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ABSTRACT 

Two fatigue life prediction methods using the energy-based approach have been proposed.  

A number of approaches have been developed in the past five decades. This study reviews 

some common models and discusses the model that is most suitable for each different 

condition, no matter whether the model is designed to solve uniaxial, multiaxial, or biaxial 

loading paths in fatigue prediction. In addition, different loading cases such as various 

loading and constant loading are also discussed. These models are suitable for one or two 

conditions in fatigue prediction. While most of the existing models can only solve single cases, 

the proposed new energy-based approach not only can deal with different loading paths but 

is applicable for various loading cases. The first energy-based model using the linear 

cumulative rule is developed to calculate random loading cases. The method is developed by 

combining Miner’s rule and the rainflow-counting algorithm. For the second energy-based 

method, I propose an alternative method and develop an approach to avert the rainflow-

counting algorithm. Specifically, I propose to use an energy-based model by directly using 

the time integration concept. In this study, first, the equivalent energy concept that can 

transform three-dimensional loading into an equivalent loading will be discussed. Second, 

the new damage propagation method modified by fatigue crack growth will be introduced to 

deal with cycle-based fatigue prediction. Third, the time-based concept will be implemented 

to determine fatigue damage under every cycle in the random loading case. The formulation 

will also be explained in detail. Through this new model, the fatigue life can be calculated 

properly in different loading cases. In addition, the proposed model is verified with 

experimental datasets from several published studies. The data include both uniaxial and 

multiaxial loading paths under constant loading and random loading cases. Finally, the 

discussion and conclusion based on the results, are included. Additional loading cases such 

as the spectrum including both elastic and plastic regions will be explored in future research.
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CHAPTER 1 

1 INTRODUCTION 

Fatigue is a critical issue that has been researched for many years. Most failures or 

fractures in materials have been caused by fatigue. Fatigue can be classified into several 

types according to different loading paths, such as uniaxial fatigue, multiaxial fatigue, and 

biaxial fatigue. Multiaxial fatigue can be found in mechanical components and it is the 

most common phenomenon. Accurate prediction of fatigue life is very important to ensure 

the life span of any structural component used in the real world. Research on fatigue has 

been conducted over the past half century and several related methods have been 

proposed. The main categories of the methods are stress-based [1–3], strain-based [4–6], 

energy-based [7–10], and fracture mechanics-based [11,12],  other methods [13,14]. These 

methods were developed to predict fatigue life in different perspectives.  

The stress-based approach is a popular method used to predict the fatigue life cycle, 

especially in high cycle fatigue (HCF). For example, the stress-based model, proposed by 

Liu and colleagues [15], modified the critical plane approach to develop a new criterion for 

predicting fatigue life in multiaxial states in constant loading. Another stress-based 

approach, proposed by Wei and colleagues [2], extended the modified critical plane [15] 

by combining the rainflow-counting algorithm and Miner's rule to develop a new model 

suitable for predicting fatigue life in random loading cases. Also, other stress-based 

approaches have been proposed to use different high-cycle fatigue criteria to predict in-

phase and out-of-phase multiaxial fatigue [16–18]. However, this stress-based model has 

a drawback such that the model is not suitable to deal with plastic regions experiencing 

low cycle fatigue (LCF). When the material deformation approaches, the plastic region it 

leads the relationship between strain and stress from linear to nonlinear, therefore the 

relationship between stress and strain cannot be defined correctly in HCF. Moreover, the 
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stress-strain curve in the plastic region is nonproportional and very unpredictable. Thus, 

the strain-based approach was developed to overcome this situation. 

The strain-based approach is proposed by several authors based on different 

concepts. For example, a strain-based model proposed by Liu [4], is based on a 

characteristic plane which is a modified critical plan concept and can deal with multiaxial 

loading condition well. Another strain-based model for fatigue crack method, proposed by 

Remes [5], can predict the fatigue life of a notch shape for a welded steel joint.  Many 

strain-based models are proposed to handle specific engineering problems. Even though 

the strain-based models can deal with the LCF, some special cases, such as perfectly elastic 

material, cannot be solved by this approach. Since the strain-based method is only related 

to strain, the out-of-phase hardening phenomenon would need another technique.  

To predict both HCF and LCF fatigue life, the energy-based approach is proposed 

[8–10,19,20]. It can solve the stress-based and strain-based model issues dealing with 

HCF and LCF in different loading conditions, at the same time. The energy-based 

approach includes both the stress and strain in the model so that it can cope with broad 

situations. The energy-based approach can directly use Young’s modulus to acquire stress 

or strain in HCF. However, the relationship between stress and strain in the plastic region 

needs to be solved by additional models, such as the  models proposed by Garud and Mróz 

[21,22] which can deal with the plasticity and determine the stress-strain curve in the 

plastic region. Even though the energy-based approach seems to be a very powerful 

method, the energy concept cannot be directly observed by eyes in physical phenomenon. 

On the other hand, the energy-based approach takes stress and strain into account and 

can include more conditions than other methods. Therefore, the energy-based model has 

been chosen in this study. 
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Beyond the three main classifications above, there are a few different approaches 

to predict fatigue life. The fracture mechanics-based approach uses the crack growth and 

the equivalent initial flaw size (EIFS) concept for the crack growth model in the Kitagawa 

Takahashi diagram. The detail about this method can be found in [23]. The fatigue model 

with the EIFS concept is also suitable for uniaxial and multiaxial loading cases [23,24]. 

The different loading can be found in the mechanical component structure. The loading 

spectrum can be classified into two types, constant loading and various (or random) 

loading. Multiaxial constant loading has been predicted very well by several models such 

as [1,4,9,15]. These models are proposed to predict constant loading since random loading 

is a more complex condition and involves other relative methods such as the rainflow-

counting algorithm. In general, the various loading spectrum condition includes various 

waves and a different R ratio in every cycle so that the prediction can be influenced by the 

R ratio, which means that the cyclic loading has different mean stress and is more difficult 

to model in a complicated random loading condition. As a result, several models are 

designed to overcome this conundrum. For the random loading multiaxial fatigue study 

there is one review paper that summarizes several criterions for solving random loading 

cases [25]. This review includes many definitions for different methods. For example, the 

fatigue model under a various loading spectrum can classify in two domains, time or 

frequency. Also, different damage rules are chosen under different models. The damage 

rule can be classified as linear and nonlinear. 

In existing literature studies there was no method suitable for both HCF and LCF 

as well as for constant loading and random loading cases. Moreover, the existing models 

apply complicated criterions to solve the problem such that different stress ratios exist in 

different cycles. This study is inspired by a desire to build a model that simplifies the 

complex procedure while at the same time predicting fatigue life in several conditions. The 
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new idea will develop a model that is suitable for constant and various loading but also can 

deal with the HCF and LCF conditions. 

In view of this, the energy-based model using the linear damage accumulation rule 

is proposed initially. The equivalent energy concept which is applied to this method 

combines the rainflow-counting algorithm and the damage accumulated rule to predict 

fatigue life. However, this method cannot properly obtain fatigue life prediction since the 

equivalent energy after applying rainflow-counting algorithm cannot track the spectrum 

history well. The author seeks an alternative way to curtail the process and make the 

predicted process clearer. Therefore, a more comprehensive approach, a time-based 

multiaxial fatigue prediction model using the energy-based method is proposed. In the 

past, the random loading fatigue model used the rainflow-counting algorithm to simplify 

the complex wave spectrum in order to acquire equivalent stress or strain. In this study, 

the rainflow-counting algorithm is removed and replaced by using a clear integration 

method. This method applies the time-based concept [26,27] to gather corresponding 

damage with energy under every cycle. The approach integrates the equivalent energy 

concept, crack propagation, and time-based concept to solve the random loading issue 

while being suitable for both HCF and LCF conditions. In this method, the crack 

propagation concept is modified to correspond to a new damage propagation concept. 

First, through the equivalent energy concept, the energy can be classified into two energies, 

distortional and dilatational energy. This simplified process can solve multiaxial loading 

easily. Secondly, the accumulation of damage per cycle can be solved by using damage 

propagation to calculate fatigue life in a cycle-based method. Lastly, the time-based 

concept is introduced to calculate the damage accumulation in a cycle. This concept can 

predict various models with no need to use the rainflow-counting algorithm.  
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The rest of the thesis will have the following arrangement. The equivalent energy 

concept will be reviewed with the energy-based model using the linear damage 

accumulated rule being discussed in detail in Chapter Two. The time-based model will be 

introduced in Chapter Three. The model will be introduced in Chapter Three where the 

damage propagation concept which modified by crack growth rule will be described in 

detail initially. Then, the time-based concept using in time-based model will be introduced. 

In addition, the validation of the model using several databases from existing documents 

will be presented. Finally, a conclusion and discussion of the results will be presented in 

Chapter Four. The future work also is mentioned at the end.  
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CHAPTER 2 

2 ENERGY-BASED FATIGUE MODEL USING THE LINEAR CUMULATIVE DAMAGE 

RULE 

2.1 Equivalent Energy Concept 

The equivalent energy concept was proposed by Wei [9]. The material under the 

HCF loading can be predicted properly by using the stress-based method. However, the 

stress-based method cannot predict the condition when a material approaches the plastic 

region since the strain growth is not proportional to stress. On the other hand, the strain-

based method is more suitable for LCF fatigue prediction. However, the strain-based 

method is highly sensitive with experimental data. The energy-based method takes both 

stress and strain into account so that the method can be applied to more conditions. Under 

the energy-based model, the stress and strain history needs to be transfered to energy 

history. In the fatigue life prediction research, energy is classified under two major 

components, dilatational and distortional energy, which is calculated under three-

dimensional conditions. The dilatational energy represents the volume change, and the 

distortional energy represents the shape change in the material.  The two energy 

components are used in the proposed energy damage parameters. The equivalent tensile 

energy, torsional energy, and hydrostatic energy are used under failure damage criterion 

and are related to experimental data which are obtained from uniaxial and pure torsional 

fatigue life data. Under this concept, general energy (total energy) can be decomposed to 

dilatational and distortional energy, as shown below. 

𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  =  𝑈𝑈𝑑𝑑𝑑𝑑𝑡𝑡  +  𝑈𝑈𝑑𝑑𝑑𝑑𝑑𝑑                  (2.1)   

where 𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is the total energy, 𝑈𝑈𝑑𝑑𝑑𝑑𝑡𝑡 is dilatational energy, and 𝑈𝑈𝑑𝑑𝑑𝑑𝑑𝑑 is distortional energy. 

Both dilatational and distortional energy can be classified under three other energy terms, 

tensile, torsional, or hydrostatic energy. The whole derivative process which calculates 
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from input dilatational and distortional energy to the three energy terms to output to 

equivalent energy is not shown here. Only the final equation is mentioned here. The 

equation can be expressed as  

𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡
𝑡𝑡𝑒𝑒 = 𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑠𝑠𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑘𝑘𝑈𝑈𝐻𝐻                                              (2.2) 

where 𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡
𝑡𝑡𝑒𝑒  is equivalent energy, 𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡  is tensile energy, 𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡  is torsional energy, 𝑈𝑈𝐻𝐻  is 

hydrostatic energy, s is a ratio of tensile and torsional fatigue limit, and k is a material 

parameter related to yield-to-ultimate strength ratio and Poisson’ ratio.  A detailed 

description of the method can be found in [9]. The equivalent energy concept mentioned 

above is to give readers some basic idea of equivalent energy.  

2.2 Application of Linear Cumulative Damage Rule and Rainflow-counting Algorithm 

2.2.1 Linear cumulative damage rule 

The linear cumulative damage rule, also called Miner’s rule, is a common method 

used for fatigue prediction for the last five decades. This method assumes that  failure of a 

material will occur when  damage approaches to 1. The total damage is a summation of 

damage for each cycle loading across all cycles. The equation can be expressed as 

𝐷𝐷 = ∑ 𝑡𝑡𝑖𝑖
𝑁𝑁𝑖𝑖

𝑘𝑘
𝑑𝑑=1                                                                           (2.3) 

where D is the damage term, n is number of cycles of stress level accumulated, and N is 

the total number of the fatigue life of the material, or the number of cycles occurring until 

material failure. According to Miner’s rule, failure occurs when the value of D equals to 

one. This method calculates fatigue in the life cycle loading condition. However, Miner’s 

rule cannot directly apply to the random loading case since the cyclic loading in every cycle 

could be different. To overcome the random loading condition, additional processing is 

necessary and will be introduced in the next section. 
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2.2.2 Rainflow-counting algorithm 

The rainflow-counting algorithm is used mainly to reduce a varying loading to a 

simple loading spectrum. The detailed derivation of the rainflow-counting algorithm can 

be found in the open literature [28,29]. The method can be applied to calculate a variety 

of loading cases. Since the rainflow-counting algorithm converts the loading spectrum and 

makes it into a single loading value, Miner’s rule can directly implement the value to 

calculate the accumulated damage. Finally, the fatigue life can be predicted by combining 

the two methods. Thus, the two methods play critical roles in the present approach.  

2.3 Model Energy Using Linear Cumulative Damage Rule 

The definition of energy under the current model is the same as the energy model 

proposed by Wei [9]. However, the energy-based approach in Wei’s study is only used to 

calculate the constant loading case. To handle random loading cases, more processes need 

to be involved. The present study proposes and verifies an alternative method to solve the 

random loading case. Specifically, I propose combining the rainflow-counting algorithm 

and damage cumulative rule to process random loading.  The method involves the 

following steps.  

First, the equivalent energy is calculated by the stress and strain data so that the 

stress and strain history would be input. Next, the input data would be used to calculate 

energy. The dilatational energy and distortional energy can be calculated separately and 

the equivalent energy can be calculated using Eq. 2.4. The rainflow-counting algorithm is 

then applied to gather each dilatational energy spectrum and distortional energy spectrum. 

Afterward, Miner’s rule is implemented. The damage accumulated function, both for 

dilatational energy and distortional energy, can be expressed as 

�
𝐷𝐷𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑 = ∑ 1

𝑓𝑓(𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑
𝑖𝑖 )

𝑁𝑁𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑
𝑑𝑑=1

𝐷𝐷𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑 = ∑ 1
𝑓𝑓(𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑

𝑖𝑖 )

𝑁𝑁𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑
𝑑𝑑=1

      (2.4) 
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where D represents the damage; 𝑁𝑁𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑and 𝑁𝑁𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑  are number of cycles of dilatational energy 

and distortional energy spectrum, respectively, after applying the rainflow-counting 

algorithm; and 𝑓𝑓(𝑈𝑈𝑑𝑑) is the fatigue function of the energy with 𝑖𝑖 representing the number 

of cycles. The two equations represent summation of the damage of energy random 

spectrum. Next, rewriting the equation for the total damage by using two energy terms, 

the equations can be expressed as 

�
𝐷𝐷𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑 = 𝑁𝑁𝑡𝑡𝑒𝑒 × 1

𝑓𝑓(𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑
𝑒𝑒𝑒𝑒 )

𝐷𝐷𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑 = 𝑁𝑁𝑡𝑡𝑒𝑒 × 1
𝑓𝑓(𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑

𝑒𝑒𝑒𝑒 )

     (2.5) 

where 𝑁𝑁𝑡𝑡𝑒𝑒  is the number of cycles for dilatational energy and distortional energy, and 

𝑁𝑁𝑡𝑡𝑒𝑒  is also used to represent the total number of cycles from the rainflow-counting 

algorithm. Each energy is associated with a damage value which is calculated from the two 

energy spectrums and can be acquired using the following equations. 

�
𝑈𝑈𝑑𝑑𝑑𝑑𝑡𝑡
𝑡𝑡𝑒𝑒 = 𝑓𝑓−1( 𝑁𝑁𝑒𝑒𝑒𝑒

𝐷𝐷𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑
)

𝑈𝑈𝑑𝑑𝑑𝑑𝑑𝑑
𝑡𝑡𝑒𝑒 = 𝑓𝑓−1( 𝑁𝑁𝑒𝑒𝑒𝑒

𝐷𝐷𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑
)
     (2.6) 

The equivalent dilatational energy and distortional energy are obtained from Eq.2.6. The 

equivalent dilatational energy and distortional energy can then be converted to the total 

energy using the equivalent energy concept proposed by Wei [9]. Eq.2.1 shows the 

relationship between the total energy and the two separate energies. Finally, the fatigue 

life can be directly calculated by the equivalent energy fatigue prediction model. The 

equation of the fatigue life prediction model can be modified and expressed as 

𝑈𝑈𝑁𝑁𝑓𝑓
𝑡𝑡𝑒𝑒 = 𝑓𝑓(𝑁𝑁𝑓𝑓)      (2.7) 

where 𝑈𝑈𝑁𝑁𝑓𝑓
𝑡𝑡𝑒𝑒  is the equivalent energy converted from dilatational energy and distortional 

energy and corresponds to the uniaxial equivalent Energy-N curve. The energy which is 

caused by torsion loading data has been transferred to the uniaxial energy data while the 
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hydrostatic energy is also transferred to uniaxial energy data. The detail for the equation 

derivation can be found in the energy-based model [9]. 

2.4 Validation 

The proposed model is valid for Aluminum T7075-T651 experimental data that 

include different loading paths and loading types including uniaxial and multiaxial loading. 

The data on the material were collected by random loading cases which include several 

spectrums. Both predicted results of uniaxial and multiaxial loading spectrums are shown 

in Fig. 1. More data and details will be discussed in the next chapter. 

 
Fig. 1 Comparison Between Predicted and Experimental Fatigue Life Under Al T7075 

 
 
 
 

2.5 Conclusion 

A modified energy-based model is proposed. The proposed model can calculate 

fatigue life under random loading cases by combining rainflow-counting algorithm and 
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Miner’s rule. The rainflow-counting algorithm reduces the complex loading cases to an 

equivalent constant loading case. The fatigue life can be calculated by Miner’s rule that 

obtains corresponding damage in the different loading cycles. Two different loading path 

datasets under random loading case have been tested by the proposed model. The result 

shows that the accuracy of most data points is outside of error factor 3. Even though the 

modified energy-based model can handle random loading cases, the predicted accuracy 

needs to be improved. Therefore, the second energy-based model is proposed.  
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3 TIME-BASED FATIGUE LIFE PREDICTION MODEL USING ENERGY-BASED 

METHOD 

In this study, the equivalent energy also needs to be implemented in the first step. 

The details of the equivalent energy concept have been discussed in section 2.1. The time-

based model of process is illustrated in Fig. 2. The detailed derivations will be discussed 

in the following section. 

 
Fig. 2 Time-based Fatigue Model Flow-Chart 

 

The time-based integration concept can be easily illustrated; Fig. 3 shows the 

relationship between the equivalent energy and time. The shaded area corresponds to the 

damage. The damage value at every time point can be calculated directly by integrating 

time. For instance, the damage value in the current cycle can be calculated by taking 

integration from the minimum energy to the maximum energy. In addition, the damage 

value can be an accumulation from the minimum energy to the maximum energy. The 

time range can be divided into four areas by selecting five points in the range between the 

minimum energy and the maximum energy. The damage value can be determined directly 

by this process. Therefore, the fatigue life can be easily predicted by this concept. 

1
• Input stress and strain spectrum

2
• Calculate equivalent energy

3
• Time-based integration

4
• Predict fatigue life using damage propagation rule
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Fig. 3 Time-Based Integration Concept 

3.1 Damage Propagation Based on Paris’ Law Development 

Cracks are commonly observed in mechanical components. After applying cycle 

loading for a period of time, a crack would initially grow very slowly but grow more quickly 

toward the end.  This phenomenon is called fatigue crack propagation. Before explaining 

fatigue crack propagation, an important concept in fracture mechanics, stress intensity 

factor (SIF), will be introduced. The SIF describes the relationship between the crack 

propagation rate and the stress state at a crack tip. The function of SIF is shown as 

𝐾𝐾 = 𝑌𝑌𝜎𝜎√𝜋𝜋𝜋𝜋                                                                          (3.1) 

where K is the stress intensity factor, Y is the geometric value, σ is stress, and a is the crack 

length. Since the cyclic loading would be applied to the material, the applied stress would 

be defined as a range. The change of the function can be defined as 

 ∆𝐾𝐾 = 𝑌𝑌∆𝜎𝜎√𝜋𝜋𝜋𝜋                                                                    (3.2) 

where ∆𝜎𝜎 is the stress range from minimum to maximum stresses (also can be expressed 

as ∆𝜎𝜎 = 𝜎𝜎𝑚𝑚𝑡𝑡𝑚𝑚 − 𝜎𝜎𝑚𝑚𝑑𝑑𝑡𝑡). The relationship between fatigue crack propagation and SIF will be 

discussed in the next paragraph.      
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 The formula for rate of crack growth in the number of cycles is represented as ∆𝑡𝑡
∆𝑁𝑁

. 

The crack propagation rate is driven by the stress intensity range ∆𝐾𝐾 and the expression 

can be shown as a differential form,  𝑑𝑑𝑡𝑡
𝑑𝑑𝑁𝑁

. The crack propagation rate is shown as a curve in 

Fig. 4. 

 

Fig. 4 The Relationship Between Crack Length Growth Rate and Stress Intensity Range 

in Log Scale 

In the traditional theory there are three phases in the fatigue crack propagation. Phase I 

is the value below the 𝐾𝐾𝑡𝑡ℎ point.  The crack propagation is difficult to observe; it hardly 

grows in this region. Thus, the crack would not propagate in the material below the 

threshold value. When the crack grows continuously beyond the 𝐾𝐾𝑡𝑡ℎ point and grows into 

the next region, the curve will become a straight line -- that is phase II. Phase II is the most 

important region and is the focus of this study. In Phase II, there is a linear relationship 

between log 𝑑𝑑𝑡𝑡
𝑑𝑑𝑁𝑁

 and log(∆𝐾𝐾). After the linear relationship, the crack keeps growing into the 

next phase – Phase III. When the 𝐾𝐾 value approaches this region, the stress intensity will 
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increase dramatically and the material will fail when the value approaches the critical 

point, 𝐾𝐾𝑐𝑐. The 𝐾𝐾 value depends on crack length. The relationship of SIF and stress range 

can be found in Eq. 3.2.  

Phase II will be discussed in more detail in the following. The linear relationship 

of crack length and SIF is known as Paris’ curve or Paris’ law. The equation of this straight 

line can be expressed as 

𝑑𝑑𝑡𝑡
𝑑𝑑𝑁𝑁

= 𝐶𝐶(∆𝐾𝐾)𝑚𝑚                                                                      (3.3) 

where 𝐶𝐶  and 𝑚𝑚  are material fitting parameters. Integrating Paris’ law allows us to 

calculate the fatigue life directly when phase II includes the significant part of the fatigue 

life. In this study, a new damage fatigue concept is implemented. Paris’ law enables us to 

calculate fatigue life by calculating the crack length; by the same token, calculating damage 

enables us to acquire the corresponding fatigue life. Therefore, damage 𝐷𝐷 is introduced 

here and it replaces the original crack length to represent a new function. The function can 

be shown as 

𝑑𝑑𝐷𝐷
𝑑𝑑𝑁𝑁

= 𝐶𝐶(∆𝐾𝐾)𝑚𝑚                                                                      (3.4) 

where 𝑑𝑑𝐷𝐷
𝑑𝑑𝑁𝑁

 is the damage per cycle, and the rest of the parameters are the same as Eq. 3.3. 

The original definition for ∆𝐾𝐾  is equal to (𝐾𝐾𝑚𝑚𝑡𝑡𝑚𝑚 − 𝐾𝐾𝑚𝑚𝑑𝑑𝑡𝑡);  this ∆𝐾𝐾  is the original stress 

intensity factor. Now the damage concept that is mentioned above is implemented by 

replacing the crack length by the damage parameter.  Therefore, the SIF equation can be 

rewritten as 

∆𝐾𝐾 = ∆𝜎𝜎√𝜋𝜋𝐷𝐷      (3.5) 

It is assumed that the geometric function can be ignored so that 𝑌𝑌 is equal to 1 since the 

predicted process does not consider the geometric shape.  
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With the damage propagation being defined above, the term energy will be defined 

as the following. Since the stress-based approach applies to high cycle fatigue, the energy 

phase in this study is expected to be applicable in various conditions no matter HCF or 

LCF. The energy range is defined as 

∆𝑈𝑈 = (𝑈𝑈𝑚𝑚𝑡𝑡𝑚𝑚 − 𝑈𝑈𝑚𝑚𝑑𝑑𝑡𝑡)                                                         (3.6)       

where ∆𝑈𝑈 is the energy range, 𝑈𝑈𝑚𝑚𝑡𝑡𝑚𝑚 is maximum energy, and 𝑈𝑈𝑚𝑚𝑑𝑑𝑡𝑡 is minimum energy.  

Note that the two terms, stress and energy, are based on different concepts. The 

energy term cannot be less than zero. Thus, replacing stress with energy in the following 

equation is the first step. The relationship between stress and energy is shown as  

𝜎𝜎 = √2𝐸𝐸𝑈𝑈                                                                            (3.7) 

where E is Young’s modulus, energy is 𝑈𝑈, and 𝜎𝜎 is stress. Since the basic knowledge is 

based on the strain density energy formula, the stress is directly relative to energy. Now, 

the domain of the method is changed from stress-based to energy-based. As mentioned 

before, the energy-based method enables us to deal with both high cycle fatigue and low 

cycle fatigue which both apply to elastic region and plastic region fatigue life prediction. 

Note that the stress spectrum with no mean stress can be shown as Fig. 5. The energy 

spectrum after transferring from stress spectrum can be shown as Fig. 6. Thus, the SIF is 

related to energy.  

 

 

Fig. 5 Stress Spectrum 
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Fig. 6 Energy Spectrum 

The 𝐾𝐾𝑚𝑚𝑑𝑑𝑡𝑡 can be determined to be zero since the minimum energy is zero when the stress 

has no mean value. The equation can be converted as 

 𝑑𝑑𝐷𝐷
𝑑𝑑𝑁𝑁

= 𝐶𝐶 (𝐾𝐾 − 0)𝑚𝑚 = 𝐶𝐶 (√2𝜋𝜋𝐷𝐷𝐸𝐸𝑈𝑈)𝑚𝑚                              (3.8) 

The cycle-based method in energy phase which is computed based on the modified Paris’ 

law is also called damage propagation function in energy phase. Thus, the fatigue life can 

be calculated from Eq. 3.8 under the cycle-based method. The following steps show the 

derivative equations. After rearranging Eq. 3.8, the equation can be expressed as  

𝐷𝐷−
𝑚𝑚
2 𝑑𝑑𝐷𝐷 = 𝐶𝐶 (2𝜋𝜋𝐸𝐸)

𝑚𝑚
2𝑈𝑈

𝑚𝑚
2 𝑑𝑑𝑁𝑁                                                (3.9) 

To calculate the relationship between damage and energy, taking the integration for Eq. 

3.9 is essential. The integrating range for damage is from initial damage to one which 

means the whole damage process in the material. When the damage value approach 1, it 

is assumed that the material will fail at that point. On the other hand, the fatigue life is 

from 0 to 𝑁𝑁𝑓𝑓. The variable 𝑁𝑁𝑓𝑓 is the predicted fatigue life. The equation can be expressed 

as 

∫ 𝐷𝐷−
𝑚𝑚
2

1
𝐷𝐷0

𝑑𝑑𝐷𝐷 = ∫ 𝐶𝐶 (2𝜋𝜋𝐸𝐸)
𝑚𝑚
2𝑈𝑈

𝑚𝑚
2 𝑑𝑑𝑁𝑁𝑁𝑁𝑓𝑓

0                                   (3.10) 

Therefore, the power function can obtain the fatigue life by solving Eq. 3.10.  

𝑁𝑁𝑓𝑓 = 2
𝐶𝐶(2−𝑚𝑚)

(1 − 𝐷𝐷0
2−𝑚𝑚
2 )(2𝜋𝜋𝐸𝐸)−

𝑚𝑚
2𝑈𝑈−𝑚𝑚2                              (3.11) 
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Eq. 3.11 represents a power function Therefore, the energy-curve power function, which is 

calculated from experimental tension and torsion datasets, can assist to find 𝐶𝐶  and 𝑚𝑚 

values. The energy-curve power function can be expressed as  

𝑈𝑈 = 𝑝𝑝 × 𝑁𝑁𝑓𝑓𝑒𝑒                                                                         (3.12) 

𝑈𝑈 is energy, 𝑁𝑁𝑓𝑓 is fatigue life from the experimental data, and 𝑝𝑝, 𝑞𝑞 are constant. Hence, the 

𝐶𝐶  and 𝑚𝑚  can correspond to 𝑝𝑝  and 𝑞𝑞  by solving Eq. 3.11 and Eq. 3.12. The parameter 

relationship is shown as 

�
𝐶𝐶 = 2

(2−𝑚𝑚)
(1 − 𝐷𝐷0

2−𝑚𝑚
2 )(2𝜋𝜋𝐸𝐸𝑝𝑝)−

𝑚𝑚
2

𝑚𝑚 = − 1
𝑒𝑒

                                     (3.13) 

Although this function can calculate fatigue life, there is a drawback. When the cycle-based 

approach is applied to a random loading condition, it cannot calculate predicted life 

directly since the stress or energy range are different in every cycle. Thus, one additional 

process must be considered. The rainflow-counting algorithm will be applied to deal with 

various loading cases. One of the study ideas is inspired by removing this step. For the 

damage propagation equation along with the energy-based model, the constant loading 

cases in both high cycle fatigue and low cycle fatigue can be solved. However, the random 

loading cases cannot be solved with the cycle-based model. To overcome this problem that 

avoids using the rainflow-counting algorithm, the new concept must be involved. Thus, 

the sub-cycle which is also called time-based method is used to deal with the random 

loading cases. The detail will be found in section 3.3.  

 

3.2 Sub-cycle Damage Growth Function Development 

The sub-cycle concept, also called the time-based concept, is used to calculate the 

cyclic loading spectrum in every moment of time. The sub-cycle fatigue crack growth 

function, which is proposed by [27], is based on this concept. The approach is applied to 
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deal with various loading cases. Also, the crack length can be calculated by integrating the 

loading spectrum.  Integrating the sub-cycle crack growth function for one cycle can obtain 

the relationship between crack growth rate per cycle and energy function [27]. The 

expression is shown as 

𝑑𝑑𝑡𝑡
𝑑𝑑𝑁𝑁

= ∫ 𝑑𝑑𝑡𝑡
𝑑𝑑𝑑𝑑

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑𝑜𝑜𝑜𝑜

�𝜎𝜎, �̇�𝜎,𝜋𝜋,𝐸𝐸,𝜎𝜎𝑦𝑦 … �𝑑𝑑𝜎𝜎                                    (3.14) 

where 𝑑𝑑𝑡𝑡
𝑑𝑑𝑁𝑁

 is crack length per cycle, 𝜎𝜎𝑚𝑚𝑡𝑡𝑚𝑚  and 𝜎𝜎𝑡𝑡𝑜𝑜  are maximum and opening stress, 

respectively.  𝑑𝑑𝑡𝑡
𝑑𝑑𝑑𝑑
�𝜎𝜎, �̇�𝜎,𝜋𝜋,𝐸𝐸,𝜎𝜎𝑦𝑦 … �  is a sub-cycle crack growth function that depends on 

stress 𝜎𝜎, loading rate �̇�𝜎, crack length 𝜋𝜋, Young’s modulus of material 𝐸𝐸, yield stress 𝜎𝜎𝑦𝑦, and 

other parameters that contribute to this equation. In this function, the crack growth only 

considers from 𝜎𝜎𝑡𝑡𝑜𝑜 to 𝜎𝜎𝑚𝑚𝑡𝑡𝑚𝑚 and there is no crack growth in the unloading area. Other than 

the sub-cycle crack growth function, there is another important concept needed to be 

discussed. The detail will be shown below. 

 

Fig. 7 The Relationship of Crack Length Increase Rate and CTOD at Sub-Cycle Scale [27] 
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The proposed approach is a sub-cycle crack growth function through a geometrical 

relationship between incremental crack growth 𝑑𝑑𝜋𝜋 and the change in the crack tip opening 

displacement (CTOD)[30]. The CTOD is a critical concept in the sub-cycle crack growth 

function. The CTOD increases when the crack starts to open. However, the detail about 

CTOD is not discussed here. More information can be found in situ SEM testing research 

[31,32]. Only a few important concepts will be mentioned in this study. Fig. 7 shows a 

nonlinear relationship between crack length and CTOD. The phase II segment in Fig. 4, 

the curve, can be observed through a power function. 𝐾𝐾𝑚𝑚𝑡𝑡𝑚𝑚  is the maximum stress 

intensity factor. The power function also depends on 𝐾𝐾𝑚𝑚𝑡𝑡𝑚𝑚. The tendency observed is such 

that a larger slope in the curve means a smaller maximum stress intensity factor and vice 

versa. The curve, a power function, can be expressed as  

∆𝜋𝜋 = 𝐴𝐴𝐾𝐾𝑚𝑚𝑡𝑡𝑚𝑚𝐵𝐵 𝛿𝛿𝑑𝑑                                                                   (3.15) 

where ∆𝜋𝜋  is the incremental crack length in the current cycle, 𝐴𝐴  and 𝐵𝐵  are fitting 

parameters, 𝛿𝛿 is the CTOD which is considered as the crack growth during the increasing 

part of the loading portion, and 𝑑𝑑 is the material parameter.  

After introducing the two kernel sections of the sub-cycle crack growth function, 

the next step is to determine the sub-cycle damage growth function. The idea of the sub-

cycle damage growth function is the same as in the previous section which replaces crack 

length with damage. The first is to determine the equation that can describe the 

relationship between damage and CTOD. Thus, the Eq. 3.15 can be rewritten as  

∆𝐷𝐷 = 𝐴𝐴𝐾𝐾𝑚𝑚𝑡𝑡𝑚𝑚𝐵𝐵 𝛿𝛿𝑑𝑑                                               (3.16)  

where ∆𝐷𝐷 is incremental damage in the current cycle, and the other parameters are the 

same as those in Eq.  3.15. Taking the differential form for both sides of Eq. 3.16, the 

equation can be expressed as             

𝑑𝑑𝐷𝐷
𝑑𝑑𝑡𝑡

= 𝐴𝐴𝐾𝐾𝑚𝑚𝑡𝑡𝑚𝑚𝐵𝐵 𝛿𝛿𝑑𝑑−1 𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

                   (3.17) 
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where 𝑑𝑑𝐷𝐷
𝑑𝑑𝑡𝑡

 is the damage growth rate, and 𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

 is the CTOD change rate. The 𝐾𝐾𝑚𝑚𝑡𝑡𝑚𝑚  can be 

written as  

𝐾𝐾𝑚𝑚𝑡𝑡𝑚𝑚 = 𝜎𝜎𝑚𝑚𝑡𝑡𝑚𝑚(𝜋𝜋𝐷𝐷)
1
2                 (3.18) 

where 𝐾𝐾𝑚𝑚𝑡𝑡𝑚𝑚  is the largest intensity factor, 𝜎𝜎𝑚𝑚𝑡𝑡𝑚𝑚  is the maximum stress, and 𝐷𝐷  is the 

damage in the current state. Note that 𝐾𝐾𝑚𝑚𝑡𝑡𝑚𝑚 is the largest stress intensity factor from the 

previous loading. When the 𝐾𝐾𝑚𝑚𝑡𝑡𝑚𝑚 is in a constant loading case, the value can be considered 

as a constant. On the other hand, a random loading case includes different 𝐾𝐾𝑚𝑚𝑡𝑡𝑚𝑚 values in 

the various waveform. Before entering the next step, the CTOD will be mentioned here. 

The relationship between stress intensity factor and CTOD is shown as 

𝛿𝛿 = ∆𝐾𝐾𝑒𝑒𝑓𝑓𝑓𝑓2

2𝐸𝐸𝑑𝑑𝑦𝑦
= (0.6∆𝐾𝐾)2

2𝐸𝐸𝑑𝑑𝑦𝑦
                 (3.19) 

where ∆𝐾𝐾  is the stress intensity factor range, 𝐸𝐸  is Young’s modulus, and 𝜎𝜎𝑦𝑦  is yield 

strength. The minimum energy value is zero when the stress spectrum has no mean stress, 

which is mentioned above. The equation can be expressed as  

𝛿𝛿 = (0.6𝐾𝐾−0)2

2𝐸𝐸𝑑𝑑𝑦𝑦
= (0.6𝐾𝐾)2

2𝐸𝐸𝑑𝑑𝑦𝑦
                                                        (3.20) 

The equation can be expressed as Eq. 3.21 after substituting the largest SIF and CTOD in 

the original damage growth function. 

∆𝐷𝐷 = 𝐴𝐴[𝜎𝜎𝑚𝑚𝑡𝑡𝑚𝑚(𝜋𝜋𝐷𝐷)
1
2]𝐵𝐵 (𝑑𝑑

2𝜋𝜋𝐷𝐷
2𝐸𝐸𝑑𝑑𝑦𝑦

)𝑑𝑑                             (3.21) 

Now, the damage growth function is shown as a stress-based function.  To apply more 

situations such as the energy-based model mentioned earlier, this equation needs to be 

converted from a stress-based to energy-based function. Eq. 3.7 is applied to replace the 

stress with energy and the maximum stress intensity factor also will be converted to the 

maximum energy intensity factor. The equation can be expressed as 

𝐾𝐾𝑚𝑚𝑡𝑡𝑚𝑚 = (2𝜋𝜋𝐷𝐷𝐸𝐸𝑈𝑈𝑚𝑚𝑡𝑡𝑚𝑚)
1
2                    (3.22) 
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where 𝐾𝐾𝑚𝑚𝑡𝑡𝑚𝑚 is the maximum energy intensity factor, 𝐷𝐷 is damage, 𝐸𝐸 is Young’s modulus, 

and 𝑈𝑈𝑚𝑚𝑡𝑡𝑚𝑚 is maximum energy. Now, all stress terms are transferred to energy phase terms 

which means that the function can be applied in both HCF and LCD while managing the 

constant loading and various loading in the time-based damage propagation function. 

When Eq. 3.7 and Eq. 3.22 are substituted in Eq. 3.16, the equation will be shown as  

∆𝐷𝐷 = 𝐴𝐴(2𝜋𝜋𝐷𝐷𝐸𝐸𝑈𝑈𝑚𝑚𝑡𝑡𝑚𝑚)
𝐵𝐵
2(2𝜋𝜋𝐷𝐷𝐸𝐸𝑈𝑈

2𝐸𝐸𝑑𝑑 𝑦𝑦
)𝑑𝑑                            (3.23) 

where ∆𝐷𝐷 is incremental damage. Eq. 3.23 can be taken as a derivative to represent a 

continuous form as  

𝑑𝑑𝐷𝐷
𝑑𝑑𝑈𝑈

= 𝐴𝐴𝑑𝑑(2𝜋𝜋𝐸𝐸𝑈𝑈𝑚𝑚𝑡𝑡𝑚𝑚)
𝐵𝐵
2  ( 𝜋𝜋

𝑑𝑑𝑦𝑦
)𝑑𝑑𝐷𝐷

𝐵𝐵
2+𝑑𝑑𝑈𝑈𝑑𝑑−1               (3.24) 

Eq. 3.24 is derivative by time. Thus, using the same technique as Eq. 3.14, the function 

integrates a complete cycle to acquire the damage increment per cycle. The time-based 

concept can be involved to calculate the value while modifying Eq. 3.14 to a damage-energy 

form. The equation can be expressed as   

 𝑑𝑑𝐷𝐷
𝑑𝑑𝑁𝑁

= ∫ 𝑑𝑑𝐷𝐷
𝑑𝑑𝑈𝑈

𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚
𝑈𝑈𝑚𝑚𝑖𝑖𝑚𝑚

�𝑈𝑈, �̇�𝑈,𝐷𝐷,𝐸𝐸,𝜎𝜎𝑦𝑦 … �𝑑𝑑𝑈𝑈                            (3.25) 

where 𝑑𝑑𝐷𝐷
𝑑𝑑𝑁𝑁

 is damage per cycle, 𝑈𝑈𝑚𝑚𝑡𝑡𝑚𝑚 and 𝑈𝑈𝑚𝑚𝑑𝑑𝑡𝑡 is maximum energy and minimum energy, 

respectively. Note that the minimum energy is used here since the energy intensity factor 

range is converted to minimum loading level but not opening loading level and the 

minimum is assumed to be zero. The 𝑑𝑑𝐷𝐷
𝑑𝑑𝑈𝑈
�𝑈𝑈, �̇�𝑈,𝐷𝐷,𝐸𝐸,𝜎𝜎𝑦𝑦 … � is a sub-cycle damage growth 

function that depends on energy 𝑈𝑈, energy rate �̇�𝑈, damage 𝐷𝐷, Young’s modulus of material 

𝐸𝐸, yield strength 𝜎𝜎𝑦𝑦, and any other parameter that can contribute to this equation. The 

equation after applying Eq. 3.25 can be expressed as 

𝑑𝑑𝐷𝐷
𝑑𝑑𝑁𝑁

= 2𝐴𝐴𝑑𝑑(2𝜋𝜋𝐸𝐸𝑈𝑈𝑚𝑚𝑡𝑡𝑚𝑚ℎ𝑑𝑑𝑑𝑑 )
𝐵𝐵
2  ( 𝜋𝜋

𝑑𝑑𝑦𝑦
)𝑑𝑑𝐷𝐷

𝐵𝐵
2+𝑑𝑑 ∫ 𝑈𝑈𝑑𝑑−1𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚

𝑈𝑈𝑚𝑚𝑖𝑖𝑚𝑚
𝑑𝑑𝑈𝑈         (3.26) 
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where 𝑑𝑑𝐷𝐷
𝑑𝑑𝑁𝑁

 is damage increment per cycle, ∫ 𝑈𝑈𝑑𝑑−1𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚
𝑈𝑈𝑚𝑚𝑖𝑖𝑚𝑚

𝑑𝑑𝑈𝑈 is the accumulated energy in the 

current completed cycle. 𝑈𝑈𝑚𝑚𝑡𝑡𝑚𝑚ℎ𝑑𝑑𝑑𝑑  depends on the loading cases. If there is constant loading, 

the value is the same as the maximum energy 𝑈𝑈𝑚𝑚𝑡𝑡𝑚𝑚 in the equation. If there is various 

loading, the value would be a memory maximum energy which is collected by presenting 

one hundred cycles maximum energy and selecting the largest one of the values from the 

cycles. Other parameters are the same as mentioned before. The main purpose in this 

function is to first, gather the damage at every time point loading history. Then, take the 

integration for a complete cycle to obtain the corresponded damage per cycle. The 

significant advantage is that even though there is different damage in various loading 

conditions, every cycle collect its damage. Hence, the fatigue life can be precisely 

calculated by integration. The material will fail when the value of damage grows and the 

value approaches 1. In other words, the damage can continuously accumulate to a certain 

value to correspond to the fatigue life. Now, the following steps are shown in the whole 

process. The complicated formula is simplified by an α to make the equation more 

understandable. The equation is expressed as 

𝛼𝛼 = 𝐴𝐴(2𝜋𝜋𝐸𝐸𝑈𝑈𝑚𝑚𝑡𝑡𝑚𝑚ℎ𝑑𝑑𝑑𝑑 )
𝐵𝐵
2  ( 𝜋𝜋

𝑑𝑑𝑦𝑦
)𝑑𝑑                                                   (3.27) 

where 𝛼𝛼 is expressed by this equation. Therefore, Eq. 3.26 can be rewritten as  

𝑑𝑑𝐷𝐷
𝑑𝑑𝑁𝑁

= 2𝑑𝑑𝛼𝛼𝐷𝐷
𝐵𝐵
2+𝑑𝑑 ∫ 𝑈𝑈𝑑𝑑−1𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚

𝑈𝑈𝑚𝑚𝑖𝑖𝑚𝑚
𝑑𝑑𝑈𝑈                                         (3.28) 

Eq. 3.28 represents a function of damage increment per cycle. After the equation is 

simplified by integrating the energy and rearranging it, the equation can be shown as 

 𝑑𝑑𝐷𝐷
𝑑𝑑𝑁𝑁

= 𝛼𝛼𝐷𝐷−(𝐵𝐵2+𝑑𝑑)(𝑈𝑈𝑚𝑚𝑡𝑡𝑚𝑚𝑑𝑑 − 𝑈𝑈𝑚𝑚𝑑𝑑𝑡𝑡𝑑𝑑 )                (3.29) 

Now, the equation is related to maximum energy and minimum energy. This damage 

function can directly calculate the fatigue life by using the peak and valley values from the 

loading spectrums. Since the time-based concept has been applied in this study, the 
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loading spectrums could include different frequency. Thus, the equation had to be 

changed phase from the cycle-based concept to the time-based concept. The equation can 

be expressed as  

𝑑𝑑𝐷𝐷
𝑑𝑑𝑁𝑁

= 𝛼𝛼𝐷𝐷−(𝐵𝐵2+𝑑𝑑)(𝑈𝑈𝑡𝑡+1𝑑𝑑 − 𝑈𝑈𝑡𝑡𝑑𝑑)                                         (3.30) 

where 𝑑𝑑𝐷𝐷
𝑑𝑑𝑁𝑁

 is damage increment per cycle, D is the current damage, 𝑈𝑈𝑡𝑡+1 is the energy value 

at the next point, 𝑈𝑈𝑡𝑡  is the energy value at the current point and 𝑑𝑑  is the material 

parameter in damage propagation. In this study, the 𝑑𝑑 is set as 0.01. Now, 𝐴𝐴 and 𝐵𝐵 are 

fitting parameters and still unknown. Therefore, the next step is using another technique 

to obtain the 𝐴𝐴 and 𝐵𝐵 parameters. In this section, the time-based damage propagation 

function was discussed.                            

Finally, the fatigue life can be calculated directly by accumulating every time step. 

The failure criterion is that the material fails when damage value approaches to 1. The 

equation can be expressed as 

𝐷𝐷𝑁𝑁𝑓𝑓 = 𝐷𝐷𝑡𝑡−1 + 𝑑𝑑𝐷𝐷
𝑑𝑑𝑁𝑁

≥ 1                                                 (3.31) 

 

3.3 Model Parameter Calibration   

The unknown parameters still need to be determined by experimental data. For 

the previous section, the experimental data is verified for Eq. 3.17. Now, only the 

parameters in the time-based damage propagation function need to be clarified. The 

parameter calibration method will be used here [26]. The time-based function can be 

compared with Paris’ law when the function is shown as Eq. 3.28. Since Eq. 3.28 is shown 

as damage per cycle 𝑑𝑑𝐷𝐷
𝑑𝑑𝑁𝑁

 , the function can be corresponded as  

𝑑𝑑𝐷𝐷
𝑑𝑑𝑁𝑁

= 𝐶𝐶(∆𝐾𝐾)𝑚𝑚 = 𝐴𝐴𝐾𝐾𝑚𝑚𝑡𝑡𝑚𝑚𝐵𝐵 𝛿𝛿𝑑𝑑                                                (3.32) 
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Then, the CTOD can also be represented as Eq. 3.20 and these two equations are combined. 

The function will be express as  

𝐶𝐶(∆𝐾𝐾)𝑚𝑚 = 𝐴𝐴𝐾𝐾𝑚𝑚𝑡𝑡𝑚𝑚𝐵𝐵 (0.36∆𝐾𝐾2

2𝐸𝐸𝑑𝑑𝑦𝑦
)𝑑𝑑                                             (3.33) 

Therefore, comparing the parameters to fit the 𝐴𝐴  and 𝐵𝐵 . The material parameter 𝑑𝑑, 

depends on the material and will be added into the model. Since the open cracking needs 

to be considered, the parameter calibration can be classified as two parts separated by R 

ratio. When R ≥ 0, the fitting parameters can be shown as  

�𝐴𝐴 = 𝐶𝐶(0.36)−𝑑𝑑(1 − 𝑅𝑅)𝐵𝐵(2𝐸𝐸𝜎𝜎𝑦𝑦)𝑑𝑑 
𝐵𝐵 = 𝑚𝑚 − 2𝑑𝑑

                                    (3.34) 

Where 𝐶𝐶 and 𝑚𝑚 are fitted from the tension or torsion experimental data, R is the stress 

ratio which is calculated in loading spectrum, 𝑑𝑑  is material parameter, 𝐸𝐸  and 𝜎𝜎𝑦𝑦  are 

Young’s modulus and yield strength, respectively, and  𝐴𝐴  and 𝐵𝐵  are the target fitting 

parameters. 

When R＜0, the fitting parameters can be shown as  

�𝐴𝐴 = 𝐶𝐶(0.36)−𝑑𝑑(1 − 𝑅𝑅)𝐵𝐵+2𝑑𝑑(1 − 𝛽𝛽𝑅𝑅)−2𝑑𝑑(2𝐸𝐸𝜎𝜎𝑦𝑦)𝑑𝑑 
𝐵𝐵 = 𝑚𝑚 − 2𝑑𝑑

        (3.35) 

β is calibrated with a negative stress ratio fatigue crack growth test. Detail about β can be 

found in [27]. It varies by different metal materials. The expression can be approximated 

as 

𝛽𝛽 = 30.091𝜎𝜎𝑦𝑦−0.797                                                              (3.36) 

Since the equivalent energy concept is used here, the mean stress is converted to zero so 

that Eq. 3.34 will only be used in the model. However, the spectrum that includes mean 

stress can still apply Eq. 3.35 to fit the parameters. Finally, the model parameter 

calibration confirmed the A and B as the last step. The model is ready to calculate the 

fatigue life now. 
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3.4 Model Validation 

The proposed model is validated by several open literature [2,33–40]. The 

collected data include different loading paths and different materials. Fig. 8 shows the 

loading paths of the data used in the current study. The datasets include uniaxial and 

multiaxial loading. Most of the collected data apply to materials that have constant loading 

cases, and only one dataset applies to materials that have various loading. The data with 

various loading include several spectrums. The spectrums for HCF under multiaxial 

random loading cases are shown in Fig. 9. The spectrums for HCF under uniaxial random 

loading cases are shown in Fig. 10. The spectrums for LCF+HCF under uniaxial and 

multiaxial random loading cases are shown in Fig. 11. Table 1 summarizes the details of 

the fatigue testing spectrums under HCF and Table. 2 shows the spectrums under 

HCF+LCF. According to the hypothesis, this proposed model is suitable for both the 

tension-torsion state and the tension-tension state while it can also deal with different 

spectrums. In this report, the collected data are validated only by the tension-torsion state. 

Although this model can be applied to the biaxial loading cases, the validation by tension-

tension loading cases can be studied in the future. Table. 3 shows the summary of the 

materials and several loading paths. The references are listed in the last column and the 

material properties can be found in the references. The results of the predicted fatigue life 

and experimental fatigue life in constant loading for seven materials are shown in Fig. 12. 

The fatigue life prediction of random loading for both uniaxial and multiaxial loading 

under Al T7075 is shown in Fig. 13. 
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Table 1. Summary of Fatigue Testing Spectrum Under Random Loading Conditions in 

HCF. 

Spectrum name Loading path Fatigue life 

Linear Uniaxial 2,112,921 

Simplified linear Uniaxial 736,909 

FELIX  Uniaxial 5,956,555 

FELIX + 35 Uniaxial 1,971920 

Modified FELIX Uniaxial 2,905,820 

Simplified max(FELIX) + 35 Uniaxial 1,196,807 

Proportional FELIX Multiaxial 1,338,786 

Modified proportional FELIX Multiaxial 1,745,638 

CWT edited proportional FELIX Multiaxial 5,106,200 

Nonproportional FELIX Multiaxial 1,191,522 

Modified nonproportional FELIX Multiaxial 405,053 

 

 

Table 2. Summary of Fatigue Testing Spectrum Under Random Loading Conditions in 

HCF+LCF. 

Spectrum name Loading path Fatigue life 

Linear_HCF+LCF Uniaxial 68,894 

Nonlinear_HCF+LCF Uniaxial 35,908 

Proportional_HCF+LCF Multiaxial 11,046 

Nonproportional_HCF+LCF Multiaxial 17,575 
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Table 3. Summary of Collected Experimental Data. 

Material Loading Path Reference 

AISI 304 Steel Uni, Tor, Pro, Sin90 [33] 

A533B Uni, Tor, Pro, Sin90 [34] 

S45C Steel Uni, Tor, Pro, Sin90, Sin45, Sin22.5 [35] 

SAE 1045 Uni, Tor, Pro, Sin90, box [36] 

S460N Uni, Tor, Pro, Sin90 [37] 

Al T6061 Uni, Tor, Sin90 [39] 

Al T7075 Uni, Tor, Pro, Sin90 [2,40] 

 

 

Fig. 8 Stress Paths of Data Used in the Current Study 
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(a) Proportional FELIX Spectrum 

 

(b) Modified Proportional FELIX Spectrum 
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(c) CWT Edited Proportional FELIX Spectrum 

 

(d) Nonproportional FELIX Spectrum 
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(e) Modified Nonproportional FELIX Spectrum 

Fig. 9 Generated Spectrum for Fatigue Testing Under Multiaxial Random Loading 

 

(a) FELIX Spectrum 

 

(b) FELIX + 35 Spectrum 
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(c) Modified FELIX Spectrum 

 

(d) Simplified Max(FELIX) + 35 Spectrum 

 

(e) Linear Spectrum 

 

(f) Simplified Linear Spectrum 

Fig. 10 Generated Spectrum for Fatigue Testing Under Uniaxial Random Loading 
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(a) HCF+LCF Linear Spectrum 

 

(b) HCF+LCF Nonlinear Spectrum 
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(c) HCF+LCF Proportional Spectrum 

 

 

(d) HCF+LCF Proportional Spectrum 

Fig. 11 HCF+LCF Spectrum for Fatigue Testing Under Multiaxial Random Loading 
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(a) AISI 304 Steel 

 
(b) A533B 
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(c) S45C Steel 

 
(e) S460N 
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(d) SAE 1045 

 
(f) Al T6061                                                                                                 
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(g) Al T7075 

Fig. 12 Predicted Fatigue Life and Experimental Fatigue Life Comparison in Constant 

Loading Case: (a) AISI 304 Steel (b) SM45C Steel (c) A533B (d) S460N (e) SAE 1045 (f) 

Al T6061 (g) Al T7075 
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Fig. 13 Predicted Fatigue Life and Experimental Fatigue Life Comparison in Random 

Loading Case for Al T7075 

 

The time-based model does not consider the frequency of the sampling rate of the 

datasets. Fig. 14 shows the predicted results at different sampling points. Note that the 

different sampling points could influence the deviation value of predicted fatigue life since 

the peak point and valley points in the spectrum could be missing when reducing the 

sampling points. For example, there are 517 points in every cycle under the original 

spectrum. The peak point could be missing when the sample points are reduced by every 

three points. However, even if the peak value and valley points are missing, the deviation 

values of the predicted fatigue life would show little difference and the result would be 

acceptable. 
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Fig. 14 The Predicted Fatigue Life in Different Sampling Rate  

3.5 Conclusion and future work 

A new time-based damage integration in the energy phase model is proposed. This 

model can deal with both constant loading and random loading cases as well as other 

complex form spectrums. The model uses the concept based on a new damage propagation 

method which is developed by modifying the crack propagation method. Furthermore, the 

model uses the time-based concept suitable to deal with models with various spectrums. 

The model is developed to overcome both HCF and LCF regions. Rather than applying the 

rainflow-counting algorithm and critical plane, this model avoids the complicated 

processes by using integration of uniaxial and multiaxial fatigue life directly. A big 

advantage of this model is that it can handle several conditions at the same time compared 
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to other models. The model was validated by several experimental data of seven materials 

under the open literature. The results show high accuracy of predictions for these different 

materials. The current validation not only includes the HCF and LCF predictions but also 

works for the HCF+LCF spectrums. For future work, the biaxial loading cases will be 

tested since this model is assumed to be suitable for both multiaxial and biaxial fatigue 

cases. Since the SIF is applied, the data from the notch specimen could also be predicted 

by modifying the equations. 
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CHAPTER 4  

4 SUMMARY 

Two energy-based fatigue life models based on different methods are proposed. Both 

energy-based models apply the equivalent energy concept in the preprocessing which 

converts the stress and strain spectrum to the equivalent energy spectrum. The equivalent 

energy concept can be used to simplify the multiaxial loading cases into equivalent 

uniaxial loading cases. In addition, the method can be used to deal with biaxial loading 

cases since it assumes that the loading is three-dimensional loading. The first energy-

based model combines Miner’s rule and the rainflow-counting algorithm in order to 

predict fatigue life under random loading cases. This method converts the various loading 

to equivalent constant loading by using the rainflow-counting algorithm and calculates 

fatigue life by implementing Miner’s rule. Although this method provides an improvement 

over the original energy-based model, which cannot calculate fatigue life in random 

loading cases, the accuracy of the prediction is not ideal. Therefore, the second model, the 

time-based fatigue model using the energy-based method, is proposed. The time-based 

model is based on a new damage propagation rule which is a modification from Paris’ law 

and a new time-based damage propagation function to calculate the fatigue life. The time-

based model can directly predict fatigue life by integrating the energy history which 

obtains corresponding damage value. The model is validated by experimental data that 

include data on seven materials using both constant loading and random loading cases.  

The predicted results agree with the empirical fatigue life.  

The following lists summarize the advantage of the new time-based model. 

1. The proposed model predicts fatigue life for both uniaxial loading and multiaxial 

loading cases using the equivalent energy concept has been involved. Moreover, the 

biaxial loading cases can also be operated under the equivalent energy concept. 
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2. The time-based model is suitable for dealing with both the high cycle fatigue (HCF) 

and low cycle fatigue (LCF) regions applying the energy-based method. 

3. Fatigue predictions under both the constant loading and random loading cases is 

applicable for the proposed model since the time-based method can deal with various 

spectrums. The time-based method calculates corresponding damage at every time 

point. The fatigue life can be predicted by the damage accumulation rule.  

4. The proposed model replaces the rainflow-counting algorithm by directly integrating 

equivalent energy spectrums to calculate fatigue life.    

In sum, the proposed model is a comprehensive method that can apply to several 

loading cases. The time integration technique curtails the complex processes and can 

predict fatigue life easily.  

Note that the data under the biaxial loading cases will be validated in future studies. 

Through expanding the new damage propagation rule, which considers the geometric 

parameter in the equation, the fatigue data gathered from notch specimens can be 

predicted as well. 
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APPENDIX A 

SPECTRUM TRANSFER 
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clc,clear all, close all 

%% Material Properties 

MP = xlsread('material properties.xlsx',7); 

E = MP(1,1); 

G = MP(2,1); 

sig_y = MP(3,1); 

Poisson = MP(4,1); 

D0 = 0; 

beta = 30.091 * sig_y^ -0.797; 

  

a_ten = MP(5,1); 

b_ten = MP(6,1); 

a_tor = MP(7,1); 

b_tor = MP(8,1); 

% a_ten = MP(9,1); 

% b_ten = MP(10,1); 

ten_1 = a_ten * 4^b_ten; 

tor_1 = a_tor * 4^b_tor; 

s = ten_1 / tor_1; 

  

%% Data input [HCF] 

% strain_stress = xlsread('loading_dataset.xlsx',1); % Constant loading  

% strain_stress = 

importdata('Non_Proportional_FALLSTAFF_f2500L_edited_cwt.txt'); % Random 

loading 
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if length(strain_stress(1,:)) == 4  

    strain_stress = strain_stress; 

elseif length(strain_stress(1,:)) == 1 

    stress = strain_stress; 

    strain = strain_stress ./ E; 

    strain_stress = [strain stress zeros(length(strain_stress(:,1))) 

zeros(length(strain_stress(:,1)))]; 

elseif length(strain_stress(1,:)) == 2 

    stress = strain_stress(:,1); 

    shear_stress = strain_stress(:,2); 

    ep = stress ./ E; 

    gama = shear_stress ./ G; 

    strain_stress = [ep stress gama shear_stress]; 

else  

    strain_stress = strain_stress(:,1) == []; 

    stress = strain_stress; 

    strain = strain_stress ./ E; 

    strain_stress = [strain stress zeros(length(strain_stress(:,1))) 

zeros(length(strain_stress(:,1)))]; 

end 

  

%% Data input [LCF] 

% strain_stress = xlsread('Multi_HC_pro.xlsx'); % multi HCF LCF pro data 

% strain_stress = xlsread('Multi_HC_nonpro.xlsx'); % multi HCF LCF nonpro data 

strain_stress = load('strain_stress_NN_original_modified.mat'); 
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% strain_stress = load('strain_stress_linear_original_modified.mat'); 

strain_stress = strain_stress.strain_stress;  

% strain_stress(:,1) .* 2; 

% strain_stress = [ans strain_stress(:,2) zeros(length(strain_stress),1) 

zeros(length(strain_stress),1)]; 

%% Convert the spectrum to equivalent energy 

U_eqv = []; 

[U_dis_spec, U_dil_spec] = Energy_test(strain_stress); 

for i = 1:length(strain_stress(:,1)) 

[U_eqv(i)] = Fatigue_Model_D(ten_1, tor_1, Poisson, a_ten, b_ten, U_dis_spec(i), 

U_dil_spec(i)); 

end 

U_eqv = U_eqv';  
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APPENDIX B  

TIME-BASED FATIGUE MODEL FOR CONSTANT LOADING CASE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 
 

clear all, clc 

% Given  

MP = xlsread('material properties.xlsx',7); 

E = MP(1,1); 

G = MP(2,1); 

sig_y = MP(3,1); 

Poisson = MP(4,1); 

D0 = 10^-2.5; 

beta = 30.091 * sig_y^ -0.797; 

  

% a_ten = MP(5,1); 

% b_ten = MP(6,1); 

% a_tor = MP(7,1); 

% b_tor = MP(8,1); 

  

a_ten = MP(9,1); 

b_ten = MP(10,1); 

d_ten = 0.01; 

  

%% %%%%%%%%%%%%%%%%%%%%% DATA 

%%%%%%%%%%%%%%%%%%%%%%% 

N_life = []; 

T_D = []; 

collect_A = []; 

Load = load('loading_data_7075.mat'); 



54 
 

% ten_mean = load('testmid.mat'); 

Load = Load.U_eqv; 

for k = 1:length(Load) 

    Load1 = [0;Load(k)]; 

    for j = 1:25 

        Load1 = [Load1;Load1]; 

    end 

U_T = Load1; 

  

%% Fatigue Model 

i = 1; 

D = 10^-2.5; 

R_ten = 0.; % R ratio 

m_ten = -2 / b_ten; 

C_ten = (2 * a_ten * E * pi)^(-m_ten/2) * 2 *(1-D0^((2-m_ten)/2))/(2-m_ten); 

B_ten = m_ten - 2 * d_ten; 

A_ten = C_ten * (1-R_ten)^B_ten * (2*E*sig_y)^d_ten / 0.36^d_ten; % R>0 

  

while D < 1 

    if U_T(i) < U_T(i+1) 

        Umax = max(U_T(i:100+i)); % from Kmax 

  

%         A_ten = C_ten * sqrt(2*E_7075 *sig_y) * (1-R_ten)^(B_ten) * (1 - beta * 

R_ten)^(-2 * d_ten)/0.6; 

        alf_ten = A_ten * (2 * E * Umax * pi)^(B_ten/2) * (pi / sig_y)^(d_ten); 
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        eqU = (U_T(i+1)^(d_ten) - U_T(i)^(d_ten)); 

        dD_dn = alf_ten * eqU * D^((B_ten/2)+d_ten); 

    else 

        dD_dn = 0; 

    end 

    delta_a = (U_T(i) * pi * D /sig_y); 

    D = dD_dn + D; 

    D_his(i) = D; 

    delta(i) = delta_a; 

    i = i+1; 

end 

    %% Life 

    N_life(k) = log10(i/2) 

end 

N_life = N_life'; 

  

p = N_life; 

e = [2.962369336 

3.48756256 

3.853941446 

3.959613711 

4.431540663 

4.996892388 

5.963640048 
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% % tor 

3.256958153 

3.54863506 

3.632558515 

4.275126999 

4.306875174 

5.250578564 

5.488753716 

5.516952942 

5.606092097 

5.631960961 

5.906218101 

5.960729945 

6.002244271 

6.587445819 

% pro 

3.29380436 

3.962558736 

4.772277688 

5.135596923 

4.658011397 

5.821269128 

6.007747778 

6.013338693]'; 

%ten with mean stress 
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% 3.722222464 

% 3.788451207 

% 4.089481203 

% 4.252488944 

% 4.543521731 

% 4.737828506 

% 5.320638485 

% 6.031758587 

% 4.899404606 

% 3.86421433 

% 4.169733198 

% 4.397575048]'; 

  

a = [2,8]; 

b = [2,8]; 

  

% Plot Chart 

figure 

hold on 

grid on 

plot(e(1:7), p(1:7),'p') 

plot(e(8:21), p(8:21),'v') 

plot(e(22:29), p(22:29),'d') 

% plot(e(30:41), p(30:41),'s') 

% plot(e(1:15), p(1:15),'o') 
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plot(a,b,'red') 

collect_A = [2+log10(2),8]; 

d = [2,8-log10(2)]; 

plot(collect_A,d,'Color','black','LineStyle','-.') 

collect_A = [2+log10(3),8]; 

d = [2,8-log10(3)]; 

plot(collect_A,d,'Color','blue','LineStyle','--') 

  

e = [2,8-log10(2)]; 

f = [2+log10(2),8]; 

plot(e,f,'Color','black','LineStyle','-.') 

  

e = [2,8-log10(3)]; 

f = [2+log10(3),8]; 

plot(e,f,'Color','blue','LineStyle','--') 

  

xlabel('Experimental Fatigue Life') 

ylabel('Predicted Fatigue Life') 

legend('Tension (Uniaxial)','Pure Torsion','Proportion','Perfect Fitting','Factor 2','Factor 

3','Location','southeast') 

% title('(Energy)Time-Based Fatigue Predicted Comparison') 

title('T7075 Fatigue Predicted Comparison') 
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APPENDIX C  

TIME-BASED FATIGUE MODEL FOR RANDOM LOADING CASE 
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clear all, clc, close all 

%% 

% Material Parameters 

E_7075 = 71700; 

G_7075 = 26900; 

sig_y = 503; 

sig_u = 570; 

Poisson = 0.306; 

D0 = 10^-2.5; 

D = 10^-2.5; 

beta = 30.091 * sig_y^ -0.797; 

d_ten = 0.01; 

% Energy fitting data from paper 

a_ten = 9.4994; 

b_ten = -0.263; 

  

%% Data input 

  

% Load = load('con_1_try_0302.mat') 

Load = load('test1_u1.mat') % 6.3606 

% Load = load('test1_u2.mat') % 6.1327 

% Load = load('test1_u3.mat') % 6.1335 

% Load = load('test1_u4.mat') % 5.7669 

% Load = load('test1_u5.mat') % 5.7666 

% Load = load('test1_u6.mat') % 5.5383 
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% Load = load('test1_p1.mat') % 6.3175 

% Load = load('test1_p2.mat') % 6.3349 

% Load = load('test1_p3.mat') % 6.2877 

% Load = load('test1_np1.mat') % 6.4983 

% Load = load('test1_np2.mat') % 6.3102 

  

% Load = load('LL_0228_2.mat') % 5481914 

% Load = load('NN_0228_2.mat') % 4920102 

% Load = load('LL_0228.mat') % 78546809 

% Load = load('NN_0228.mat') % 36770215 

  

% Load = load('pro_m_0226.mat') %2.7332 

% Load = load('non_m_0226.mat') %3.0730 

  

% Load = load('test_mpro_0304.mat') %4.1868 

% Load = load('test_mnonpro_0304.mat') %4.3260 

% Load = load('test_u_linear_0304.mat') %35790655 4.5393 

% Load = load('test_u_nonlinear_0304.mat') %19566025 4.2770 

  

Load = Load.U_eqv; 

  

Load = [Load;Load;Load;Load;Load;Load;Load;Load]; 

% Load = [Load;Load;Load;Load;Load;Load;Load;Load]; 

% Load = [Load;Load;Load;Load;Load;Load;Load;Load]; 
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% Load = [Load;Load;Load;Load;Load;Load;Load;Load]; 

% Load = [Load;Load;Load;Load;Load;Load;Load;Load]; 

U_T = Load;    

  

%% Find A and B fitting parameters 

R_ten = 0.; % R ratio 

m_ten = -2 / b_ten; 

C_ten = (2 * a_ten * E_7075 * pi)^(-m_ten/2) * 2 *(1-D0^((2-m_ten)/2))/(2-m_ten); 

B_ten = m_ten - 2 * d_ten; 

A_ten = C_ten * (1-R_ten)^B_ten * (2*E_7075*sig_y)^d_ten / 0.36^d_ten; 

  

%% Fatigue Model 

i = 1; 

while D < 1 

    if U_T(i) < U_T(i+1) 

        Umax = max(U_T(i:100+i)); % from Kmax 

        alf_ten = A_ten * (2 * E_7075 * Umax * pi)^(B_ten/2) * (pi / sig_y)^(d_ten);      

        eqU = (U_T(i+1)^(d_ten) - U_T(i)^(d_ten));       

        dD_dn = alf_ten * eqU * D^((B_ten/2)+d_ten); 

    else 

        dD_dn = 0; 

    end 

    D = dD_dn + D; 

    D_his(i) = D; 

    i = i+1; 
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end 

%% Plot the D-N curve 

% x = 1:i-1; 

% y = D_his; 

% plot(x,y) 

% grid on 

% xlabel('Life (N)') 

% ylabel('Damage (D)') 

% legend('Trend') 

%% Fatigue life in log scale 

N_life = log10(i) 
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