of it (MA here) because of some predicate ((at truck1 location1)

here) that the abstract models haven’t added to their model. Hence Mi (or Mj)

cannot be pruned if ℓA ̸= len(πQ).

Lemma 6. Let Mi ∈ {M+,M−,M∅} be the model generated by adding the pal

tuple γ to M ′ which is an abstraction of the true agent model MA. Suppose Q is

a distinguishing query for two distinct models Mi and Mj ∈ {M+,M−,M∅} \Mi. If
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Mi’s (or Mj’s) response is not consistent with that of the agent, then it is not an

abstraction of MA.

Proof. Suppose Q = ⟨sQI , πQ⟩ is a distinguishing query for two distinct models Mi,Mj ,

i.e. Mi
QMj , and the response of models Mi,Mj, and MA to the query Q are Q(Mi) =

⟨ℓi, ⟨pi1, . . . , pim⟩⟩, Q(Mj) = ⟨ℓj, ⟨pj1, . . . , pjn⟩⟩, and Q(MA) = ⟨ℓA, ⟨pA1 , . . . , pAk ⟩⟩. Now

the model Mi’s response to Q is said to be consistent with that of MA when ℓA =

len(πQ), len(πQ) = ℓi and si ⊆ sA, where si = {pi1, . . . , pim}\pu and sA = {pA1 , . . . , pAk }.

We prove this in multiple parts. We have already shown in Lemma 4 that ℓA = len(πQ)

is a necessary condition for consistency. We will now show that if either len(πQ) = ℓi

or si ⊆ sA are not true, then Mi is not an abstraction of MA.

We first show that if len(πQ) ̸= ℓi, then Mi is not an abstraction of MA. Since

ℓA = len(πQ)taa, the agent can execute each of the actions in the plan. Now if Mi

is also able to execute an action whereas Mj can (since q is a distinguishing query),

then using Lemma 2 it can only be the last action. Now the set of preconditions for

an abstracted model will never be larger than its corresponding concretized model,

hence if an action is executable in the concretized model, it should also be executable

in the abstracted model. Now since the other actions in the plan are correct as M ′ is

an abstraction of MA, hence if len(πQ) ̸= ℓi, then Mi is not an abstraction of MA.

We now show that if si ̸⊆ sA, then Mi is not an abstraction of MA. Since

ℓA = len(πQ), the agent can execute each of the actions in the plan. Now if the states

that Mi and Mj do not end up in the same state, then using Lemma 2 it can only

be after the last action. Now the set of effects for an abstracted model will never be

larger than its corresponding concretized model, hence if an action is executable in

the concretized model and ends up in a state, then the abstracted model should also
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reach a state where only the subset of its effects are true. Hence if si ̸⊆ sA, then Mi

is not an abstraction of MA.

Theorem 2. Let Mi ∈ {M+,M−,M∅} be the model generated by adding the pal

tuple γ to M ′ which is an abstraction of the true agent model MA. Suppose Q is a

distinguishing query for two distinct models Mi and Mj ∈ {M+,M−,M∅} \Mi. If Mi

(or Mj) is pruned out by Alg. 1, then it is not an abstraction of MA.

Proof. We prove this by mathematical induction. Suppose Q = ⟨sQI , πQ⟩ is a distin-

guishing query for two distinct models Mi,Mj, i.e. Mi
QMj, and the response of

models Mi,Mj, and MA to the query Q are Q(Mi) = ⟨ℓi, ⟨pi1, . . . , pim⟩⟩, Q(Mj) =

⟨ℓj, ⟨pj1, . . . , pjn⟩⟩, and Q(MA) = ⟨ℓA, ⟨pA1 , . . . , pAk ⟩⟩. Now when ℓA ̸= len(πQ), none of

Mi or Mj can be discarded as shown in Lemma 4.

When ℓA = len(πQ), and Mi (or Mj) is pruned then it means that either len(πQ) ̸=

ℓi or {pi1, . . . , pim} ̸⊆ {pA1 , . . . , pAk }. So we will now prove that if len(πQ) ̸= ℓi or

{pi1, . . . , pim} \ pu ̸⊆ {pA1 , . . . , pAk } then Mi is not an abstraction of MA.

Let P(n) be the proposition that for every model with n pal tuples, which is

consistent with MA, refining it with a pal tuple with the correct mode according to

Def. 3 will prune out the models that are not an abstraction of MA.

Base Case: The proof for P(0) being true is by case analysis. Assume the model

M ′ = {}, which is consistent with MA, is concretized with pal tuple γ = ⟨p, a, l⟩.

There are only two cases possible as the location can only be a precondition or an effect.

Case 1 : Consider l = pre. This case splits into 2 subcases, based on if the predicate

will be true in the initial state or not. Note that the plan will have only one action as

the models are completely empty except the only action that is being concretized.
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Case 1.1 : If p ∈ sQI , πQ = ⟨a⟩, and ℓA = len(πQ) = 1, then ⟨p, a, pre,−⟩ ̸∈MA. Also

Mj
QM−, where j ∈ {+, ∅}, as ℓj = 1, and ℓ− = 0. Hence P(0) is true.

Case 1.2 : If ¬p ∈ sQI , πQ = ⟨a⟩, and ℓA = len(πQ) = 1, then ⟨p, a, pre,+⟩ ̸∈ MA.

Also Mj
QM+, where j ∈ {−, ∅}, as ℓj = 1, and ℓ+ = 0. Hence P(0) is true.

Case 2 : Consider l = eff. If M = {} and l = eff, ∀i, j ∈ {+,−, ∅}, ̸ ∃Q Mi
QMj as

shown in Lemma 1. Hence P(0) is true.

Inductive Step: Assume that P(n) is true for some n ≥ 0; that is we have a

model M ′, with n palm tuples, which is an abstraction of MA, and refining it with

a pal tuple γ = ⟨p, a, l⟩ will generate models with n+ 1 tuples. From Lemma 4, we

know that before executing the last action, the state reached by both the abstracted

models (sF−1) will be a subset of the state reached by MA (sF−1). There are two cases:

Case 1 : Consider l = pre. Since l = pre, pu ̸∈ sF−1. This case splits into 2 subcases:

Case 1.1 : If p ∈ sF−1, and ℓA = len(πQ), then ⟨p, a, pre,−⟩ ̸∈ MA. Also Mj
QM−,

where j ∈ {+, ∅}, as ℓj = len(πQ), and ℓ− = len(πQ) − 1. Thus, M− is not an

abstraction of MA. Hence P(n) is true.

Case 1.2 : If ¬p ∈ sF−1, and ℓA = len(πQ), then ⟨p, a, pre,+⟩ ̸∈MA. Also Mj
QM+,

where j ∈ {−, ∅}, as ℓj = len(πQ), ℓ+ = len(πQ)− 1. Thus, M+ is not an abstraction

of MA. Hence P(n) is true.
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Case 2 : Consider l = eff. Since l = eff, pu may or may not be in sF−1. In either case,

the full plan is executed in Mi,Mj and MA. Hence we can compare the states reached

after executing the complete plan. Let sMi
F = {pi1, . . . , pim}, s

Mj

F = {pi1, . . . , pin}, and

sF = {pi1, . . . , pik} be the final states reached upon executing πQ in Mi,Mj and MA

respectively and sF−1 is the state reached in Mi and Mj before executing action a.

This case splits into 2 subcases:

Case 2.1 : If p ∈ sF−1. If p ∈ sF , ⟨p, a, eff,−⟩ ̸∈ MA and s
M−
F ̸⊆ sF . Similarly if

¬p ∈ sF , ⟨p, a, eff,+⟩ ̸∈ MA and s
M+

F ̸⊆ sF , and ⟨p, a, eff, ∅⟩ ̸∈ MA and s
M∅
F ̸⊆ sF .

Hence P(n) is true.

Case 2.2 : If ¬p ∈ sF−1. If ¬p ∈ sF , ⟨p, a, eff,+⟩ ̸∈ MA and s
M+

F ̸⊆ sF . Similarly

if p ∈ sF , ⟨p, a, eff,−⟩ ̸∈ MA and s
M−
F ̸⊆ sF , and ⟨p, a, eff, ∅⟩ ̸∈ MA and s

M∅
F ̸⊆ sF .

Hence P(n) is true.

This proves that if we add a pal tuple to a model that is an abstraction of MA,

then we prune only inconsistent models Mi whenever len(πQ) ̸= ℓi or {pi1, . . . , pim} ̸⊆

{pA1 , . . . , pAk } when ℓA = len(πQ).

We will now prove that the set of estimated models returned by AIA is correct and

the returned models are functionally equivalent to the agent’s model, and no correct

model is discarded in the process. We will henceforth refer to Alg. 1 as AIA (Agent

Interrogation Algorithm). To prove our next theorem we’ll need some additional

lemmas that we prove below. The first one mentions that AIA never prunes away a

model whose possible concretization is an abstraction of the agent model, and the

second one shows that AIA always terminates.
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Lemma 7. Given an agent A with a model MA, and an abstract model Mabs, if AIA

prunes away an abstract model Mabs, then no possible concretization of Mabs will be

an abstraction of the agent model MA.

Proof. We prove this using simple inference. At each node in the lattice, we always

prune away some of the models. If we discard an inconsistent model, it is because some

palm tuple in the model has a different mode m, than that of MA. This incorrect palm

tuple will also be present in all its concretizations, making all of them inconsistent

with MA. Theorem 2 proves that at each node the models pruned away by AIA are

not an abstraction of the agent model. This means that they have at least one of the

pal tuples in a mode that does not match that of the agent model. Now concretizing

such a model will only add other pal tuples in one of the three modes as explained in

section 3.5, hence the incorrect mode of the pal tuple will remain unchanged thereby

keeping making all possible concretizations of such a model an incorrect abstraction

of the agent model.

With the guarantee that we are not pruning away any correct possible model,

we now prove that the agent interrogation algorithm will terminate, hence giving a

solution.

Lemma 8. The Agent Interrogation Algorithm (Alg. 1) will always terminate.

Proof. As mentioned in Def. 16, in our subset lattice, “level” is equivalent to the

number of refined pal tuples. At each step of the algorithm, when we consider a

refinement in terms of pal tuples, we are left with one or more variants of the pal

tuple. This ensures that we never refine the models more than once at a single level in

the lattice. Since we refine at least one pal tuple in every iteration of the algorithm,
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the algorithm is bound to terminate as the number of pal tuples is finite for a finite

number of propositions and actions under consideration.

Theorem 3. The Agent Interrogation Algorithm (Alg. 1) will always terminate and

return a set of models, each of which are functionally equivalent to the agent’s model

MA.

Proof. Theorem 1 and Theorem 2 prove that whenever we get a prunable query, AIA

discards only the models that are not abstractions of the agent model, thereby ensuring

that no model that is an abstraction of the agent model is discarded. When we do

not get a prunable query, AIA infers the correct precondition(s) of the failed action

using update_pal_ordering(), hence the number of refined palm tuples always increase

with the number of iterations of AIA (line 4 of AIA), thereby ensuring its termination

in finite time. And when the algorithm terminates, the models that remain have all

their responses consistent with that of the agent’s model and hence are functionally

equivalent to that of the agent model.

3.6 Empirical Evaluation

We implemented AIA in Python to evaluate the efficacy of our approach.3 In this

implementation, initial states (S, line 1 in Algorithm 1) were collected by making the

agent perform random walks in a simulated environment. We used a maximum of 60

such random initial states for each domain in our experiments. The implementation

assumes that the domains do not have any constants and that actions and predicates do

not use repeated variables (e.g., at(?v, ?v)), although these assumptions can be removed

3Code available at https://git.io/Jtpej
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in practice without affecting the correctness of algorithms. The implementation is

optimized to store the agent’s answers to queries; hence the stored responses are used

if a query is repeated. We evaluated three hypotheses using the experiments:

Hypothesis 1: The number of queries grows as we increase the number of pal

tuples in the domains.

Hypothesis 2: The number of queries is lower than the observational learners to

learn the complete model.

Hypothesis 3: The approach always learns the correct set of equivalent models.

We tested AIA on two types of agents: symbolic agents that use models from

the IPC (unknown to AIA), and simulator agents that report states as images using

PDDLGym. We wrote image classifiers for each predicate for the latter series of

experiments and used them to derive state representations for use in the AIA algorithm.

All experiments were executed on 5.0 GHz Intel i9-9900 CPUs with 64 GB RAM

running Ubuntu 18.04.

The analysis presented below shows that AIA learns the correct model with a

reasonable number of queries, and compares our results with the closest related work,

FAMA (Aineto et al., 2019). We use the metric of model accuracy in the following

analysis: the number of correctly learned palm tuples normalized with the total

number of palm tuples in MA.

3.6.1 Experiments with Symbolic Agents

We initialized the agent with one of the 10 IPC domain models, and ran AIA

on the resulting agent. 10 different problem instances were used to obtain average

performance estimates.
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Domain |P ∗| |A| |Q̂| tµ (ms) tσ (µs)

Gripper 5 3 17 18.0 0.2
Blocksworld 9 4 48 8.4 36
Miconic 10 4 39 9.2 1.4
Parking 18 4 63 16.5 806
Logistics 18 6 68 24.4 1.73
Satellite 17 5 41 11.6 0.87
Termes 22 7 134 17.0 110.2
Rovers 82 9 370 5.1 60.3
Barman 83 17 357 18.5 1605
Freecell 100 10 535 2.24† 33.4†

Table 3. The number of queries (|Q̂|), average time per query (tµ), and variance of
time per query (tσ) generated by AIA with FD. Average and variance are calculated
for 10 runs of AIA, each on a separate problem. †Time in sec.

Table 3 shows that the number of queries required increases with the number of

predicates and actions in the domain, hence proving Hypothesis 1. We used Fast

Downward (Helmert, 2006) with LM-Cut heuristic (Helmert and Domshlak, 2009) to

solve the planning problems. Since our approach is planner-independent, we also tried

using FF (Hoffmann and Nebel, 2001) and the results were similar. The low variance

shows that the method is stable across multiple runs.

3.6.2 Comparison with Observational Learner

We compare the performance of AIA with that of FAMA, state of the art ob-

servational learner, in terms of stability of the models learned and the time taken

per query. Since the focus of our approach is on automatically generating useful

traces, we provided FAMA randomly generated traces of length 3 (the length of the

longest plans in AIA-generated queries) of the form used throughout this chapter

(⟨sI , a1, a2, a3, sG⟩).
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Figure 3. Performance comparison of AIA and FAMA in terms of model accuracy
and time taken per query with an increasing number of queries.

Fig. 3 summarizes our findings. AIA takes lesser time per query and shows better

convergence to the correct model, hence proving Hypothesis 2. FAMA sometimes

reaches nearly accurate models faster, but its accuracy continues to oscillate, making

it difficult to ascertain when the learning process should be stopped (we increased the

number of traces provided to FAMA until it ran out of memory). This is because the

solution to FAMA’s internal planning problem introduces spurious palm tuples in its

model if the input traces do not capture the complete domain dynamics. For Logistics,
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Figure 4. PDDLGym’s simulated Sokoban (left) and Doors (right) environments used
for the experiments.

FAMA generated an incorrect planning problem, whereas for Freecell and Barman it

ran out of memory (AIA also took considerable time for Freecell). Also, in domains

with negative preconditions like Termes, FAMA was unable to learn the correct model.

We used Madagascar (Rintanen, 2014) with FAMA as it is the preferred planner for

it. We also tried FD and FF with FAMA, but as the original authors noted, it could

not scale and ran out of memory on all but a few Blocksworld and Gripper problems

where it was much slower than with Madagascar.

Also, not that AIA is able to learn the correct model for all the instances, hence

proving Hypothesis 3.

3.6.3 Experiments with Simulator Agents

AIA can also be used with simulator agents that do not know about predicates and

report states as images. To test this, we wrote classifiers for detecting predicates from

images of simulator states in the PDDLGym (Silver and Chitnis, 2020) framework.

The classifiers are based on detecting objects in an image using colors (Duffy et al.,

2000; Khan et al., 2012).

This framework provides ground-truth PDDL models, thereby simplifying the
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estimation of accuracy. We initialized the agent with one of the two PDDLGym

environments, Sokoban and Doors shown in Fig. 4. AIA inferred the correct model

in both cases and the number of instantiated predicates, actions, and the average

number of queries (over 5 runs) used to predict the correct model for Sokoban were

35, 3, and 201, and that for Doors were 10, 2, and 252.

3.7 Related Work

A number of researchers have explored the problem of learning agent models from

observations of its behavior (Gil, 1994; Wang, 1994; Benson, 1995; Wu et al., 2007;

Yang et al., 2007; Cresswell et al., 2009; Zhuo and Kambhampati, 2013a). Such

action-model learning approaches have also found practical applications in robot

navigation (Balac et al., 2000), web-service description learning (Walsh and Littman,

2008), player behavior modeling (Krishnan et al., 2020), etc. To the best of our

knowledge, ours is the first approach to address the problem of generating query

strategies for inferring relational models of black-box agents. We now present a

detailed comparison of our work with the related works.

3.7.1 Passive Observations Based Learners

Amir and Chang (2008) use logical filtering (Amir and Russell, 2003) to learn

partially observable action models from the observation traces. Shahaf and Amir

(2007); Zettlemoyer et al. (2008) and Shirazi and Amir (2011) also use logical filtering

to acquire action models. Camacho and McIlraith (2019) present an approach for

learning highly expressive LTL models from an agent’s observed state trajectories
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using an oracle with knowledge of the target LTL representation. This oracle can

also generate counterexamples when the estimated model differs from the true model,

but it is not clear how to acquire such an oracle. Roy et al. (2020) learns the models

in Property Specification Language (PSL) with very little overhead as compared to

learning LTL formulas. All these approaches learn models at the propositional level.

Genetic programming-based techniques like EvoCK (Aler et al., 1998),

L2Plan Levine and Humphreys (2003), and LOUGA (Kučera and Barták,

2018) learn the domain rules by searching through a set of rules us-

ing genetic programming. LOUGA (Kučera and Barták, 2018) com-

bines a genetic algorithm with an ad-hoc method to learn planning oper-

ators from observed plan traces. LOCM (Cresswell et al., 2009), LOCM2

Cresswell and Gregory (2011), LOP (Gregory and Cresswell, 2015), and NLOCM (Gre-

gory and Lindsay, 2016) present a class of algorithms that use finite-state machines

to create action models from observed plan traces.

ARMS (Yang et al., 2007; Wu et al., 2007), AMAN (Zhuo and Kambhampati,

2013a) and ML-CBP (Zhuo et al., 2013; Zhuo and Kambhampati, 2017) leverage

MAX-SAT to learn action models with partial or noisy traces. AMDN (Zhuo et al.,

2019) learn action models using noisy observations with sets of disordered and parallel

actions. LAMP (Zhuo et al., 2010) uses Markov Logic Networks (MLNs) (Richardson

and Domingos, 2006) to learn complex action models involving quantifiers and logical

implications from observed traces. LAWS (Zhuo et al., 2011) use MLNs and knowledge

from similar domains to learn action models for new domains. TRAMP (Zhuo and

Yang, 2014) tries to minimize the observations it uses by leveraging knowledge from

similar domains using MAX-SAT to learn a domain model for a new domain but still

depends on passively collected observations.
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FAMA (Aineto et al., 2019) reduces model recognition to a planning problem

and can work with partial action sequences and/or state traces as long as correct

initial and goal states are provided. While both FAMA and some other approaches

like LOUGA (Kučera and Barták, 2018) require a post-processing step to update the

learned model’s preconditions to include the intersection of all states where an action

is applied, it is not clear that such a process would necessarily converge to the correct

model. Stern and Juba (2017a), Juba et al. (2021), and Juba and Stern (2022a) learn

safe action models for various settings leveraging intermediate states in execution

traces. Our experiments indicate that such approaches exhibit oscillating behavior in

terms of model accuracy because some data traces can include spurious predicates,

which leads to spurious preconditions being added to the model’s actions.

Bonet and Geffner (2020a) and Rodriguez et al. (2021) present approaches for

learning relational models using a SAT-based method when the action schema, predi-

cates, etc. are not available. These approaches take as input a predesigned correct

and complete directed graph encoding the structure of the entire state space. The

authors note that their approach is viable for problems with small state spaces.

Online Learning Xu and Laird (2010) and Lamanna et al. (2021a) use online

learning to learn an action model incrementally. The idea is to incorporate new

observations to improve the action model. These approaches even though incremental,

do not focus on acquiring directed observations that will help it learn faster, but rater

work with already available observations.

In contrast to these directions of research, our approach directly queries the agent

and is guaranteed to converge to the true model while presenting a running estimate

of the accuracy of the derived model; hence, it can be used in settings where the

agent’s model changes due to learning or a software update. In such a scenario, our
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algorithm can restart to query the system, while approaches that derive models from

observed plan traces would require arbitrarily long data collection sessions to get

sufficient uncorrelated data.

3.7.2 Non-Passive Observation Based Learners

Unlike the approaches that learn the action models using passively collected

observations, there are some approaches that try to generate observations that help

them direct the learning with lesser observations in general.

Active Learning The field of active learning (Settles, 2012a) addresses the related

problem of selecting which data labels to acquire for learning single-step decision-

making models using statistical information measures. IRALe (Rodrigues et al., 2011b)

is one method that learns lifted transition modules by exploring actions in states

where its partially learned preconditions almost hold. However, the effective feature

set in active learning is the set of all possible plans, which makes conventional methods

for evaluating the information gain of possible feature labelings infeasible. In contrast,

our approach uses a hierarchical abstraction to select queries to ask while inferring a

multistep decision-making (planning) model.

RL based Model Learning: Incremental Learning Model (Ng and Petrick, 2019b)

uses reinforcement learning to learn a nonstationary model without using plan traces,

and requires extensive training to learn the full model correctly. Chitnis et al. (2021)

present an approach for learning probabilistic relational models where they use goal

sampling as a heuristic for generating relevant data, while we reduce that problem to

query synthesis using planning. Their approach is shown to work well for stochastic

environments, but puts a much higher burden on the AI system for inferring its
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model. This is because the AI system has to generate a conjunctive goal formula

while maximizing exploration, find a plan to reach that goal, and correct the model

as it collects observations while executing the plan.

Automata Learning: There is a large body of work on the active learning of

automata of various types, namely DFA (Angluin, 1987; Rivest and Schapire, 1993b;

Kearns and Vazirani, 1994; Parekh and Honavar, 1996; Denis et al., 2001; Bongard

and Lipson, 2005; Isberner et al., 2014a; Volpato and Tretmans, 2015), NFA (Oncina

and García, 1992; Dupont, 1996), Moore machine (Giantamidis and Tripakis, 2016;

Moerman, 2018), Mealy machine (Shahbaz and Groz, 2009; Aarts and Vaandrager,

2010; Steffen et al., 2011), Register Automata (Howar et al., 2012; Aarts et al.,

2015; Cassel et al., 2016), Büchi Automata (Maler and Pnueli, 1995; Farzan et al.,

2008; Angluin and Fisman, 2016; Li et al., 2021), Symbolic Automata (Botinčan

and Babić, 2013; Maler and Mens, 2014), etc. Angluin (1987) proposed the earliest

approaches for actively learning DFAs using the L* algorithm, which leveraged

membership queries and equivalence queries. A significant limitation of L* is that

these machines use grounded states as inputs, limiting their application to small

state spaces. There have been multiple optimizations, including replacing exhaustive

observation tables with decision trees (Kearns et al., 1994); carefully choosing suffixes

as columns instead of adding all the prefixes of the counterexamples in the observation

table (Rivest and Schapire, 1993a); reorganizing the decision trees by combining the

previous two approaches (Isberner et al., 2014b); and using parameterized states in

register automata (Cassel et al., 2015). Even with these optimizations, the number

of membership queries required to learn the automata is quadratic in the input size.

In contrast, the number of equivalence queries required is linear in the size of the

input (Isberner et al., 2014b). The abovementioned approaches use the minimal
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adequate teacher (MAT) framework proposed by Angluin (1987). However, this has

several drawbacks, which we cover below.

The first drawback of the MAT framework is that it needs a teacher who knows the

correct model or approximates it to answer the equivalence queries correctly. Angluin

(1988) showed that (i) using only membership queries, it is not possible to infer the

correct DFA using a polynomial number of membership queries if the number of states

of the target DFA is unknown; and (ii) even if the target number of states are known,

an exponential number of membership queries are required. This requirement of

using equivalence queries is a significant assumption that these theoretical approaches

make. Implementing equivalence queries is difficult as functional equivalence is an

undecidable problem. In practical settings, various systems use approximations to

alleviate this. E.g., LearnLib (Raffelt et al., 2009), an automata learning tool, uses

basic test suite generation algorithms to approximate the answers to equivalence

queries; Aarts et al. (2013) use the actual bank cards with a card reader as a teacher

and “a random test suite with 1000 test traces of length 10 to 50 as equivalence oracle.”;

etc. Fiterau-Brostean et al. (2016) show that using such a method by LearnLib can

incorrectly identify an incorrect model as a correct one. In our case even if we treat

the simulator as a teacher, we don’t need equivalence queries to guarantee that the

model we learn is correct.

The second drawback of the MAT framework is that it needs knowledge of the

input and output alphabet for working with membership and equivalence queries. In

our framework, this information might correspond to the knowledge of the simula-

tor’s internal vocabulary (output alphabet) and the agent’s primitive actions (input

alphabet). Hence such automata learning would not work for the black-box agents

that we work with. Note that the term “black box” in automata learning literature
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corresponds to the systems where the “internal structure of the checked system is

not revealed” (Peled et al., 2001). In our setting, in addition to not knowing the

internal working of the black-box agent, we also do not assume knowledge of the

agent’s vocabulary.

The third drawback of the MAT framework is that it can only learn the automata

in terms of the primitive actions of the black-box system. This drawback also relates

to the second drawback discussed earlier. In our approach, we can also learn the

model in terms of high-level capabilities.

The final drawback of the MAT framework is that the learned automata have

control states that might not be readily interpretable as they may not map to actual

environment states but some property of the environment. Our assessment approach

alleviates these concerns as the final model is easily interpretable as the preconditions

and effects are defined in terms the user understands.

3.8 Concluding Remarks

We presented a novel approach for efficiently learning the internal model of an

autonomous agent in a STRIPS-like form through query answering. Our theoretical

and empirical results showed that the approach works well for both symbolic and

simulator agents.

In this chapter, we saw the case when the stationary setting where neither the

agent’s nor the environment’s model was changing. So once a model is learned using

this approach it can be used as is whenever needed. But there are settings where the

environment or the agent’s model can get updated. In the next chapter, we will see

how to design the assessment module to handle such cases.
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Chapter 4

DIFFERENTIAL ASSESSMENT

In the last chapter we saw the method for assessment that learns symbolic models

of AI agents with stationary models. This assumption fails to hold in settings where

the agent’s capabilities may change as a result of learning, adaptation, or other post-

deployment modifications. Efficient assessment of agents in such settings is critical for

learning the true capabilities of an AI system and for ensuring its safe usage. In this

chapter, we propose a novel approach to differentially assess black-box AI agents that

have drifted from their previously known models. As a starting point, we consider

the fully observable and deterministic setting. We leverage sparse observations of the

drifted agent’s current behavior and knowledge of its initial model to generate an

active querying policy that selectively queries the agent and computes an updated

model of its functionality. Empirical evaluation shows that our approach is much

more efficient than re-learning the agent model from scratch. We also show that the

cost of differential assessment using our method is proportional to the amount of drift

in the agent’s functionality.

The primary contribution of this chapter is an algorithm for differential assessment

of black-box AI systems (Fig. 5). This algorithm utilizes an initially known inter-

pretable model of the agent as it was in the past, and a small set of observations of

agent execution. It uses these observations to develop an incremental querying strategy

that avoids the full cost of assessment from scratch and outputs a revised model of

the agent’s new functionality. One of the challenges in learning agent models from

observational data is that reductions in agent functionality often do not correspond
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Figure 5. The Differential Assessment of AI System (DAAISy) takes as input the
initially known model of the agent prior to model drift, available observations of the
updated agent’s behavior, and performs a selective dialog with the black-box AI agent
to output its updated model through efficient model learning.

to specific “evidence” in behavioral observations, as the agent may not visit states

where certain useful actions are no longer applicable. Our analysis shows that if the

agent can be placed in an “optimal” planning mode, differential assessment can indeed

be used to query the agent and recover information about reduction in functionality.

This “optimal” planning mode is not necessarily needed for learning about increase in

functionality. Empirical evaluations on a range of problems clearly demonstrate that

our method is much more efficient than re-learning the agent’s model from scratch.

They also exhibit the desirable property that the computational cost of differential

assessment is proportional to the amount of drift in the agent’s functionality.

Running Example Consider a battery-powered rover with limited storage capacity

that collects soil samples and takes pictures. Assume that its planning model is similar

to IPC domain Rovers (Long and Fox, 2003b). It has an action that collects a rock

sample at a waypoint and stores it in a storage iff it has at least half of the battery

capacity remaining. Suppose there was an update to the rover’s system and as a
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result of this update, the rover can now collect the rock sample only when its battery

is full, as opposed to at least half-charged battery that it needed before. Mission

planners familiar with the earlier system and unaware about the exact updates in

the functionality of the rover would struggle to collect sufficient samples. This could

jeopardise multiple missions if it is not detected in time.

This example illustrates how our system could be of value by differentially detecting

such a drift in the functionality of a black-box AI system and deriving its true

functionality.

The rest of this chapter is organized as follows: The next section presents back-

ground terminology. This is followed by a formalization of the differential model

assessment problem in Section 3. Section 4 presents our approach for differential

assessment by first identifying aspects of the agent’s functionality that may be affected

(Section 4.1) followed by the process for selectively querying the agent using a primitive

set of queries. We present empirical evaluation of the efficiency of our approach on

randomly generated benchmark planning domains in Section 5. Finally, we discuss

relevant related work in Section 6 and conclude in Section 7.

4.1 Preliminaries

In this chapter, we learn the agent’s representation as the PDDL models defined in

chapter 2, that express an agent’s functionalities in the form of STRIPS-like planning

models (Fikes and Nilsson, 1971; McDermott et al., 1998; Fox and Long, 2003). We

represent them slightly differently, which is explained below.
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4.1.1 Representing Models

We represent a model M using the set of all possible pal-tuples ΓM of the form

γ = ⟨p, a, ℓ⟩, where a is a parameterized action header for an action in A, p ∈ P ∗

is a possible lifted instantiation of a predicate in P , and ℓ ∈ {pre, eff } denotes a

location in a, precondition or effect, where p can appear. A model M is thus a function

µM : ΓM → {+,−, ∅} that maps each element in ΓM to a mode in the set {+,−, ∅}.

The assigned mode for a pal-tuple γ ∈ ΓM denotes whether p is present as a positive

literal (+), as a negative literal (−), or absent (∅) in the precondition (ℓ =pre) or

effect (ℓ = eff ) of the action header a.

This formulation of models as pal-tuples allows us to view the modes for any

predicate in an action’s precondition and effect independently. However, at times it is

useful to consider a model at a granularity of relationship between a predicate and an

action. We address this by representing a model M as a set of pa-tuples ΛM of the

form ⟨p, a⟩ where a is a parameterized action header for an action in A, and p ∈ P ∗ is

a possible lifted instantiation of a predicate in P . Each pa-tuple can take a value of

the form ⟨mpre,meff⟩, where mpre and meff represents the mode in which p appears in

the precondition and effect of a, respectively. Since a predicate cannot appear as a

positive (or negative) literal in both the precondition and effect of an action, ⟨+,+⟩

and ⟨−,−⟩ are not in the range of values that pa-tuples can take. Henceforth, in the

context of a pal-tuple or a pa-tuple, we refer to a as an action instead of an action

header.
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4.1.2 Measure of Model Difference

Given two models M1 = ⟨P,A1⟩ and M2 = ⟨P,A2⟩, defined over the same sets of

predicates P and action headers A, the difference between the two models ∆(M1,M2)

is defined as the number of pal-tuples that differ in their modes in M1 and M2, i.e.,

∆(M1,M2) = |{γ ∈ P × A× {+,−, ∅}|µM1(γ) ̸= µM2(γ)}|.

4.1.3 Abstracting Models

Several authors have explored the use of abstraction in planning (Sacerdoti, 1974a;

Giunchiglia and Walsh, 1992b; Helmert et al., 2007a; Bäckström and Jonsson, 2013a;

Srivastava et al., 2016a). We define an abstract model as a model that does not have

a mode assigned for at least one of the pal-tuples. Let ΓM be the set of all possible

pal-tuples, and ?○ be an additional possible value that a pal-tuple can take. Assigning

?○ mode to a pal-tuple denotes that its mode is unknown. An abstract model M is

thus a function µM : ΓM → {+,−, ∅, ?○} that maps each element in ΓM to a mode in

the set {+,−, ∅, ?○}. Let U be the set of all abstract and concrete models that can

possibly be expressed by assigning modes in {+,−, ∅, ?○} to each pal-tuple γ ∈ ΓM .

We now formally define model abstraction as follows:

Definition 13. Given models M1 and M2, M2 is an abstraction of M1 over the set

of all possible pal-tuples Γ iff ∃Γ2 ⊆ Γ s.t. ∀γ ∈ Γ2, µM2(γ) = ?○ and ∀γ ∈ Γ \ Γ2,

µM2(γ) = µM1(γ).
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4.1.4 Queries

We use queries to actively gain information about the functionality of an agent to

learn its updated model. We assume that the agent can respond to a query using a

simulator. The availability of such agents with simulators is a common assumption as

most AI systems already use simulators for design, testing, and verification.

We use a notion of queries similar to chapter 3, to perform a dia-

log with an autonomous agent. These queries use an agent to determine

what happens if it executes a sequence of actions in a given initial state.

E.g., in the rovers domain, the rover could be asked: what happens when

the action sample_rock (rover1 storage1 waypoint1) is executed in an

initial state {(equipped_rock_analysis rover1), (battery_half rover1),

(at rover1 waypoint1)}?

Formally, a query is a function that maps an agent to a response, defined as:

Definition 14. Given a set of predicates P , a set of actions A, and a set of objects

O, a query Q⟨s, π⟩ : A → N× S is parameterized by a start state sI ∈ S and a plan

π = ⟨a1, . . . , aN⟩, where S is the state space over P and O, and {a1, . . . , aN} is a

subset of action space over A and O. It maps agents to responses θ = ⟨nF , sF ⟩ such

that nF is the length of the longest prefix of π that A can successfully execute and

sF ∈ S is the result of that execution.

Responses to such queries can be used to gain useful information about the model

drift. E.g., consider an agent with an internal model MA
drift as shown in Tab. 4.

If a query is posed asking what happens when the action sample_rock (rover1

storage1 waypoint1) is executed in an initial state {(equipped_rock_analysis

rover1), (battery_half rover1), (at rover1 waypoint1)}, the agent would
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respond ⟨0, {(equipped_rock_analysis rover1), (battery_half rover1), (at

rover1 waypoint1)}⟩, representing that it was not able to execute the plan, and the

resulting state was {(equipped_rock_analysis rover1), (battery_half rover1),

(at rover1 waypoint1)} (same as the initial state in this case). Note that this

response is inconsistent with the model MA
init, and it can help in identifying that the

precondition of action sample_rock (?r ?s ?w) has changed.

4.2 Formal Framework

Our objective is to address the problem of differential assessment of black-box AI

agents whose functionality may have changed from the last known model. Without

loss of generality, we consider situations where the set of action headers is same

because the problem of differential assessment with changing action headers can be

reduced to that with uniform action headers. This is because if the set of actions

has increased, new actions can be added with empty preconditions and effects to

MA
init, and if it has decreased, MA

init can be reduced similarly. We assume that the

predicate vocabulary used in the two models is the same; extension to situations where

the vocabulary changes can be used to model open-world scenarios. However, that

extension is beyond the scope of this chapter.

Suppose an agent A’s functionality was known as a model MA
init = ⟨P,Ainit⟩, and

we wish to assess its current functionality as the model MA
drift = ⟨P,Adrift⟩. The drift

in the functionality of the agent can be measured by changes in the preconditions

and/or effects of all the actions in Ainit. The extent of the drift between MA
init and

MA
drift is represented as the model difference ∆(MA

init,M
A
drift).

We formally define the problem of differential assessment of an AI agent below.
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Model Precondition Effect

MA
init (equipped_rock_analysis ?r)

(battery_half ?r)
(at ?r ?w)

→ (rock_sample_taken ?r)
(store_full ?r ?s)
¬(battery_half ?r)
(battery_reserve ?r)

MA
init (equipped_rock_analysis ?r)

(battery_full ?r)
(at ?r ?w)

→ (rock_sample_taken ?r)
(store_full ?r ?s)
¬(battery_full ?r)
(battery_half ?r)

Table 4. sample_rock (?r ?s ?w) action of the agent A in MA
init and a possible

drifted model MA
drift.

Definition 15. Given an agent A with a functionality model MA
init, and a set of

observations O collected using its current version of Adrift with unknown functionality

MA
drift, the differential model assessment problem ⟨MA

init,M
A
drift,O,A⟩ is defined as the

problem of inferring A in form of MA
drift using the inputs MA

init, O, and A.

We wish to develop solutions to the problem of differential assessment of AI agents

that are more efficient than re-assessment from scratch.

4.2.1 Correctness of Assessed Model

We now discuss the properties that a model, which is a solution to the differential

model assessment problem, should satisfy. A critical property of such models is that

they should be consistent with the observation traces. We formally define consistency

of a model w.r.t. an observation trace as follows:

Definition 16. Let o be an observation trace ⟨s0, a1, s1, a2, . . . , sn−1, an, sn⟩. A model

M = ⟨P,A⟩ is consistent with the observation trace o iff ∀i ∈ {1, .., n} ∃a ∈ A and ai

is a grounding of action a s.t. si−1 |= pre(ai) ∧ ∀ l ∈ eff(ai) si |= l.

In addition to being consistent with observation traces, a model should also be
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consistent with the queries that are asked and the responses that are received while

actively inferring the model of the agent’s new functionality. We formally define

consistency of a model with respect to a query and a response as:

Definition 17. Let M = ⟨P,A⟩ be a model; O be a set of objects; Q = ⟨sI , π =

⟨a1, . . . an⟩⟩ be a query defined using P,A, and O, and let θ = ⟨nF , sF ⟩, (nF ≤ n)

be a response to Q. M is consistent with the query-response ⟨Q, θ⟩ iff there exists

an observation trace ⟨sI , a1, s1, . . . , anF
, snF
⟩ that M is consistent with and snF

̸|=

pre(anF+1) where pre(anF+1) is the precondition of anF+1 in M .

We now discuss our methodology for solving the problem of differential assessment

of AI systems.

4.3 Differential Assessment of AI Systems

Differential Assessment of AI Systems (Alg. 19) -- DAAISy -- takes as input an

agent A whose functionality has drifted, the model MA
init = ⟨P,A⟩ representing the

previously known functionality of A, a set of arbitrary observation traces O, and a set

of random states S ⊆ S. Alg. 19 returns a set of updated modelsMA
drift, where each

model MA
drift ∈MA

drift represents A’s updated functionality and is consistent with all

observation traces o ∈ O.

A major contribution of this work is to introduce an approach to make inferences

about not just the expanded functionality of an agent but also its reduced functionality

using a limited set of observation traces. Situations where the scope of applicability

of an action reduces, i.e., the agent can no longer use an action a to reach state s′

from state s while it could before (e.g., due to addition of a precondition literal), are

particularly difficult to identify because observing its behavior does not readily reveal
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what it cannot do in a given state. Most observation based action-model learners, even

when given access to an incomplete model to start with, fail to make inferences about

reduced functionality. DAAISy uses two principles to identify such a functionality

reduction. First, it uses active querying so that the agent can be made to reveal

failure of reachability, and second, we show that if the agent can be placed in optimal

planning mode, plan length differences can be used to infer a reduction in functionality.

DAAISy performs two major functions; it first identifies a salient set of pal-tuples

whose modes were likely affected (line 1 of Alg. 19), and then infers the mode of such

affected pal-tuples accurately through focused dialog with the agent (line 2 onwards of

Alg. 19). In Sec. 4.3.1, we present our method for identifying a salient set of potentially

affected pal-tuples that contribute towards expansion in the functionality of the agent

through inference from available arbitrary observations. We then discuss the problem

of identification of pal-tuples that contribute towards reduction in the functionality

of the agent and argue that it cannot be performed using successful executions in

observations of satisficing behavior. We show that pal-tuples corresponding to reduced

functionality can be identified if observations of optimal behavior of the agent are

available (Sec. 4.3.1). Finally, we present how we infer the nature of changes in

all affected pal-tuples through a query-based interaction with the agent (Sec. 4.3.2)

by building upon the Agent Interrogation Algorithm (AIA) (Verma et al., 2021a).

Identifying affected pal-tuples helps reduce the computational cost of querying as

opposed to the exhaustive querying strategy used by AIA. We now discuss the two

major functions of Alg. 19 in detail.
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Algorithm 3: Differential Assessment of AI Systems
Input :MA

init, O, A, S
Output :MA

drift

1 Γδ ← identify_affected_pals()
2 Mabs← set pal-tuples in MA

init corresponding to Γδ to ?○
3 MA

drift ← {Mabs}
4 for each γ in Γδ do
5 for each Mabs in MA

drift do
6 Mabs ←Mabs × {γ+, γ−, γ∅}
7 Msieved ← {} if action corresponding to γ: γa in O then
8 spre ← states_where_γa_applicable(O, γa)
9 Q← ⟨spre \ {γp ∪ ¬γp}, γa ⟩

10 θ ← ask_query(A, Q)
11 Msieved ← sieve_models(Mabs, Q, θ)

12 else
13 for each pair ⟨Mi,Mj⟩ in Mabs do
14 Q← generate_query(Mi,Mj, γ, S)
15 θ ← ask_query(A, Q)
16 Msieved ← sieve_models({Mi,Mj}, Q, θ)

17 Mabs ←Mabs\ Msieved

18 MA
drift ←Mabs

19 returnMA
drift

4.3.1 Identifying Potentially Affected pal-tuples

We identify a reduced set of pal-tuples whose modes were potentially affected

during the model drift, denoted by Γδ, using a small set of available observation traces

O. We draw two kinds of inferences from these observation traces: inferences about

expanded functionality, and inferences about reduced functionality. We discuss our

method for inferring Γδ for both types of changes in the functionality below.
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⟨mpre,meff⟩ (pos,pos) (pos,neg) (neg,pos) (neg,neg)

⟨+,−⟩ ✗ ✓ ✗ ✗

⟨+, ∅ ⟩ ✓ ✗ ✗ ✗

⟨−,+⟩ ✗ ✗ ✓ ✗

⟨−, ∅ ⟩ ✗ ✗ ✗ ✓

⟨ ∅ ,+⟩ ✓ ✗ ✓ ✗

⟨ ∅ ,−⟩ ✗ ✓ ✗ ✓

⟨ ∅ , ∅ ⟩ ✓ ✗ ✗ ✓

Table 5. Each row represents a possible value ⟨mpre,meff⟩ for a pa-tuple ⟨p, a⟩. Each
column represents a possible tuple representing presence of predicate p in the pre- and
post-states of an action triplet ⟨si, a, si+1⟩ (discussed in Sec.4.3.1). The cells represent
whether a value for pa-tuple is consistent with an action triplet in observation traces.

4.3.1.1 Expanded Functionality

To infer expanded functionality of the agent, we use the previously known model of

the agent’s functionality and identify its differences with the possible behaviors of the

agent that are consistent with O. To identify the pal-tuples that directly contribute to

an expansion in the agent’s functionality, we perform an analysis similar to (Stern and

Juba, 2017a), but instead of bounding the predicates that can appear in each action’s

precondition and effect, we bound the range of possible values that each pa-tuple in

MA
drift can take using Tab. 5. For any pa-tuple, a direct comparison between its value

in MA
init and possible inferred values in MA

drift provides an indication of whether it was

affected.

To identify possible values for a pa-tuple ⟨p, a⟩, we first collect a set of all the

action-triplets from O that contain the action a. For a given predicate p and state s, if

s |= p then the presence of predicate p is represented as pos, similarly, if s |= ¬p then

the presence of predicate p is represented as neg. Using this representation, a tuple
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of predicate presence ∈ {(pos,pos), (pos,neg), (neg,pos), (neg,neg)} is determined for

the pa-tuple ⟨p, a⟩ for each action triplet ⟨s, a, s′⟩ ∈ O by analyzing the presence of

predicate p in the pre- and post-states of the action triplets. Possible values of the

pa-tuple that are consistent with O are directly inferred from the Tab. 5 using the

inferred tuples of predicate presence. E.g., for a pa-tuple, the values ⟨+,−⟩ and ⟨∅,−⟩

are consistent with (pos, neg), whereas, only ⟨∅,+⟩ is consistent with (pos, pos) and

(neg, pos) tuples of predicate presence that are inferred from O.

Once all the possible values for each pa-tuple in MA
drift are inferred, we identify pa-

tuples whose previously known value in MA
init is no longer possible due to inconsistency

with O. The pal-tuples corresponding to such pa-tuples are added to the set of

potentially affected pal-tuples Γδ. Our method also infers the correct modes of a subset

of pal-tuples. E.g., consider a predicate p and two actions triplets in O of the form

⟨s1, a, s′1⟩ and ⟨s2, a, s′2⟩ that satisfy s1 |= p and s2 |= ¬p. Such an observation clearly

indicates that p is not in the precondition of action a, i.e., mode for ⟨p, a⟩ in the

precondition is ∅. Such inferences of modes are used to update the known functionality

of the agent. We remove such pal-tuples, whose modes are already inferred, from Γδ.

A shortcoming of direct inference from successful executions in available observation

traces is that it cannot learn any reduction in the functionality of the agent, as discussed

in the beginning of Sec. 4.3. We now discuss our method to address this limitation

and identify a larger set of potentially affected pal-tuples.

4.3.1.2 Reduced Functionality

We conceptualize reduction in functionality as an increase in the optimal cost of

going from one state to another. More precisely, reduction in functionality represents

71



situations where there exist states si, sj such that the minimum cost of going from si

to sj is higher in MA
drift than in MA

init. In this chapter, this cost refers to the number

of steps between the pair of states as we consider unit action costs. This notion

encompasses situations with reductions in reachability as a special case. In practice,

a reduction in functionality may occur if the precondition of at least one action in

MA
drift has new pal-tuples, or the effect of at least one of its actions has new pal-tuples

that conflict with other actions required for reaching certain states.

Our notion of reduced functionality captures all the variants of reduction in

functionality. However, for clarity, we illustrate an example that focuses on situations

where precondition of an action has increased. Consider the case from Tab. 4 where

A’s model gets updated from MA
init to MA

drift. The action sample_rock’s applicability

in MA
drift has reduced from that in MA

init as A can no longer sample rocks in situations

where the battery is half charged but needs a fully charged battery to be able to

execute the action. In such scenarios, instead of relying on observation traces, our

method identifies traces containing indications of actions that were affected either in

their precondition or effect, discovers additional salient pal-tuples that were potentially

affected, and adds them to the set of potentially affected pal-tuples Γδ. To find

pal-tuples corresponding to reduced functionality of the agent, we place the agent in

an optimal planning mode and assume limited availability of observation traces O in

the form of optimal unit-cost state-action trajectories ⟨s0, a1, s1, a2, . . . , sn−1, an, sn⟩.

We generate optimal plans using MA
init for all pairs of states in O. We hypothesize

that, if for a pair of states, the plan generated using MA
init is shorter than the plan

observed in O, then some functionality of the agent has reduced.

Our method performs comparative analysis of optimality of the observation traces

against the optimal solutions generated using MA
init for same pairs of initial and final
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states. To begin with, we extract all the continuous state sub-sequences from O of

the form ⟨s0, s1, . . . , sn⟩ denoted by Odrift as they are all optimal. We then generate a

set of planning problems P using the initial and final states of trajectories in Odrift.

Then, we provide the problems in P to MA
init to get a set of optimal trajectories

Oinit. We select all the pairs of optimal trajectories of the form ⟨oinit, odrift⟩ for further

analysis such that the length of oinit ∈ Oinit for a problem is shorter than the length of

odrift ∈ Odrift for the same problem. For all such pairs of optimal trajectories, a subset

of actions in each oinit ∈ Oinit were likely affected due to the model drift. We focus on

identifying the first action in each oinit ∈ Oinit that was definitely affected.

To identify the affected actions, we traverse each pair of optimal trajectories

⟨oinit, odrift⟩ simultaneously starting from the initial states. We add all the pal-tuples

corresponding to the first differing action in oinit to Γδ. We do this because there are

only two possible explanations for why the action differs: (i) either the action in oinit

was applicable in a state using MA
init but has become inapplicable in the same state

in MA
drift, or (ii) it can no longer achieve the same effects in MA

drift as MA
init. We also

discover the first actions that are applicable in the same states in both the trajectories

but result in different states. The effect of such actions has certainly changed in MA
drift.

We add all the pal-tuples corresponding to such actions to Γδ. In the next section, we

describe our approach to infer the correct modes of pal-tuples in Γδ.

4.3.2 Investigating Affected pal-tuples

This section explains how the correct modes of pal-tuples in Γδ are inferred (line 2

onwards of Alg.1). Alg. 19 creates an abstract model in which all the pal-tuples that
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are predicted to have been affected are set to ?○ (line 2). It then iterates over all

pal-tuples with mode ?○ (line 4).

4.3.2.1 Removing Inconsistent Models

Our method generates candidate abstract models and then removes the abstract

models that are not consistent with the agent (lines 7-18 of Alg. 19). For each pal-tuple

γ ∈ Γ, the algorithm computes a set of possible abstract modelsMabs by assigning

the three mode variants +, −, and ∅ to the current pal-tuple γ in model Mabs (line 6).

Only one model inMabs corresponds to the agent’s updated functionality.

If the action γa in the pal-tuple γ is present in the set of action triplets generated

using O, then the pre-state of that action spre is used to create a state sI (lines 9-10).

sI is created by removing the literals corresponding to predicate γp from spre. We

then create a query Q=⟨sI , ⟨γa⟩⟩ (line 10), and pose it to the agent A (line 11). The

three models are then sieved based on the comparison of their responses to the query

Q with that of A’s response θ to Q (line 12). We use the same mechanism as AIA for

sieving the abstract models.

If the action corresponding to the current pal-tuple γ being considered is not

present in any of the observed action triplets, then for every pair of abstract models

inMabs (line 14), we generate a query Q using a planning problem (line 15). We then

pose the query Q to the agent (line 16) and receive its response θ. We then sieve the

abstract models by asking them the same query and discarding the models whose

responses are not consistent with that of the agent (line 17). The planning problem

that is used to generate the query and the method that checks for consistency of

abstract models’ responses with that of the agent are used from AIA.
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Finally, all the models that are not consistent with the agent’s updated functionality

are removed from the possible set of models Mabs. The remaining models are returned

by the algorithm. Empirically, we find that only one model is always returned by the

algorithm.

4.3.3 Correctness

We now show that the learned drifted model representing the agent’s updated

functionality is consistent as defined in Def. 8 and Def. 9. We will first need to prove

that Tab. 5 is constructed correctly. We do this by using the following result:

Lemma 9. Given an action triplet ⟨s, a, s′⟩ ∈ O and a predicate p ∈ P , Tab. 2

correctly represents the set of values for the pair of modes ⟨mpre,meff⟩, where mpre and

meff are the modes of predicate p in the precondition and effect of action a respectively,

that are consistent with the action triplet.

Proof. Given an action triplet ⟨s, a, s′⟩, if a predicate p ∈ P is true (or false) in s

(or s′), then it cannot be false (or true) in the precondition (or effect) of a. Hence,

if p is true in both s and s′, its value for ⟨mpre,meff⟩ can only be ⟨+, ∅⟩, ⟨∅,+⟩, or

⟨∅, ∅⟩. If p is true in s but false in s′, its value for ⟨mpre,meff⟩ can only be ⟨+,−⟩ or

⟨∅,−⟩. If p is false in s but true in s′, its value for ⟨mpre,meff⟩ can only be ⟨−,+⟩

or ⟨∅,+⟩. Finally, if p is false in both s and s′, its value for ⟨mpre,meff⟩ can only be

⟨−, ∅⟩, ⟨∅,−⟩, or ⟨∅, ∅⟩. Thus, for an observed action triplet ⟨s, a, s′⟩, Tab. 2 shows all

the possible values for a p ∈ P in the precondition and effect of a that do not conflict

with the presence (or absence) of p in s and s′ respectively.
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We now prove the two smaller results that combine to form the theorem we are

trying to build.

Lemma 10. Given a set of observation traces O generated by the drifted agent Adrift,

each of the models M = ⟨P,A⟩ inMA
drift learned by Alg. 1 are consistent with respect

to all the observation traces o ∈ O.

Proof. Given that the action triplets in the set of observations O are generated using

the same functionality of the deterministic agent after the drift Adrift (i.e., all the

observations correspond to the same drifted model), any two different action triplets

in O containing groundings of the same action ai must have pre- and post-states that

do not contradict each other. Now, for any action triplet ⟨si−1, ai, si⟩ that is part of

an observation trace o ∈ O, when we consider the correct values for ⟨mpre,meff⟩ for

a pa-tuple ⟨p, ai⟩ such that p ∈ P , we only consider the values for ⟨mpre,meff⟩ that

are shown in Tab. 2. For multiple actions triplets, possible values for ⟨mpre,meff⟩

can be found by taking an intersection of the sets of values for ⟨mpre,meff⟩ for each

action triplet found using Tab. 2. Using Lemma 1, this ensures that the learned model

M is consistent with all the action triplets in an observation trace o ∈ O. Since an

observation trace is a sequence of action triplets, the learned model M ∈ MA
drift is

consistent with all the observation traces in the set of observation traces O.

Lemma 11. Given a set of queries Q posed to Adrift by Alg. 1, and the model MA
init

representing the agent’s functionality prior to the drift, each of the models M = ⟨P,A⟩

inMA
drift learned by Alg. 1 are consistent with respect to all query-responses ⟨q, θ⟩ for

all the queries q ∈ Q.

Proof. The agent responds to the query q = ⟨sI , π = ⟨a1, . . . an⟩⟩ using the drifted

model with a response θ = ⟨nF , sF ⟩. This response can only be generated if there
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exists an observation trace ⟨sI , a1, s1, . . . , anF
, snF
⟩ of length nF that can take the

agent starting from state sI to the state snF
. Now, pruning models based on responses

of the agent follows the criteria shown in Tab. 5. Hence, the only modes we consider

for p in the precondition and effect of anF
are the ones that do not conflict with

the presence (or absence) of p in snF−1 and snF
respectively. The modes for any

predicate in other actions are not fixed using responses to queries. Hence, the learned

model M ∈MA
drift is consistent with all the query-responses ⟨q, θ⟩ for all the queries

q ∈ Q.

Theorem 4. Given a set of observation traces O generated by the drifted agent

Adrift, a set of queries Q posed to Adrift by Alg. 1, and the model MA
init representing

the agent’s functionality prior to the drift, each of the models M = ⟨P,A⟩ inMA
drift

learned by Alg. 1 are consistent with respect to all the observation traces o ∈ O and

query-responses ⟨q, θ⟩ for all the queries q ∈ Q.

Proof. This theorem is conjunction of Lemma 10 and Lemma 11. Since both of the

lemmas are proven to be true, this theorem is also true.

.

There exists a finite set of observations that if collected will allow Alg. 19 to achieve

100% correctness with any amount of drift: this set corresponds to observations that

allow line 1 of Alg. 19 to detect a change in the functionality. This includes an action

triplet in an observation trace hinting at increased functionality, or a shorter plan using

the previously known model hinting at reduced functionality. Thus, models learned

by DAAISy are guaranteed to be completely correct irrespective of the amount of the

drift if such a finite set of observations is available. While using queries significantly
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reduces the number of observations required, asymptotic guarantees subsume those of

passive model learners while ensuring convergence to the true model.

4.4 Empirical Evaluation

In this section, we evaluate our approach for assessing a black-box agent to learn

its model using information about its previous model and available observations. We

implemented the algorithm for DAAISy in Python4 and tested it on six planning

benchmark domains from the International Planning Competition (IPC) 5. We used

the IPC domains as the unknown drifted models and generated six initial domains at

random for each domain in our experiments.

To assess the performance of our approach with increasing drift, we employed

two methods for generating the initial domains: (a) dropping the pal-tuples already

present, and (b) adding new pal-tuples. For each experiment, we used both types

of domain generation. We generated different initial models by randomly changing

modes of random pal-tuples in the IPC domains. Thus, in all our experiments an IPC

domain plays the role of ground truth M∗
drift and a randomized model is used as MA

init.

We use a very small set of observation traces O (single observation trace containing

10 action triplets) in all the experiments for each domain. To generate this set, we

gave the agent a random problem instance from the IPC corresponding to the domain

used by the agent. The agent then used Fast Downward (Helmert, 2006) with LM-Cut

heuristic (Helmert and Domshlak, 2009) to produce an optimal solution for the given

problem. The generated observation trace is provided to DAAISy as input in addition

4Code available at https://github.com/AAIR-lab/DAAISy

5https://www.icaps-conference.org/competitions
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to a random MA
init as discussed in Alg. 19. The exact same observation trace is used

in all experiments of the same domain, without the knowledge of the drifted model of

the agent, and irrespective of the amount of drift.

We measure the final accuracy of the learned model MA
drift against the ground truth

model M∗
drift using the measure of model difference ∆(MA

drift,M
∗
drift). We also measure

the number of queries required to learn a model with significantly high accuracy.

We compare the efficiency of DAAISy (our approach) with the Agent Interrogation

Algorithm (AIA) (Verma et al., 2021a) as it is the most closely related querying-based

system. All of our experiments were executed on 5.0 GHz Intel i9 CPUs with 64 GB

RAM running Ubuntu 18.04. We now discuss our results in detail below.

4.4.1 Results

We evaluated the performance of DAAISy along 2 directions; the number of queries

it takes to learn the updated model MA
drift with increasing amount of drift, and the

correctness of the model MA
drift it learns compared to M∗

drift.

4.4.1.1 Efficiency in Number of Queries

As seen in Fig. 6, the computational cost of assessing each agent, measured in

terms of the number of queries used by DAAISy, increases as the amount of drift

in the model M∗
drift increases. This is expected as the amount of drift is directly

proportional to the number of pal-tuples affected in the domain. This increases the

number of pal-tuples that DAAISy identifies as affected as well as the number of
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Figure 6. The number of queries used by DAAISy (our approach) and AIA (marked
× on y-axis), as well as accuracy of model computed by DAAISy with increasing
amount of drift. Amount of drift equals the ratio of drifted pal-tuples and the total
number of pal-tuples in the domains (nPals). The number of action triplets in the
observation trace used for each domain is 10.

queries as a result. As demonstrated in the plots, the standard deviation for number of

queries remains low even when we increase the amount of drift, showing the stability

of DAAISy.

4.4.1.2 Comparison with AIA

Tab. 6 shows the average number of queries that AIA took to achieve the same level

of accuracy as our approach for 50% drifted models, and DAAISy requires significantly

fewer queries to reach the same levels of accuracy compared to AIA. Fig. 6 also

demonstrates that DAAISy always takes fewer queries as compared to AIA to reach

reasonably high levels of accuracy.

This is because AIA does not use information about the previously known model of

the agent and thus ends up querying for all possible pal-tuples. DAAISy, on the other
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Domain #Pals AIA DAAISy

Gripper 20 15.0 6.5
Miconic 36 32.0 7.7
Satellite 50 34.0 9.0
Blocksworld 52 40.0 11.4
Termes 134 115.0 27.0
Rovers 402 316.0 61.0

Table 6. The average number of queries taken by AIA to achieve the same level of
accuracy as DAAISy (our approach) for 50% drifted models.

hand, predicts the set of pal-tuples that might have changed based on the observations

collected from the agent and thus requires significantly fewer queries.

4.4.1.3 Correctness of Learned Model

DAAISy computes models with at least 50% accuracy in all six domains even when

they have completely drifted from their initial model, i.e., ∆(MA
drift,M

∗
drift) = nPals. It

attains nearly accurate models for Gripper and Blocksworld for upto 40% drift. Even

in scenarios where the agent’s model drift is more than 50%, DAAISy achieves at least

70% accuracy in five domains. Note that DAAISy is guaranteed to find the correct

mode for an identified affected pal-tuple. The reason for less than 100% accuracy

when using DAAISy is that it does not predict a pal-tuple to be affected unless it

encounters an observation trace conflicting with MA
init. Thus, the learned model MA

drift,

even though consistent with all the observation traces, may end up being inaccurate

when compared to M∗
drift.
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4.4.1.4 Discussion

AIA always ends up learning completely accurate models, but as noted above, this

is because AIA queries exhaustively for all the pal-tuples in the model. There is a

clear trade-off between the number of queries that DAAISy takes to learn the model

as compared to AIA and the correctness of the learned model. As evident from the

results, if the model has not drifted much, DAAISy can serve as a better approach to

efficiently learn the updated functionality of the agent with less overhead as compared

to AIA. Deciding the amount of drift after which it would make sense to switch to

querying the model from scratch is a useful analysis not addressed in this chapter.

4.5 Related Work

White-Box Model Drift Bryce et al. (2016) address the problem of learning the

updated mental model of a user using particle filtering given prior knowledge about

the user’s mental model. However, they assume that the entity being modeled can

tell the learning system about flaws in the learned model if needed. Eiter et al. (2005,

2010) propose a framework for updating action laws depicted in the form of graphs

representing the state space. They assume that changes can only happen in effects,

and that knowledge about the state space and what effects might change is available

beforehand. Our work does not make such assumptions to learn the correct model of

the agent’s functionalities.

Action Model Learning The problem of learning agent models from observations

of its behavior is an active area of research (Gil, 1994; Yang et al., 2007; Cresswell et al.,

2009; Zhuo and Kambhampati, 2013b; Arora et al., 2018; Aineto et al., 2019). Recent
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work addresses active querying to learn the action model of an agent (Rodrigues et al.,

2011c; Verma et al., 2021a). However, these methods do not address the problem of

reducing the computational cost of differential model assessment, which is crucial in

non-stationary settings.

Online action model learning approaches learn the model of an agent while in-

corporating new observations of the agent behavior (Čertický, 2014; Lamanna et al.,

2021a,b). Unlike our approach, they do not handle cases where (i) the new observations

are not consistent with the older ones due to changes in the agent’s behavior; and/or

(ii) there is reduction in functionality of the agent. Lindsay (2021) solve the problem of

learning all static predicates in a domain. They start with a correct partial model that

captures the dynamic part of the model accurately and generate negative examples

by assuming access to all possible positive examples. Our method is different in that

it does not make such assumptions and leverages a small set of available observations

to infer about increased and reduced functionality of an agent’s model.

Model Reconciliation Model reconciliation literature (Chakraborti et al., 2017b;

Sreedharan et al., 2019, 2021) deals with inferring the differences between the user

and the agent models and removing them using explanations. These methods consider

white-box known models whereas our approach works with black-box models of the

agent.

4.6 Concluding Remarks

We presented a novel method for differential assessment of black-box AI systems

to learn models of true functionality of agents that have drifted from their previously

known functionality. Our approach provides guarantees of correctness w.r.t. obser-

83



vations. Our evaluation demonstrates that our system, DAAISy, efficiently learns a

highly accurate model of agent’s functionality issuing a significantly lower number

of queries as opposed to relearning from scratch. In the future, we plan to extend

the framework to more general classes, stochastic settings, and models. Analyzing

and predicting switching points from selective querying in DAAISy to relearning from

scratch without compromising the correctness of the learned models is also a promising

direction for future work.

In this chapter and the previous one, in addition to the assumption of determinism

and full observability, we assumed that (i) the user’s vocabulary in terms of which

the model is being learned is same as that of the agent’s vocabulary, and (ii) the

model is learned in terms of low level actions of the agent. We will remove these two

assumptions in the next chapter.

84



Chapter 5

CAPABILITY DISCOVERY

AI systems are rapidly developing to an extent where their users may not under-

stand what they can and cannot do safely. In fact, the limits and capabilities of many

AI systems are not always immediately clear even to the experts, as they may use

black box policies, e.g., text summarization tools (Paulus et al., 2018), game-playing

agents (Greydanus et al., 2018a), mobile manipulators (Popov et al., 2017), etc.

In the last two chapters, we have seen two approaches that assesses the agent whose

capability names are part of the input. These approaches, along with a several others,

are helpful for answering users’ specific questions about AI behavior and for assessing

their core functionality in terms of primitive executable actions. However, the problem

of summarizing an AI agent’s broad capabilities for a user is comparatively new.

Ongoing research on the topic focuses on the significant problem of how to answer

users’ questions about the system’s behavior while assuming that the user and AI

share a common action vocabulary (Chakraborti et al., 2017a; Dhurandhar et al., 2018;

Anjomshoae et al., 2019; Barredo Arrieta et al., 2020). Furthermore, most non-experts

hesitate to ask questions about new AI tools (Mou and Xu, 2017) and often do not

know which questions to ask for assessing the safe limits and capabilities of an AI

system. This problem is aggravated in situations where an AI system can carry out

planning or sequential decision making. Lack of understanding about the limits of

an imperfect system can result in unproductive usage or, in the worst-case, serious

accidents (Randazzo, 2018). This, in turn, limits the adoption and productivity of AI

systems.
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State in User's Vocabulary: 
(at ganon 5-3) 
(at key 9-4) 
(alive ganon) 

. 

. 
Desired: 

Capabilities such as: 
(Go next to Key),(Pick 
Key),(Go next to Door), 
(Go next to Ganon),(Open 

Door),(Defeat Ganon)

State as available to the agent: 
(pixel 1-1 #FD2310) 
(pixel 1-1 #B24319) 

. 

. 

 
Agent actions 
(keystrokes): 
W,A,S,D,E

(:capability c4
 :parameters (?player1 ?cell1
   ?monster1 ?cell2)
 :precondition
  (and (alive ?monster1) 
    (at ?player1 ?cell1) 
    (at ?monster1 ?cell2)
    (next_to ?monster1))
 :effect
  (and (clear ?cell2) 
   (not(alive ?monster1))
   (not(at ?monster1 ?cell2))
   (not(next_to ?monster1))))

Link Key

Ganon Door

(a) (b) (c) (d)

Figure 7. From pixels to interpretable capabilities. (a) A Zelda-like game; (b) States
available to the agent and its actions; (c) States represented in user vocabulary, and
possible set of desired capabilities; (d) A parameterized capability description learned
by our method.

To alleviate these issues, this chapter presents a new approach for discovering

from scratch the suite of high-level “capabilities” that an AI system with arbitrary

internal planning algorithms/policies can perform. It computes conditions describing

the applicability and effects of these capabilities in user-interpretable terms. Starting

from a set of user-interpretable state properties, an AI agent, and a simulator that

the agent can interact with, our algorithm returns a set of high-level capabilities with

their parameterized descriptions. Prior work on the topic addresses complementary

problems of deriving symbolic descriptions for pre-defined skills (Konidaris et al.,

2018) and of learning users’ conceptual vocabularies (Kim et al., 2018; Sreedharan

et al., 2022a). However, they do not address the problem of discovering high-level

user-interpretable capabilities that an agent can perform using arbitrary, internal

behavior synthesis algorithms (see Sec. 5.4 for a greater discussion).

As a starting point, in this chapter, we assume determinism and full observability

on part of the AI system. Since there are no solution approaches for solving the

problem even in this foundational setting, our framework can serve as a foundation

for solutions to the more general setting in the future.

Running example Consider a game based on “The Legend of Zelda” (Fig. 7)
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featuring a protagonist player Link who must defeat the antagonist monster Ganon,

and escape through the door using a key. (Fig. 7)(a) shows the game state as the

agent sees it; its primitive actions are keystrokes as shown in (b). These keystrokes do

not help convey the agent’s capabilities because (i) they are too fine-grained, and (ii)

they show the set of actions available to the AI system, although its true capabilities

depend on its AI planning and learning algorithms. Fig. 7(c) shows common English

terms that a user might understand (called the user’s vocabulary), and the types

of capabilities that they may want to know about. Fig. 7(d) shows a parameterized

capability discovered by our method. Intuitively, Fig. 7(d) captures the “defeat Ganon”

capability.

This chapter shows how we can discover and describe an agent’s capabilities in

the form of Fig. 7(d). This capability description can be readily transcribed as “If the

player1 is at cell1 ; the monster1 is at cell2 ; the monster1 is alive (not defeated); and

the monster1 is next to the player1 ; then the player1 can act to reach a state where

cell2 is empty; the monster1 is not alive (defeated); the monster1 is not at cell2 ; and

the player1 is not next to the monster1.” Our empirical evaluation shows that our

system effectively discovers such high-level capabilities; our user study shows that the

discovered capabilities help users effectively estimate black-box agent capabilities.

The rest of this chapter is organized as follows. The next section presents a

formal framework for capabilities as well as notions of correctness for discovered agent

capabilities. Sec. 5.2 describes our main algorithms and their formal properties and

Sec. 5.3 presents empirical results and results from user studies. Sec. 5.4 discusses the

relationship of the presented methods with prior work. Finally, Sec. 5.5 presents our

conclusion and future directions.
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5.1 Formal Framework

We model an AI system (“agent” henceforth) as a 3-tuple ⟨S,A, T ⟩, where S is

the state space, A is the set of actions that the agent can execute, T : S × A→ S is

a deterministic black-box transition function determining the effects of the agent’s

primitive actions on the environment. For brevity of notation, we use a(s) to represent

T (s, a), where a ∈ A, and s ∈ S. Given a goal set G ⊆ S, a black-box deterministic

policy Π : S → A maps each state to the action that the agent should execute in that

state to reach a g ∈ G.

In this chapter, we use “actions” to refer to the core functionality of the agent,

denoting the agent’s decision choices, or primitive actions that the agent could execute

(e.g., keystrokes in our running example). In contrast, we use the term “capabilities” to

refer to the high-level behaviors that the agent can perform using its AI algorithms for

behavior synthesis, including planning and learning (e.g., defeating Ganon or picking

up the key). Thus, actions refer to the set of choices that a tabular-rasa agent may

possess, while capabilities are a result of its agent function (Russell, 1997) and can

change as a result of algorithmic updates even as the agent uses the same actions.

5.1.1 Abstraction

We now define the notion of abstraction used in this work. Several approaches

have explored the use of abstraction in planning (Sacerdoti, 1974b; Giunchiglia and

Walsh, 1992a; Helmert et al., 2007b; Bäckström and Jonsson, 2013b; Srivastava et al.,

2016b). We refer to S̃ as the set of high-level or abstract states, and S as the set of

low-level or concrete states. We define abstraction as in (Srivastava et al., 2016b):
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Definition 18. Let S and S̃ be sets such that |S̃| ≤ |S|. An abstraction from S to

S̃ is defined by a surjective function f : S → S̃. For any s̃ ∈ S̃, the concretization

function f−1(s̃) = {s ∈ S : f(s) = s̃} denotes the set of states represented by the

abstract state s̃.

Following this, we use ˜ whenever we refer to a state, a predicate, or an action

pertaining to the abstract state space.

5.1.2 Capability Descriptions

We express capability descriptions using a STRIPS-like representation (Fikes and

Nilsson, 1971; McDermott et al., 1998). In our running example, such a description

could indicate that if Link is next to Ganon then Link can defeat it. We now formally

define a capability.

Definition 19. Given a set of objects Õ; and a finite set of predicates P̃ =

{p̃k11 , . . . , p̃knn } with arities ki; a grounded capability c̃∗ is defined as a tuple

⟨pre(c̃∗), eff(c̃∗)⟩ where precondition pre(c̃∗) and effect eff(c̃∗) are conjunctions of

literals over P̃ and Õ.

We also refer to the tuple ⟨c̃∗, pre(c̃∗), eff(c̃∗)⟩ as the capability description for a

capability c̃∗. Here each atom could be absent, positive, or negative (henceforth

referred to as the mode) in the precondition and the effect of an action. However, we

disallow atoms to be positive (or negative) in both the preconditions and the effects

of an action simultaneously to avoid redundancy. Semantics of capabilities are close

to those of STRIPS actions, but they address vocabulary disparity: an agent can

execute a capability c̃∗ in any concrete state s where s̃ |= pre(c̃∗); as a result, the
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system reaches a concrete state s′ (a member of an abstract state s̃′). Atoms that

don’t appear in eff(c̃∗) retain their truth values from s̃ in s̃′ while others are set to

their modes (positive, negative, or absent) in eff(c̃∗), i.e., ∀ℓ ∈ eff(c̃∗), s̃′ |= ℓ. For

brevity, we represent this as s̃′ = c̃∗(s̃).

We refer to the capabilities defined in Def. 19 as grounded capabilities as they

are instantiated with a specific set of objects in Õ. We use ∗ whenever we refer

to a grounded capability. We define a lifted form of capabilities as parameterized

capabilities.

Definition 20. Given a set of objects Õ; a finite set of predicates P̃ = {p̃k11 , . . . , p̃knn }

with arities ki; a parameterized capability c̃ is defined a 3-tuple ⟨args(c̃), pre(c̃), eff(c̃)⟩

where args(c̃) is the set of arguments that can be initialized with a set of objects

õ ⊆ Õ; and pre(c̃) and eff(c̃) are sets of literals over P̃ and args(c̃).

A set of parameterized capabilities constitutes a parameterized capability model.

Formally, a parameterized capability model is a tuple M̃ = ⟨P̃ , C̃, Õ⟩, where P̃ is a

finite set of predicates, C̃ is a finite set of parameterized capabilities, and Õ is the set

of objects that can be used to ground the capabilities.

Our objective is to develop a capability discovery algorithm that learns a parame-

terized capability model of a black-box AI agent using as input (i) the agent, (ii) a

compatible simulator using which the agent can simulate its primitive action sequences,

and (iii) the user’s concept vocabulary, which may be insufficient to express the simu-

lator’s state representation. Such assumptions on the agent are common. In fact, the

use of third-party simulators for development and testing is the bedrock of most of

the research on taskable AI systems today (including game-playing AI, autonomous

cars, and factory robots). Providing simulator access for assessment is reasonable as

it would allow AI developers to retain freedom and proprietary controls on internal
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software while supporting calls for assessment and regulation using approaches such

as ours.

Our user studies show the efficacy of this approach using spoken English terms for

concepts without an explicit process for vocabulary synchronization. Several threads of

ongoing research address the problem of identifying user-specific concept vocabularies

(e.g., Kim et al. (2018), Sreedharan et al. (2022a)), and the field of intelligent tutoring

systems develops methods for helping users understand a fixed concept vocabulary.

These methods can be used to either elicit or impart a vocabulary for a given user

and such systems can be used to complement the methods developed in this chapter.

However, since the problem of capability discovery is not well understood even in

settings where user-concept definitions are readily available, we focus on capability

discovery with a given vocabulary with known definitions and formalize our approach

using them. Furthermore, our empirical evaluation and user studies don’t place

requirements on user concept vocabularies and show the efficacy of this representation.

We formalize these concept definitions as follows:

Definition 21. Given a concrete state s ∈ S, a set of objects Õ and their tuples Õ≤d

(of dimension at most d, where d is a positive integer), a set of concepts/predicates

P̃ = p̃k11 , . . . , p̃
kn
n with their arities ki and an associated Boolean evaluation function

ψp̃i : S × P̃ × Õ≤max(ki) → {T, F}, j ≤ max(ki) , we define s |=ψp̃i
p̃i(õ1, . . . , õj) iff

ψp̃i(s, p̃i, õ1, . . . , õj) = T . We define the abstraction s̃P̃ ,Õ of a state s ∈ S as the set

of all literals over P̃ and Õ that are true in s. S̃P̃ ,Õ denotes the abstract state space

{s̃P̃ ,Õ : s ∈ S}.

We omit subscripts P̃ and Õ unless needed for clarity. As mentioned, we assume

availability of an evaluation function ψp̃ associated with each predicate p̃ ∈ P̃ . E.g.,

for a 3-D Blocksworld simulator with objects a and b, and coordinates x, y, and z,
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Algorithm 4: Interactive Capability Model Learning
Input : predicates P̃ , agent A
Output : M̃

1 E ← generate_execution_traces(A)
2 C̃∗ ← generate_partial_capability_descriptions(E)
3 C̃ ′ ← parameterize_partial_capabilities(C̃∗)

4 M̃ ← generate_parameterized_capability_model(C̃ ′)

5 Set L̃← {pre, eff}
6 for each ⟨L̃, C̃, P̃ ⟩ in M̃ do
7 Generate M̃+, M̃−, M̃∅ by setting P̃ in C̃ at L̃ to +,−, ∅ in M̃
8 for each pair M̃x, M̃y in {M̃+, M̃−, M̃∅} do
9 q̃ ← generate_query(M̃1, M̃2)

10 ϱ̃← generate_waypoints(q̃)
11 ϱ← refine_waypoints(ϱ̃, P̃ )
12 for i in range[0, k − 1] do
13 θ ← ask_agent(A, ⟨si, si+1⟩)
14 break if θ = ⊥
15 M̃ ← consistent_description(i, s̃i, M̃x, M̃y)

16 return M̃

“on(a, b) is true exactly for states where z(a) > z(b), x(a) = x(b), and y(a) = y(b).”

As this example illustrates, such vocabularies can be inaccurate. The abstraction

function f (Def. 21) can be modeled as a conjunction of these evaluation functions ψp̃.

We now discuss how we discover capabilities and learn their descriptions.

5.2 Active Capability Discovery

Our overall approach consists of two main phases: (1) discovering candidate

capabilities and their partial descriptions from a set of execution traces of the agent’s

behavior (Sec. 5.2.1); and (2) completing the descriptions of the candidate capabilities

discovered in step (1) by asking the agent queries designed to assess under which
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conditions it can execute those capabilities and what their effects are (Sec. 5.2.2).

The interactive Capability Model Learning (iCaML) algorithm (Alg. 4) performs both

these steps using user interpretable predicates P̃ and the agent A as inputs. We now

explain these two phases in detail.

5.2.1 Discovering Candidate Partial Capabilities

In this section we explain the various steps for discovering the candidate capabilities

and generating partial description for them.

5.2.1.1 Generating Execution Traces

As a first step, Alg. 4 collects a set of execution traces E from the agent (line

1). An execution trace e is a sequence of states of the form ⟨s0, s1, . . . , sn−1, sn⟩, such

that ∀j ∈ [1, n] ∃ai ∈ A aj(sj−1) = sj. To obtain the traces e ∈ E, a set of random

tasks of the form ⟨sI , sG⟩, where sI , sG ∈ S, are given to the agent A, and the agent

is asked to reach sG from sI . Intermediate states that the agent goes through form

the set of execution traces E.

5.2.1.2 Discovering Candidate Capabilities

To discover candidate capabilities, we abstract the low-level execution traces E in

terms of the user’s vocabulary (line 2). This abstraction of a low-level execution trace

⟨s0, s1, . . . , sn−1, sn⟩ gives a high-level execution trace ⟨s̃0, s̃1, . . . , s̃n−1, s̃n⟩. Since we

do not assume that the user’s vocabulary is precise enough to discern all the states
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available to the agent, more than one low-level state in an execution trace may be

abstracted to a single high-level abstract state in S̃. Hence for some j ∈ [0, n − 1],

it is possible that s̃j = s̃j+1. E.g., in Fig. 7(a), the state available to the agent

in the simulator expresses pixel-level details of the game (Fig. 7(b)), whereas the

user’s vocabulary can express it only as an abstract state that represents multiple

similar low-level states (Fig. 7(c)). Formally, an abstract execution trace is the longest

subsequence of s̃1, . . . , s̃n such that no two subsequent elements are identical. We

remove the repetitions from the high-level execution trace to get the abstract execution

trace ẽ = ⟨s̃0, . . . , s̃m⟩, where m ≤ n.

We store each transition s̃i, s̃i+1 in ẽ as a new grounded candidate capability c̃∗s̃i,s̃i+1
.

5.2.1.3 Generating Partial Capability Descriptions

For each candidate capability c̃∗s̃i,s̃i+1
, the set of predicates s̃i+1 \ s̃i is added to

the effects of c̃∗s̃i,s̃i+1
in positive form (add effects); whereas the set s̃i \ s̃i+1 is added

to the same candidate capability’s effects in negative form (delete effects). As an

optimization, in a manner similar to Stern and Juba (2017b), we also store that the

predicates true in s̃i cannot be negative preconditions for this capability, whereas the

predicates false in s̃i cannot be positive preconditions.

5.2.1.4 Lifting the Partial Capability Descriptions

After line 2 of Alg. 4, we get a set of candidate capabilities with their partial

descriptions that are in terms of predicates P̃ instantiated with objects in Õ. For

each such grounded partial capability description, the predicates in the preconditions

94



and effects are sorted in some lexicographic order. The choice of ordering is not

important as long as it stays consistent throughout Alg. 4. The objects used in

predicate arguments are assigned unique IDs corresponding to this capability in

the order of their appearance in ordered predicates. These IDs are then used as

variables representing capability parameters. E.g., suppose we have a grounded

partial capability description with a precondition: (alive ganon), (at link cell6),

(at ganon cell5), (next_to ganon). Traversing the predicates in this order, the

objects used in these predicates are given IDs as follows: {ganon: 1, link: 2, cell6:

3, cell5: 4}. Note that there is only one assignment per object, hence ganon in

(at ganon cell5) was not given a separate ID. This procedure is extended to effects

while assigning new IDs for any unseen objects in the partial capability description.

Finally, the parameterized partial capability description is constructed by replacing all

occurrences of objects in the partial capability description with variables corresponding

to their unique IDs.

5.2.1.5 Combining Candidate Capabilities

Multiple candidate partial capabilities can be combined if their precondition and

effect conjunctions are unifiable. E.g., for any capability to match the capability

discussed above, it’s precondition should be in the form: (alive ?1), (at ?2 ?3),

(at ?1 ?4), (next_to ?1). Its effects should also be unifiable in terms of these

parameters. The algorithm also keeps track of which grounded partial candidate

capabilities map to each parameterized partial capability description. These descrip-

tions are partial as they are generated using limited execution traces and may not

capture all the preconditions or effects of a capability. E.g., suppose a capability
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adds a literal on its execution. If that literal is already present in the state where

the capability was executed, it will not be captured in the effect of the capability’s

partial description. Hence, we next try to complete the partial capability descriptions.

Note that all parameterized partial capability descriptions are collectively used as the

parameterized capability model M̃ (line 4).

5.2.2 Completing Partial Capability Descriptions

To complete the partial capability descriptions M̃ , Alg. 4 generates queries aimed

to gain more information about the conditions under which the capability can be

executed and the state properties that become true or false upon its execution. These

queries give the agent a sequence of states, called waypoints, to traverse. Based on

the agent’s ability to traverse them, we derive the precondition and effect of each

capability. Alg. 4 iterates through the combinations of predicates and capabilities

generated earlier to determine how each predicate will appear in each capability’s

precondition and effect (line 6). For each combination, it generates a query as follows.

5.2.2.1 Active Query Generation

For each combination of predicate, capability, and precondition (or effect), three

possible capability descriptions M+,M−,M∅ are possible, one each for the predicate

appearing in the precondition (or effect) of the capability in positive, negative, or

absent mode, respectively (line 7). As noted when generating partial capability

descriptions in Sec. 3.1, some of the models will not be considered if we know that

a form is not possible for a particular predicate. The algorithm iteratively picks
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two such models Mx,My from M+,M−,M∅ (line 8) and generates a query q̃ in the

form of a state s̃0 and a capability sequence π̃ such that the result of executing the

sequence π̃ on s̃0 is different in Mx and My (line 9). We use the agent interrogation

algorithm (AIA) (Alg. 1), and AIA reduces query generation to a planning problem.

The resulting query q̃ is of the form ⟨s̃0, π̃⟩, asking the model (or an agent) about the

length of the plan π̃ that it can successfully execute when starting from state s̃0. Here

plan π̃ is a sequence of capabilities ⟨c̃∗1, . . . , c̃∗n⟩ grounded with objects in Õ.

5.2.2.2 Generating Waypoints from Queries

The queries described above cannot be directly posed to an agent, as the plan

π̃ is in terms of high-level capabilities c̃∗i ∈ C̃∗, which the agent will not be able to

comprehend. Additionally, these high-level capabilities cannot be converted directly to

low-level actions, as each capability may correspond to a different sequence of low-level

actions depending on the state in which it is executed. Hence, we pose the queries to

the agent in the form of high-level state transitions induced by the capabilities in the

query’s capability sequence.

To accomplish this, Alg. 4 converts the query q̃ to a sequence of waypoints

ϱ̃ = ⟨s̃0, . . . , s̃n⟩. Starting from the initial state s̃0, these are generated by applying

the capability c̃∗i , for i ∈ [1, n], in the state s̃i−1 according to the partial capability

description of c̃∗i . Note that the waypoints ϱ̃ cannot be presented to the agent as the

agent may not know the high-level vocabulary. Hence these high-level waypoints must

be refined into the low-level waypoints ϱ = ⟨s0, . . . , sn⟩ (with each si similar to state

shown in Fig. 7(b)) that agent understands.

Alg. 4 first converts the high-level waypoints ϱ̃ to a sequence of low-level waypoints
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ϱ = ⟨s0, . . . , sn⟩ using the predicate definitions (line 11). Then each consecutive pair

of states ⟨si, si+1⟩ is given sequentially to the agent as a state reachability query asking

if it can reach from state si to si+1 using its internal black-box policy (line 13).

5.2.2.3 Updating Partial Models based on Agent Responses

Using its internal planning mechanism and the simulator, the agent attempts to

reach from state si to si+1. If it succeeds, the response to the query is recorded as

true; if it fails, the response is recorded as false. The algorithm keeps track of the

waypoints that were successfully traversed. Based on the waypoint pairs that the

agent was able to traverse, we discard the capability descriptions among Mx and My

that are not consistent with the agent’s response (line 15).

E.g., suppose the algorithm is trying to determine how the predicate

(alive ?monster1) should appear in the precondition of capability c4 shown

in Fig. 7(d). Now the two possible capability descriptions M1 and M2 that Alg. 4 is

considering in line 6 are M+ and M−, corresponding to (alive ?monster1) being

in c4’s precondition in positive and negative form, respectively. The algorithm will

generate query with its corresponding waypoints ϱ̃ = ⟨s̃0, s̃1⟩, where s̃0 will correspond

to the state shown in Fig 7(a), and s̃1 will be s̃0 without Ganon. Now the agent uses

its own internal mechanism to try to reach s̃1 from s̃0 and succeeds. Since this is not

possible according to M−, M− will be discarded.

We now define and prove the theoretical properties of iCaML algorithm. To do

this, we use two key properties of Alg. 1 relevant to this work: (1) if there exists a

distinguishing query for two models then it will be generated (Thm. 1); and (2) the

algorithm will not discard any model that is consistent with the agent (Thm. 2).
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5.2.3 Formal Analysis

Alg. 4 has two main desirable properties: (1) the partial capability model (that is

maintained as M̃) is always maximally consistent, i.e, adding any more literals into

it would be unsupported by the execution traces that we obtain; and (2) the final

parameterized capability is complete in the limit of infinite execution traces given to

Alg. 4. We first define these concepts and then formalize the results under Thm. 1

and Thm. 2.

Definition 22. Let e = ⟨s0, . . . , sn⟩ be an execution trace with a corresponding

abstract execution trace ẽ = ⟨s̃0, . . . , s̃m⟩, where m ≤ n. A parameterized capability

model M̃ = ⟨P̃ , C̃, Õ⟩ is consistent with E iff ∀i ∈ [0,m− 1] ∃c̃∗ ∈ C̃∗ s̃i+1 = c̃∗(s̃i),

where C̃∗ is a set of grounded capabilities that can be generated by instantiating the

parameters of capabilities c̃ ∈ C̃ with objects in Õ.

We extend this terminology to say that a capability model is consistent with a

set of execution traces E iff it is consistent with every trace in E. This notion of

consistency captures completeness as a parameterized capability model M̃ that is

consistent with a set of execution traces E, is also complete w.r.t. E. We next define

a stronger notion of completeness that our algorithm provides in the form of maximal

consistency. This helps to assess the succinctness of a capability model with a set of

execution traces E.

Definition 23. Let E be a set of execution traces, and Λ be the set of possible

agents that can generate all execution traces in E. A parameterized capability model

M̃ = ⟨P̃ , C̃, Õ⟩ is maximally consistent with a set of execution traces E iff (i) M̃ is

consistent with E, and (ii) adding any predicate as positive or negative precondition
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or effect of a capability in M̃ makes it inconsistent with at least one execution trace

that can be generated by at least one agent A# ∈ Λ.

An abstraction satisfies local connectivity iff ∀s̃ ∀si, sj ∈ f−1(s̃) there exists

a sequence of primitive actions ⟨ai, . . . , an⟩ such that an(an−1 . . . (a1(si)) . . .) = sj.

We use this to show that the parameterized capability model learned by Alg. 4 is

maximally consistent.

Theorem 5. Let A = ⟨S,A, T ⟩ be an agent operating in a deterministic, fully

observable, and stationary environment with a state space S using a set of primitive

actions A. Given an input vocabulary P̃ , and the set of execution traces E generated

by A, if local connectivity holds, then the capability model M̃ maintained by Alg. 1

is consistent with the set of execution traces E.

Proof. We show that given the set of all execution traces E, the parameterized

capability model M̃ maintained by Alg. 4 is consistent with E, i.e., for every high-

level transition s̃, s̃′ corresponding to a transition in E, there exists a capability c̃ which

has a grounding c̃∗ such that c̃∗(s) = s̃′. We prove this by contradiction. The partial

capability model M̃ is initially generated using observed transitions s̃, s̃′ corresponding

to the transitions in E as grounded capabilities c̃∗s̃,s̃′ (lines 2 to 4 in Alg. 4). So the

model M̃ is consistent with the set of traces to start with. At each step, Alg. 4 adds

a new literal l to a capability c̃ in M̃ such that adding l keeps M̃ consistent with

the agent A (Thm. 2 from VMS21). Now consider that adding l to M̃ makes it

inconsistent with an execution trace in E, i.e., there must exist a transition s̃1, s̃2 such

that no capability c̃∗ ∈ C̃∗ corresponds to it.

Consider the version of c̃1 corresponding to c∗s̃1,s̃2 that was modified by Alg. 4. We

show that modifications inconsistent with this transition are not possible under the
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assumption that the agent’s capabilities can be expressed using the input vocabulary.

Case 1 : Suppose Alg. 4 added a literal l in the precondition of c̃1 that was not true

in s̃1. Thm. 2 in VMS21 implies that absent and negated forms of l were inconsistent

with executions of c̃1 using the same agent that generated E. In other words, the

agent sometimes requires l as a precondition to execute c̃1, even though l was not

a part of s̃1. This contradicts the assumption that c̃1 is expressible using the input

vocabulary in the form of Def. 3.

Case 2 : Suppose Alg. 4 added a literal l in the effect of c̃1 that was not present in s̃2.

This implies that the negation and absence of l in the result of c̃1 were inconsistent

with the agent’s execution of c̃1 in query-responses generated by Alg. 4. A similar

contradiction about the assumption of expressiveness follows.

Hence, the capability model M̃ maintained by Alg. 1 is consistent with the set of

execution traces E.

Theorem 6. Let A = ⟨S,A, T ⟩ be an agent operating in a deterministic, fully

observable, and stationary environment with a state-space S using a set of primitive

actions A. Given an input vocabulary P̃ , and the set of execution traces E generated

by A, if local connectivity holds, then the capability model M̃ returned by Alg. 1 is

maximally consistent with the set of execution traces E.

Proof. We will prove the two conditions for maximal consistency separately. The first

condition is that the model M̃ returned by Alg. 4 is consistent with E follows directly

from Thm. 1. Since the model maintained by Alg. 4 at each step is consistent with

E, hence the same model returned after the last iteration is also consistent with E.

Next, we show that adding any predicate as a positive or negative precondition or

effect of a capability in M̃ returned by Alg. 4 makes it inconsistent with at least one

execution trace that can be generated by at least one agent A# ∈ Λ, where Λ is the
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set of possible agents that can generate all execution traces in E. We prove this by

contradiction. Note that a literal is not added by Alg. 4 to an action’s precondition

(or effect) only if (1) in the observed traces, it was not present in the state where

(immediately after) that action was executed; or (2) adding it in the precondition (or

effect) of an action resulted in a response to a query that was inconsistent with that

of the agent. Also, note that a predicate corresponding to a literal is always added

to the model in some form in each precondition (or effect). Suppose a literal l that

was not added by Alg. 4 is added to M̃ in precondition (or effect) of a capability c̃

without making it inconsistent with the agent. Since a predicate p corresponding to

this literal l is already present in c̃, this implies that the form of the predicate p added

by Alg. 4 is incorrect. But this is not possible as shown by Thm. 1 and Thm. 2 of

VMS21. Hence this is not possible and adding an additional literal in any form to an

action’s precondition or effect would make it inconsistent with the agent. This means

that it also makes the model inconsistent with at least one agent A# ∈ Λ.

Next, we formalize the notion of downward refinability, that the discovered capa-

bilities are indeed within the agent’s scope. In this work, refinability is similar to the

notion of forall-exists abstractions (Srivastava et al., 2016b) for deterministic systems.

Recall the notion of abstraction functions (Def. 21).

Definition 24. Let M̃ = ⟨P̃ , C̃, Õ⟩ be a capability model with S̃, the induced state

space over P̃ , Õ using an abstraction function f , for an agent A = ⟨S,A, T ⟩; and C̃∗ be

a set of grounded capabilities that can be generated by instantiating the arguments of

capabilities c̃ ∈ C̃ with objects in Õ. A capability c̃∗ ∈ C̃∗ is realizable w.r.t. A iff

∀s̃ ∈ S̃, if s̃ |= pre(c̃∗) then ∀s ∈ f−1(s̃) ∃a1, . . . , an ∈ A : an(an−1 . . . (a1(s)) . . .) ∈

c̃∗(s̃). The model M is realizable w.r.t. A iff all capabilities c̃∗ ∈ C̃∗ are realizable.
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In these terms, discovered capabilities are more likely to be useful if they are

accurate in the sense that they are consistent with execution traces and realizable, i.e.,

true representations of what the agent can do. Realizability captures the soundness of

the model wrt. the execution of the capabilities. We now show that the parameterized

capability model that we learn is realizable.

Theorem 7. Let P̃ be a set of predicates P̃ , A = ⟨S,A, T ⟩ be an agent with a

deterministic transition system T . If a high-level model is expressible deterministically

using the predicates P̃ , and local connectivity is ensured, then the parameterized

capability model M̃ learned by Alg. 4 is realizable.

Proof. We will prove that for all capabilities in C̃ learned as part of the parameterized

capability model M̃ , for all groundings C̃∗, if the capability is executed in an abstract

state s̃ such that s̃ |= pre(c̃∗) then there exists a sequence of low-level states that the

agent can traverse to reach a state s̃′ ∈ c̃∗(s̃).

We prove this by cases. Consider a capability c̃ ∈ C̃ whose description is learned

using Alg. 4 . Using Thm. 1, the precondition and effect of c̃ will be consistent with E

generated by the agent. Now consider a grounded capability c̃∗ corresponding to the

capability c̃. There are only two cases possible: (1) either c̃∗ appeared in the observed

traces or was executed successfully by the agent in response to one of the queries

posed to the agent; or (2) it was not present in either. We prove each case separately.

Case 1: There exists a set of low-level states s and s′ such that c̃∗(s̃) = s̃′, where

s̃ = f(s) and s̃′ = f(s′). Now due to local connectivity, all states in f−1(s) are

connected with each other and same is true for all states in f−1(s′). Hence the agent

can traverse from any state in f−1(s) to any state in f−1(s′) on executing the capability

c̃∗. This makes the capability c̃∗ realizable.

Case 2: Since c̃∗ was not observed directly and the only way capabilities are added
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to M̃ is if they are lifted forms of capabilities identified from observation traces

E, c̃∗ must be a grounding of the lifted form c̃1 of a capability c̃∗1 that is of the

type considered in case 1. Alg. 4 constructs precondition and effect of c̃1 while

ensuring consistency with query responses and observations under the assumption

that the capability model is expressible as in Def. 3. When this assumption holds, the

effect or precondition of a capability can only depend on the vocabulary of available

predicates, which are considered exhaustively (hierarchically) by Alg. 4. This implies

that there must be a path from a concrete state s in the grounding corresponding to

c̃1’s precondition to a concrete state s′ that satisfies the effects of grounding of c̃1’s

effects. By local connectivity, this extends to all concrete states in the same abstract

state as s̃ corresponding to s.

Hence if a high-level model is expressible deterministically using the predicates P̃ ,

and local connectivity is ensured, then the parameterized capability model M̃ learned

by Alg. 4 is realizable.

Note that here expressibility of a high-level model refers to the class of models

of the form defined in Def. 3. Together, the notions of maximal consistency and

realizability establish the completeness and soundness of our approach wrt a set of

execution traces E. Note that this approach will also work when we have access

to a stream of execution traces E being collected at random, independent of our

active querying mechanism. We next show that in the limit of infinite randomly

generated execution traces, our approach will capture all possible agent capabilities

with probability 1. Here, capturing all possible agent capabilities in a learned model

M̃ = ⟨P̃ , C̃, Õ⟩ means that if the agent can go from s̃i to s̃j , then one of the capabilities

in C̃ will be instantiable to result in s̃j when executed from s̃i.
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Theorem 8. Let P̃ be a set of predicates, A = ⟨S,A, T ⟩ be an agent with a deter-

ministic transition system T . Suppose random samples of agent behavior in the form

of execution traces E are coming from a distribution that assigns non-zero probability

to at least one transition corresponding to each ground capability (c̃∗s̃i,s̃j , s̃i, s̃j ⊆ P̃ ).

If a high-level model is expressible deterministically using the predicates P̃ and local

connectivity holds, then in the limit of infinite execution traces E, the probability of

discovering all capabilities c̃ ∈ C̃ expressible using the predicates P̃ is 1.

Proof. Consider every possible abstract transition that the agent can make. There

are finite (let’s consider L) such transitions possible given the predicate vocabulary P̃

and a fixed set of objects Õ. Now we are getting random execution traces E from a

distribution that assigns non-zero probability to at least one transition corresponding

to each ground capability (c̃∗s̃i,s̃j). This means that the probability of not observing

this finite set of cardinality L will reduce with each successive collection of L execution

traces. Hence we will eventually observe at least one transition corresponding to each

ground capability (c̃∗s̃i,s̃j). Then as shown in Thm. 1, we will discover the capability c̃

corresponding to the ground transition c̃∗s̃i,s̃j with probability 1.

5.3 Empirical Evaluation

We implemented Alg. 4 in Python to empirically verify its effectiveness. 6 To

show that our approach can work with different internal agent implementations, we

evaluated Alg. 4 with two broad categories of input test agents: Policy agents can

use (possibly learned) black-box policies to plan and to respond to state reachability

queries. We used policy agents with hand-coded policies for this evaluation. Search

6Code: https://github.com/AAIR-lab/iCaML
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(a) (b) (c) (d)

Figure 8. GVGAI’s domains; (a) Zelda, (b) Cook-Me-Pasta, (c) Escape, and (d)
Snowman.

agents respond to the state reachability queries using arbitrary search algorithms. We

used search agents that use A∗ search (Hart et al., 1968). We now describe the setup

of our experiments used for evaluation.

5.3.1 Experimental Setup

Our test agents use the General Video Game Artificial Intelligence frame-

work (Perez-Liebana et al., 2016, 2019). Domains in GVGAI are two-

dimensional ATARI-like games defined using the Video Game Description Language

PyVGDL (Schaul, 2013). We performed experiments on four such game domains –

Zelda, Cook-Me-Pasta, Escape, and Snowman (Fig. 8). All these domains require the

agent to navigate in a grid-based environment and complete a set of tasks (in some

partial order) to complete the game. Since the complete list of an agent’s capabilities

may be irrelevant to a user’s current needs, w.l.o.g, our implementation supports an

input including sets of formulas representing the properties that may be of interest

to the user. This set can be the set of all grounded predicates in the user’s concept

vocabulary. We also consider object types to be a subset of the unary predicates in

the vocabulary and assume that each object has exactly one type. These types are
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used and discovered in capability like any other predicate. In addition, they are used

in creating parameterized capability parameters as shown in Fig. 7(d). More details

about the four GVGAIdomains, and the associated user vocabulary for each domain

is described below.

5.3.2 Domains and their Semantics

We now see the description of the four GVGAI game domains used in this evaluation

and the semantics of the user interpretable predicates in these domains. Note that

information like the orientation of the agent (player) in each of these domains is not

captured by any of the predicates. This information is important for low-level policies

as certain actions can only be executed in certain orientations.

Zelda The Zelda-like domain, as shown in Fig. 7a, consists of a key, a door that

opens using that key, the antagonist player Link, and the protagonist monster Ganon.

To win the game, Link must defeat Ganon, and then should use the key to open

the door to escape. Link can move one cell at a time in the direction it is facing. If

Link moves into the cell adjacent to the key, Link picks up the key by executing the

keystroke E (special keystroke). The same keystroke is used to Defeat Ganon when

Link is facing Ganon and is in a cell adjacent to Ganon, and to escape when Link is

in a cell adjacent to the door and facing it. The user vocabulary for this domain is

shown in Tab. 7.

Cook-Me-Pasta The Cook-Me-Pasta domain, as shown in Fig. 8b, consists of raw

pasta, sauce, boiling water, tuna (fish), lock, and key. The objective is to cook tuna

pasta using a three-step process. First, the pasta is cooked by adding boiling water

to the raw pasta, this can be done by pressing E while holding both the ingredients.
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Predicate Meaning

at(?ob ?loc) True if an object ?ob is at location ?loc
wall(?loc) True if there is a wall at location ?loc
clear(?loc) True if location ?loc is empty, i.e., it has no object, wall,

or player
has_key() True if Link has the key.
escaped() True if Link has escaped (game is over).
alive(?m) True if Ganon is still alive
next_to(?ob2) True if Link is in a cell adjacent to ganon, door, or key.

Table 7. Predicates in the user vocabulary for Zelda

Similarly, tuna is cooked by mixing sauce and tuna. Finally, the cooked pasta and the

cooked tuna are to be mixed together. One or more of the ingredients can be locked

in a room which must be opened using a key. The user vocabulary for this domain is

shown in Tab. 8.

Predicate Meaning

at(?ob ?loc) True if an object ?ob is at location ?loc
wall(?loc) True if there is a wall at location ?loc
clear(?loc) True if location ?loc is empty, i.e., it has no object, wall,

or player
has_key() True if the player has the key
pasta_cooked() True if the pasta is cooked
is_door(?loc) True if the location ?loc has a door

Table 8. Predicates in the user vocabulary for Cook-Me-Pasta.

Escape The Escape domain, as shown in Fig. 8c, consists of movable blocks, fixed

holes, and cheese. The blocks can be pushed into the holes to clear out a path. The

game is finished when the player reaches the location with cheese. The user vocabulary

for this domain is shown in Tab. 9.

Snowman The Snowman domain, as shown in Fig. 8d, consists of three pieces of

a snowman: the top, middle, and bottom piece; a key that can be used to unlock a
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Predicate Meaning

at(?ob ?loc) True if an object ?ob is at location ?loc
wall(?loc) True if there is a wall at location ?loc
clear(?loc) True if location ?loc is empty, i.e., it has no object, wall,

or player
is_hole(?loc) True if the location ?loc has a hole
is_goal(?loc) True if the location ?loc is the goal location
is_block(?loc) True if the location ?loc has a movable block

Table 9. Predicates in the user vocabulary for Escape.

door (like other domains), and the goal cell. The objective of the game is to assemble

the snowman in the goal location in order, constrained by the player being able to

hold only one piece at any given time. The user vocabulary for this domain is shown

in Tab. 10.

Predicate Meaning

at(?ob ?loc) True if an object ?ob is at location ?loc
wall(?loc) True if there is a wall at location ?loc
clear(?loc) True if location ?loc is empty, i.e., it has no object, wall,

or player
has_key() True if the player has the key
player_has(?o) True if the player has object ?o
is_goal(?loc) True if the location ?loc is the goal location
placed(?part) True if part ?part is placed at the goal location.
is_door(?loc) True if the location ?loc has a door

Table 10. Predicates in the user vocabulary for Snowman.

5.3.3 Evaluation Strategy

For each domain, and for each grid size in that domain, we create a random game

instance with the goal of achieving one of the user’s specified properties of interest.

To generate these instances, the number of obstacles in all domains, except Escape,
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is set to 20% of the total cells in the grid, whereas all other objects are generated

randomly. We use the solution to that instance to generate the execution trace that is

used in lines 1-2 of Alg. 4. These solutions are not always optimal. All experiments

are run on 5.0 GHz Intel i9 CPUs with 64 GB RAM running Ubuntu 18.04.

As shown in Sec. 5.2.3, Alg. 4 is guaranteed to compute capability descriptions

that are correct in the sense that they are consistent with the execution traces, and

refinable and executable with respect to the true capabilities of the agent. We now

present the main conclusions of our empirical analysis.

We evaluated our algorithm’s performance along two aspects; (i) how the perfor-

mance of our approach changes with respect to the size of the problem; and (ii) how

its performance differs for search-based vs policy-based agents.

5.3.4 Empirical Results

5.3.4.1 Scalability Analysis

We increase the size of each domain to analyze its effect on the performance of the

search and policy agents. Fig. 24 shows the graphs for the experimental runs on the

four domains. In all four domains, for both kinds of agents, the number of queries

increases as we increase the grid size. The increasing number of queries is an expected

behavior and this is also clear in approaches that use passive observations of agent

behavior (Yang et al., 2007; Aineto et al., 2019).
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Figure 9. Performance comparison of search-based agents and policy-based agents in
terms of the number of queries asked and time taken per query when increasing the
grid size (number of cells in the grid) in the four GVGAI domains.

5.3.4.2 Agent Type Analysis

The number of queries required by the policy agent is higher than that of the search

agent in almost all cases. This is because a large number of state reachability queries

fail on the policy agent as the sequence of waypoints in these queries does not always

align with the policy of the agent. However, the time per query is lesser for the policy

agents as they can answer the state reachability queries by following their policy,

whereas the search agents perform an exhaustive search of the state space for every

such query.
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5.3.5 User Study

We conducted a user study to evaluate the utility of the capability descriptions

discovered and computed by Alg. 4. Intuitively, our notion of interpretability matches

that of common English and its use in AI literature, e.g., as enunciated by Doshi-Velez

and Kim (2018): “the ability to explain or to present in understandable terms to a

human.” We evaluate this through the following two operational hypothesis:

H1. The user can effectively summarize the learned capability descriptions.

H2. The discovered capabilities make it easier for users to analyze and predict the

outcome of the agent’s possible behaviors.

We performed the following study to evaluate H1:

Capability Summarization Study This study evaluates the interpretability of

the discovered capability descriptions. The user is explained the rules of the Zelda-like

game described earlier (shown in Fig. 26), and then presented with a text description

of the six learned capabilities. Finally, as shown in Fig. 27, the user is asked to choose

a short summarization for each description, out of the eight possible summarizations

that we provide.

We designed the following study to evaluate H2.

Behavior Analysis Study This study compares the predictability and analyzability

of agent behavior in terms of the agent’s low-level actions and high-level capabilities.

Each user is explained the rules of a Zelda-like game. One group of users – called the

primitive action group – are presented with text descriptions of the agent’s primitive

actions, while the users in the other group – called the capability group – are presented

with a text description of the six learned capabilities. The capability group users are

asked to choose a short summarization for each capability description, out of the eight
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possible summarizations that we provide, whereas the primitive action group users

are asked to choose a short summarization for each primitive action description, out

of the five possible summarizations that we provide. Then each user is given the same

5 questions in order. Each question contains two game-state images; start and end

state. The user is asked what sequence of actions or capabilities that the agent should

execute to reach the end state from the start state. Each question has 5 possible

options for the user to choose from, and these options differ depending on their group.

We then collect the data about the accuracy of the answers, and the time taken to

answer each question.

5.3.5.1 Study Design

108 participants were recruited from Amazon Mechanical Turk and randomly

divided into two groups of 54 each. Each user was provided with a survey on

Qualtrics (Qualtrics, 2005) that explained the rules of GVGAI’s Zelda game. We

used screeners (Kennedy et al., 2020; Arndt et al., 2021) to ensure quality of the data

collected, and discarded 23 responses. The results are based on the responses of 41

and 43 users in the primitive action and capability group, respectively. Additional

details of the study are available in Appendix A.

5.3.5.2 Results

Capability Summarization Study There were a total of 54 participants in the

capability group out of whom 43 got the sanity check question right. The results of

the capability summarization study (Tab. 11) for these 43 participants demonstrate
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S1 S2 S3 S4 S5 S6 S7 S8
C1 1.0 0 0 0 0 0 0 0
C2 0 1.0 0 0 0 0 0 0
C3 0 0 0.91 0 0 0 0.09 0
C4 0 0 0 1.0 0 0 0 0
C5 0 0 0 0 0.84 0 0 0.16
C6 0 0 0 0 0 1.00 0 0

Table 11. Accuracy of capability summarization study for the Zelda-like game. An
element in row Ci and column Sj represents the fraction of instances when capability
Ci was summarized as Sj by the study participants. Correct summarization of Ci is
Si (in green). C1,S1: Go next to Ganon; C2,S2: Go next to Key ; C3,S3: Go next to
Door ; C4,S4: Defeat Ganon; C5,S5: Pick Key ; C6,S6: Open Door ; S7: Go next to
Wall ; S8: Break Key.

that the users are able to summarize the descriptions almost uniformly accurately

except for C3 and C5. This verifies H1 that the users can effectively summarize the

learned capability descriptions.

Behavior Analysis Study The results of the behavior analysis study are shown

in (Fig. 10) To evaluate the statistical significance (p-value) of the difference in the

mean of the time taken by the two groups, we used Student’s t-test (Student, 1908).

The results indicate that the test results were statistically significant with p-values

less than 0.05 for all five questions. Also, the users took less time to answer questions

and they got more responses correct when using the capabilities as compared to using

primitive actions. This validates H2 that the discovered capabilities made it easier for

the users to analyze and predict the agent’s behavior correctly.

5.4 Related Work

High-level skills from input options Given a set of options encoding skills as
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Figure 10. Data from behavior analysis shows that using computed capability descrip-
tions took lesser time and yielded more accurate results. See Sec. 5.3.5 for details.

input, Konidaris et al. (2018) and James et al. (2020) propose methods for learning

high-level propositional models of options representing various “skills.” They assume

access to predefined options and learn the high-level symbols that describe those

options at the high-level. While they use options or skills as inputs to learn models

defining when those skills will be useful in terms of auto-generated symbols (for

which explanatory semantics could be derived in a post-hoc fashion), our approach

uses user-provided interpretable concepts as apriori inputs to learn agent capabilities:

high-level actions as well as their interpretable descriptions in terms of the input

vocabulary.

Learning symbolic models using physics simulators Multiple approaches

learn different kinds of symbolic models of the functionality of ATARI or physics-

based simulators using methods like conjunctions of binary input features (Kansky

et al., 2017), graph neural networks (Battaglia et al., 2016; Cranmer et al., 2020),

CNNs (Agrawal et al., 2016; Fragkiadaki et al., 2016), etc. Some methods create

interpretable descriptions of reinforcement learning policies using trees (Liu et al.,
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2018) or specialized programming languages (Verma et al., 2018). These approaches

solve the orthogonal problem of learning the functionality of an agent that could help

a user understand how an agent would solve a problem, whereas we focus on learning

capabilities of the agent that could help a user understand and answer what type of

problems it could solve.

Action model learning The planning community has also worked on learning

STRIPS-like action models of agent functionality from observations of its behavior (Gil,

1994; Yang et al., 2007; Cresswell et al., 2009; Zhuo and Kambhampati, 2013b; Stern

and Juba, 2017b; Aineto et al., 2019; Bonet and Geffner, 2020b). Jiménez et al. (2012)

and Arora et al. (2018) present a comprehensive review of such approaches. These

methods work with broad assumptions that the agent model is internally expressed in

the same vocabulary as the user’s (Gil, 1994; Weber et al., 2011; Juba et al., 2021),

or at a similar level of abstraction (Mehta et al., 2011a; Verma et al., 2021b; Nayyar

et al., 2022a). Additionally, such methods have as input a given set of predicates in

terms of which they learn the functionality descriptions of the agent.

High-level actions Works like Madumal et al. (2020a) explain an agent’s policy in

terms of high-level actions but they assume that high-level actions are a part of the

input whereas our approach discovers these actions. There is an orthogonal thread of

research on using high-level actions in AI planning as tasks, and learning low-level

policies for each of those tasks (Yang et al., 2018; Lyu et al., 2019; Illanes et al., 2020a;

Kokel et al., 2021). These works assume the high-level actions as input and learn the

corresponding low-level policies.

As compared to the above two classes of methods, our work focuses on solving the

harder problem of discovering the capabilities of the agent behavior resulting from its
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planning/learning algorithms and learning the descriptions of these capabilities.

5.5 Concluding Remarks

We presented a novel approach for learning the capability description of an AI

system in terms of user-interpretable concepts by combining information from passive

execution traces and active query answering. Our approach works for settings where

the user’s conceptual vocabulary is imprecise and cannot directly express the agent’s

capabilities. Our empirical analysis showed that for the agents that internally use

black-box deterministic policies, or search techniques, we can successfully discover the

capabilities and their descriptions. Extending this approach for partially observable

settings and relaxing the various assumptions we made are some of the promising

future directions for this work.

In the next chapter, we see how to extend the query-response interface to work

with agents in stochastic settings.
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Chapter 6

LEARNING PROBABILISTIC MODELS

It is essential for users to understand what their AI systems can and can’t do in

order to use them safely. However, the problem of enabling users to assess AI systems

with sequential decision-making (SDM) capabilities is relatively understudied. This

chapter presents a new approach for modeling the capabilities of black-box AI systems

that can plan and act, along with the possible effects and requirements for executing

those capabilities in stochastic settings. This is in contrast to the previous chapters

that dealt with only the deterministic settings. In this chapter, we present an active-

learning approach that can effectively interact with a black-box SDM system and learn

an interpretable probabilistic model describing its capabilities. Theoretical analysis of

the approach identifies the conditions under which the learning process is guaranteed

to converge to the correct model of the agent; empirical evaluations on different

agents and simulated scenarios show that this approach is few-shot generalizable

and can effectively describe the capabilities of arbitrary black-box SDM agents in a

sample-efficient manner.

6.1 Overview

AI systems are becoming increasingly complex, and it is becoming difficult even for

AI experts to ascertain the limits and capabilities of such systems, as they often use

black-box policies for their decision-making process (Popov et al., 2017; Greydanus

et al., 2018b). E.g., consider an elderly couple with a household robot that learns and

118



adapts to their specific household. How would they determine what it can do, what

effects their commands would have, and under what conditions? Although we are

making steady progress on learning for sequential decision-making (SDM), the problem

of enabling users to understand the limits and capabilities of their SDM systems

is largely unaddressed. Moreover, as the example above illustrates, the absence of

reliable approaches for user-driven capability assessment of AI systems limits their

inclusivity and real-world deployability.

This chapter presents a new approach for Query-based Autonomous Capability

Estimation (QACE ) of black-box SDM systems in stochastic settings. Our approach

uses a restricted form of interaction with the input SDM agent (referred to as SDMA)

to learn a probabilistic model of its capabilities. The learned model captures high-level

user-interpretable capabilities, such as the conditions under which an autonomous

vehicle could back out of a garage, or reach a certain target location, along with the

probabilities of possible outcomes of executing each such capability. The resulting

learned models directly provide interpretable representations of the scope of SDMA’s

capabilities. They can also be used to enable and support approaches for explaining

SDMA’s behavior that require closed-form models (e.g., (Sreedharan et al., 2018)).

We assume that the input SDMA provides a minimal query-response interface that is

already commonly supported by contemporary SDM systems. In particular, SDMA

should reveal capability names defining how each of its capabilities can be invoked,

and it should be able to accept user-defined instructions in the form of sequences of

such capabilities. These requirements are typically supported by SDM systems by

definition.

The main technical problem for QACE is to automatically compute “queries” in the

form of instruction sequences and policies, and to learn a probabilistic model for each
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capability based on SDMA’s “responses” in the form of executions. Depending on the

scenario, these executions can be in the real world, or in a simulator for safety-critical

settings. Since the set of possible queries of this form is exponential in the state space,

naïve approaches for enumerating and selecting useful queries based on information

gain metrics are infeasible.

Main contributions This chapter presents the first approach for query-based

assessment of SDMAs in stochastic settings with minimal assumptions on SDMA

internals. In addition, it is also the first approach for reducing query synthesis for

SDMA assessment to full-observable non-deterministic (FOND) planning (Cimatti

et al., 1998). Empirical evaluation shows that these contributions enable our approach

to carry out scalable assessment in both embodied and vanilla SDMAs.

We express the learned models using an input concept vocabulary that is known

to the target user group. Such vocabularies span multiple tasks and environments.

They can be acquired through parallel streams of research on interactive concept

acquisition (Kim et al., 2015; Lage and Doshi-Velez, 2020) or explained to users through

demonstrations and training (Schulze et al., 2000). These concepts can be modeled

as binary-valued predicates that have their associated evaluation functions (Mao

et al., 2022). We use the syntax and semantics of a well-established relational SDM

model representation language, Probabilistic Planning Domain Definition Language

(PPDDL) (Def. 2), to express the learned models.

Related work on the problem addresses model learning from passively collected

observations of agent behavior (Pasula et al., 2007; Martínez et al., 2016; Juba and

Stern, 2022b); and by exploring the state space using simulators (Chitnis et al., 2021;

Mao et al., 2022). However, passive learning approaches can learn incorrect models

as they do not have the ability to generate interventional or counterfactual data;
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exploration techniques can be sample inefficient because they don’t take into account

uncertainty and incompleteness in the model being learned to guide their exploration

(see Sec. 6.6 for a greater discussion).

In addition to the key contributions mentioned earlier, our results (Sec. 6.5) show

that the approaches for query synthesis in this chapter do not place any additional

requirements on black-box SDMAs but significantly improve the following factors:

(i) convergence rate and sample efficiency for learning relational models of SDMAs

with complex capabilities, (ii) few-shot generalizability of learned models to larger

environments, and (iii) accuracy of the learned model w.r.t. the ground truth SDMA

capabilities. convergence rate to the sound and complete model.

6.2 Preliminaries

6.2.1 SDMA Setup

We consider SDMAs that operate in stochastic and fully observable environments.

An SDMA can be represented as a 3-tuple ⟨X , C, T ⟩, where X is the environment

state space that the SDMA operates in, C is the set of SDMA’s capabilities (capability

names, e.g., “place object x at location y” or “arrange table x”) that the SDMA can

execute, and T : X ×C → µX is the stochastic black-box transition model determining

the effects of SDMA’s capabilities on the environment. Here, µX is the space of

probability distributions on X . Note that the semantics of C are not known to the

user(s) and X may not be user-interpretable. The only information available about

the SDMA is the instruction set in the form of capability names, represented as CN .
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Figure 11. The cafe server robot environment in OpenRave simulator.

This isn’t a restricting assumption as the SDMAs must reveal their instruction sets

for usability.

Running Example Consider a cafe server robot that can pick and place items

like plates, cans, etc., from various locations in the cafe, like the counter, tables, etc.,

and also move between these locations. A capability pick-item (?location ?item)

would allow a user to instruct the robot to pick up an item like a soda can for any

location. However, without knowing its description, the user would not know under

what conditions the robot could execute this capability and what the effects will be.

6.2.2 Object-centric Concept Representation

We aim to learn representations that are generalizable, i.e., the transition dynamics

learned should be impervious to environment-specific properties such as numbers and

configurations of objects. Additionally, the learned capability models should hold in

different settings of objects in the environment as long as the SDMA’s capabilities

does not change. To this effect, we learn the SDMA’s transition model in terms of

interpretable concepts that can be represented using first-order logic predicates. This
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is a common formalism for expressing the symbolic models of SDMAs (Zhi-Xuan et al.,

2020; Mao et al., 2022). We formally represent them using a set of object-centric

predicates P. The set of predicates used for cafe server robot in Fig. 11 can be

(robot-at ?location), (empty-arm), (has-charge), (at ?location ?item), and

(holding ?item). Here, ? precedes an argument that can be replaced by an object

in the environment. E.g., (robot-at tableRed) means “robot is at the red table.”

As mentioned earlier, we assume these predicates along with their Boolean evaluation

functions (which evaluate to true if predicate is true in a state) are available as

input. Learning such predicates is also an interesting but orthogonal direction of

research (Mao et al., 2022; Sreedharan et al., 2022b; Das et al., 2023).

6.2.3 Abstraction

Using an object-centric predicate representation induces an abstraction of envi-

ronment states X to high-level logical states S expressible in predicate vocabulary P .

This abstraction can be formalized using a surjective function f : X → S. E.g., in the

cafe server robot, the concrete state x may refer to roll, pitch, and yaw values. On

the other hand, the abstract state s corresponding to x will consist of truth values

of all the predicates (Srivastava et al., 2014, 2016b; Mao et al., 2022). Fig. 12(left)

shows an example from the cafe server SDM setting, where a concrete low-level

state is represented as xyz-coordinates, roll, pitch, and yaw values by the simulator.

This state is then converted to a high-level state shown in the figure. We use the

Boolean evaluation functions for evaluating each predicate. The state is represented

as conjunction of the true predicates.
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1

…

robot-base
soda-can1

table4

…

1.0  -3.2  4.7  0.9  1.3   3.1
6.0  -2.8  3.5  8.3  6.7   9.2

-2.1  4.1  1.9   3.7  9.5  4.8

x  y  z  𝜃  𝜑						𝜓

pick-item (table1 soda-can) 

pick-item (table1 soda-can) 

(holding soda-can) move-to (dish-washer) 

move-to (dish-washer) 

(empty-arm)
(robot-at table1)

(at table1 soda-can)

(robot-at dish-washer)

An example query policy generated by QACE

(empty-arm)
(robot-at table1)

(at table1 soda-can)

A sample SDMA
low-level state x

A sample high-level state s in 
object-centric representation 

abstraction

Figure 12. An example of abstraction of low-level state into a high level state (left)
and an example of a policy simulation query (right). For the policy, the labels on the
left of nodes correspond to state properties that must be true in those states, and
the labels on right of edges correspond to the capabilities for each edge. The policy
simulation query corresponds to: “Given that the robot and soda-can are at table1,
what will happen if the robot follows the following policy: if there is an item on the
table and arm is empty, pick up the item; if an item is in the hand and location is not
dishwasher, move to the dishwasher?”.

(:capability pick-item
:parameters (?location ?item)
:precondition (and

(empty-arm) (has-charge)
(robot-at ?location)
(at ?location ?item))

:effect (and (probabilistic
0.7 (and (not (empty-arm))

(not (at ?location ?item))
(holding ?item))

0.2 (and (not (has-charge)))
0.1 (and))) #No-change

Figure 13. PPDDL description for the cafe server robot’s pick-item capability.

6.2.4 Probabilistic Transition Model

Abstraction induces an abstract transition model T ′ : S × C → µS, where µS is

the space of probability distributions on S. This is done by converting each tran-

sition ⟨x, c, x′⟩ ∈ T to ⟨s, c, s′⟩ ∈ T ′ using predicate evaluators such that f(x) = s

and f(x′) = s′. Now, T ′ can be expressed as model M that is a set of parame-
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terized action (capability in our case) schema, where each c ∈ C is described as

c = ⟨name(c), pre(c), eff(c)⟩, where name(c) ∈ CN refers to name and arguments

(parameters) of c; pre(c) refers to the preconditions of the capability c represented as

a conjunctive formula defined over P that must be true in a state to execute c; and

eff(c) refers to the set of conjunctive formulas over P , each of which becomes true on

executing c with an associated probability. The result of executing c for a model M is

a state c(s) = s′ such that PM(s′|s, c) > 0 and one (and only one) of the effects of c

becomes true in s′. We also use ⟨s, c, s′⟩ triplet to refer to c(s) = s′. This representa-

tion is similar to the Probabilistic Planning Domain Definition Language (PPDDL),

which can compactly describe the SDMA’s capabilities. E.g., the cafe server robot

has three capabilities (shown here as name(args)): pick-item(?location ?item);

place-item(?location ?item); and move(?source ?destination). The descrip-

tion of pick-item in PPDDL is shown in Fig. 13.

6.2.5 Fully Observable Non-Deterministic (FOND) Model

A fully-observable non-deterministic (FOND) planning model (Cimatti et al., 1998)

can be viewed as a probabilistic planning model without the probabilities associated

with each effect pair. On executing an action, one of its possible effects is chosen. The

solution to these planning models is a partial policy Π : S → A that maps each state

to an action that the agent should execute in that state. As shown by Cimatti et al.

(1998) and Daniele et al. (1999), the solution is a (i) weak solution if the resulting plan

may achieve the goal without any guarantee; (ii) strong solution if the resulting plan

is guaranteed to reach the goal; and (iii) strong cyclic solution if the resulting plan is
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(:action pick-item
:parameters (?location ?item)
:precondition (and

(empty-arm) (has-charge)
(robot-at ?location)
(at ?location ?item))

:effect (oneof
(and (not (empty-arm))

(not (at ?location ?item))
(holding ?item))

(and (not (has-charge))))

Figure 14. FOND description for the pick-item capability of the cafe server robot.

guaranteed to reach the goal under the assumption that in the limit, each action will

lead to each of its effects.

Fig. 14 shows a sample FOND description of the pick-item capability (shown in

Fig. 13). Note that there are no probabilities associated with each possible effect set,

as the representation only shows that one of these possible set of effects is possible

on executing this capability. Also, the language only supports the keyword action,

hence it is used for representing capability in the first line.

6.2.6 Variational Distance

Given a black-box SDMA A, we learn the probabilistic model M representing

its capabilities. To measure how close M is to the true SDMA transition model

T ′, we use variational distance – a standard measure in probabilistic-model learning

literature (Pasula et al., 2007; Martínez et al., 2016; Ng and Petrick, 2019b; Chitnis

et al., 2021). It is based on the total variation distance between two probability
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distributions T ′ and M , given as:

δ(T ′,M) =
1

|D|
∑

⟨s,c,s′⟩∈D

∣∣PT ′(s′|s, c)− PM (s′|s, c)
∣∣ (6.1)

where D is the set of test samples (⟨s, c, s′⟩ triplets) that we generate using T ′ to

measure the accuracy of our approach. As shown by Pinsker (1964), δ(T ′,M) ≤√
0.5×DKL(T ′ ∥M), where DKL is the KL divergence.

6.3 The Capability Assessment Task

In this work, we aim to learn a probabilistic transition model T ′ of a black-box

SDMA as a model M , given a set of user-interpretable concepts as predicates P along

with their evaluation functions, and the capability names CN corresponding to the

SDMA’s capabilities. Formally, the assessment task is:

Definition 25. Given a set of predicates P along with their Boolean evaluation

functions, capability names CN , and a black-box SDMA A in a fully observable,

stochastic, and static environment, the capability assessment task ⟨A,P , CN , T ′⟩ is

defined as the task of learning the probabilistic transition model T ′ of the SDMA A

expressed using P .

The solution to this task is a model M that should ideally be the same as T ′ for

correctness. In practice, T ′ need not be in PPDDL, so the correctness should be

evaluated along multiple dimensions.
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6.3.1 Notions of Model Correctness

As discussed in Sec. 6.2, variational distance is one way to capture the correctness

of the learned model. This is useful when the learned model and the SDMA’s model

are not in the same representation. The correctness of a model can also be measured

using qualitative properties such as soundness and completeness. The learned model

M should be sound and complete w.r.t. the SDMA’s high-level model T ′, i.e., for all

combinations of c, s, and s′, if a transition ⟨s, c, s′⟩ is possible according to T ′, then it

should also be possible under M , and vice versa. Here, ⟨s, c, s′⟩ is consistent with M

(or T ′) if P (s′|s, c) > 0 according to M (or T ′). We formally define this as:

Definition 26. Let ⟨A,P , CN , T ⟩ be a capability assessment task with a learned

model M as its solution. M is sound iff each transition ⟨s, c, s′⟩ consistent with M is

also consistent with T ′. M is complete iff every transition that is consistent with T ′

is also consistent with M .

This also means that if T ′ is also a PPDDL model, then (i) any precondition or effect

learned as part of M is also present in T ′ (soundness), and; (ii) all the preconditions

and effects present in T ′ should be present in M (completeness). Additionally, a

probabilistic model is correct if it is sound and complete, and the probabilities for

each effect set in each of its capabilities are the same as that of T ′.

6.3.2 Interactive Capability Assessment

To solve the capability assessment task, we must identify the preconditions and

effects of each capability in terms of conjunctive formulae expressed over P . At a very

high-level, we do this by identifying that a probabilistic model can be expressed as a
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set of capabilities c ∈ C, each of which has two places where we can add a predicate

p, namely precondition and effect. We call these locations within each capability. We

then enumerate through these 2× |C| locations and figure out the correct form of each

predicate at each of those locations. To do this we need to consider three forms: (i)

adding it as p, i.e., the predicate must be true for that capability to execute (when

the location is precondition), or it becomes true on executing it (when the location is

effect); (ii) adding it as not(p), i.e., the predicate must be false for that capability to

execute (when the location is precondition), or it becomes false on executing it (when

the location is effect); (iii) not adding it at all, i.e., the capability execution does not

depend on it (when the location is precondition), or the capability does not modify it

(when the location is effect).

6.3.2.1 Model Pruning

LetM represent the set of all possible transition models expressible in terms of P

and C. We must prune the set of possible models to solve the capability assessment

task, ideally bringing it to a singleton. We achieve this by posing queries to the SDMA

and using the responses to the queries as data to eliminate the inconsistent models

from the set of possible modelsM.

Given a location (precondition or effect in a capability), the set of models corre-

sponding to a predicate will consist of 3 transition models: one each corresponding to

the three ways we can add the predicate in that location. We call these three possible

models MT , MF , MI , corresponding to adding p (true), not(p) (false), and not adding

p (ignored), respectively at that location.

Note that the actual set of possible transition models is infinite due to the proba-

129



bilities associated with each transition. To simplify this, we first constrain the set of

possible models by ignoring the probabilities, and learn a non-deterministic transi-

tion model (commonly referred to as a FOND model (Cimatti et al., 1998)) instead

of a probabilistic one. We later learn the probabilities using maximum likelihood

estimation based on the transitions observed as part of the query responses.

6.3.2.2 SimulatorUuse

Using the standard assumption of a simulator’s availability in research on SDM,

QACE solves the capability assessment task (Sec. 6.3) by issuing queries to the

SDMA and observing its responses in the form of its execution in the simulator. In

non-safety-critical scenarios, this approach can work without a simulator too. The

interface required to answer the queries is rudimentary as the SDMA A need not have

access to its transition model T ′ (or T ). Rather, it should be able to interact with

the environment (or a simulator) to answer the queries. We next present the types

of queries we use, followed by algorithms for generating them and for inferring the

SDMA’s model using its responses to the queries.

6.3.2.3 Policy Simulation Queries (QPS)

These queries ask the SDMA A to execute a given policy multiple times. More

precisely, a QPS query is a tuple ⟨sI , π,G, α, η⟩ where sI ∈ S is a state, π is a partial

policy that maps each reachable state to a capability, G is a logical predicate formula

that expresses a stopping condition, α is an execution cutoff bound representing

the maximum number of execution steps, and η is an attempt limit. Note that the
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query (including the policy) is created entirely by our solution approach without any

interaction with the SDMA. QPS queries ask A to execute π, η times. In each iteration,

execution continues until either the stopping goal condition G or the execution bound

α is reached. E.g., “Given that the robot, soda-can, plate1, bowl3 are at table4,

what will happen if the robot follows the following policy: if there is an item on the

table and arm is empty, pick up the item; if an item is in the hand and location is

not dishwasher, move to the dishwasher; if an item is in the hand and location is

dishwasher, place the item in the dishwasher?” Such queries will be used to learn both

preconditions and effects (Sec. 6.3.5).

A response to such queries is an execution in the simulator and η traces of these

simulator executions. Formally, the response θPS for a query qPS ∈ QPS is a tuple

⟨b, ζ⟩, where b ∈ {⊤,⊥} indicates weather if the SDMA reached a goal state sG |= G,

and ζ are the corresponding triplets ⟨s, c, s′⟩ generated during the η policy executions.

If the SDMA reaches sG even once during the η simulations, b is ⊤, representing that

the goal can be reached using this policy. Next, we discuss how these responses are

used to prune the set of possible models and learn the correct transition model of the

SDMA.

Fig. 12(right) shows an example of a policy simulation query. Note that the initial

state is shown adjacent to the top-most node. A partial policy is a mapping from a

partial state to a capability. Such queries can be generated using non-deterministic

planners like PRP (Muise et al., 2012).
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Algorithm 5: QACE Algorithm
Input : predicates P ; capability names CN ;

state s; SDMA A; hyperparameters α, η;
FOND Planner ρ

Output : M
1 L← {pre, eff} × CN
2 M∗ ← initializeModel (P , CN)
3 for each ⟨l, p⟩ ∈ ⟨L,P⟩ do
4 Generate MT ,MF ,MI by setting p at l in M∗

5 for each pair Mi,Mj in {MT ,MF ,MI} do
6 q ← generateQuery(Mi,Mj, α, η, s, ρ)
7 θA,S← getResponse(q,A, s)
8 M∗ ← pruneModels (θA,Mi,Mj)
9 M∗ ← learn possible stochastic effects of capability with cN in l using ζ

(in θA)

10 M ← learnProbabilitiesOfStochasticEffects(ζ,M∗)
11 return M

6.3.3 Query-based Autonomous Capability Estimation (QACE) Algorithm

We now discuss how we solve the capability assessment task using the Query-

based Autonomous Capability Estimation algorithm (Alg. 5), which works in two

phases. In the first phase, QACE learns all capabilities’ preconditions and non-

deterministic effects using the policy simulation queries (Sec. 6.3.4). In the second

phase, QACE converts the non-deterministic effects of capabilities into probabilistic

effects (Sec. 6.3.5). We now explain the learning portion (lines 3-11) in detail.

QACE first initializes a model M∗ over the predicates in P with capabilities having

names cN ∈ CN . All the preconditions and effects for all capabilities are empty in this

initial model. QACE uses M∗ to maintain the current partially learned model. QACE

iterates over all combinations of L and P (line 4). For each pair, QACE creates 3

candidate models MT , MF , and MI as mentioned earlier. It then takes 2 of these (line
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5) and generates a query q (line 6) such that responses to the query q from the two

models are logically inconsistent (see Sec. 6.3.4). The query q is then posed to the

SDMA A whose response is stored as θA (line 7). QACE finally prunes at least one of

the two models by comparing their responses (which are logically inconsistent) with

the response θA of the SDMA on that query (line 8). QACE also updates the effects

of all models in the set of possible models to speed up the learning process (line 9).

Finally, it learns the probabilities of the observed stochastic effects using maximum

likelihood estimation (line 10). An important feature of the algorithm (similar to

PLEX (Mehta et al., 2011b) and AIA (Verma et al., 2021a)) is that it keeps track of

all the locations where it hasn’t identified the correct way of adding a predicate. The

next section presents our approach for generating the queries in line 6.

6.3.4 Algorithms for Query Synthesis

One of the main challenges in interactive model learning is to generate the queries

we discussed above and to learn the agent’s model using them. Although active

learning (Settles, 2012b) addresses the related problem of figuring out which data sets

to request labels for, vanilla active learning approaches are not directly applicable here

because the possible set of queries expressible using the literals in a domain is vast: it

is the set of all policies expressible using CN . Query-based learning approaches use an

estimate of the utility of a query to select “good” queries. This can be a multi-valued

measure like information gain (Sollich and Saad, 1994), value (Macke et al., 2021),

etc. or a binary-valued attribute like distinguishability (Verma et al., 2021a), etc. We

use distinguishability as a measure to identify useful queries. According to it, a query
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q is distinguishing w.r.t. two models if responses by both models to q are logically

inconsistent. We now discuss methods for generating such queries.

Generating distinguishing queries QACE automates the generation of queries

using search. As part of the algorithm, a model M∗ is used to generate the three

possible models MT ,MF , and MI for a specific predicate p and location l combination.

Other than the predicate p at location l, these models are exactly the same. A forward

search is used to generate the policy simulation queries with two possible models

Mi,Mj chosen randomly from MT , MF , and MI . The forward search is initiated with

an initial state ⟨si0, sj0⟩ as the root of the search tree, where si0 and sj0 are copies of the

same state s0 from which we are starting the search. The edges of the tree correspond

to the capabilities with arguments replaced with objects in the environment. Nodes

correspond to the two states resulting from applying the capability in the parent state

according to the two possible models. E.g., consider that a transition ⟨si0, c, si1⟩ is

possible according to the model Mi, and let ⟨sj0, c, sj1⟩ be the corresponding transition

(by applying the same effect set of c as hi) according to the model Mj. Now there

will be an edge in the forward search tree with label c such that parent node is

⟨si0, sj0⟩ and child node is ⟨si1, sj1⟩. The search process terminates when a node ⟨si, sj⟩

is reached such that either the states si and sj don’t match, or the preconditions of

the same capability were met in the state according to one of the possible models but

not according to the other. Vanilla forward search scales poorly with the number of

capabilities and objects in the environment. To address this we reduce the problem to

a fully observable non deterministic (FOND) planning problem. This can be solved

by any FOND planner. The output of this search is a policy π to reach a state where

the two models, Mi and Mj predict different outcomes. The query ⟨sI , π,G, α, η⟩

resulting from this search is such that sI is set to the initial state s0, π is the output
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policy, G is the goal state where the models’ responses doesn’t match, α and η are

hyperparameters as mentioned earlier. We next see how to use these queries to prune

out the incorrect models.

Generating Policy Simulation Queries using PRP QACE automates the

generation of queries using FOND planning problems. QACE always generates queries

to distinguish between models that differ only on one predicate corresponding to

just one location (a precondition or effect in a capability). The main idea behind

generating such queries is that the responses to the query q from the two models

should be logically inconsistent. To generate the policy simulation queries, QACE

creates a FOND planning model and a problem.

Let Mi and Mj be a pair of FOND models expressed using P and C where

i, j ∈ {T, F, I}. QACE renames the predicates and capabilities in Mi and Mj as Pi
and Pj, and Ci and Cj, respectively, so that there are no intersections and a pair of

states in the two models can be progressed independently using pairs of capabilities.

This gives a planning model Mij = ⟨Pij, Cij⟩. Here, Pij = Pi ∪ Pj ∪ {(goal)}, where

(goal) is a 0-ary predicate. It is used to identify when the goal for the FOND planning

problem is reached. For each capability ⟨ci, cj⟩ ∈ ⟨Ci, Cj⟩ such that their names match,

pre(cij) of the combined capability cij is disjunction of preconditions of ci and cj . For

e(cij) ∈ eff(cij) QACE adds three conditional effects: (i) pre(ci)∧pre(cj)⇒ e(ci)∧e(cj);

(ii) pre(ci) ∧ ¬pre(cj)⇒ (goal); and (iii) ¬pre(ci) ∧ pre(cj)⇒ (goal). An example of

this process is included in the next section.

Starting from an initial state, the FOND problem uses one of these states and

maintains two different copies of all the objects in the environment, one corresponding

to each of the models. Each model only manipulates the objects in its own copy. QACE

then solves a planning problem that has an initial state sIij = {p∗1i , . . . , p∗zi , p∗1j , . . . , p∗zj }
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and a goal state Gij = (goal) ∨ [∃p ∈ P∗
ij(pi ∧ ¬pj) ∨ (¬pi ∧ pj)]. Here, P∗ represents

the grounded version of predicates P using objects O in the environment. The partial

policy π generated as a solution to this planning problem is a strong solution. As

shown by Cimatti et al. (1998), the solution is a strong solution if the resulting plan is

guaranteed to reach the goal. The solution partial policy will lead the two models in a

state where at least one capability cannot be applied, and hence the (goal) predicate

becomes true. This is possible because the models differ only in the way one predicate

is added at a location. We formalize this with the following lemma. The proof is

available in Sec. 6.4.

Lemma 12. Given two models Mi and Mj such that both are abstractions of the same

FOND model, and are at the same level of abstraction with only one predicate differing

in way it is added in one of the location, the intermediate FOND planning problem

created using QACE to generate policy simulation queries has a strong solution.

We next present an example of a sample planning domain and problem using

which QACE generates a query. Recall that a FOND planning problem consists of

two components, a planning domain and a planning problem. We will see an example

of both below.

FOND planning domain Consider we have a capability move-vehicle (?frm

?to) in the Cafe server robot, and we already know one of its preconditions;

(has-charge). We are now trying to find what will be the correct way to add

the predicate (robot-at ?frm) in the precondition of this move-vehicle (?frm

?to) capability. Consider we have two models Mi and Mj, where i = T and j = F .

We will represent their move-vehicle capability as follows:

To create a query, we will combine the move-vehicle capabilities into a combined
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(:action move-vehicle_i
:parameters (?frm - loc ?to - loc)
:precondition (and (has-charge_i)

(robot-at_i ?frm))
:effect (and ))

(:action move-vehicle_j
:parameters (?frm - loc ?to - loc)
:precondition (and (has-charge_j)

(not (robot-at_i ?frm)))
:effect (and ))

capability. This should be done in such a way that the combined capability is executed

when at least one of the model’s preconditions are satisfied. Hence, for each capability

⟨ci, cj⟩ ∈ ⟨Ci, Cj⟩ s.t. name(ci) = name(cj), pre(cij) = pre(ci) ∨ pre(cj).

Now on executing this combined capability, we should be able to identify if the

preconditions or effects of the capabilities in the two models Mi and Mj are different.

To take these into account, the effect of the combined capability will be such that for

each e(cij) ∈ eff(cij) we add three conditional effects: (i) pre(ci)∧pre(cj)⇒ e(ci)∧e(cj);

(ii) pre(ci) ∧ ¬pre(cj) ⇒ (goal); and (iii) ¬pre(ci) ∧ pre(cj) ⇒ (goal). The condition

(ii) and (iii) helps identify that the precondition of the capability according to only

one of the models Mi or Mj is satisfied. The condition (i) captures the case where the

precondition of the capability according to both the models are satisfied. In this case,

the effects of the capability according to both the models are applied.

Applying it here for the move-vehicle capability, we get:
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(:action move-vehicle_ij
:parameters (?frm - loc ?to - loc)
:precondition (or

(and (has-charge_i)
(robot-at_i ?frm))

(and (has-charge_j)
(not (robot-at_j ?frm)))

)
:effect (and

(when (and (has-charge_i)
(robot-at_i ?frm)
(has-charge_j)
(not (robot-at_j ?frm)))

(and )
)
(when (and (has-charge_i)

(robot-at_i ?frm)
(or (not (has-charge_j))

(robot-at_j ?frm)))
(and (goal))

)
(when (and (has-charge_j)

(not (robot-at_j ?frm))
(or (not (has-charge_i))

(not (robot-at_i ?frm))))
(and (goal))

)
)

)

Note that we have expanded pre(ci)∧¬pre(cj) using disjunction of negations of all

predicates in pre(cj), etc. A pictorial example of a similar process for the has-charge

predicate in effects is shown in Fig. 15 below.

FOND planning problem The FOND planner must maintain two different copies

of all the objects in the environment, one corresponding to each of the models Mi

and Mj. Each model only manipulates the objects in its own copy. The initial
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1

move-vehicle (?location ?item)
   precondition: 
       (precondition)
   effect:
     (oneof
         (effect1)
         (effect2)
         !(has-charge)
      )

move-vehicle (?location ?item)
   precondition: 
       (precondition)!!  ∨ (precondition)!"	
  effect:
       (precondition)!!  ⋀ ! (precondition)!" → (goal)
       !(precondition)!!  ⋀ (precondition)!" → (goal)
     (precondition)!!  ⋀ (precondition)!" 	→ 
            (one of
                  ((effect1)!!  ⋀ (effect1)!")
              ((effect2)!!  ⋀ (effect2)!")
	 (! (has-charge)!!  ⋀ (has−charge)!")
            )

move-vehicle (?location ?item)
   precondition: 
       (precondition)
   effect:
     (oneof
         (effect1)
         (effect2)
         (has-charge)
      )

𝑀!

Models differ in only 
one predicate in effect.

Consolidated capability used to generate 
the FOND Planning Domain

𝑀"

Figure 15. An example showing how two models Mi and Mj are combined to generate
a FOND planning domain when the predicate is being added in effect of a capability.
Note that the models only differ in one predicate having different form in both models.

state of this planning problem sI is {p1
i , . . . , p

z
i , p

1
j , . . . , p

z
j}. The goal formula G is

(goal) ∨ [∃p ∈ P(pi ∧ ¬pj) ∨ (¬pi ∧ pj)]. Here (goal) becomes true when a capability

is executed by the policy such that the precondition of that capability is satisfied

according to only one of the two models. The other condition captures the fact that a

state is reached such that at least one of the predicate is true according to one of the

models and false according to the other. This points to a difference in the effects of

the capability that was executed last.

6.3.5 Learning Probabilistic Models Using Query Responses

At this point, QACE already has a query such that the response to the query by

the two possible models does not match. We next see how to prune out the model
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inconsistent with the SDMA. QACE poses the query generated earlier to the SDMA

and gets its response (line 7 in Alg. 5). If the SDMA can successfully execute the

policy, QACE compares the response of the two models with that of the SDMA and

prunes out the model whose response does not match with that of the SDMA. If the

SDMA cannot execute the policy, i.e., SDMA fails to execute some capability in the

policy, then the models cannot be pruned directly. In such a case, a new initial state

s0 must be chosen to generate a new query starting from that initial state. Since

generating new queries for the same pair of models can be time consuming, we preempt

this issue by creating a pool of states S that can execute the capabilities using a

directed exploration of the state space with the current partially learned model as

discussed below.

Directed exploration A partially learned model is a model where one or more

capabilities have been learned (the correct preconditions have been identified for each

capability and at least one effect is learned). Once we have such a model, we can do

a directed exploration of the state space for these capabilities by only executing a

learned capability if the preconditions are satisfied. This helps in reducing the sample

complexity since the simulator is only called when we know that the capability will

execute successfully, thereby allowing us to explore different parts of the state space

efficiently. If a capability’s preconditions are not learned, all of its groundings might

need to be executed from the state. In the worst case, to escape local minima where

no models can be pruned, we would need to perform a randomized search for a state

where a capability is executable by the SDMA. In practice, we observed that using

directed exploration to generate a pool of states gives at least one grounded capability

instance. This helps ensure that during query generation, the approach does not

spend a long time searching for a state where a capability is executable.
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Learning probabilities of stochastic effects After QACE learns the non-

deterministic model, to learn the probabilities of the learned effects it uses the

transitions collected as part of responses to queries. This is done using Maximum

Likelihood Estimation (MLE) (Fisher, 1922). For each triplet ⟨s, c, s′⟩ seen in the

collected data, let countc be the number of times a capability c is observed. Now,

for each effect set, the probability of that effect set becoming true on executing that

capability c is given as the number of times that effect is observed on executing c

divided by countc. As we increase the value of the hyperparameter η, we increase the

number of collected triplets, thereby improving the probability values calculated using

this approach.

6.3.6 Example Run of the Algorithm

Consider that the set of predicates consists of (has-charge) and (robot-at

?frm), and move-vehicle is one of the capability. Consider that we are starting with

an empty model in line 2 of Alg. 5. Now consider that the actual precondition of

the move-vehicle capability is (has-charge) ∧ (robot-at ?frm). The automated

query generation process will involve executing the capability successfully in some

state s by the policy. The SDMA can only execute the capability in s if (has-charge)

∧ (robot-at ?frm) is true in s. As mentioned in Sec. 6.3.5, if s doesn’t fulfill

this criterion (i.e., the SDMA fails to execute the policy successfully) a new query

is generated from a new initial state s′. Hence, this property of executing the

capability in a state having (has-charge) ∧ (robot-at ?frm) is ensured. Now,

when reasoning about (has-charge), the policy can ask the agent to execute that

capability in the state s\(has-charge) and if the SDMA fails to execute it then
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it means (has-charge) is part of the precondition. Similarly, this can be done for

(robot-at ?frm) independently.

In the worst case, the search for a state s where a query policy is executable will

be exponential, but as the evaluations show, we can learn the correct model much

faster. We also mention a way to overcome this in Sec. 6.3.5. Please note that even

for methods like reinforcement learning, the worst-case upper bound is exponential in

terms of the state space.

Possible models and their pruning Now we see how QACE learns a correct model

once it finds a state s where a capability is executable by the agent. Consider that

QACE is processing the tuple ⟨l, p⟩ = ⟨precondition of move-vehicle, (has-charge)⟩

in line 3 of Alg. 5.

Now, QACE will generate the three models in line 4: (i) MT that has (has-charge)

as precondition of move-vehicle capability; (ii) MF that has ¬(has-charge) as

precondition of move-vehicle capability; and (iii) MI that has an empty precondition

for move-vehicle capability.

Consider that QACE is considering the pair ⟨MT ,MF ⟩ in line 5 of Alg. 5. In the

example being considered, executing the move-vehicle capability in the state s can

help QACE distinguish between MT and MF . Here the model MF will be unable to

execute the move-vehicle capability in s, whereas the model MT and the agent will

be able to. So QACE will prune MF in line 8.

Next, QACE will consider the pair ⟨MT ,MI⟩ in line 5 of Alg. 5. Here, to distinguish

between these model, QACE will execute the move-vehicle capability in a state s′

where (has-charge) is false. Note that this state is also not generated manually, and

the query generation does this autonomously, starting from the state s. Here the

model MT and the agent will fail to execute the capability, whereas the model MI
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will succeed. Hence QACE can prune out MI , leading it to learn the correct model

M∗ =MT where (has-charge) is a precondition of the move-vehicle capability.

Now starting with this updated current partial model M∗, consider that QACE

picks the tuple ⟨l, p⟩ = ⟨precondition of move-vehicle, (robot-at ?frm)⟩ in line 3

of Alg. 5. QACE will then generate three new models in next iteration in line 4: (i)

MT that has (has-charge) ∧ (robot-at ?frm) as precondition of move-vehicle

capability; (ii) MF that has ¬(has-charge) ∧¬(robot-at ?frm) as precondition

of move-vehicle capability; and (iii) MI that has (has-charge) as precondition

of move-vehicle capability. So essentially, QACE builds upon the already learned

partial model M∗ in previous iterations, and continues refining the model to eventually

end up with the correct FOND model.

Once the correct set of preconditions and effects are learned, QACE counts the

number of times each effect set was observed on executing each capability and perform

the maximum likelihood estimation for each effect set to calculate the probabilities

for each effect set. Note that a capability c will at least appear in policies for all ⟨l, p⟩

pairs, such that location l corresponds to a precondition or effect in c. So effectively, a

capability c can appear in at least 2× |P| queries. So we will have at least 2× |P|× η

samples for each capability.

6.4 Theoretical Analysis and Correctness

We now discuss how the model M of SDMA A learned using QACE fulfills the

notions of correctness (Sec. 6.3.1) discussed earlier. We first show that the model M∗

learned before line 10 of QACE (Alg. 5) is sound and complete according to Def. 26.

The proof for this is not straightforward, hence we start it by showing that the plan
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in the distinguishing queries always ends up with the capability that is part of the pal

tuple being concretized at that time. This will help us in limiting our analysis to, at

most, the last 2 capabilities in the plan.

Proposition 1. Let Mi,Mj, where i, j ∈ {T, F, I}, be the two models generated by

adding a predicate p in a location corresponding to a capability c to a model M .

Suppose q = ⟨sI , π,G, α, η⟩ is a distinguishing query for two distinct models Mi,Mj.

The last capability in the partial policy π to achieve G will be c.

Proof. We prove this by contradiction. Consider that the last capability of the policy

π in the distinguishing query q is c′ ̸= c. Now the query q used to distinguish between

Mi and Mj is generated using the FOND planning problem ⟨Mij, sIij , Gij⟩, which has

a solution if both the models have different precondition or at least one different effect

for the same capability. Since the last capability of the policy is c′, the two models

either have different preconditions for c′ or different effects. This is not possible as,

according to Alg. 5, Mi and Mj differ only in precondition or effect of one capability

c. Hence c′ = c.

We now use this proposition to prove Lemma 12 stated earlier.

Lemma 12. Given two models Mi and Mj such that both are abstractions of the same

FOND model, and are at the same level of abstraction with only one predicate differing

in way it is added in one of the location, the intermediate FOND planning problem

created using QACE to generate policy simulation queries has a strong solution.

Proof (Sketch). We prove this in two parts. In the first part, we consider the case where

we are refining the model in terms of the precondition of some capability. Recall that

for each capability cij , we have 3 conditional effects: i) pre(ci)∧pre(cj)⇒ e(ci)∧ e(cj);

(ii) pre(ci) ∧ ¬pre(cj)⇒ (goal); and (iii) ¬pre(ci) ∧ pre(cj)⇒ (goal). Now, according
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to proposition 1, capability cij has to be the last capability in the policy π. Since

the model Mi and Mj differ only in preconditions, condition (ii) or (iii) must be true

for cij. This implies that on executing cij, the (goal) predicate will become true, and

executing this policy π will end up in reaching the goal.

In the second part, we consider the case where we are refining the model in terms

of the effects of some capability. According to proposition 1, capability cij has to

be the last capability in the policy π. Since the model Mi and Mj differ only in

effects, condition (i) must be true for cij . This implies that on executing cij , one of the

predicates will become true according to one model, and false according to another,

and hence executing this policy π will end up in reaching the goal condition Gij.

Next, we prove the soundness and completeness of the learned model w.r.t. the

agent model. Note that an important part of the process is to get a state s, where a

capability c can be executed successfully. We can collect this information using some

random traces, using a state where all capabilities are applicable, or asking the agent

for a state where certain conditions are met (QSR). We use this information in the

proof.

Theorem 9. Let A be a black-box SDMA with a ground truth transition model

T ′ expressible in terms of predicates P and a set of capabilities C. Let M∗ be the

non-deterministic model expressed in terms of predicates P∗ and capabilities C, and

learned using the query-based autonomous capability estimation algorithm (Alg. 5)

just before line 10. Let CN be a set of capability names corresponding to capabilities

C. If P∗ ⊆ P, then the model M∗ is sound w.r.t. the SDMA transition model T ′.

Additionally, if P∗ = P , then the model M∗ is complete w.r.t. the SDMA transition

model T ′.
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Proof. We first prove that given the predicates P , capability names CH , model of

the agent T ′, and the model M∗ learned by Alg. 5, M∗ is sound w.r.t. the model

T ′. We do this in two cases. The first one showing that the learned preconditions

of all the capabilities in M∗ are sound, and the second one showing the same

thing for learned effects. We use MT , MF , and MI to refer to models corresponding

to adding p (true), not(p) (false), and not adding p (ignored), respectively to modelM∗.

Case 1: Consider the location is precondition in a capability c where we are trying to

find the correct way to add a predicate p ∈ P .

Case 1.1: Let the models we are comparing be MT and MI (or MF ). The policy

simulation query q to distinguish between these models would involve executing c in

a state where p is false. Now, MT would fail to execute c (as it has p as a positive

precondition), and MI (or MF ) would successfully execute it. If A can execute c in

such a state, we can filter out the model MT . We can also remove p from a state

where A is known to execute c, and see if it can execute c. If not, we can filter out

the model MI (or MF ).

Case 1.2: Let the models we are comparing be MF and MI . The policy simu-

lation query q to distinguish between these models would involve executing c in

a state where p is true. MF would fail to execute c as it has p as a negative

precondition, whereas MI would successfully execute it. If A can execute c in such

a state, we can filter out the model MT . We can also add p to a state where A

is known to execute c, and see if it can execute c. If not, we can filter out the model MI .

Case 2: Consider the location is effect in a capability c where we are trying to find

the correct way to add a predicate p ∈ P∗.
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Case 2.1: Let the models we are comparing be MT and MI (or MF ). The policy

simulation query q used to distinguish between these models would involve executing

c in a state where p is false. After executing it, the resulting state will have p true

according to MT only. We ask the agent to simulate the policy N times, with p as the

goal formula G. If p appears in any of the simulation after executing c, then we learn

all the possible effects involving p. Not that the capability has identifiable effects,

so if p appears in more than one effect, the corresponding effect will eventually be

discovered when concretizing the predicate that uniquely identifies that effect.

Case 2.2: Let the models we are comparing be MF and MI . The policy simulation

query q used to distinguish between these models would involve executing c in a state

where p is true. After executing it, the resulting state will have p true according to

MI only. We ask the agent to simulate the policy η times, with p as the goal formula

G. If p appears in any of the runs, then we learn all the possible effects involving p.

Not that the capability has identifiable effects, so if p appears in more than one effect,

the corresponding effect will eventually be discovered when concretizing the predicate

that uniquely identifies that effect.

Combining both cases, we infer that whenever we learn a precondition or effect, it

is added in the same form as in the ground truth model T ′, hence the learned model

M∗ is sound w.r.t. T ′.

We now prove that given the predicates P, capability names CH , model of the

agent T ′, and the model M∗ learned by Alg. 5, M∗ is complete w.r.t. the model T ′.

We just showed that the model that we learn is sound as whenever we add a predicate

in a precondition or effect, it is in correct mode. Now, since Alg. 5 loops over all

possible combinations of predicates and capabilities, for both precondition and effect,
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we will learn all the preconditions and effects correctly. Hence, the learned model will

be complete w.r.t. the agent model.

Next, we show that the final step of learning the probabilities for all the effects in

each capability converges to the correct probability distribution under the assumption

that all the effects of a capability are identifiable. When a capability c is executed in

the environment, one of its effects ei(c) ∈ eff(c) will be observed in the environment.

To learn the correct probability distribution in M , we should accurately identify that

effect ei(c). Hence, the set of effects is identifiable if at least one state exists in the

environment from which each effect can be uniquely identified when the capability is

executed.

Identifiable Effects A set of effects of a capability are identifiable if there exists a

state such that when we execute a capability in that state, we can identify which of its

effects was executed. Let us consider a capability a, such that pre(a) = {p1∧p2∧¬p3},

and eff(a) = {⟨p3 ∧ p4, 0.2⟩, ⟨p3 ∧ ¬p2, 0.5⟩, ⟨p3 ∧ ¬p4 ∧ ¬p2, 0.3⟩}. The effects of this

capability are identifiable because if we execute this capability in state {p1, p2, p4},

we can identify which of its effect is getting executed. This is because, on executing a,

we can identify each effect as follows: (i) if the resulting state has p4 and p2, then it is

the first effect, (ii) if the resulting state has p4 but not p2, then it is the second effect,

and (iii) if the resulting has neither p2 nor p4, then it is the third effect.

We use the concept of identifiable effects to show that the probabilities for all the

effects in each capability converges to the correct probability distribution.

Theorem 10. Let A be a black-box SDMA with a ground truth transition model

T ′ expressible in terms of predicates P and a set of capabilities C. Let M be the

probabilistic model expressed in terms of predicates P∗ and capabilities C, and learned

using the query-based autonomous capability estimation algorithm (Alg. 5). Let
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P = P∗ and M be generated using a sound and complete non-deterministic model

M∗ in line 11 of Alg. 5, and let all effects of each capability c ∈ C be identifiable.

The model M is correct w.r.t. the model T ′ in the limit as η tends to ∞, where η is

hyperparameter in query QPS used in Alg. 5.

Proof (Sketch). Thm. 9 showed that the model learned by Alg. 5 is sound and complete,

meaning all the preconditions and effects are correctly learned. Consider that each

sample generated by asking an agent to follow a policy is i.i.d. Now, if we consider

only the samples in which a capability is applied in a state such that its effects are

identifiable effects, then we can use MLE to learn the correct probabilities given

infinite such samples. This is a direct consequence of the result that given infinite

i.i.d. samples, probabilities learned by maximum likelihood estimation converge to

the true probabilities (Kiefer and Wolfowitz, 1956).

6.5 Empirical Evaluation

We implemented Alg. 5 in Python to evaluate our approach empirically.7 We

found that our query synthesis and interactive learning process leads to (i) few

shot generalization; (ii) convergence to a sound and complete model; and (iii) much

greater sample efficiency and accuracy for learning lifted SDM models with complex

capabilities as compared to the baseline.

Setup We used a single training problem with few objects (≤ 7) for all methods in

our evaluation and used a test set that was composed of problems containing object

counts larger than those in the training set. We ran the experiments on a cluster of

Intel Xeon E5-2680 v4 CPUs with CentOS 7.9 running at 2.4 GHz with a memory

7Source code available at https://github.com/AAIR-lab/QACE
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Figure 16. Screen captures from the Cafe Server Robot simulation. The complete
environment is shown in the image on the left. The image grid on the right shows
screen captures of multiple steps of the robot delivering a soda-can to a table.

limit of 8 GB and a time limit of 4 hours. We used PRP (Muise et al., 2012) as the

FOND planner to generate the queries (line 6 in Alg. 5). For QACE, we used α = 2d

where d is the maximum depth of policies used in queries generated by QACE and

η = 5. All of the methods in our empirical evaluation receive the same training and

test sets and are evaluated on the same platform. We used Variational Distance (VD)

as presented in Eq. 6.1 to evaluate the quality of the learned SDMA models.

Baseline selection We used the closest SOTA related work, GLIB (Chitnis et al.,

2021) as a baseline. GLIB learns a probabilistic model of an intrinsically motivated

agent by sampling goals far away from the initial state and making the agent try to

reach them. This can be adapted to an assessment setting by moving goal-generation

based sampling outside the agent, and, to the best of our knowledge, no existing

approach addresses the problem of creating intelligent questions for an SDMA. GLIB

has two versions, GLIB-G, which learns the model as a set of grounded noisy deictic

rules (NDRs) (Pasula et al., 2007), and GLIB-L, which learns the model as a set of

lifted NDRs. We used the same hyperparameters as published for the Warehouse

Robot and Driving Agent and performed extensive tuning for the others and report

results with the best performing settings.
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The models learned using GLIB cannot be used to calculate the variational distance

presented in Eq. 6.1 because for each capability GLIB learns a set of NDRs rather

than a unique NDR. In order to maintain parity in comparison, we use GLIB’s setup

to calculate an approximation of the VD. Using it, we sample 3500 random transitions

⟨s, c, s′⟩ from the ground truth transition model T ′ using problems in the test set to

compute a dataset of transitions D. The sample-based, approximate VD is then given

as: 1
|D|

∑
d∈D 1[s′ ̸=cM (s)], where cM(s) samples the transition using the capability in

the learned model output by each method. In Fig. 18, we compare the approximate

variational distance of the three approaches w.r.t. D as we increase the learning time.

Note that we also evaluated VD for QACE using Eq. 6.1 and found that δ(T ′,M) ≈ 0

for our learned model M in all SDMA settings.

6.5.1 SDMAs for Evaluation

To test the efficacy of our approach, we created SDMAs for five different settings

including one task and motion planning agent and several SDMAs based on state-

of-the-art stochastic planning systems from the literature: Cafe Server Robot is a

Fetch robot (Wise et al., 2016) that uses the ATM-MDP task and motion planning

system (Shah et al., 2020) to plan and act in a restaurant environment to serve food,

clear tables, etc.; Warehouse Robot is a robot that can stack, unstack, and manage the

boxes in a warehouse; a Driving Agent that can drive between locations and can repair

the vehicle at certain locations; a First Responder Robot that can assist in emergency

scenarios by driving to emergency spots, providing first-aid and water to victims, etc.;

and an Elevator Control Agent that can control the operation of multiple elevators

in a building. Tab. 12 shows the sizes of the five SDM setups in terms of number
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SDM Setup |P| |CN|
Cafe Server Robot 5 4
Warehouse Robot 8 4
Driver Agent 4 2
First Responder Robot 13 10
Elevator Control Agent 12 10

Table 12. Size of the SDM setups in terms of number of predicates and capabilities.

of predicates and capabilities. Description for the cafe server robot is available in

Sec. 6.5. Short descriptions of the other four SDM settings are presented below:

Warehouse Robot This SDM setup is implemented using the SOTA stochastic

planning system used in the planning literature. This is motivated from Exploding

Blocksworld setup introduced in the probabilistic track of International Planning

Competition (IPC) 2004 (Younes et al., 2005a). It features a robot that has four

capabilities: stack, unstack, pick, and place. stack capability stacks one object

on top of another, unstack capability removes an object from top of another object,

pick capability picks up an object from a fixed location, and place capability places

the object at a fixed location. The setup is non-deterministic as executing some of

these capabilities can destroy the object as they might be delicate. Hence even the

ground truth does not have 100% success rate in this setup.

Driver Agent This SDM setup is implemented using the SOTA stochastic planning

system used in the planning literature. This is motivated from Tireworld setup

introduced in the probabilistic track of IPC 2004 (Younes et al., 2005a). It consists of

a robot moving around multiple locations. The move-vehicle capability that takes

the SDMA from one location to another can also cause it to get a flat-tire with some

non-zero probability. Not all locations have the option to change tire, but if available,

a change-tire capability will fix the flat-tire with a 100% probability.
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First Responder Robot This SDM setup is inspired from First Responders in

uncertainty track of IPC 2008 (Bryce and Buffet, 2008). The setup features two kinds

of emergencies: fire and medical, involving hurt victims. Victims can be treated at

the site of an emergency or the hospital. This was originally a FOND setup, and we

added probabilities to all the capabilities with non-deterministic effects to make it

probabilistic. The responder vehicles can also be driven from one place to another and

can be loaded and unloaded with fire or medical kits. The recovery status depending

on the treatment location, is different with different probabilities.

Elevator Control Agent This SDM setup is motivated from Elevators in the

probabilistic track of IPC 2006 (Bonet and Givan, 2005). It consists of an agent

managing multiple elevators on multiple floors in a single building. The capabilities

of moving from one elevator to another on the same floor are probabilistic. The size

of this setup is much larger than the previous three. Also, the capabilities have arities

of up to five, making this setup complex from an assessment point of view.

6.5.2 Results

We present an analysis of our approach on all of the SDMAs listed above. We also

present a comparative analysis with the baseline on all SDMAs except the Cafe Server

Robot, whose task and motion planning system was not compatible with the baseline.

Cafe Server Robot This SDMA setup uses an 8 degrees of freedom Fetch (Wise

et al., 2016) robot in a cafe setting on OpenRave simulator (Diankov and Kuffner,

2008). The low-level environment state consists of continuous x, y, z, roll, pitch, and

yaw values of all objects in the environment. The predicate evaluators were provided

by ATM-MDP of which we used only a subset to learn a PPDDL model. Each robot
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Figure 17. Variational Distance between the learned model and the ground truth with
increasing time for QACE for Cafe Server Robot. × shows that the learning process
ended at that time instance.

capability is refined into motion controls at run-time depending on the configuration

of the objects in the environment. The results for variational distance between the

learned model and the ground truth model in Fig. 17 show that despite the different

vocabulary, QACE learns an accurate transition model for the SDMA.

We now discuss the comparative performance of QACE with the baseline across

the four baseline-compatible SDMAs presented above.

Faster convergence The time taken for QACE to learn the final model is much

lower than that of GLIB for three of the four SDMAs. This is because trace collection

by QACE is more directed and hence ends up learning the correct model in a shorter

time. The only setup where GLIB marginally outperforms QACE is Warehouse

Robot, and this happens because this SDMA has just two capabilities, one of which is

deterministic. Hence, GLIB can easily learn their configuration from a few observed

traces. For SDMAs with complex and much larger number of capabilities – First

Responder Robot and Elevator Control Agent – GLIB finds it more challenging to
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Figure 18. A comparison of the approximate variational distance as a factor of the
learning time for the three methods: QACE (ours), GLIB-G, and GLIB-L (lower
values better). × shows that the learning process ended at that time instance for
QACE . The results were calculated using 30 runs per method per domain. Solid lines
are averages across runs, and shaded portions show the standard deviation. T ′ is the
ground truth model.

learn the model that is closer to the ground truth transition model. Additionally,

QACE takes much fewer samples to learn the model than the baselines. In all settings,

QACE is much more sample efficient than the baselines as QACE needed at most 4%

of the samples needed by GLIB-G to reach the variational distance that it plateaued

at. In contrast, GLIB-L started timing out only after processing a few samples for

complex SDMAs.

Few-shot generalization To ensure that learned models are not overfitted, our

test set contains problems with larger quantities of objects than those used during

training. As seen in Fig. 18, the baselines have higher variational distance from the

ground truth model for complex SDMA setups as compared to QACE . This shows

better few-shot generalization of QACE compared to the baselines.

Results w.r.t. environment steps Fig. 19 show a comparison of the approximate

variational distance between QACE and the baselines as a factor of the total steps

taken in the environment. From the results, it is clear that QACE is able to outperform

GLIB while taking far fewer steps in the environment. GLIB-L operates by babbling

155



Figure 19. Results showing the trends in the approximate Variational Distance w.r.t.
the total number of steps in the environment (lower values better) for the three
methods: QACE (ours), GLIB-G, and GLIB-L. Lines which do not extend until the
end indicate that the time limit (4 hours) was exceeded. The results were calculated
using 30 runs per method per domain. Solid lines are averages across runs, and shaded
portions show the standard deviation. T ′ is the ground truth model.

lifted goals and we found that the goal babbling step of GLIB-L took an inordinate

amount of time leading to very few steps in the environment before the timeout of

4 hours. GLIB-G babbles grounded goals and thus can perform many steps but is

not sample efficient in learning as the results show. We analyzed the cause and found

that if GLIB-G learns an incorrect model, it is often quite difficult to get out of local

minima since it keeps generating and following the same plan.

Evaluation w.r.t. ground truth models T ′ Fig. 20 demonstrate that QACE

is able to converge to a learned model that is near-perfect compared to the ground

truth model T ′. QACE is able to learn such a near-perfect model in a fraction of the

time compared to the baselines (see Fig. 18 in the main chapter). QACE can learn

the non-deterministic effects and preconditions in a finite number of representative

environment interactions and given enough samples MLE estimates are guaranteed to

converge. This is in stark contrast to GLIB whose learned NDRs cannot be easily

compared to the ground truth.

Faster convergence Fig. 21 shows a zoomed in version of the Fig. 18 in the main
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Figure 20. Results showing the comparison of QACE w.r.t. the ground truth model
T ′. The plots show a trend in the variational distance (see Eq. 1) as a factor of the
learning time for QACE (lower values better). × shows that the learning process
ended at that time instance for QACE. The results were calculated using 30 runs per
method per domain. Solid lines are averages across runs, and shaded portions show
the standard deviation.

chapter. As you notice in the graph, the variational distance is very high initially, and

it drops till the learning process of QACE ends (marked by × on the plots). We do

not need to run QACE beyond this point and this time is short for all the domains.

On the other hand, GLIB does not have a clear ending criterion. Hence we let it run

for 4 hours and see that even with the extra time (and hence extra samples), it cannot

learn a better model. The zoomed in plots also show that QACE does not learn the

correct model in a one-shot manner, and that it actually keeps getting better with

time as it processes more predicate and capability pairs.

Scalability The number of queries needed to learn the model are linear in terms

of the number of predicates and capabilities (for loop in line 3 of Alg. 5). The total

number of queries for each domain shown in Fig. 22 also correlates with the size of the

domain shown in Tab. 12, supporting this hypothesis. Note that the for loop in line

5 of Alg. 5 only contributes to a constant factor in the running time, as only three

models are possible when adding a predicate at a location.
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Figure 21. Results showing the comparison of QACE w.r.t. the ground truth model
T ′. The plots show a trend in the variational distance (see Eq. 1) as a factor of the
learning time for QACE (lower values better). × shows that the learning process
ended at that time instance for QACE. The results were calculated using 30 runs per
method per domain. Solid lines are averages across runs, and shaded portions show
the standard deviation. The zoomed in version shows the plots till learning process
for QACE ends (marked using × in the zoomed-out plots). Note that QACE does
not run beyond this.

6.6 Related Work

The problem of learning probabilistic relational agent models from a given set of

observations has been well studied (Pasula et al., 2007; Mourão et al., 2012; Martínez

et al., 2016; Juba and Stern, 2022b). Jiménez et al. (2012) and Arora et al. (2018)

present comprehensive reviews of such approaches. We next discuss the closest related

research directions.

Passive learning Several methods learn a probabilistic model of the agent and

environment from a given set of agent executions. Pasula et al. (2007) learn the

models in the form of noisy deictic rules (NDRs) where an action can correspond
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Figure 22. Results showing the avg. number of queries issued by QACE across 30
runs to achieve a specific variational distance (VD). Shaded regions represent one std.
deviation. A VD of 0 (zero) corresponds to the ground truth model T ′.

to multiple NDRs and also model noise. Mourão et al. (2012) learn such operators

using action classifiers to predict the effects of an action. Rodrigues et al. (2011a)

learn non-deterministic models as a collection of rule sets and learn these rule sets

incrementally. They take a bound on the number of rules as input. Juba and Stern

(2022b) provide a theoretical framework to learn safe probabilistic models with a

range of probabilities for each probabilistic effect while assuming that each effect is

atomic and independent of others. A common issue with such approaches is that

they are susceptible to incorrect and sometimes inefficient model learning as they

cannot control the input data used for learning or carry out interventions required for

accurate learning.

Sampling of transitions Several approaches learn operator descriptions by explor-

ing the state space in the restricted setting of deterministic models (Ng and Petrick,

2019b; Jin et al., 2022). A few reinforcement learning approaches have been developed

for learning the relational probabilistic action model by exploring the state space using

pre-determined criteria to generate better samples (Ng and Petrick, 2019b). Konidaris

et al. (2018) explore learning PPDDL models for planning, but they aim to learn

the high-level symbols needed to describe a set of input low-level options, and these
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symbols are not interpretable. GLIB (Chitnis et al., 2021) also learns probabilistic

relational models using goal sampling as a heuristic for generating relevant data,

whereas we use active querying using guided forward search for this. Our empirical

analysis shows that our approach of synthesising queries yield greater sample efficiency

and correctness profiles than the goal generation used in this approach.

Active learning Several active learning approaches learn automata representing a

system’s model (Angluin, 1988; Aarts et al., 2012; Pacharoen et al., 2013; Vaandrager,

2017). These approaches assume access to a teacher (or an oracle) that can determine

whether the learned automaton is correct and provide a counterexample if it is incorrect.

This is not possible in the black-box SDMA settings that constitute the focus of this

work.

6.7 Concluding Remarks

In this work, we presented an approach for learning a probabilistic model of an agent

using interactive querying. We showed that the approach is few-shot generalizable to

larger environments and learns a sound and complete model faster than state-of-the-art

approaches in a sample-efficient manner.

QACE describes the capabilities of the robot in terms of predicates that the user

understands (this includes novice users as well as more advanced users like engineers).

Understanding the limits of the capabilities of the robot can help with the safe usage

of the robot, and allow better utilization of the capabilities of the robot. Indirectly,

this can reduce costs since the robot manufacturer need not consider all possible

environments that the robot may possibly operate in. The use of our system can also

be extended to formal verification of SDMAs.
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QACE can also be used by standard explanation generators as they need an agent’s

model. Such models are hard to obtain (as we also illustrate in this chapter) and our

approach can be used to compile them when they are not available to start with.

Limitations and Future Work In this work, we assume that the agent can be

connected to a simulator to answer the queries. In some real-world settings, this

assumption may be limiting as users might not have direct access to such a simulator.

Formalizing the conditions under which is it safe to ask the queries directly to the

agent in the real-world is a promising direction for the future work.
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Chapter 7

CAUSAL ACCURACY

In this chapter, we perform a causal accuracy analysis of the deterministic models

we learn in Chapter 3. This analysis also expands to the models learned in other chapter

with some restrictions. We introduce dynamic causal decision networks (DCDNs) that

capture the causal structure of planning models expressed in STRIPS-like languages.

We now explain how AIA models the causally accurate relationships of the domain.

7.1 Causal Accuracy of the Learned Models

We compare the properties of models learned by AIA with those of approaches that

learn the models from observational data only. For the methods that learn models in

STRIPS-like the learned models can be classified as causal, but it is not necessary

that they are sound with respect to the ground truth model MA of the agent A.

E.g., in case of the robot driver discussed earlier, these methods can learn a model

where the precondition of the action drive is src_blue if all the observation traces

that are provided to it as input had src_blue as true. This can happen if all the

source locations are painted blue. To avoid such cases, some of these methods run a

pre-processing or a post-processing step that removes all static predicates from the

preconditions. However, if there is a paint action in the domain that changes the color

of all source locations, then these ad-hoc solutions will not be able to handle that.

Hence, these techniques may end up learning spurious preconditions as they do not

have a way to distinguish between correlation and causations.
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On the other hand, it is also not necessary that the models learned by approaches

using only observational data are complete with respect to the ground truth model MA

of the agent A. This is because they may miss to capture some causal relationships

if the observations do not include all the possible transitions, or contains only the

successful actions. E.g., if we have additional predicates (city_from ?loc), and

(city_to ?loc) in the domain, and all the observed transitions are for the transitions

within same city, then the model will not be able to learn if the source city and

destination city have to be same for driving a truck between them.

7.2 Causal Models

In this section, we provide an overview of terminology regarding causal implications

from Halpern (2015). We will use this framework to show that models learned by our

approach are causally accurate.

Definition 27. A causal model M is defined as a 4-tuple ⟨U, V,R, F ⟩ where U is a

set of exogenous variables (whose values are determined by factors outside the model),

V is a set of endogenous variables (whose values are directly or indirectly derived

from the exogenous variables), R is a function that associates with every variable

Y ∈ U ∪ V a nonempty set R(Y ) of possible values for Y , and F is a function that

associates with each endogenous variable X ∈ V a structural function denoted as FX

such that FX maps ×Z∈(U∪V−{X})R(Z) to R(X).

Note that the values of exogenous variables are not determined by the model; a

setting u⃗ of values of exogenous variables is termed as a context by Halpern (2016).

This helps in defining a causal setting as:
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Definition 28. Given a setting of exogenous variables u ∈ U , a causal setting is a

pair (M, u⃗) consisting of a causal model M and context u⃗.

A causal formula φ is true or false in a causal model, given a context. Hence,

(M, u⃗) |= φ if the causal formula φ is true in the causal setting (M, u⃗).

Every causal model M can be associated with a directed graph, G(M), in which

each random variable X is represented as a vertex and the causal relationships between

these variables are represented as directed edges between members of U ∪ {V \X}

and X Pearl (2009). We use the term causal networks when referring to these

graphs to avoid confusion with the notion of causal graphs used in the planning

literature (Helmert, 2004).

To perform an analysis with interventions, we use do-calculus introduced in Pearl

(1995). To perform interventions on a set of variables X ∈ V , do-calculus assigns

values x⃗ to X⃗, and evaluates the effect using the causal model M . This is termed as

do(X⃗ = x⃗) action. To define this concept formally, we first define submodels (Pearl,

2009).

Definitions 5-8 are by Halpern (2016). These definitions summarize the concepts

we use to define and assess the causal accuracy of the learned agent models.

Definition 29. Let M be a causal model, X a set of variables in V , and x⃗ a particular

realization of X⃗. A submodel Mx⃗ of M is the causal model Mx⃗ = ⟨U, V,R, F x⃗⟩

where F x⃗ is obtained from F by setting X ′ = x′ (for each X ′ ∈ X⃗) instead of the

corresponding FX′ , and setting F x⃗
Y = FY for each Y ̸∈ X.

We now define what it means to intervene X⃗ = x⃗ using the action do(X⃗ = x⃗). Let

M be a causal model, X a set of variables in V , and x⃗ a particular realization of X⃗.

The effect of action do(X⃗ = x⃗) on M is given by the submodel Mx⃗.
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In general, there can be uncertainty about the effects of these interventions, leading

to probabilistic causal networks, but in this work, we work with fully observable and

deterministic settings, hence assume that interventions do not lead to uncertain effects.

We can also derive the structure of causal networks using interventions in the real

world, as interventions allow us to find if a variable Y depends on another variable X.

We use Halpern (2016)’s notion of dependence as follows.

Definition 30. A variable Y depends on a variable X if there is some setting of all

the variables in U ∪V \{X, Y } such that varying the value of X in that setting results

in a variation in the value of Y .

We now use these concepts to define what a causal formula is (Halpern, 2016) and

then use it to define what we mean by an actual cause.

Definition 31. Given a signature S = (U, V,R), a primitive event is a formula of the

form X = x, for X ∈ V and x = R(X). A causal formula is [Y⃗ ← y⃗]φ, where φ is a

Boolean combination of primitive events, Y⃗ = ⟨Y1, Y2, . . . Yi⟩ are distinct variables in

V , and yi ∈ R(Yi).

[Y⃗ ← y⃗]φ means that φ would hold if Yk were set to yk, for k = 1, . . . , i. We next

formally define an actual cause.

Definition 32. Let X ⊆ V be a subset of endogenous variables V , and φ be a boolean

causal formula expressible using variables in V . X⃗ = x⃗ is an actual cause of φ in the

causal setting (M, u⃗), i.e., (X⃗ = x⃗)
(M,u⃗)

// φ, if the following conditions hold:

AC1. (M, u⃗) |= (X⃗ = x⃗) and (M, u⃗) |= φ.

AC2. There is a set W⃗ of variables in V and a setting x⃗′ of the variables in X⃗ such

that if (M, u⃗) |= W⃗ = w⃗∗, then (M, u⃗) |= [X⃗ ← x⃗′, W⃗ ← w⃗∗]¬φ.
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AC3. X⃗ is minimal; there is no strict subset X⃗ ′ of X⃗ such that X⃗ ′ = x⃗′ satisfies

conditions AC1 and AC2, where x⃗′ is the restriction of x⃗ to the variables in X⃗.

AC1 mentions that unless both φ and X⃗ = x⃗ occur at the same time, φ cannot

be caused by X⃗ = x⃗. AC28 mentions that there exists a x⃗′ such that if we change

a subset X⃗ of variables from some initial value x⃗ to x⃗′, keeping the value of other

variables W⃗ fixed to w⃗∗, φ will also change. AC3 is a minimality condition which

ensures that there are no spurious elements in X⃗.

In this section, we’ll first show a mapping between the STRIPS-like models that

we learn and the causal models defined earlier. And then we’ll define the causal

soundness and completeness of one causal model w.r.t. another causal model, and

show that the models learned by Alg. 1 are causally accurate.

7.2.1 Representing Planning Models as Causal Networks

The classical causal model framework used in Def. 27 lacks the temporal elements

and decision nodes needed to express the causal relationships in the planning models.

To express actions in the model, we use the decision nodes similar to Dynamic

Decision Networks Kanazawa and Dean (1989). To express the temporal behavior

of planning models, we use the notion of Dynamic Causal Models (Pearl, 2009) and

Dynamic Causal Networks (DCNs) (Blondel et al., 2017). These are similar to causal

models and causal networks respectively, with the only difference that the variables in

these are time-indexed, allowing for analysis of temporal causal relations between the

variables. We also introduce additional boolean variables to capture the executability

8Halpern (2016) terms this version of AC2 as AC2(am)
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Figure 23. An example of a Dynamic Causal Decision Network (DCDN). pti and pt+1
i

are the action-parameter instantiated predicates at time t and t+ 1 respectively and
at is a decision node representing the decision to execute action the parameterized a
at time t.

of the actions. The resulting causal model is termed as a causal action model, and we

express such models using a Dynamic Causal Decision Network (DCDN).

A general structure of a dynamic causal decision network is shown in Fig. 23. All

the decision variables and the executability variables pti, where i ∈ [0, k], where k is

the number of instantiated predicates, in a domain are endogenous. There is an edge

from each predicate in an action’s precondition to each predicate in an action’s effect.

All the variables are endogenous because we can perform interventions on them as

needed.

We now show a mapping between the components of the causal models used in

Def. 27 and the planning models defined in Def. 1. The exogenous variables U map to

the static predicates (Helmert, 2009) in the domain, i.e., the ones that do not appear

in the effect of any action; V maps to the non-static predicates; R maps each predicate

to ⊤ if the predicate is true in a state, or ⊥ when the predicate is false in a state; F

calculates the value of each variable depending on the other variables that cause it.

This is captured by the values of state predicates and executability variables being

changed due to other state variables and decision variables.
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7.2.1.1 Causal Soundness and Completeness

Before we prove that the models learned by Alg. 1 are causally correct, we first

define the notions of causal soundness and completeness of a pair of models wrt. each

other.

Definition 33. Let U⃗ and V⃗ be the vectors of exogenous and endogenous variables,

respectively; and Φ be the set of all boolean causal formulas expressible over variables

in V .

A causal model M1 is causally complete with respect to another causal model M2

if for all possible settings of exogenous variables, the causal relationships that are

implied by the model M1 are a superset of the set of causal relationships implied

by the model M2, i.e., ∀u⃗ ∈ U⃗ ,∀X⃗, X⃗ ′ ⊆ V⃗ ,∀φ, φ′ ∈ Φ,∃x⃗ ∈ X⃗,∃x⃗′ ∈ X⃗ ′ s.t.

{⟨X⃗, u⃗, φ, x⃗⟩ : (X⃗ = x⃗)
(M2,u⃗)

// φ} ⊆ {⟨X⃗ ′, u⃗, φ′, x⃗′⟩ : (X⃗ ′ = x⃗′)
(M1,u⃗)

// φ′}.

A causal model M1 is causally sound with respect to another causal model M2 if for

all possible settings of exogenous variables, the causal relationships implied by M1 are

a subset of the causal relationships implied by M2, i.e., ∀u⃗ ∈ U⃗ ,∀X⃗, X⃗ ′ ⊆ V⃗ ,∀φ, φ′ ∈

Φ,∃x⃗ ∈ X⃗,∃x⃗′ ∈ X⃗ ′ s.t. {⟨X⃗, u⃗, φ, x⃗⟩ : (X⃗ = x⃗)
(M1,u⃗)

// φ} ⊆ {⟨X⃗ ′, u⃗, φ′, x⃗′⟩ : (X⃗ ′ =

x⃗′)
(M2,u⃗)

// φ′}.

We now show that the model(s) learned by AIA are causally sound and complete.

Theorem 11. Given an agent A with a ground truth model MA (unknown to the

agent interrogation algorithm AIA), the action model M learned by AIA is causally

sound and complete with respect to MA.

Proof. We first show that M is sound with respect to MA. Assume that some X⃗ = x⃗

is an actual cause of φ according to M in the setting u⃗, i.e., (X⃗ = x⃗)
(M,u⃗)

// φ. Now
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by Thm 3, M contains palm tuples that are consistent with MA. Hence any palm

tuple that is present in M will also be present in MA, implying that under the same

setting u⃗ according to MA X⃗ = x⃗ is an actual cause of φ.

Now lets assume that some X⃗ = x⃗ is an actual cause of φ according to MA in the

setting u⃗, i.e., (X⃗ = x⃗)
(MA,u⃗)

// φ. Now by Thm. 3, M contains exactly the same palm

tuples as MA. Hence any palm tuple that is present in Mag will also be present in M ,

implying that under the same setting u⃗ according to M X⃗ = x⃗ is an actual cause of

φ. Hence the action model M learned by the agent interrogation algorithm are sound

and complete with respect to the model MA.

7.3 Related Work

There have been some recent approaches that learn causal dynamics of a sequential

decision-making system (Madumal et al., 2020b; Wang et al., 2022, 2024; Nashed et al.,

2023; Amitai et al., 2024). Some approaches even use counterfactuals for reasoning Ma

et al. (2023). These approaches either lack the theoretical guarantees we provide, need

extra information about the dependency graph, or are not as scalable as our approach

as we increase the domain size.

7.4 Concluding Remarks

We introduced dynamic causal decision networks (DCDNs) to represent causal

structures in STRIPS-like domains; and showed that the models learned using the

agent interrogation algorithm are causally accurate, and are sound and complete with

respect to the corresponding unknown ground truth models. This is an important
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step in proving the accuracy of the models as the models that capture the causally

accurate information are preferred over the ones which are only empirically accurate.
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Chapter 8

QUERY COMPLEXITY ANALYSIS

In this chapter, we provide an extended analysis of the complexity of the queries

that AIA uses to learn the agent’s model. We use the complexity analysis of relational

queries by Vardi [1982, 1995] to find the membership classes for data, expression, and

combined complexity of AIA’s queries.

8.1 Types of Complexity

Vardi (1982) introduced three kinds of complexities for relational queries. In

the notion of query complexity, a specific query is fixed in the language, then data

complexity – given as function of size of databases – is found by applying this query

to arbitrary databases. In the second notion of query complexity, a specific database

is fixed, then the expression complexity – given as function of length of expressions

– is found by studying the complexity of applying queries represented by arbitrary

expressions in the language. Finally, combined complexity – given as a function of

combined size of the expressions and the database – is found by applying arbitrary

queries in the language to arbitrary databases.

These notions can be defined formally as follows Vardi (1995):

Definition 34. The complexity of a query is measured as the complexity of deciding

if t ∈ Q(B), where t is a tuple, Q is a query, and B is a database.

• The data complexity of a language L is the complexity of the sets Answer(Qe)
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for queries e in L, where Answer(Qe) is the answer set of a query Qe given as:

Answer(Qe) = {(t, B) | t ∈ Qe(B)}.

• The expression complexity of a language L is the complexity of the sets

AnswerL(B), where AnswerL(B) is the answer set of a database B with respect

to a language L given as:

AnswerL(B) = {(t, e) | e ∈ L and t ∈ Qe(B)}.

• The combined complexity of a language L is the complexity of the set AnswerL,

where AnswerL is the answer set of a language L given as:

AnswerL = {(t, B, e) | e ∈ L and t ∈ Qe(B)}.

Vardi [1982, 1995] gave standard complexity classes for queries written in specific

logical languages. We show the membership of our queries in these classes based on

the logical languages we write the queries in.

8.2 Action Precondition Queries

In this chapter, we introduce a new class of queries called action precondition

queries QAP . These queries, similar to plan outcome queries, are parameterized by sI

and π, but have a different response type.

A response to the action precondition queries can be either of the form “I can

execute the plan completely and at the end of it, truck t1 is at location l1” when the

plan is successfully executed, or of the form “I can execute the plan till step ℓ and the

action aℓ failed because precondition pi was not satisfied” when the plan is not fully

executed. To make the responses consistent in all cases, we introduce a dummy action

afail whose precondition is never satisfied. Hence, the responses are always of the

form, “I can execute the plan till step ℓ and the action aℓ failed because precondition
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pF was not satisfied”. If aℓ is afail and ℓ = len(π), then we know that the original

plan was executed successfully by the agent. Formally, the response θAP for action

precondition queries is a tuple ⟨ℓ, pF ⟩, where ℓ is the number of steps for which the

plan π could be executed, and pF ⊆ P is the set of preconditions of the failed action

aF . If the plan π cannot be executed fully according to the agent model MA then

ℓ < len(π)− 1, otherwise ℓ = len(π)− 1. Also, QAC : U → N× P , where U is the set

of all the models that can be generated using the predicates P and actions A, and N

is the set of natural numbers.

8.3 Membership Complexity Classes for Queries

Complexity for Plan Outcome Queries Theoretically, the asymptotic complexity

of AIA is O(|P∗| × |A|), but it does not take into account how much computation

is needed to answer the queries or to evaluate their responses. This complexity just

shows the amount of computation needed in the worst case to derive the agent model

by AIA. Here, we present a more detailed analysis of the complexity of AIA’s queries

using the results of relational query complexity by Vardi (1982).

This analysis takes into account the computational effort that the agent will have

to put in to answer the queries. This is because we want to have minimal requirements

on the agent to support AAM, and hence we don’t want to ask questions that are too

complex to answer. This analysis will also form a foundation for our future work on

comparing different types of queries.

According to the notion of query complexity in Vardi (1982), a specific query is

fixed in the language, then data complexity – given as function of size of databases

– is found by applying this query to arbitrary databases. In the second notion of
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query complexity, if a specific database is fixed, then the expression complexity –

given as a function of the length of expressions – is found by studying the complexity

of applying queries represented by arbitrary expressions in the language. Finally,

combined complexity – given as a function of combined size of the expressions and

the database – is found by applying arbitrary queries in the language to arbitrary

databases.

Theorem 12. The membership classes of data, expression, and combined complexities

of plan outcome queries are AC0, ALOGTIME, and PTIME respectively.

Proof. To analyze QPO’s complexity, let us assume that the agent has stored

the possible transitions it can make (in propositional form) using the relations

R(valid, s, a, s′, succ), where valid, succ ∈ {⊤,⊥}, s, s′ ∈ S, a ∈ A; and N(valid, n, n+),

where valid ∈ {⊤,⊥}, n, n+ ∈ N, 0 ≤ n ≤ L, and 0 ≤ n+ ≤ L + 1, where L is the

maximum possible length of a plan in the QPO queries. L can be an arbitrarily

large number, and it does not matter as long as it is finite. Here, S and A are sets

of grounded states and actions respectively. succ is ⊤ if the action was executed

successfully, and is ⊥ if the action failed. valid is ⊤ when none of the previous actions

had succ = ⊥. This stops an action to change a state if any of the previous actions

failed, thereby preserving the state that resulted from a failed action. Whenever

succ = ⊥ or valid = ⊥, s = s′ and n = n+ signifying that applying an action where it

is not applicable does not change the state.

Assuming the length of the query plan, len(π) = D, we can write a query in first
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order logic, equivalent to the plan outcome query as

{(sD, nD) | ∃s1, . . . ,∃sD−1,∃succ1, . . . ,∃succD−1,∃n1, . . . ,∃nD−1

R(⊤, s0, a1, s1, succ1) ∧R(succ1, s1, a2, s2, succ2) ∧ · · · ∧R(succD−1, sD−1, aD, sD,⊤)∧

N(⊤, 0, n1) ∧N(succ1, n1, n2) ∧ · · · ∧N(succD−1, nD−1, nD)}

The output of the query contains the free variables sD = sℓ and nD = ℓ. Such first

order (FO) queries have the expression complexity and the combined complexity in

PSPACE (Vardi, 1982). The data complexity class of FO queries is AC0 (Immerman,

1987).

The following results use the analysis in Vardi (1995). The query analysis given

above depends on how succinctly we can express the queries. In the FO query shown

above, we have a lot of spurious quantified variables. We can reduce its complexity

by using bounded-variable queries. Normally, queries in a language L assume an

inifinite supply x1, x2, . . . of individual variables. A bounded-variable version Lk of

the language L is one which can be obtained by restricting the individual variables to

be among x1, . . . , xk, for k > 0. Using this, we can reduce the quantified variables in

FO query shown earlier, and rewrite it more succinctly as an FOk query by storing

temporary query outputs.

E(succ, s, a, s′, succ′, n, n′)=R(succ, s, a, s′, succ′) ∧N(succ, n, n′)

α1(succ, s, a1, s
′, succ′, n, n′)=E(⊤, s0, a1, s′, succ′, 0, n′)
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We then write subsequent queries corresponding to each step of the query plan as

αi+1(succ, s, ai+1, s
′, succ′, n, n′) =

∃s1,∃succ1,∃n1{E(succ, s, ai+1, s1, succ1, n1)∧

∃s,∃succ, ∃n[succ = succ1 ∧ s = s1∧

n = n1 ∧ αi(succ, s, ai, s′, succ′, n, n′)]}

Here i varies from 1 to D, and the value of k is 6 because of 6 quantified variables

– s, s1, succ, succ1, n, and n1. This reduces the expression and combined complexity

of these queries to ALOGTIME and PTIME respectively. Note that these are the

membership classes as it might be possible to write the queries more succinctly.

Complexity for Action Precondition Queries For a detailed analysis of QAP ’s

complexity, let us assume that the agent stores the possible transitions it can make

(in propositional form) using the relations R(valid, s, a, s′, succ), where valid, succ ∈

{⊤,⊥}, s, s′ ∈ S, a ∈ A; and S(p, s), where p ∈ P , s ∈ S. S contains (p, s) if a

grounded predicate p is in state s.

Now, we can write a query in first order logic, equivalent to the action precondition

query as:

{(p) | (∀s1 S(p, s1)⇒ ∃s′R(⊤, s1, a1, s′,⊤)) ∧

(∀s1 ¬S(p, s1)⇒ ∀s′R(⊤, s1, a1, s′,⊥))}

This formulation is equivalent to the FOk queries with k = 2. This means that the

data, expression and combined complexity of these queries are in complexity classes

AC0, ALOGTIME, and PTIME respectively.
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8.4 Concluding Remarks

The results for complexity classes of the queries presented in this chapter holds

assuming that the agent stores all the transitions using a mechanism equivalent

to relational databases where it can search through states in linear time. For the

simulator agents that we generally encounter, this assumption almost never holds

true. Even though both the queries have membership in the same complexity class,

an agent will have to spend more time in running the action precondition query owing

to the exhaustive search of all the states in all the cases, whereas for the plan outcome

queries, the exhaustive search is not always needed.

Additionally, plan outcome queries place very little requirements on the agent to

answer the queries, whereas action precondition queries require an agent to use more

computation to generate it’s responses. Action precondition queries also force an

agent to know all the transitions beforehand. So if an agent does not know its model

but has to execute an action in a state to learn the transition, action precondition

queries will perform poorly as agent will execute that action in all possible states to

answer the query. On the other hand, to answer plan outcome queries in such cases,

an agent will have to execute at most L actions (maximum length of the plan) to

answer a query.

Evaluating the responses of queries will be much easier for the action precondition

queries, whereas evaluating the responses of plan outcome queries is not straightforward,

as discussed in Verma et al. (2021a). As mentioned earlier, the agent interrogation

algorithm that uses the plan outcome queries has asymptotic complexity O(|P∗| × |A|)

for evaluating all agent responses. On the other hand, if an algorithm is implemented

with action precondition queries, its asymptotic complexity for evaluating all agent
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responses will reduce to O(|A|). This is because AAM needs to ask two queries for

each action. The first query in a state where it is guaranteed that the action will

fail, this will lead AAM to learn the action’s precondition. After that AAM can ask

another query in a state where the action will not fail, and learn the action’s effects.

This will also lead to an overall less number of queries.

So there is a tradeoff between the computation efforts needed for evaluation of

query responses and the computational burden on the agent to answer those queries.
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Chapter 9

APPLICATION TOWARDS AGENT IMPROVEMENT

This chapter introduces an application of the algorithms developed as part of

assessment to improve the agent itself. This new approach for continual planning and

model learning in non-stationary stochastic environments is expressed using relational

representations. Such capabilities are essential for the deployment of sequential

decision-making systems in the uncertain, constantly evolving real world. Working

in such practical settings with unknown (and non-stationary) transition systems and

changing tasks, the proposed framework models gaps in the agent’s current state

of knowledge and uses them to conduct focused, investigative explorations. Data

collected using these explorations is used for learning generalizable probabilistic

models for solving the current task despite continual changes in the environment

dynamics. Empirical evaluations on several benchmark domains show that this

approach significantly outperforms planning and RL baselines in terms of sample

complexity in non-stationary settings. Theoretical results show that the system reverts

to exhibit desirable convergence properties when stationarity holds.

9.1 Overview

This chapter addresses the problem of planning in non-stationary stochastic settings

with unknown domain dynamics. In particular, we consider problems where a goal-

oriented agent is not given a closed-form model of the probabilities of states that

may result upon execution of an action. Furthermore, these probabilities can change
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at potentially unknown time steps as the agent is executing in the environment.

Such settings are commonly encountered by planning systems in the real-world. For

example, an autonomous warehouse robot would be expected to continue achieving

goals through different paths when some corridors get blocked due to spills or when the

layouts of storage racks change to accommodate changing inventory profiles. Currently,

such changes require renewed modeling by domain experts thus limiting the scope

and deployability of automated planning methods.

These settings are technically challenging due to the need to correctly model

uncertainty about the agent’s knowledge when a discrepancy is detected, and to

conduct focused exploration that can improve the agent’s knowledge for subsequent

planning. Prior work on the problem investigates the role of randomized exploration for

addressing non-stationarity. E.g., if the rate of novelty events inducing non-stationarity

are sufficiently low compared to the timesteps available for learning in each epoch of

stationary dynamics, Reinforcement Learning (RL) techniques such as Q-Learning

with variations of ϵ-greedy exploration can be guaranteed to successively converge to

optimal policies. However, these methods are likely to be sample-inefficient as the

collection of new data is not easily focused towards parts of the environment that

changed.

We present a new framework for continual learning and planning under non-

stationarity for such settings (Sec. 9.3.2), develop solution algorithms for this paradigm

(Sec. 9.3.4) and evaluate their performance across various forms of the problem,

depending on whether the change in dynamics is known to the agent and whether the

agent conducts comprehensive re-learning or need-based learning (Sec. 9.4).

Our approach addresses the challenges discussed above with autonomous processes

for deliberative data gathering, planning, and model learning. It starts with the inputs

180



available to a standard RL agent (a simulator, action names, and a reward generator),

but instead of learning a policy, it interacts with the environment to first learn a

relational probabilistic planning model geared towards solving the current goal, and

then uses it to compute solution policies. When a discrepancy is detected, it flags

aspects of the currently learned model that are no longer accurate, and conducts

investigative exploration with auto-generated epistemically-guided policies to re-learn

aspects that may have changed. The problem of computing useful investigative policies

is non-trivial. This is reduced to a fully-observable non-deterministic (FOND) (Cimatti

et al., 1998) planning problem and solved without interacting with the simulator. The

computed investigative policies are then executed and the resulting data is used to learn

more accurate models. Although these executions are not focused on policy learning

for the current task, they are used to learn and maintain relational Probabilistic

Planning Domain Description Language (PPDDL) style models. We show that (i)

this significantly increases transferability and generalizability of learning, and (ii)

the resulting paradigm vastly outperforms SOTA RL and existing model-based RL

paradigms.

Our main contribution is the first known approach for using information about

epistemic uncertainty of a logic-based internal probabilistic model to create exploration

strategies, learn better models, and then compute plans even as transition systems

change. Additionally, this is also the first approach to interleave active learning with

epistemic exploration to discover a stochastic symbolic model suited for task transfer

in non-stationary environments. Empirical analysis on non-stationary versions of

benchmark domains show that in such settings our approach (i) significantly reduces

the sample complexity compared to SOTA baselines; (ii) can quickly adapt to changes
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in environment dynamics; and (iii) performs very close to an oracle that has access to

all the information about changes in the environment apriori.

9.2 Preliminaries

Relational Markov Decision Processes (RMDPs) We model tasks as RMDPs

expressed in PPDDL (Younes et al., 2005b). An RMDP environment or domain

D↑ = ⟨P↑,A↑⟩ is a tuple consisting of a set of parameterized predicates P↑ and actions

A↑. Here, P↑contains predicates of the form p↑(x1, . . . , xm), and A↑contains actions

of the form a↑(x1, . . . , xn), where xi are the parameters. We use ↑ to specify lifted

predicates and actions with variables as arguments and omit the parameterization

when it is clear from context. A grounded RMDP task (or problem) is defined

as a tuple M = ⟨D↑, O, S,A, δ, R, s0, g, γ⟩ where O is a set of objects. A literal

p(o1, . . . , on) represents a grounded predicate parameterized with objects oi ∈ O.

Formally, predicates are grounded by computing a mapping between their parameters

to the objects, σ(p↑(x1, . . . , xn), [o1, . . . , on]) = p(o1, . . . , on), where p↑ ∈ P↑, oi ∈ O.

Similarly, σ can also be used to lift grounded predicates and actions. We refer to P

as the set of all possible grounded predicates derivable using P↑ and O. For clarity,

we use the notation e↑ to denote whether an entity e is lifted and use e otherwise.

A state s is a complete valuation of all possible predicates p ∈ P. Following the

closed-world assumption, predicates whose values are false are omitted from the state

representation. The set of all possible subsets of predicates forms the state space S

of the RMDP M . Similarly, the action space A of M is formed by grounding each

action a↑ ∈ A↑. δ : S × A× S → [0, 1] is the transition function and is implemented

by a simulator. For a given transition τ = (s, a, s′), δ(s, a, s′) specifies the probability
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of executing action a ∈ A in a state s ∈ S and reaching a state s′ ∈ S. Naturally,∑
s′∈S δ(s, a, s

′) = 1 for any s ∈ S and a ∈ A.

The simulator ∆ : S × A→ S is a function that returns a state s′ on executing

a in s by sampling over δ. Executing an action ∆(s, a) constitutes one step on the

simulator. |∆| represents the total steps executed by the simulator and ∆S ∈ N+

indicates the simulator step budget after which the simulator cannot be used. s0 is

the initial state and g is a conjunctive first-order logic goal formula obtained using

P↑and O. A goal state sg ∈ S is a state such that sg |= g. R : S × A → {0,−1} is

the reward function and R(s, a) indicates the reward obtained for executing action a

in state s. For all a ∈ A, we set R(sg, a) = 0 for any goal state sg and R(s, a) = −1

otherwise. γ ∈ [0, 1) is the discount factor. Execution begins in the initial state and

terminates when a goal state is reached or when a horizon H ∈ N+ has been exceeded.

An RMDP task is accomplished whenever execution terminates in a goal state.

Running Example Consider a robot that is deployed to assist in a warehouse.

The robot is equipped with sensors and actuators (e.g., camera, wheels, grippers,

etc.) that can help it perform a variety of tasks such as cleaning floors, restock-

ing shelves, etc. Such tasks could be specified by using a domain with P↑ =

{robot-at↑(rx, lx), box-at↑(lx, bx),holding↑(rx, bx), handempty↑(rx)}. A↑ would con-

sist of actions such as move-from↑(rx, lx, ly), pick-up↑(rx, lx, bx), etc. with their tran-

sition function implemented by a simulator.

Example RMDP task Consider an environment with one robot r1, two locations

l1, l2, and one box b1. An RMDP task of moving b1 to l1 and parking r1 anywhere could

be modeled as M where O = {r1, l1, l2, b1}, s0 = {handempty(r1), robot-at(r1, l1),

box-at(b1, l2)}, and g = box-at(b1, l1) ∧ ∃lx robot-at(r1, lx).

A solution to an RMDP is a deterministic policy π : S → A that maps states to
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actions. The value of a state s when following a policy π is defined as the expected

cumulative reward obtained when executing a in s and following π thereafter, i.e.,

V π(s) = R(s, a) + γ
∑

s′∈S δ(s, a, s
′)V π(s′) The objective of an RMDP is to compute

an optimal policy π∗ that maximizes the expected reward obtained by following it.9

Model-based RMDP algorithms compute π∗(s0) by solving the Bellman Optimality

Equation iteratively starting from s0 (Sutton and Barto, 1998):

V ∗(s) = max
a

[
R(s, a) + γ

∑
s′∈S

δ(s, a, s′)V ∗(s′)

]
(9.1)

The above equation requires access to closed-form knowledge of the transition function

δ. When such information is unavailable, RL-based RMDP algorithms use sample

estimates of Q-values instead. Given a policy π, the Q-value of a state s when

executing action a is defined as the expected reward obtained when executing a in s

and following π thereafter, i.e. Qπ(s, a) = Eπ [
∑∞

t=0 γ
tR(St, At)|S0 = s, A0 = a]. The

Q-Learning Equation (Watkins, 1989) can be written as: as:

Q(s, a)=(1− α)Q(s, a)+α
[
R(s, a)+γmax

a′∈A
Q(s′, a′)

]
where α ∈ [0, 1] is the learning rate. It employs an exploration strategy such as

ϵ-greedy wherein a random action is selected with probability ϵ and selecting the

greedy action argmax
a
Q(s, a) otherwise. Q-Learning has been shown to converge to

the optimal policy (Sutton and Barto, 1998).

PPDDL transition models Our approach learns lifted PPDDL models that can be

used for stochastic planning using Eqn. 9.1. We note that the simulator’s implementa-

tion of the transition function could be arbitrary and does not need to be a PPDDL

model. Given an RMDP M , a PPDDL modelMa for an action a(o1, . . . , on) ∈ A is

9Without loss of generality, we focus on optimal policies that are optimal w.r.t. the initial state
s0.
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a tuple ⟨Prea,Proba,Effa⟩. We omit the subscript when it is clear from context. Pre

represents the precondition and is expressed as a conjunctive formula of predicates

p ∈ Pa where Pa = {σ(p↑(x1, . . . , xm), [oi, . . . , oj]|p↑ ∈ P↑}. Prob is a list of probabili-

ties such that
∑

i Prob[i] = 1. Eff is a list of effects. Each effect Eff[i] ∈ Eff is a tuple

⟨Eff[i]−,Eff[i]+⟩ both of which are sets composed of predicates p ∈ Pa.

An action a is applicable in a state s iff s |= Pre. An effect Eff[i] when applied to a

state s results in a state s\Eff[i]−∪ Eff[i]+. Applying an action a to a state s results in

exactly one effect Eff[i] being applied with probability Prob[i] if the action is applicable

else the state remains unchanged. A PPDDL transition model M = {Ma|a ∈ A}

translates to a closed-form specification of the transition function δ of M , i.e.,M≡ δ.

A lifted (grounded) PPDDL modelMa↑(Ma) can be easily obtained fromMa(Ma↑)

using σ. As is the case with RMDP domains, several RMDP tasks from a single

domain can also share the same lifted PPDDL modelM↑ = {Ma↑|a ∈ A↑}.

Example The pick-up↑(rx, lx, bx) action described in the running example could

be modeled as a PPDDL modelMpick-up↑ with precondition Pre = box-at↑(bx, lx) ∧

robot-at↑(rx, lx) ∧ handempty↑(rx) to indicate that the action is applicable only when

the robot is not holding anything is at the same location as the box. The effects could

be modeled as Eff[0] = ⟨{¬box-at↑(bx, lx), ¬handempty↑(rx)} {holding↑(rx, bx)}⟩ to

indicate that the robot successfully picked up the box and is currently holding it.

Similarly, another effect Eff[1] = {} with Prob[1] = 0.1 could be used to model a

slippery gripper with a 10% chance to fail to pick-up the box.

Definition 35 (M-Consistent Transition). Given a PPDDL modelM and an action

a(o1, . . . , on) ∈ A of an RMDP M , a transition τ = (s, a, s′) where s, s′ ∈ S is said to

be M-consistent, τ ⇌M, iff s = s′ when s ̸|= Pre or ∃i such that Prob[i] > 0 and

s′ = s \ Eff[i]− ∪ Eff[i]+ whenever s |= Pre.
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A lifted PPDDL modelMa↑ is implicitly converted to a grounded PPDDL model

Mσ(a↑,o1,...,on) when checking forM-consistency w.r.t. a transition τ .

PPDDL Model-Learning Given a dataset T that is composed of a set of transitions

τ = (s, a, s′) obtained from an RMDP task, the PPDDL model-learning problem is

to compute a model M s.t. τ ⇌M for any τ ∈ T . The two major techniques of

model learning are active and passive learning. Active learners interactively explore

the state space to generate T for learning the model whereas passive learners require

T to be provided as input. We use active learning as it has been shown to work well

for deterministic, non-stationary settings (Nayyar et al., 2022b).

9.3 Our Approach

We now begin by describing the problem that we address, followed by a detailed

overview of our approach.

Definition 36 (RMDP equivalence). Given a domain D↑ and RMDP tasks Mi and

Mj derived using D, we define Mi = Mj iff their objects are the same OMi
= OMj

,

the initial state and goals are equal soMi
= soMj

and gMi
= gMj

, and the transition

systems are equivalent δMi
= δMj

.

Definition 37 (Continual Planning under Non-Stationarity). Given a stream of

RMDP tasks M = ⟨M1, . . . ,Mn⟩ where Mi ̸= Mi+1, a simulator ∆ with budget ∆S

per task, and with the simulators transition system changing at arbitrary intervals,

the objective is to maximize the total tasks accomplished within |M |∆S .

The above problem setting captures many real-world scenarios where environment

dynamics often change in situ, i.e., while the agent is actively solving a stream of tasks
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and without informing the agent. E.g., events like liquid spills on the gripper affecting

its friction, navigation pathways being blocked, etc. are outside the robot’s control and

can arbitrarily change at any given moment. Implicitly, this translates to the agent

indirectly optimizing a new RMDP task with the same goal but different transition

system. The overall objective is to enable solving all tasks in a sample-efficient fashion

thus making it essential to learn-and-transfer knowledge. An agent that learns a fixed

model of the environment or one that is incapable of detecting such change can thus

perform quite poorly or dangerously.

We consider the following taxonomy of the methods for continual planning under

non-stationarity; (a) Adaptive vs. Non-adaptive learners where adaptive learners can

automatically adapt to unknown changes in the transition system, whereas the other

cannot; (b) Comprehensive vs. Need-based learners where the former completely learn

a new model from scratch whereas the latter only perform updates to fix the model

w.r.t. transitions that are notM-consistent.

9.3.1 Adaptive Model Learning

Our approach integrates planning and learning by continually learning and updating

a PPDDL model of the environment and using it to accomplish tasks. We develop an

active, need-based learner that automatically detects and adapts to changes in the

transition system. Our approach actively monitors simulator execution and performs

active learning when transitions are inconsistent with the current model. We maintain

sample efficiency by performing directed exploration while learning the model. We

now describe the components that facilitate continual learning for planning.

Active Query-based Model Learning (AQML) We use an active learning ap-
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proach as it can cope with non-stationarity. Existing approaches using active learning

are sample inefficient since they are comprehensive learners that relearn from scratch.

Building upon the Active Query-based Model Learning framework (AQML) (Verma

et al., 2023), we develop a paradigm that can work in the presence of non-stationarity.

Definition 38 (Policy Trace). Given an RMDP M and simulator ∆, a policy trace

∆π = ⟨s0, a0, . . . , an−1, sn⟩ of a policy π is a sequence of states and actions where

si ∈ S, ai ∈ A s.t. ai = π(si) and si+1 = ∆(si, ai).

Definition 39 (p-distinguishing policies). Given an RMDP M , a predicate p, policies

π1, π2 and a simulator ∆, π1 and π2 are p-distinguishing policies iff ∃i s.t. for policy

traces ∆π1 and ∆π2 , p ∈ s
∆π1
i and p ̸∈ s∆π2

i .

AQML is an epistemic method that seeks to prune the space of models under

consideration by guiding exploration towards states that can help update the model.

The key observation is that for any given a↑ ∈ A↑, a predicate p↑ can appear as a

positive precondition, a negative precondition, or not appear at all inMa↑ . Similarly,

p↑ could appear in any of these modes in any of the effect lists ofMa↑ . This induces an

exponentially large number of models over which a model-learner must search. We can

prune this search space by selecting a predicate p↑ and generating candidate models

M+p(Pre|Eff)

a↑
M−p(Pre|Eff)

a↑
M⊗p(Pre|Eff)

a↑
where p↑ appears in a positive (+), negative (−),

or absent (⊗) mode in the preconditions Pre↑ or effects Eff↑ respectively. Ignoring

probabilities, AQML uses a combination of any two pairs of these models, and reduces

query synthesis to a Fully Observable Non-Deterministic (FOND) problem. The

central idea behind this reduction is that the two models being used correspond to two

separate copies of each predicate in the FOND problem, and a solution is found when

a state is reached such that the two copies of predicates do not match. This problem
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can be passed to off-the-shelf solvers and the solution to these FOND problems are

policies that AQML uses as queries to the planning agent. Due to the nature of

these models where only a single predicate is changed, solution policies of any pair of

these models are guaranteed to be p-distinguishing or unsolvable. AQML then checks

which model of the predicate p↑ is consistent with the simulator and updates Ma↑

appropriately (either in preconditions or one of the effects). The process repeats for

the next predicate p′↑ with the difference being that the learned information about p↑

can now be considered by the FOND planner in the subsequent learning process.

Example Upon identifying that ¬handempty↑(rx) is an effect of the

pick-up↑(rx, lx, bx) action, AQML can generate distinguishing queries by using

a FOND planner to resolve other uncertainties such as whether ¬handempty↑(rx) is

a precondition of put-down↑(rx, lx, bx). AQML does this by generating two abstract

models, one with predicate handempty↑(rx) in the precondition of put-down↑(rx, lx, bx),

and another where it is absent. As part of the policy generated by the FOND planner

it would be ensured that ¬handempty↑(rx) is true in the state before executing the

put-down action (possibly by executing a pick-up action).

The key insight is that unlike other methods, this learning methodology does not

wait for random exploration to generate p-distinguishing policies but rather actively

encourages exploration by utilizing information about parts of the model that are

inaccurate. We discuss how such components are annotated in Sec. 9.3.2. This leads

to improved sample efficiency in converging to a modelM≡ δ, i.e.,M translates to

a closed-form specification of the transition function δ. Once a p-distinguishing policy

is identified, probabilities can be estimated using Maximum Likelihood Estimation

(MLE) by executing the policy η times where η is a configurable hyperparameter that

represents the sampling frequency.
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There are two difficulties with vanilla AQML. Firstly, complete models are learned

in a single pass in order to guarantee correctness. Secondly, this framework assumes

stationarity of the simulator and the query synthesis process is not resilient to changing

environment dynamics during the model-learning loop. As a result, AQML cannot

efficiently use learned information to update the model when only small parts of the

transition system change.

9.3.2 Non-stationarity Aware Model Learning

We significantly alter the AQML framework so that it can work even if the

transition system changes during the model-learning process (as policy traces are

being generated using the simulator) and enable it to selectively and correctly learn

information that is not consistent with the learned model. We accomplish this by

always monitoring executions of the simulator. If a transition τ = (s, a, s′) is not

consistent w.r.t. the learned modelM, i.e., τ ̸⇌M, then we simultaneously update

the model-learning process since a new query now needs to be synthesized that can

resolve the inconsistency. To do so, we identify the predicates p↑ in the preconditions

(or effects) of a that were inconsistent with the model and then we add p↑ in the

precondition (or effect) of a to be relearned. This also applies to inconsistencies

identified as policy traces are being generated as a part of the model-learning process.

The new FOND problem will not include p↑ in the action a in any form in its

precondition (or effect) and thus the planner will need to compute an alternate

solution for the current query.

Example If a predicate ¬p↑ ∈ Prea, p ∈ s and s ̸= s′ then this means that the

action executed successfully on the simulator and the precondition ¬p↑ is incorrectly
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represented in the currently learned modelM↑
a and must be relearned. We then add

M+lpre
a and M⊗lpre

a to the list of models that need to be considered again by the

query-synthesis process.

9.3.3 Goodness of Fit Tests

Another key difficulty when operating in non-stationary environments is when

the transitions themselves are consistent w.r.t. the preconditions and effects but are

drawn from a significantly different distribution. For example, two models of an action

with similar preconditions and effects but differing only in the probabilities of effects

can impact the ability of an agent to solve a task.

Example In our running example of a slippery gripper, as the probability of slippage

increases, the optimal policy might switch to navigating to a human operator and

communicating to them to pick up the object.

Such changes cannot be quickly reflected if only MLE estimates are used to compute

probabilities since these estimates can be slow to adapt to the new distribution. We

mitigate this by including goodness-of-fit tests in the planning and learning loop that

actively invigilate whether the distributions have undergone shift and can promptly

restart the MLE estimation process.

We use Pearson’s chi-square test (Pearson, 1992) for detecting o.o.d. effects as

follows. Once a modelMa↑ for an action has been learned (or a new task is specified),

we initialize a table entry Freqa↑ [i] = 0 for each effect Eff[i] ∈Ma↑ . Whenever a new

M-consistent transition (s, a, s′) is obtained using the simulator, we identify the index

i s.t. s′ = s \ Eff[i]− ∪ Eff[i]+. We then increment Freqa↑ [i] and perform a goodness of

fit test using Pearson’s chi-square test with 0 degrees of freedom.
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χ2 =
n∑
i=1

(Freqa↑ [i]− F × Proba↑ [i]))2

F × Proba↑ [i]

where F =
n∑
i=1

Freqa↑ [i] is total observed frequency for a. If the confidence computed

using χ2 is less than some threshold θ (0.05 in our experiments), the goodness-of-fit test

is deemed to have failed and we reset the probabilities for all effects in a. To ensure that

we have enough samples, we only perform this test when F > 100. We then update

the probabilities using the recorded frequencies via MLE, i.e., Proba↑ [i] =
Freq

a↑ [i]

F
.

9.3.4 Continual Learning and Planning (CLaP)

Our approach of continual learning of PPDDL models has two key advantages.

Firstly, since we learn models, Eqn. 9.1 can be used to compute policies for the task

without needing to collect experience from the simulator. Secondly, lifted PPDDL

models are generalizable in that they can be zero-shot transferred to tasks with differing

object names, quantities, and/or goals. For example, the same pick-up↑(rx, lx, bx)

action described earlier can be reused by different RMDP tasks with differing numbers

of robots, locations, and/or packages. This methodology allows our approach to solve

tasks efficiently.

Alg. 6 describes our overall process for continual learning and planning. The

algorithm takes as input an RMDP task M , a simulator ∆, a simulator budget ∆S ,

a learned model M↑, and hyperparameters H, η, β, and θ representing the horizon,

sampling count, failure threshold, and confidence threshold respectively. Note that in

the context of Alg. 6, M only specifies the initial state s0 and goal g for the task. The

transition system represented by the simulator can arbitrarily change at any time but

the agent still perceives it as the same task. Alg. 6 attempts to compute a policy π
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Algorithm 6: Continual Learning and Planning
Input :RMDP M , Simulator ∆, Simulator Budget ∆S , Learned ModelM↑,

Horizon H, Sampling Count η, Threshold θ, Failure Threshold β
Output :M↑

1 s← s0; h← 0; f ← 0

2 π ← modelBasedSolver(S,A, s0, g,M↑, R, γ,H)
3 while |∆| < ∆S do
4 if f > β or unreachableGoal(s0, g,M↑, π) then
5 explore(M↑,∆)

6 if needsLearning(M) then
7 M↑ ← learnModel(∆,M↑)

8 π ← modelBasedSolver(S,A, s0, g,M↑, R, γ,H)

9 a← π(s)
10 s′ ← ∆(s, a)
11 h← h+ 1

12 if (s, a, s′) ⇌M↑ then
13 M← goodnessOfFitTest(s, a, s′,∆,M↑, θ,Freq)

14 else
15 M↑←addInconsistentPredicates(s, a, s′,M↑)

16 if s |= g or h ≥ H then
17 s← s0; f ← f + 1 iff s ̸|= g

18 else
19 s← s′

20 returnM↑

for M using the learned modelM↑ (line 2) using an off-the-shelf RMDP solver such

as LAO* (Hansen and Zilberstein, 2001).

If the transition graph of π derived using M↑ has no path to the goal or if the

goal has not been reached for a certain threshold (lines 4-5) the agent performs an

exploration of the state space using the simulator in order to find a transition that is

not M-consistent. Initially, when the learned model is empty, this step allows the

agent to quickly discover transitions for which useful learning can be performed. We

used random walks of length H to conduct this exploration step in our experiments. If

an inconsistent transition is discovered as part of the exploration process, then several
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models to consider are added to the model learner using the approach in Sec. 9.3.2.

This causes model learning to be invoked to resolve the inconsistency and updates

the learned model M↑ (line 7). We note that, as mentioned in Sec. 9.3.2, if new

inconsistencies are identified during the model learning then they are resolved as well.

Since the model has been updated, a new policy is computed (line 8).

Once any learning steps are complete and π has been computed, we execute an

action a = π(s) on the simulator (lines 9-10). If (s, a,∆(s, a)) ⇌M, then a goodness

of fit test is performed to improve probability estimates as noted in Sec. 9.3.3 (line

13). An inconsistent transition always adds new models for the inconsistencies that

need to be resolved by the model learner (line 15). If the goal is reached or the

horizon is exceeded, the simulator is reset to the initial state and the total failures are

incremented accordingly (lines 16-17). Finally, once the budget is exhausted (line 3)

the learned model is returned (line 20) that can be used for solving future tasks.

9.3.5 Theoretical Results

Definition 40 (Variational Distance (VD)). Given an RMDP M , let Z =

{(s, a, s′)|s, s′ ∈ S, a ∈ A} be a set of transitions. Also let M and M′ be two

models. The Variational Distance (VD) between these two models is then defined as

VDZ(M,M′) = 1
|Z|

∑
ζ∈Z
|1ζ⇌M − 1ζ⇌M′ |.

Definition 41 (Locally Convergent Model Learning). Given an RMDP M , letM be

the current model andMδ be the accurate (unknown) model s.t. Mδ ≡ δ. Consider ε

to be an error bound on the variational distance between two models. Model learning

is locally convergent iff ∀ε such that 0 < ε < VDτn(M,Mδ), ∃n ∈ N and a set τn of n
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distinct transitions sampled from δ, s.t. the modelM′ learned using any T containing

τn(τn ⊆ T ) will satisfy: VDT (M′,Mδ) ≤ ε < VDτn(M,Mδ).

Theorem 13. Let M be an RMDP with a series of transition system changes δ1, . . . , δn

at timesteps t1, . . . , tn implemented using a simulator ∆, then during each stationary

epoch between ti and ti+1 Alg. 6 performs locally convergent model learning.

Proof (Sketch). LetM be the learned model at timestep i. By the correctness property

of AQML (Thm. 2 in Verma et al. (2023)) the set of transitions thatM can generate

must be a subset of the ones thatMδi can. Let Z = {s : (s, a, s′)|s, s′ ∈ S, a ∈ A)} and

let z = |Z|. Let VD(M,Mδ) be x/z. ε has to be such that 0 < ε < x/z. LetM′ be

the model learned using a set of transitions τn that are consistent withMδ but cannot

be generated byM. Choose τn such that τn has exactly n(> zϵ) elements. Now, using

the model M′ that AQML learns, it will be able to generate τn in addition to all

the transitions thatM could generate. This implies: VD (M,Mδ)− V D(M′,Mδ)=

x/z − (x − n)/z > x/z − (x − zϵ)/z = x/z − x/z + (zϵ)/z = ε, and we have the

desired result with τn as the set that is required for local convergence. By properties

of AQML (Thm. 1 in Verma et al. (2023)) any superset of transitions valid underMδ

that contains τn will also reduce VD by at least ε.

9.4 Experiments

We implemented our approach (Alg. 6) in Python and performed an empirical

evaluation on four benchmark domains using a single core on a Xeon E5-2680 v4

CPU running at 2.4 GHz with a memory limit of 8 GiB. We found that our approach

leads to significantly better transfer performance as compared to the baselines. We
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Figure 24. Results (best viewed in color) from our experiments averaged across 10
runs with 1-std deviation (shaded). (a) plots the learning curves of the methods, (b)
plots the avg. reward obtained by greedily running the policy computed 10 times (for
clarity, the Oracle’s avg. reward is annotated with × periodically), (c) plots the total
steps needed to achieve steady-state performance equal to the Oracle’s (truncated
at 40k for clarity). Higher values are better for (a) and (b); lower for (c). Vertical
squiggly lines denote the step where a new task Mi+1 and transition system δi+1 were
loaded (Mi ̸=Mi+1 and δi ̸= δi+1).

describe the empirical setup that we used for conducting the experiments followed by

a discussion of the obtained results (Sec. 9.4.1).

Domains We used four benchmark domains that have been used in various Interna-

tional Probabilistic Planning Competitions (IPPCs) 10 for our experiments. We used

these benchmark domains since ground truth models for them are available and we

synthesized simulators using these domains.

We briefly describe the domains that we used below. We refer to each domain as

D↑(|P↑|, |A↑|) to indicate the total number of predicates and actions in the domain.

Tireworld(4, 2) is a popular domain that has been used in several IPPCs. The

10https://www.icaps-conference.org/competitions/
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objective of this IPPC benchmark is to drive from the initial position to the goal

position (accounting for flat tires that can stochastically occur).

FirstResponders(13, 10) is a domain inspired from emergency services. The objective

is to put out all fires and treat all victims. To do so, a planning agent needs to be

able to plan to reach locations under fire and put them out (refilling water as needed)

and also treat victims either at the fire site or ferry them to a hospital if the injuries

are too severe.

Elevators(9, 10) is a stochastic extension of the deterministic Miconic (Long and Fox,

2003a) domain wherein there are several new objectives such as coins to be collected

and elements such as shafts and gates that constrain navigation.

Blocksworld(5, 4) is an environment where the goal is to arrange blocks in specific

configurations. The IPPC variant is ExplodingBlocks wherein the table can be

destroyed whilst stacking blocks. We tried to generate problems for ExplodingBlocks

but were unsuccessful and as a result used the ergodic version instead where stacking

blocks has a chance to drop them on the table. Nevertheless, the non-stationarity

we introduce (described below) can often introduce dead-end states (i.e., states from

which the goal cannot be reached).

Task Generation All tasks in the benchmark suite share a single transition system

and, to the best of our knowledge, there are no official problem generators that

can introduce non-stationarity and generate tasks for it. Thus, we introduced non-

stationarity by generating new domain files obtained by changing a randomly selected

action from the domain file of the previous task that was generated. We performed

between 0-3 changes in both the preconditions and effects of the selected action by

adding or deleting a predicate or by modifying an existing predicate in the action’s

model and ensured that at least one change was made. This method of introducing
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non-stationarity resulted in the transition system of the final task being significantly

different from the benchmark task with several actions changed.

Task Setup We generated five different tasks M0, . . . ,M4 with different initial states

and goals. M0 was the benchmark task and the others were generated using Breadth

First Search. We used γ = 0.9 and horizon H = 40 for all tasks.

Baselines We used Q-Learning as our non-transfer RL baseline. We also used an

Oracle that has complete access to the closed-form model of the simulator and uses

LAO∗ to compute policies. This baseline provides an upper bound on the performance

achievable by any algorithm. We also use two AQML-based methods: A+C-Learner

and U+C-Learner. Both approaches learn comprehensive models. The former (latter)

is adaptive (non-adaptive) to transition system changes, i.e., A+C-Learner tries to

compute a policy and if an inconsistency is detected, learns from scratch whereas

U+C-Learner is informed that the transition system has changed in order to relearn.

We used QACE (Verma et al., 2023) as the AQML-based model-learning algorithm in

these baselines. These methods are compared against our learner (CLaP) which is an

active, adaptive, need-based learning system implementing Alg. 6.

A+C/U+C-Learner are SOTA methods for learning stochastic PPDDL models

(deterministic model learners are inapplicable in our setting). We also considered ILM

(Ng and Petrick, 2019a) since it can learn stochastic noisy deictic rules but were unable

to get it to work despite employing significant effort (and contacting the authors).

Hyperparameters We used α = 0.3 for Q-Learning, η = 100 for the AQML-based

methods and CLaP. Additionally, we used β = 10 and θ = 0.05 for CLaP.
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9.4.1 Analysis of Results

As mentioned in Sec. 9.2, we consider a task accomplished when a goal state is

reached. We used a simulator budget ∆S = 100k for each task. The transition system

is kept stationary for ∆S steps. The simulator is then loaded with a new task Mi+1

and a new transition system δi+1.

Fig. 24 shows the obtained results from our experiments with 10 different random

seeds used by the algorithms. We analyze the results to answer the following questions.

a. Is CLaP sample efficient?

b. Are CLaP solutions performant?

c. Are CLaP solutions generalizable?

Evaluation Metrics We use the following evaluation metrics to answer the questions

above; We answer (a) by plotting learning curves that showcase how many tasks were

accomplished during the learning process; We answer (b) by comparing the policy

quality wherein at every k = 100 simulator steps, we freeze the computed policy

and generate 10 policy traces each starting from the initial state s0 of the task with

a maximum horizon of 40. These simulations do not count towards the simulators

budget. We report the average reward obtained while doing so; We answer (c) by

computing the adaptive delay (Balloch et al., 2022) which measures how many steps

are necessary in the environment before the steady-state performance converges to

that of the Oracle’s.

It is clear from Fig. 24 that our approach of continual learning and planning (CLaP)

outperforms both non-transfer (Q-Learning) and model-based methods; A+C/U+C-

Learner.
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(a) Sample Efficiency Our results in Fig. 24(a) show that CLaP has a much

better sample complexity compared to the baselines. The learning curves from

FirstResponders, Elevators and Blocksworld show that our approach can accomplish

significantly more tasks than the baselines. Q-Learning does not learn and transfer

any knowledge and thus needs to collect large amounts of experience to solve tasks.

A+C-Learner and U+C-Learner cannot efficiently correct the model when transi-

tion systems change since they need to learn all actions to converge. This drawback

of comprehensive learners is highlighted in the results on the Elevators domain where

even Q-Learning was able to outperform these methods. For the Elevators domain,

the transition system change rendered some actions executable from states that were

reachable only over very long horizons. The transition system of most of these actions

had not changed and were not very useful to solve the task. The comprehensive learn-

ers exhausted the simulator’s budget trying to relearn these task-irrelevant actions

and thus were not able to solve the task. CLaP on the other hand only lazily-evaluates

whether to learn a fraction of the model or not and was able to quickly fix the learned

model and compute a policy that could solve the task. These trends can also be seen

in FirstResponders where comprehensive learners must relearn 10 actions from scratch

every time an inconsistency is observed.

(b) Better Task Performance Fig. 24(b) shows that avg. rewards of CLaP policies

are very close to the Oracle’s. This suggests that our learned models are often good

approximations of the transition system. CLaP’s policies converge to those of the

Oracle’s across all tasks in our evaluation.

(c) Better Generalizablity Our approach has a significantly lower adaptive delay

(Fig. 24(c)), i.e., CLaP is able to utilize and transfer the learned knowledge across

problems efficiently compared to the baselines that take a significant number of samples
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to converge to the Oracle’s performance. For example, CLaP zero-shot transferred

(adaptive delay was 0) between Blocksworld tasks M1 and M2 requiring no learning to

solve task M2 while also matching the Oracle’s performance. In cases where adaptation

was needed (e.g., between Blocksworld tasks M0, M1, and M2,M3) CLaP few-shot

learns the required knowledge to accomplish the task with policy qualities similar

to that of the Oracle. In general, CLaP’s adaptive delay was the best amongst all

baselines.

We also conducted a directed experiment to evaluate the adaptability of our method

to changing distributions. To do this, we generate two tasks from a 2-armed bandit

domain. Pulling any of the levers stochastically takes the agent to the goal. Thus, the

optimal policy is to repeatedly pull the lever with the highest probability of reaching

the goal. In task one, the first (second) lever would succeed with probability 0.8 (0.5).

In the second, it was 0.1 (0.9) respectively with preconditions and effects unchanged.

CLaP utilizes goodness of fit tests and thus was able to adapt to this distribution

shift and chose lever 1 (2) for task one (two). A+C-Learner cannot adapt to such

changes and continued to use lever 1 for task two. This resulted in its policies being

9x worse than CLaP’s with overall only ≈950 goals achieved compared to CLaP’s

≈1550 (∆S = 1000 per task, η = 10). Fig. 25 shows the results obtained from this

experiment. CLaP uses goodness of fit tests and thus is able to quickly identify that

the distribution of the first lever has changed. Once the correct probabilities are

learned for the first lever it computes a new policy that identifies that lever 2 is more

lucrative.

Limitations and Future Work Currently, CLaP does not consider the task goal

in the model learning process (line 7 of Alg. 6). Making optimistic estimates about
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Figure 25. Results from our directed 2-armed bandit test averaged across 10 runs
with 1-std deviation (shaded). (a) plots the learning curves of the methods, (b) plots
the avg. reward obtained by greedily running the policy computed 10 times (for
clarity, the Oracle’s avg. reward is annotated with × periodically). Vertical squiggly
lines denote the step where a new task Mi+1 and transition system δi+1 were loaded
(Mi ̸=Mi+1 and δi ̸= δi+1).

the model w.r.t. the goal might allow the model learner to expend fewer samples for

learning a model that can accomplish the task.

We do not take into account transition system changes or goals that could be

provided in advance. CLaP could utilize that information to develop a curriculum so

that useful, unlikely-to-change actions are prioritized to be learned early even if they

do not contribute towards the current task’s goal.

When is it better to learn-from-scratch There were not many performance gains

compared to A+C/U+C-Learner in the Tireworld domain. This is because Tireworld

is a small domain with only 2 (4) actions (predicates) that need to be learned. It
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is intuitively clear that if the transition system significantly changes then relearning

from scratch could save some computational effort. Devising heuristics that can

evaluate whether learning from scratch would be easier than correcting the model is

an interesting problem that we plan to investigate in future work.

9.5 Related Work

There has been plenty of work for transfer in RL (Mnih et al., 2013; Schulman

et al., 2017) and on non-stationarity (commonly referred to as novelty in the RL

literature). We focus on approaches that transfer across RMDP tasks. Tadepalli et al.

(2004) provides an extensive overview for relational RL approaches.

Model-Based Reinforcement Learning The Dyna framework (Sutton, 1990) forms

the basis of several model-based reinforcement learning (MBRL) approaches wherein

experience from the environment is used to simultaneously learn a model and use

the model to generate synthetic experience that is used for learning updates. Ng and

Petrick (2019a) use conjunctive first-order features to learn models and generalizable

policies that transfer to related classes of RMDPs. Their approach does not perform

guided exploration to resolve ambiguities. REX (Lang et al., 2012) enables MBRL

to automatically learn tasks autonomously. One challenge with this approach is

learning accurate models since exploration can be sparse when using REX. V-MIN

(Martínez et al., 2017) integrates model-learning and planning with RL by requesting

demonstrations from a teacher if it cannot find a policy whose expected value is

greater than a certain threshold. The requirement of an available teacher limits the

transfer capabilities of this approach. Taskable RL (TRL) (Illanes et al., 2020b) and

RePReL (Kokel et al., 2023) show how Hierarchical Reinforcement Learning (HRL)
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using the options framework can be used for TRL. They use symbolic plans to guide

the RL process. This approach requires models provided as input and are not learned.

In contrast, our generates its own data for learning models using an active learning

process.

Learning Models for Non-Stationary Settings GRL (Karia and Srivastava, 2022)

train a neural network to learn reactive policies that can transfer to problems from the

same domain but with different state spaces. Their approach is limited to only changes

in the state space and cannot adapt to changes in the transition dynamics. Nayyar

et al. (2022b) and Musliner et al. (2021) learn models for non-stationary environments

that can be integrated into the interleaved learning and planning loop. However, their

approach only learns deterministic models and requires the use of optimal agents and

observation traces to identify changes in transition dynamics. Bryce et al. (2016)

address the problem of learning the updated mental model of a user using particle

filtering given prior knowledge about the user’s mental model. However, they assume

that the entity being modeled can tell the learning system about flaws in the learned

model if needed. Eiter et al. (2010) propose a framework for updating action laws

depicted in the form of graphs representing the state space. They assume that changes

can only happen in effects, and that knowledge about the state space and what effects

might change is available beforehand. There is a recent body of work on adapting

symbolic models to novelties in open-world environments for reinforcement learning

(Goel et al., 2022; Balloch et al., 2023; Sreedharan and Katz, 2023; Mohan et al.,

2023). These methods are limited to deterministic settings and/or can only learn new

models from passively collected data.
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9.6 Concluding Remarks

We developed a sample-efficient method for transferring epistemial knowledge

between an interleaved learning and planning process. Our approach can easily handle

non-stationary environments on-the-fly by automatically detecting any changes that

are inconsistent with the learned model. We reduce sample complexity by only

considering the parts of the model that are inconsistent with the simulator’s execution

and selectively update the model. We are resilient to changes in the transition system

even if it occurs during the model learning process. We show that when the transition

system is stationary our approach is locally convergent. Furthermore, our learned lifted

models easily transfer to new tasks. Our empirical results show that our approach

significantly reduces sample complexity whilst remaining performant w.r.t. the optimal

policy.
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Chapter 10

CONCLUSIONS AND FUTURE WORK

This dissertation looked at the area of third party assessment of black-box AI

systems under various settings. It defined the requirements in an AI system that would

enable their assessment, and also defined the query-response interface that can make

such an assessment possible. The thesis systematically fulfilled the four desiderata,

namely interpretability, correctness, generalizability, and minimal requirements, for

any third-party assessment of an AI system. This dissertation starts a new area of

research that is necessary if lay people are going to routinely interact with adaptive

AI systems that are like black boxes. In the future, more theoretical analysis can be

done on this topic.

Extended Query Complexity Analysis Theoretically, the asymptotic complexity

of AIA (with plan outcome queries) is O(|P ∗| × |A|), but it does not take into account

how much computation is needed to answer the queries or to evaluate their responses.

This complexity just shows the amount of computation needed in the worst case to

derive the agent model by AIA. I plan to perform a more detailed analysis of the

complexity of AIA’s queries in terms of data, expression, and combined complexities

using the results of relational query complexity by Vardi (1982, 1995).

Chapter 8 presented an evaluation of membership classes of plan outcome queries

for deterministic settings. I plan to extend this to cover more types of queries covered

in Chapter 6 and to calculate tighter complexity bounds for the queries, instead of just

their membership classes. This analysis would involve using relational database queries

equivalent to the queries that I use in my work, and calculating their complexity.
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Limitations and Future Directions The algorithms and methods presented

in this dissertation work well for AI systems with an access to simulator in fully

observable settings. There is still a lot of work needed to extend this work for settings

with partial observability. Such settings also closely mimic major deployments of AI

systems in the wild.

Second limitation of this work is the assumption of simulator access to the environ-

ment where the AI system is deployed. To remove this requirements, a physics-model

for the deployed environment must be built for the simulator. Generating such a

model can be done by the AI assessment system in the future. The assessment system

can interact with the environment to generate this model and provide it as input to

the simulator.

In addition to addressing these limitations in the future, the thesis work can

be extended to partially observable settings to increase its scope of applicability.

Additionally, the algorithms and the ideas developed in this thesis can be extended

to classical reinforcement learning (RL) settings to make RL more sample efficient.

Analyzing large language models as AI agents to evaluate their capabilities is also a

possible direction of future work.
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In this appendix, we describe the details of the user study survey that was given
to the study participants. The participants were split into two groups. The capability
group and the primitive action group.

A.1 Game Description

The participants in both the groups were shown the description of the game. As
shown in Fig. 26, this description lists out the rules of the game.

Figure 26. Game description shown to the study participants

A.2 Capability Descriptions

The participants are then shown the next part based on which group they fall in.
The participants in the capability group are shown description of 6 parameterized
actions, each generated using boilerplate templates for each predicate. We show
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here (Fig. 27) the description of the capability c4 whose learned description was
shown in Fig.1(d) in the main paper. The participants are also given an option to
choose between eight possible descriptions of from which they choose the correct
summarization of that capability. This is illustrated in Fig. 27.

Figure 27. Description of the capability C4 with summarization options.

A.3 Action Descriptions

Similar to the capability group, the participants in the primitive action group are
shown textual descriptions of the keystrokes, with five options to choose from. Each
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option provides a possible description of the keyboard in English. Fig. 28 shows the
description of keystroke W with the five options.

Notice that we tried to keep the same format for the description of actions as
that of capabilities, i.e., of the form “if ⟨x⟩ conditions hold then ⟨y⟩ happens.” Also,
the description of capabilities are parameterized by the player, monster, cells, etc.
whereas the description in primitive actions use the object names like Link, Gannon,
etc. directly.

Figure 28. Description of the keystroke W with summary options

A.4 Questions

After showing the capability and action descriptions, the participants of both the
groups are shown the same questions. These questions give two-game images and ask
the participant the sequence of capabilities or actions (depending on the user’s group)
that the agent should execute to reach the goal state from the initial state. One such
question is shown in Fig. 29. There were six such questions in total shown.in total to
all the participants.
Sanity Question: One of these six was a sanity check question. The answer was given
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in the question itself. The responses for any participant who got this question wrong
were discarded.

Figure 29. A sample user study question

A.5 Options

The options given to the two sets of users for the same question differed because
the capability group participants were given options in terms of capability sequence
that the agent can execute (shown in Fig. 30), whereas the primitive action group
participants were given options in terms of sequences of primitive actions (shown in
Fig. 31). Note that these options refer to the question shown in Fig. 29.
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Figure 30. Options for question in Fig. 29 given to capability group participants

Figure 31. Options for question in Fig. 29 given to primitive action group participants
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