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ABSTRACT

Socially assistive robots (SARs) can act as assistants and caregivers, interacting

and communicating with people through touch gestures. There has been ongoing

research on using them as companion robots for children with autism as therapy

assistants and playmates. Building touch-perception systems for social robots has

been a challenge. The sensors must be designed to ensure comfortable and natural

user interaction while recording high-quality data. The sensor must be able to detect

touch gestures. Accurate touch gesture classification is challenging as different users

perform the same touch gesture in their own unique way. This study aims to build

and evaluate a skin-like sensor by replicating a recent paper introducing a novel

silicone-based sensor design. A touch gesture classification is performed using deep-

learning models to classify touch gestures accurately. This study focuses on 8 gestures:

Fistbump, Hitting, Holding, Poking, Squeezing, Stroking, Tapping, and Tickling.

They were chosen based on previous research where specialists determined which

gestures were essential to detect while interacting with children with autism. In

this work, a user study data collection was conducted with 20 adult subjects, using

the skin-like sensor to record gesture data and a load cell underneath to record the

force. Three different types of input were used for the touch gesture classification:

skin-like sensor & load cell data, only skin-like sensor data, and only load cell data.

A Convolutional Neural Network-Long Short Term Memory (CNN-LSTM) neural

network architecture was developed for inputs with skin-like sensor data, and an

LSTM network for only load cell data. This work achieved an average accuracy of

94% with skin-like sensor & load cell data, 95% for only skin-like sensor data, and 45%

for only load cell data after a stratified 10-fold validation. This work also performed

subject-dependent splitting and achieved accuracies of 69% skin-like sensor & load cell

data, 66% for only skin-like sensor data, and 31% for only load cell data, respectively.
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Chapter 1

INTRODUCTION

Socially Assistive Robots (SARs) have gained in popularity in the field of Human-

Robot Interaction. They represent a class of robots that is at the intersection of

socially interactive robotics and assistive robots. The former interacts with the user

through social interactions and the latter provides assistance to the user [1]. SARs

have continued to grow in different sectors. The Haptic Creature Project developed

a furry-like robot companion people can pet [2]. The robot Paro was developed as a

robot therapy technique that was used at hospitals and facilities for elderly people as

a new method for mental healthcare [3]. Inspired by animal therapy, the Huggable

robot consists of a full-body skin-like material with temperature, force, and electric

field sensors. Animal therapy has been shown to lower stress, reduce heart rate, and

elevate mood, which improves the overall health of the subject [4],[5].

SARs have also been shown to be useful as assistants and caretakers. As assistants

to the growing elderly population, SARs can be beneficial by integrating themselves

into the healthcare system. Along with physical support, SARs can be beneficial

in filling in for more complex types of support like social, emotional, and cognitive

support [6]. Apart from the elderly, people with cognitive disorders like autism can

greatly benefit from SARs. Research has shown that a long-term positive outcome is

possible if people with autism are given extensive support and care early in their lives

[7]. Prior work shows that robots have been used in pet therapy [8], as well as partners

for children to learn from and interact with as they would with other children [9].

Recent works [10, 11] have shown that SARs can help children with autism as social

mediators and therapy assistants. A key aspect of SARs in the context of children is
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that they respond better to robots that are child-sized and have exaggerated features.

As part of this, the crux of this work focuses on sensors that are close to skin-like

which can, in the future, be attached to SARs to make interactions more natural for

the user.

When working as caretakers or assistants, natural interactions with subjects are

crucial, and touch is an important factor in achieving this goal for SARs. Touch has

been shown to play a key role in human interaction [12], and more specifically it has

been a key component in communicating emotions and social messages [13]. Previous

studies [14] have shown that touch can amplify stronger social emotions like trust and

affection. Building touch-perception systems for SARs has some challenges. The main

priority is to ensure that the sensors on the robots are as natural as possible, enabling

natural interactions. These sensors need to be designed with the goal of recording

high-quality readings during gesture performances. Furthermore, it is essential that

the SAR can effectively identify the gesture being performed to interact with the

subject freely.

This work focuses on developing a touch-perception system that can detect touch

gestures for SARs. We build and evaluate a skin-like sensor and perform touch-gesture

classification with the recorded data. Children with autism can benefit from SARs

as therapy assistants and playmates. Our work can advance research in this field and

serve as key sensors for SARs that are tasked with continuous interactions with their

subjects.

In this thesis, we replicate a skin-like capacitive sensor and augment it with force

sensing, to evaluate its performance in detecting social touch gestures. A notable

development in skin-like sensors comes from a recent work that designs a novel human-

like artificial sensor for robots [15]. This work makes the case for developing sensors

where the comfort and likeliness of human skin is given equal importance as the other
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technical design characteristics of the sensor. Achieving skin-like sensors is vital in

making robots more interactive and user-friendly [16], which is especially important

in SARs. This thesis uses the methodologies in [15] to build a skin-like touch sensor

as described in the paper. We also follow the methodology described in this paper

to record data from a skin-like sensor and load cell underneath. The skin-like sensor

can detect the spatiotemporal patterns of touch but it cannot measure the amount

of force. The load cell, attached below the sensor, is used to measure the force when

a user performs gestures on the skin-like sensor.

We ran a user study to record data from 20 subjects, using the skin-like sensor

and a load cell. We focused on 8 gestures in our study– Fistbump, Hitting, Holding,

Poking, Squeezing, Stroking, Tapping, and Tickling. These gestures were selected as

they were the most commonly used gestures, as well as cover the space of different

kinds of gestures, based on prior research [17]. Furthermore, we consulted a previous

work [11] that identified the gestures needed for the SAR to detect while interacting

with children with autism. There has been prior work in touch gesture classification

using statistical machine learning methods, but little work has been done using deep

learning techniques. To the best of our knowledge, there has not been any work

where deep learning methods have been used for touch gesture classification from

skin-like sensors. This work uses CNN-LSTM model architecture to perform touch

gesture classification on the data collected from the skin-like sensor we developed,

essentially using CNN to capture spatial features and LSTM for the temporal aspect.

We implement the model on three different types of inputs: skin-like sensor & load

cell data, only skin-like sensor data, and only load cell data, to observe how well the

model can interpret the data and perform the touch gesture classification. We achieve

an accuracy of 94% for skin-like sensor & load cell data, 95% for only skin-like sensor

data, and 45% for only load cell data after a stratified 10-fold validation for each case,
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respectively. We also followed the leave one subject out (LOSO) scheme, wherein the

splitting is subject-dependent, keeping one subject out as the test set and training

the model on the remaining data. Owing to the variability in which users perform the

same gesture, there is an overall decrease in accuracy results. We achieve an accuracy

of 69% for skin-like sensor & load cell data, 66% for only skin-like sensor data, and

31% for only load cell data.

The thesis is organized as follows: in Chapter 2, we detail the related work in this

field and the research that inspired this work. In Chapter 3, we detail the experimental

setup of our thesis, including how we developed the skin-like sensors and set up the

recording process to collect data from human subjects. Chapter 4 details the model

architecture and the neural networks used in our model. We also detail the parameters

in the model that were tuned during model development. Chapter 5 discusses data

processing once it is collected from all the subjects. We detail how the data is pre-

processed and made ready to input into the model. Finally, Chapter 6 discusses the

results achieved and future steps one can take.

4



Chapter 2

RELATED WORK

2.1 Socially Assistive Robots

The first industrial robot was invented in 1954. Since then, there have been many

developments in robotics and related technologies. In this work, we focus on the fifth

generation of robots: Humanoid Robots. The first four generations were: Prototypes

of Robotics, Robotics Arms, Walking Robots, and Behavior-Based Robots [18].

Robots have played a vital role in healthcare for decades and have primarily been

created for personal support with daily living routines and physical training in re-

habilitation [19]. Socially Assistive Robots, as part of the 5th generation of robots,

make an effort to give the right emotional, cognitive, and social cues to support a

person’s growth, education, or rehabilitation [6]. These robots have served as care-

givers, companions, and assistants [10]. They are made to take advantage of social

and affective qualities in order to maintain motivation, boost engagement, and make

coaching, monitoring, instruction, and communication easier [20]. Therefore, many

socially assistive robots have been developed for various health care needs, including

autism therapy [21], physical rehabilitation [22], and weight management [23].

Socially Assistive Robots like the Haptic Empathetic Robot Animal (HERA) has

been shown to assist children with autism by being therapy assistants and social

mediators, and help them develop emotion recognition and expression [24]. It has been

shown that children with autism have a greater preference for robots with features

that stand out and are child-sized [25, 26]. Another important caveat is that the

robot should be controllable by the child and be predictable in its behavior [27].
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Since tactile exploration and physical contact are crucial for a child’s development,

enhancing a robot’s touch-detection abilities can significantly boost its potential for

interaction and help children with autism [28].

A previous work [29, 30] shows how a child-like robot, KASPAR, uses force-sensing

resistors (FSRs) as part of touch-sensing autism therapy in children. Another robot,

named Keepon [31], was used in a 3-year study where children with autism interacted

with the robot through various touch gestures. The conclusion of the study was that

after interacting with the robot over a period of time, the children became friendlier

and more comfortable with the robot.

In this thesis, our work in building and evaluating skin-like sensors could poten-

tially improve the development of SARs that are easier to interact with and improve

their functionality. SARs focusing on assisting children with autism place impor-

tance on comfortable interactions and accurate touch-detection abilities. Our work

in touch-perception systems with skin-like sensors could greatly benefit them.

2.2 Touch Sensing

As touch is the main nonverbal means by which we express our most intimate

emotions, it is vital to both our physical and mental health [32]. Our emotional

well-being and social bonding are an essential part of life and are promoted by touch

[33, 34].

Touch sensing has been an active area of research. Prior work shows that there

have been different approaches to touch-sensing for tactile perception robots.

As mentioned previously, Kaspar [35] employs force-resistive sensors which are

simple to implement and cost-efficient. Resistive sensors have also been used in the

NAO Robot [10] where these sensors are proven effective in detecting social interac-

tion. Resistive sensors have a drawback in that they provide only one-dimensional
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data output when a gesture is made. This makes it difficult to interpret the different

positions of touch gestures and to identify a visual pattern of the performed gesture.

Vision-based sensors like Gelsight [36] use soft sensor surfaces and high-resolution

sensing of geometry for tactile perception. GelSight essentially measures a high spa-

tial resolution geometry using a soft elastomer contact surface. The exact shape,

tension, and contact force are inferred from sensor deformation. However, one major

drawback is that the thickness of the elastomer limits the force sensing range and the

sensing starts to saturate when the elastomer can no longer bend. If the Gelsight

is designed with thinner elastomers, this becomes particularly noticeable. Further-

more, if the sensor happens to undergo uniform deformation, then the force cannot

be measured [37].

We use capacitive sensors in this work. Capacitive sensing is among the most

widely used sensors [38] and its history, in the field of HCI, began in 1973 when

CERN built a capacitive touch screen [39], followed by the first introduction of a

multi-touch capacitive tablet in 1985 [40]. Over the past 20 years, the influence of ca-

pacitive sensing has increased dramatically due to the widespread usage of capacitive

touch pads, screens, and other interactive devices on desktop, mobile, and wearable

computers [41]. Capacitive sensors work on the principle of identifying touch by

measuring the local change in capacitance on a grid array of electrodes. It enables

high-resolution touch sensing and high-resolution sensing of multiple simultaneous

touch contacts with low latency [42, 43, 41].

Another advantage of using capacitive sensors is the recent development of easy-

to-build sensor designs. Multi-touch capacitive sensors previously required expensive

development tools and were previously limited to companies and labs that could afford

them, along with people with significant expertise in this area. However, recent work

like [38, 15] have shown that it is possible to develop such sensors in a “do-it-yourself”

7



manner with high-resolution touch sensing.

While there have been artificial skin fabrications proposed in the past [16, 44]

there are very few research works that focus on creating sensors that are close to the

properties of human skin. Previous works like [45, 46] focus on building cushioning

layers and skin-like softness with elastic material. Researchers have experimented

with robots using elastic materials on their fingers [47, 48] and a more recent work

creates an elastic pad model that is sufficiently simple for analyses and real-time

simulation, while also exhibiting behavior that is quite similar to interacting with

real human skin [49, 50].

Recent work in skin-like sensor development [15] points out that sensor technology

has prioritized functionality over comfort and human-like qualities, which are seen

as an additional layer. The paper emphasizes that comfort should be prioritized

equally with technical features in design, and achieving a sensor that is as human-

like as possible helps achieve that goal. Natural skin-like sensors offer better sensor

integration, increased robustness, and performance. Silicon-based materials have been

used in recent works to develop this human-like feeling [51, 52]. While the previous

work proposes a skin-like sensor, its performance in detecting touch gestures is still

unknown. Our work aims to fill the gap by evaluating this skin-like sensor for touch

gesture classification.

2.3 Gesture Classification

Touch gestures refer to intentional physical contact with a meaningful intention.

A research paper [53] defined a commonly used touch dictionary of 30 gestures based

on human interactions. A recent work [17] clustered these touch gestures into 9

clusters based on the semantic relationship between them. According to the study,

people judge how similar touch gestures are based on their social and emotional
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meanings. The clusters are: social, romantic affection, caregiving affection, hand

contact, aggression, forceful press, functional movement, nervous contact, and contact

without movement.

In their study on touch-gesture classification for their NAO robot, [10] identified

five gestures that children with autism deal with regularly, based on feedback from

specialists. The data was collected through a user study with 15 participants. Using

Random Forest, the collected gestures were classified with an average accuracy of

74.3%, which is approximately four times higher than chance.

In 2014, a paper [54] introduced the Corpus of Social Touch (CoST) dataset

that consisted of 14 different touch gestures. These gestures were taken from the

touch dictionary defined by [53], and were selected for interactions with a mannequin

arm. The data was collected from 31 subjects with a total of 5,203 gesture captures.

The work also performed touch gesture classification, wherein they used Bayesian

and SVM (Support Vector Machine) classifiers to get accuracies of 57% and 60%

respectively, which was 7 times higher than chance. The Human-Animal Affective

Robot Touch (HAART) dataset [55] identified 7 gestures, out of the touch dictionary

defined in [53], that were most commonly found in human-animal interactions. The

data was collected from 10 subjects with a total of 829 gesture captures. A recent

work [56], used CoST and HAART datasets to explore three deep neural network

architectures: CNNs, CNN-RNNs, and Autoencoder-RNNs. The CNN resulted in

a 42% accuracy for CoST and 56% for HAART. The CNN-RNN resulted in a 52%

accuracy for CoST and 61% for HAART. The Autoencoder-RNN resulted in a 33%

accuracy for CoST and 55% for HAART.

To the best of our knowledge, the most recent work using deep learning for touch

classification is [57], where they use a CNN model while treating each touch gesture

data point as a 3D image. Their dataset consists of 13 touch gestures, which were
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chosen from the touch dictionary in [53], based on whether the gesture was applicable

to upper arm interactions and had no overlapping definitions. The paper got an

accuracy of 66%, which is 8.6 times more than chance. This work also explores how

considering shear force, along with normal force for the gestures, results in a higher

accuracy of 74% which is 9.6 times more than chance.

To the best of our knowledge, there is no previous work in deep learning for

touch-gesture classification apart from the two papers referenced above. To the best

of our knowledge, there is also no previous work on touch-gesture classification using

deep-learning methods for skin-like sensors. In this work, our goal is to establish

touch-gesture classification using deep learning methods on a skin-like sensor. We

believe that the skin-like sensor can detect the gestures accurately as it is more nat-

ural and receptive to touch-gesture data, closely mimicking human-to-human touch

interactions.
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Chapter 3

EXPERIMENTAL SETUP

3.1 Setup

In this work, our goal is to build and evaluate skin-like sensors. We replicated

the fabrication process described in [15]. This novel approach to designing skin-like

sensors involved open-source tools that can be procured and designed to record touch

gestures. When gestures are performed, the sensor outputs a sequence of images

which can be processed by deep learning methods to extract relevant features for

touch-gesture classification. We closely followed the fabrication process by using

conductive yarn as electrodes instead of elastomers. This is because the electrical

resistance of elastomers is frequently too high, which can impact touch detection.

The electrodes are sandwiched between two layers of EcoFlex Gel, which is known to

depict human fat-like properties [58] while being soft and flexible.

The electrodes are connected to a Mutual Capacitance (Muca) sensing develop-

ment board with Arduino Nano to output images. As our work involves recording

social touch gestures, the skin-like sensor must cover the entire palm. The Muca board

has 21 transmission ports and 12 receiving ports. To ensure that we were building

a sensor that covered the entire palm, we conducted trial-and-error experiments for

its design. We conducted experiments for sensor design with 4mm and 8mm elec-

trode spacing and determined that a 10mm spacing provided sufficient surface area.

The sensors with smaller spacing gave better resolution of images when gestures were

performed on them. However, we had to strike a balance between the resolution of

images and hardware constraints.
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Building the skin-like sensor came with several challenges. We had to manually

attach the strings in a grid pattern as electrodes while maintaining their spacing.

This was time-consuming, especially if a thread broke during setup and needed to be

replaced. It was also key to ensure that the strings were placed in an orderly manner

and with tightness intact. If the strings are held too tightly, there is a high possibility

that they will curl up when trimmed. Conversely, if they are held too loosely, they

will not remain in the grid pattern even with the Ecoflex sandwich holding them

together.

Figure 3.1 depicts the setup of our skin-like sensor, connected to the Muca board

(the same board used in [15]) to read data. The Muca board, with Arduino Nano, is

connected to the computer, through which we record and output the skin-like sensor

data during the recording process. Below the skin-like sensor, we have a load cell

that is connected to the SparkFun OpenScale Arduino [59], through which the weight

values are recorded. Figure 3.2 shows how the load cell is attached. The load cell

is placed directly beneath the sensor to measure the force applied by the user while

performing gestures on the sensor. The skin-like sensor data is read as a sequence

of frames with dimensions of 12X21, signifying the 12 columns and 21 rows of the

electrodes on the sensor. The load cell outputs weight values in kilograms, which

increase with applied force. The average sampling rate across the subjects recorded

was 9.7Hz for the skin-like sensor data and 15.7Hz for the load cell data. To ensure

that the load cell accurately reads the weight, we calibrate it by setting a known

weight and entering the value in the Arduino IDE. This way, the load cell knows

the exact weight of the object being applied and is calibrated. We further place a

varying number of coins as they are of standardized weights and set the known weight

each time. Once a known weight was given as input, we tested the load cell with 10

different weights to confirm if it read each weight accurately.
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(a) Skin-Like Sensor Setup

(b) Gesture On Skin-Like Sensor (c) The Muca Board

Figure 3.1: Setup Of Our Skin-Like Sensor

The computer records the skin-like sensor and load cell data into two different

CSV files. The timestamps are also recorded for each start and stop cue, which is

then later used to splice frames for the corresponding gesture. Python was used to

code the setup and record the data. The skin-like sensor data and the load cell were

recorded simultaneously using multi-processing in Python [60]. We use the PySerial

library to read the data from the load cell through the OpenScale Arduino and the

skin-like sensor data from the Muca board. We further use OpenCV to display and

save the skin-like sensor data that are being read as frames. The load cell data is

saved as a list of weight values in kilograms.

Figure 3.3 gives an example of how the data from someone performing the “hold-

ing” gesture is recorded on the skin-like sensor and load cell.

13



(a) Load Cell To OpenScale (b) Load Cell Placement

Figure 3.2: Setup Of Load Cell

Figure 3.3: Holding Gesture On Skin-Like Sensor

We selected 8 touch gestures based on a recent work [17] which analyses the

relationship between different touch gestures and how people perceive them. This

paper groups the gestures into different clusters based on how the users group them by

social and emotional features. We also took into account the recommended gestures,

by specialists, for touch-perceiving robots to perceive while interacting with children

with autism [11]. Table 3.1 shows the clusters from which we selected the 8 gestures

used for this work.
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Cluster Gesture

Social Fistbump

Romantic Affection Stroking, Tickling

Caregiving Affection Holding

Hand Contact Tapping

Aggression Poking, Hitting

Forceful Press Squeezing

Table 3.1: The 8 Gestures Used In This Study

3.2 Data Collection User Study

After building the sensor, we ran a user study to collect data to evaluate the sensor

and used the data to perform the touch gesture classification. The recording process

involved 20 subjects, who were students of Arizona State University. There were 10

male and 10 female subjects in the age group of 19-35.

To be eligible, participants had to meet the following criteria:

1. An adult of at least 18 years of age

2. Have normal or corrected to normal vision and hearing

3. Have no sensory impairment in their hands

4. Have English proficiency at B2 level

We needed the participants to have normal or corrected to normal hearing and vision,

along with no sensory impairment in their hands, to ensure that they could accurately

perceive visual and audio feedback from our system and perform the touch gestures.

Furthermore, as the instructions and cues to the participant during the recording

were in English, we had to ensure that the participant could read and understand the
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detailed explanation for the gestures. Before starting the recording, the subjects had

to complete an initial questionnaire wherein they filled out demographic information

like age, gender, and whether they had previous experience with touch sensors. The

user study was approved by Arizona State University’s Institutional Review Board

(IRB).

The total recording time for each subject in the user study was 45 minutes and

received a compensation of 10$ for their efforts. The user study consisted of the

following phases:

1. The first 5 minutes are given to the participant to complete the initial ques-

tionnaire.

2. The next 10 minutes are dedicated to showing the participant how to perform all

the gestures, using text descriptions, and accompanying videos for each gesture

performance. The participants are given time to practice the gestures during

this training period, and the main recording starts only when they are confident

that they are ready. Figure 3.4 shows an example of a slide from the PowerPoint

presentation shown to the participant.

3. The next 25 minutes is the actual recording process. Upon the cue, the partic-

ipant performs the gesture instructed. For each participant, the order in which

they performed the gestures was randomized. The user receives both verbal

and visual cues for the gesture being performed. Figure 3.5 shows what the

subject sees on the display while performing the experiment. A start and stop

timer is triggered when the participant initiates the gesture at the sight of the

word “start” on the screen, along with the verbal cue for “start”. The timer

continues until the stop signal is called. 6 seconds are allotted for each gesture

iteration. We ask the participant to repeat this 8 times for each gesture. For
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the first 4 iterations, the participant performs exactly 3 times in each 6-second

duration. Next, for each iteration in the next 4 times, the participant is allowed

to perform the gesture as many times as they can within each 6-second dura-

tion. For every gesture, the skin-like sensor and load cell will record the user’s

gesture movement and force.

4. The last 5 minutes is for wrap-up where any questions the participant has would

be answered, and the participant’s information is collected for compensation.

Figure 3.4: Example Of A Slide Shown To Subject During Training Period

Figure 3.5: Subject’s Screen During Recording Process
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Chapter 4

DATA PRE-PROCESSING

In this section, we describe how the skin-like sensor and load cell data were re-

trieved and pre-processed after the user study was complete. Once the user study

was complete, the data was stored in CSV files in their respective folder. Each ges-

ture performed had its own folder with CSV files, identified by the user participation

number. For example, the parent folder for the subject with participation number 05

was “Study 05”. Figure 4.1 gives a visual description of how the data was saved.

Figure 4.1: Folder Structure For Data Storage Across Subjects

We iterated through each gesture for each subject and got the timestamps as a list

of tuples. Next, we iterated through the tuple list, spliced the skin-like sensor data

accordingly, and saved it with the corresponding gesture label. Consider the gesture
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“Tapping” performed by “User 05”. During data collection, there were 8 iterations

for each gesture, each lasting 6 seconds. Therefore, 8 timestamps were saved for each

gesture, corresponding to the recorded iteration. The code extracts the frames, based

on the beginning and end of each timestamp tuple, and assigns the label “Tapping”.

This is repeated for all subjects and their corresponding gestures. Similarly, the same

was performed for the load cell data. Due to slight variations in the sampling rate

during recording, the number of frames for the gestures was not exactly the same for

all subjects. To ensure consistent input size for the model, we first calculated the

average length of all gesture iterations for each subject. We padded zero matrices for

gestures shorter than the average length to make them the same length as the average.

We removed frames exceeding the average length from longer-than-average gestures.

Similarly, the same process was performed for the load cell data. Furthermore, the

load cell data was smoothened by performing a moving average windowing.

Each input data point corresponds to a labeled gesture. For touch-gesture clas-

sification, neural network algorithms cannot process text-based data and require nu-

meric data [61]. Therefore, we transformed the labeled gestures (strings) into integers.

One-hot encoding is a popular method for making this conversion. One-hot encod-

ing transformed the output list of gestures to a list of vectors, each of length 1X8,

where one element is set to 1 and all other elements are set to 0 [61]. For example,

for the gesture “Holding”, the output datapoint for the model will be a vector with

“Holding” set to 1 and all other gestures set to 0.

For the first 4 iterations, the subject performed the gesture exactly 3 times within

6 seconds for each one. This results in 3 gestures performed for 2 seconds each. We

splice up each iteration into 3 equal parts. For the next 4 iterations, the subject

naturally performed the gesture as many times as possible within 6 seconds for each

one. We also splice each iteration into 3 parts. This ensures that we get naturally
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performed gestures within the 2-second window. This splicing is repeated for the load

cell data. Figure 4.2 shows a flowchart that summarises this process. The dataset

contains 3840 data points, representing all 20 subjects. Figure 4.3 shows what the

raw sensor and load cell data look like for each gesture.

Figure 4.2: Flowchart Of Data Retrieval
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(a) Fistbump (b) Hitting

(c) Holding (d) Poking

(e) Squeezing (f) Stroking

(g) Tapping (h) Tickling

Figure 4.3: Output Of Skin-Like Sensor And Load Cell For Each Gesture
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Chapter 5

MODEL ARCHITECTURE

In our work, when a gesture is performed on the skin-like sensor, it is recorded as

a series of frames. The load cell data is recorded as a continuous array of values that

capture the force of the performed gesture. It is essential to develop a model that

captures both spatial and temporal information from the load cell and sensor data to

classify touch gestures.

Convolutional Neural Networks (CNNs) have been widely used to interpret spatial

information and are known to be very successful in image recognition and classification

problems. Advancements in CNN models [62, 63, 64, 65] have been crucial in achieving

accurate results in these fields.

Long Short-Term Memory (LSTM) networks have been widely known to be suc-

cessful in tasks involving temporal information, such as machine translation [66],

generating natural language captions for images [67], and video classification [68].

Combining the strengths of both, CNNs and LSTMs, can be beneficial when the

model needs to learn both spatial and temporal information from the input data.

This model architecture is called the CNN-LSTM and it has proven to be an effective

solution. Previous works have shown that CNN-LSTMs can be used to achieve high

accuracy–facial expression recognition [69], lung ultrasound video classification [70],

and action recognition in video sequences [71].

5.1 Convolutional Neural Network (CNN)

The CNN model was first introduced and developed by [72, 73] wherein they cre-

ated the LeNet-5 multi-layer artificial neural network, which was capable of classifying
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handwritten numbers. This model could provide accurate image representation with

very little preprocessing [74]. When it comes to interpreting images, CNNs are a big

improvement over traditional ANNs for spatial data. ANNs consist of inter-connected

nodes that are structured as input layers, then hidden layers, and finally output. The

ANN receives input data which is then processed through the hidden layers of the

network. The hidden layers then make decisions and learn to make accurate decisions

for the output [75].

CNNs can extract features from images more efficiently than ANNs due to the

use of convolutions, resulting in fewer parameters [76]. In fact, one of the biggest

disadvantages of ANNs when it comes to dealing with image data is the computational

complexity owing to the large number of parameters required [75]. The main feature

of CNNs is the use of convolution filters. The convolution filter can be thought of as

a sliding window that moves across the image and extracts features from the input

data [77]. Each CNN layer consists of hyper-parameters that must be fine-tuned to

get the best results. The parameters are as follows [77]:

5.1.1 Kernel Size

The kernel size in convolution layers refers to defining the size of the NXN ma-

trix which acts as the convolution filter. The kernel matrix is multiplied with the

corresponding values in the input matrix. As the matrix is a sliding window, it slides

to the next set of values and so on. Figure 5.1 visually depicts how a kernel interacts

with the input image. The input given to this hyper-parameter is an integer, or a

tuple representing the dimensions of the kernel matrix.
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Figure 5.1: Example Of Kernel Filter On Input Matrix

5.1.2 Stride

As mentioned previously, the convolution filter, with the defined kernel size, is a

sliding window through the input matrix. As the sliding window moves, it inevitably

leads to overlap. By defining the stride hyper-parameter, we can control the amount

of overlap. Figure 5.2 shows how a filter with a stride value of 1 and 2 would operate,

respectively. As we can see in the figure, there’s a 5X5 matrix with a filter size of

3X3. With a stride of 1, the output will result in a 3X3 matrix. With a stride of 2,

the output will be a 2X2 matrix.

5.1.3 Padding

After the convolution process, the output matrix becomes progressively smaller

due to filtering. There’s a possibility that the information on the image borders

might be lost as the filter slides through the matrix. This loss in information adds

up through multiple convolution layers in the model.

Padding helps solve this issue by adding zero pixels around the border of the

image, which causes the dimensions of the input matrix to increase. However, after

filtering, the output size remains the same as the input matrix thus resolving the
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Figure 5.2: Visual Representation Of Stride=1 & Stride=2 On Input Matrix

issue of information loss across the border. As the number of convolution layers can

be increased without a constant decreasing output size, we can use any number of

layers in our model [78]. Figure 5.3 how the output size remains the same as the

input matrix with a padding layer.

Figure 5.3: Visual Representation Of Padding Layer
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5.1.4 Activation Function

Activation functions add non-linearity to the network. Without a non-linear ac-

tivation function, the output would pass through a linear function where it wouldn’t

be able to handle complex interpretations of the data. To accurately interpret com-

plex and high-dimensional data, non-linear activation functions are used to achieve

non-linear mappings from inputs to outputs [79].

We use the Rectified Linear Units (ReLU) activation function for the hidden layers

in our model. ReLU, introduced by [80], is one of the most successful and widely used

activation functions in neural networks [81]. Mathematically, ReLU can be defined

simply as [82]:

f(x) = max(0, x)

This equation means that when x < 0, then the output is 0, and when x >= 0

it’s a linear function.

The activation function for the output layer of our model is a softmax activation

function. The softmax function can be described as a combination of several sigmoid

functions. Given that a sigmoid function yields values between 0 and 1, we can

interpret the outputs for each class in a multi-class classification as the probabilities

of the respective class. While sigmoid functions are used for binary classification, the

softmax function can be used for multi-class classification like our task. For each class,

it results in a probability value and the total adds up to 1 [79]. Using a threshold,

usually 0.5, any probability above that is set to 1 and the rest to 0. In an output

vector, 1 signifies the gesture exists with the rest being 0.

The formula for the softmax function is as follows:
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σ(ni) =
eni∑N
j=1 e

nj

for i = 1, 2, . . . , N

where N is the number of classes and n is the data points.

5.1.5 Pooling

Pooling can be thought of as another filter that slides through the input matrix to

down-sample the image and reduce the complexity. Max-pooling is a type of pooling

that is commonly used. The idea of max-pooling is to take the maximum value from

each filter position and repeat. Figure 5.4 is an example of the max-pool filter being

2X2, with a stride of 2.

Figure 5.4: Max-Pooling With Dimensions 2X2 & Stride=2
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5.2 Long Short-Term Memory (LSTM)

LSTM, first introduced by [83], improves upon the traditional recurrent neural

network (RNN) [84]. The traditional RNN structure is widely used for learning tem-

poral information but struggles with the vanishing and exploding gradient problem

[85],[86]. The vanishing gradient is when it goes to zero, resulting in the inability

of the model to learn long-term dependencies. The exploding gradient is when it

becomes extremely large, resulting in instability [87]. The LSTM model solves these

issues and creates more accurate predictions [88].

Figure 5.5 gives a visual representation of the LSTM cell. The red circle depicts

the memory cell. The input is the known data and the output is the result. The

green represents the three gates in the memory unit: input, output, and forget gate.

The input gate decides how much of the input is added to the memory cell. The

output gate decides what data from the memory cell affects the output and the forget

gate controls whether to keep the data in the memory cell or remove it [89]. The

dashed lines indicate the function of the previous state, and the blue depicts the

multiplications inside the unit. Due to the function of all these gates, LSTM memory

units can interpret complex data and features from temporal data [90].

5.3 Model Architecture

In our work, we perform touch-based classification with three different types of

input: skin-like sensor & load cell data, only skin-like sensor data, and only load cell

data. We use The CNN-LSTM model architecture for the first two types of inputs

and an LSTM neural network for only load cell data.

Each CNN layer consists of 64 as the number of convolution filters and 5 as the

kernel size. The activation function for all the CNN layers is ReLU. We add a 2D
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Figure 5.5: The LSTM Memory Unit

MaxPooling layer along with each CNN layer, with (2, 2) as the dimensions for both

the pool size and stride. The LSTM layers have 128 units and a dropout value of 0.2

when used in hidden layers. The final LSTM layer in each model has 256 units and a

0.5 dropout rate before the Dense layer. Dropout [91] is used to prevent over-fitting

by dropping a percentage of random units during training. The fully-connected layer

at the end of each model is the Dense layer. It has the number of output classes equal

to the number of gestures. The activation function used is softmax. The loss function

of the model is categorical cross-entropy. The formula for categorical cross-entropy

loss is as follows [92]:

L(m,n) = −
N∑
k=1

mk ∗ log(nk)

where “m” is the test set and “n” is the predicted set, with N being the number of

gestures to classify.
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The optimizer used in our model is Adam (Adaptive Moment Estimation). Dur-

ing neural network training, the Adam optimizer follows an iterative optimization

approach that minimizes the loss function. More details on its inner workings can be

found in [93]. We use Adam since it outperforms the other optimizers by a significant

margin when it comes to getting high performance with low training costs.

We added an EarlyStopping callback to our model which monitors the validation

loss to decide when to stop the training. This helps prevent over-fitting. Choosing

a large number of epochs could result in over-fitting while a smaller number could

cause the model to underfit. With EarlyStopping, the model stops training when the

validation loss begins to increase while the training loss is still decreasing [94]. This

prevents over-fitting and helps achieve the highest accuracy. In our work, the batch

size is set to 32 and the number of epochs to 30.

Our model architectures were determined through empirical experiments and pa-

rameter fine-tuning. Figure 5.6 gives a visual representation of the model architecture

for the three input types.
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(a) Skin-Like Sensor & Load Cell

(b) Only Skin-Like Sensor (c) Only Load Cell

Figure 5.6: Model Architectures Used In This Work. Each CNN Layer: 64 Filters,
Kernel Size=5, & ReLU Activation. Each LSTM Layer: 128 Units & Dropout=0.2
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Chapter 6

RESULTS & CONCLUSION

In our work, we aim to classify touch gestures using the skin-like sensor with a

load cell underneath. We used deep learning methods to perform this classification

task. Given the input sensor and load data, the model classifies it as one out of the

eight gestures recorded. We used the accuracy metric to calculate how well our model

performs. The method to calculate accuracy is as follows:

1. The test and prediction sets are represented as lists containing one-hot encoded

vectors. Each vector in the prediction list is the model prediction of the corre-

sponding vector in the test list.

2. We iterate through the test and prediction sets simultaneously. For each case

of the two vectors being equal, the counter adds by 1. For example, where i is

the positional index while iterating through the sets:

TestSet[i] = [0, 1, 0, 0, 0, 0, 0, 0], P redictionSet[i] = [0, 1, 0, 0, 0, 0, 0, 0]

3. If the vectors are not equal, then the counter is unchanged. This continues until

we have iterated through the whole set. We then divide the counter value by

the total length of the test set to determine the accuracy.

Our input dataset consists of 3840 data points for the skin-like sensor and load cell

data, respectively. We perform a stratified 10-fold cross-validation across the dataset.

In 10-fold cross-validation, the dataset is divided into 10 folds. In each iteration, one

fold is used as testing data, while the rest of the folds are used as training data. This

process repeats across all 10 folds, thus ensuring that the entire dataset is covered
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[95]. The stratified 10-fold works the same as the normal 10-fold cross-validation,

with the difference being that the percentage of samples for each class is the same

across all the folds. This helps us make meaningful comparisons across the folds.

We perform the touch gesture classification using the following inputs:

1. Skin-Like Sensor & Load Cell Data

2. Only Skin-Like Sensor Data

3. Only Load Cell Data

6.1 Model Results

For each set of inputs, our results consist of the accuracy values and the normalized

confusion matrices. For each fold, the remaining dataset is split into training and

validation sets with a split of 90% and 10% respectively. The fold, which is unseen

during training, is the test set.

We also perform subject-dependent splitting of the data by keeping each subject

separately as the test set and taking the rest of the subjects together as training and

validation sets.

6.1.1 Skin-like Sensor & Load Cell Data

For an input combination of sensor data and load cell, we get an average of 94%

accuracy after the stratified 10-fold cross-validation which is 7.5 times greater than

chance. For the subject-dependent splitting, we get an average of 69% accuracy

across all 20 subjects which is 5.5 times greater than chance. Figure 6.1 shows the

normalized confusion matrices, bar plots for accuracies, and training vs validation

loss for 10-fold validation and subject-dependent splitting respectively. Both training

and validation losses decrease uniformly through the epochs which suggests that the
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(a) 10-Fold Cross-Validation (b) Subject-Dependent Splitting

(c) 10-Fold Cross-Validation (d) Subject-Dependent Splitting

(e) 10-Fold Cross-Validation (f) Subject-Dependent Splitting

Figure 6.1: Normalised Confusion Matrices, Bar Plot of Accuracies, & Train vs
Validation Loss Plots for Skin-Like Sensor & Load Cell Data

model fits well with the input data.
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6.1.2 Only Skin-Like Sensor Data

For the input being only the skin-like sensor data, we get an average of 95%

accuracy after the stratified 10-fold cross-validation which is 7.5 times greater than

chance. For the subject-dependent splitting, we get an average of 66% accuracy across

all 20 subjects which is 5.5 times greater than chance.

Figure 6.2 shows the normalized confusion matrices, bar plots for accuracies, and

training vs validation loss for 10-fold validation and subject-dependent splitting re-

spectively. Both training and validation losses decrease uniformly through the epochs

which suggests that the model fits well with the input data.

6.1.3 Only Load Cell Data

For the input being only the load cell data, we get an average of 45% accuracy

after the stratified 10-fold cross-validation which is 3.5 times greater than chance.

For the subject-dependent splitting, we get an average of 31% accuracy across all 20

subjects which is 2.5 times greater than chance.

Figure 6.3 shows the normalized confusion matrices, bar plots for accuracies, and

training vs validation loss for 10-fold validation and subject-dependent splitting re-

spectively. The loss graphs suggest that the model is not able to learn much from the

load cell data to perform the classification.
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(a) 10-Fold Cross-Validation (b) Subject-Dependent Splitting

(c) 10-Fold Cross-Validation (d) Subject-Dependent Splitting

(e) 10-Fold Cross-Validation (f) Subject-Dependent Splitting

Figure 6.2: Normalised Confusion Matrices, Bar Plot of Accuracies, & Train vs
Validation Loss Plots For Only Skin-Like Sensor Data

6.2 Discussion

Our study demonstrates that the CNN-LSTM model achieves high accuracy in

identifying eight touch gestures. Specifically, the accuracies are high when the model

uses the first two types of input. This shows that the CNN-LSTM is able to capture
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(a) 10-Fold Cross-Validation (b) Subject-Dependent Splitting

(c) 10-Fold Cross-Validation (d) Subject-Dependent Splitting

(e) 10-Fold Cross-Validation (f) Subject-Dependent Splitting

Figure 6.3: Normalised Confusion Matrices, Bar Plot of Accuracies, & Train vs
Validation Loss Plots For Only Load Cell Data

both the spatial and temporal features from the input data. The LSTM model, with

the load cell data as input, performs poorly comparatively. This suggests that spatial

data is important for accurate predictions. Table 6.1 summarises the average accuracy

for all 3 input types in this study.
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Input Type Average Accuracy (%)

10-Fold Validation Subject-Dependent Splitting

Skin-Like Sensor & Load Cell Data 94 69

Only Skin-Like Sensor Data 95 66

Only Load Cell Data 45 31

Table 6.1: Average Accuracy For Each Input Type

One consistent pattern across all normalized confusion matrices is that the model

struggles to distinguish between holding and hitting gestures. It could be due to the

similarity in the way these two gestures are performed on the sensor, as seen in Figure

6.4. The only noticeable difference between the two gestures is the duration of force

applied on the load sensor. The similarity between how the gestures are recorded

could explain the error in classifying them. Subject 19 performs poorly with only

skin-like sensor data as input compared to skin-like sensor & load cell data combined.

A potential reason could be that the subject performed more reserved gesture actions.

The model’s performance is consistently higher across all the folds when stratified

10-fold cross-validation is performed. Its performance decreases for subject-dependent

splitting. This is consistent for each input type. The performance of the model also

varies between each subject. This could be due to the different ways in which each

subject performs the gestures. Due to the variations in how each subject performs

the same gesture, the model’s performance is expected to decrease when the classifi-

cation is subject-dependent. The accuracies from stratified 10-fold could be a good

representation in real-world applications where SARs are personal or at-home robots.

Such robots would receive touch gestures from the same person or group of people

and can use an initial calibration phase to accurately detect the gesture performed.

The accuracies from subject-dependent splitting could be a good representation for

SARs in public spaces where they would receive touch gestures from a consistently

large variety of people without any initial calibration.
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The paper [56], used CoST and HAART datasets, with 14 and 7 gestures per-

formed respectively, for touch gesture classification using deep learning methods.

They performed subject-dependent splitting for their classification results. The CNN-

RNN resulted in a 52% accuracy for CoST and 61% for HAART, which translates

to 7.3 times more accurate than chance and 4.3 times more accurate than chance

respectively. Our CNN-LSTM model achieved a 69% accuracy with a skin-like sensor

and load cell. It is 5.5 times more accurate than chance, with 8 gestures.

The paper [57] uses a dataset with 13 touch gestures. In this work, the data was

split into training, validation, and testing sets evenly across all the users. The paper

got an accuracy of 66%, which is 8.6 higher than chance. This work also explores how

considering shear force, along with normal force for the gestures, results in a higher

accuracy of 74% which is 9.6 higher than chance. We can compare our stratified

10-fold validation results with this paper. We achieved a higher accuracy of 94% with

8 gestures. it is 7.5 higher than chance.

For a more standardized comparison, it might be better to analyze how the model

predicts when compared to chance since the number of recorded gestures differs across

papers. Based on this metric, our work has marginally lower accuracies compared to

previous studies. However, our average accuracy results are higher than previous

works.

(a) Hitting (b) Holding

Figure 6.4: Comparison Of Hitting & Holding Gestures
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6.3 Conclusion

In this work, we built and evaluated a skin-like sensor, replicating a recent work

[15] that introduces a novel design. Using the skin-like sensor and a load cell attached

below to record force measurement, we performed a user study data collection with 20

subjects. We selected 8 gestures out of 30 commonly used ones, based on prior work

with children with autism. Specialists identified these as important gestures for the

robot to detect during interactions. We also referred to a prior work that clustered

them based on their social and emotional meanings.

Using the data collected, we evaluated the skin-like sensor by performing touch-

gesture classification using deep learning methods. We performed the classification

with three types of input–skin-like sensor & load cell data, only skin-like sensor data,

and only load cell data. We built a CNN-LSTM model for the first two types of input

and an LSTM model for the third. The CNN-LSTM model performed well and was

able to classify the data for 8 gestures with a high accuracy. The LSTM model, with

only load cell data, performed poorly by comparison.

The user study data collection and the touch gesture classification performed in

this study show that skin-like touch sensors could potentially be used on SARs in

the future. Our research demonstrates that skin-like sensors can detect and interpret

hand movements and can also serve as a natural interface for users interacting with

them. This is particularly useful for SARs employed as assistants and caregivers,

where natural interaction is crucial.

6.4 Future Work

In the future, a larger number of gestures can be added to the classification set

and more subjects can be recorded to increase the dataset. The skin-like sensors also
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have the potential to be applied to curved surfaces in the future. With advances in

deep learning models, touch gesture classification can also potentially be improved by

using models like Transformers [96] and other state-of-the-art methods. Finally, this

study can be extended to recording data from children with autism; using skin-like

sensors in a real-world application.
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