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ABSTRACT

This thesis examines the critical relationship between data, complex models, and

other methods to measure and analyze them. As models grow larger and more intricate,

they require more data, making it vital to use that data effectively. The document

starts with a deep dive into nonconvex functions, a fundamental element of modern

complex systems, identifying key conditions that ensure these systems can be analyzed

efficiently—a crucial consideration in an era of vast amounts of variables.

Loss functions, traditionally seen as mere optimization tools, are analyzed and

recast as measures of how accurately a model reflects reality. This redefined perspective

permits the refinement of data-sourcing strategies for a better data economy. The aim

of the investigation is the model itself, which is used to understand and harness the

underlying patterns of complex systems. By incorporating structure both implicitly

(through periodic patterns) and explicitly (using graphs), the model’s ability to make

sense of the data is enhanced.

Moreover, online learning principles are applied to a crucial practical scenario:

robotic resource monitoring. The results established in this thesis, backed by simula-

tions and theoretical proofs, highlight the advantages of online learning methods over

traditional ones commonly used in robotics.

In sum, this thesis presents an integrated approach to measuring complex systems,

providing new insights and methods that push forward the capabilities of machine

learning.
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Chapter 1

INTRODUCTION

This thesis examines the critical relationship between data, complex models, and

the methods we use to measure and analyze them. As models grow larger and more

intricate, they require more data, making it vital to use that data effectively. We

begin with a deep dive into nonconvex functions, a fundamental element of modern

complex systems, identifying key conditions that ensure these systems can be analyzed

efficiently—a crucial consideration in an era of vast amounts of variables. Nonconvex

optimization problems are notoriously difficult to solve due to the presence of multiple

local minima, saddle points, and maxima, which complicate the search for global

solutions. This challenge is directly addressed in Chapter 3. This research contributes

significantly to the understanding of nonconvex optimization, paving the way for the

development of more effective strategies for dealing with such problems in various

applications.

We then take a closer look at loss functions, traditionally seen as mere optimization

tools, and recast them as measures of how accurately a model reflects reality. This

redefined perspective allows us to refine data-sourcing strategies for a better data

efficiency. The crux of our investigation is the model itself, which we use to understand

and harness the underlying patterns of complex systems. By incorporating structure

both implicitly (through periodic patterns) and explicitly (using graphs), we enhance

the model’s ability to make sense of the data. This aspect is tackled through the

implementation of bandit algorithms and the use of graph theory as a regularization

tool (Chapter 2) and periodic functions as implicit regularizers (Chapter 5). Through

these works, we demonstrate how bandit algorithms can lead to more efficient data
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generation. Furthermore, the incorporation of graph structures and the exploitation

of periodic functions as implicit structures contribute to making data generation more

efficient, reducing the overall data requirements for complex models.

The third challenge this thesis addresses is the need for provable and efficient

implementation methods for these increasingly complex models. This is a critical

area, as the practical applicability of theoretical models depends heavily on their

implementation efficiency and reliability. In tackling this, Chapter 3 provides a

foundation by proving the efficacy of first-order methods in nonconvex settings.

Moreover, Chapter 4 extends this theme by developing algorithms that enable drones to

prioritize data generation for important phenomena, showcasing a practical application

where efficient data collection is paramount. This approach not only enhances the

efficiency of data collection but also ensures the reliability and applicability of the

models in real-world scenarios.

In sum, this work presents an integrated approach to measuring complex systems,

providing new insights and methods that push forward the capabilities of machine

learning.
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Chapter 2

MAXIMIZING AND SATISFICING IN MULTI-ARMED BANDITS WITH GRAPH

INFORMATION

2.1 Introduction

The multi-armed bandit has emerged as an important paradigm for modeling

sequential decision making and learning under uncertainty. Practical applications

include design policies for sequential experiments Robbins (1952), combinatorial online

leaning tasks Chen et al. (2014), collaborative learning on social media networks Kolla

et al. (2018); Audibert et al. (2010), latency reduction in cloud systems Joshi et al.

(2017) and many others Cao et al. (2015); Zhou et al. (2014); Tekin and Turğay (2018);

Kandasamy et al. (2016). In the traditional multi-armed bandit problem, the goal

of the agent is to sequentially choose among a set of actions or arms to maximize a

desired performance criterion or reward. This objective demands a delicate tradeoff

between exploration (of new arms) and exploitation (of promising arms). An important

variant of the reward maximization problem is the identification of arms with the

highest (or near-highest) expected reward. This best arm identification Mannor and

Tsitsiklis (2004); Even-Dar et al. (2006) problem, which is one of pure exploration,

has a wide range of important applications like identifying and testing drugs to

treat infectious diseases like COVID-19, finding relevant users to run targeted ad

campaigns, hyperparameter optimization in neural networks and recommendation

systems. The broad range of applications of this paradigm is unsurprising given

its ability to essentially model any optimization problem of black-box functions on

discrete (or discretizable) domains with noisy observations.
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While pure exploration problems in bandits show considerable promise, there are

significant hurdles to their practical usage. In modern applications, one is often faced

with a tremendously large number of options (sometimes in the order of hundreds of

millions) that need to be considered for decision making. In such cases, playing (i.e.,

obtaining a random sample from) each bandit arm even once could be intractable. This

renders traditional approaches to pure exploration ineffective. Fortunately, in several

applications, the arms and their rewards are related to each other and information

about the reward of one arm may be deduced from plays of similar arms. In this

paper, we consider the pure exploration problem in stochastic multi-armed bandits

where the similarities between arms are captured by a graph and the rewards may be

represented as a smooth signal on this graph. Such graph side information is available

in a wide range of applications: search and recommendation systems have graphs that

capture similarities between items (Guo et al., 2010; Rao et al., 2015; Wu et al., 2020;

Dasarathy et al., 2017); drugs, molecules and their interactions can be represented

on a graph (Ioannidis et al., 2020); targeted advertising considers users connected

to each other in a social network (Jamali and Ester, 2009), and hyperparameters for

training neural network are often inter-related (Young et al., 2018). It is worth noting

that such graphs are sometimes intrinsic to the problem (e.g., spatial coordinates or

social/computer networks), or may be inferred based on similarity metrics defined on

arm features; a recent line of work considers constructing such graphs to enable more

effective learning (see e.g., Zhang et al., 2022; Kushnir and Venturi, 2020).

2.1.1 Related Work

The textbook Lattimore and Szepesvári (2020) is an excellent resource for the

general problem of multi-armed bandits. The pure exploration variant of the bandit

problem is more recent and has also received considerable attention in the litera-
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ture Bubeck et al. (2009, 2011); Garivier and Kaufmann (2019); Gabillon et al. (2012);

Audibert et al. (2010); Jamieson and Nowak (2014). These lines of work treat the

bandit arms or actions as independent entities and playing a particular arm yields

no information about any other arm. This leads to great difficulty in scaling such

methods, since in the problem setups with a large number of arms, attempting to play

all arms is not practical. We resolve this precise roadblock by introducing a convenient

way of appending graph side information into the mix which provably accelerates the

process of sub-optimal arm elimination (potentially without playing it even once!)

A recent line of work Li et al. (2016); Lattimore and Szepesvári (2020); Gupta

et al. (2020); Yang et al. (2020); Gentile et al. (2014); Ma et al. (2015a) has proposed

the leveraging of structural side-information for the multi-armed bandit problem for

regret minimization. Such topology-based bandit methods work under the assumption

that pulling an arm reveals information about other, correlated arms Gupta et al.

(2020); Shamir (2011), which helps in developing better regret methods. Similarly,

spectral bandits Kocák and Garivier (2020); Yang et al. (2020); Valko et al. (2014)

assume user features are modeled as signals defined on an underlying graph, and use

this to assist in learning. The works Atsidakou et al. (2022) and Wu et al. (2015)

consider similar graph information models, albeit at a degraded level. The authors

in LeJeune et al. (2020) use the graphs to improve the regret bounds in a thresholding

bandit setting. Work revolving around spectral bandits utilizes the spectrum of the

graph laplacian. In contrast, we focus on the combinatorial properties of the graphs

to devise algorithms and analyze them. Another line of work Dasarathy et al. (2015);

Wang et al. (2019); Lipor and Dasarathy (2018); Ma et al. (2013a) considers search

problems on graphs under a different model and there is an opportunity for future

work to combine these techniques.

Most of the aforementioned works focus on regret minimization in the presence
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of graph information. The problem of pure exploration with similarity graphs has

received far less attention. The authors in Kocák and Garivier (2020) were the first to

attempt to fill this gap for the spectral bandit setting. They provide an information-

theoretic lower bound and a gradient-based algorithm to estimate this lower bound

to sample the arms. The authors provide performance guarantees for the algorithm,

but these results only indirectly capture the benefit brought by the graph; our results

on the other hand are based on a novel complexity measure that explicitly elicits the

benefit of having the graph side information.

Note that, similarity graph information considered in this work is fundamentally

different from linear rewards assumption in contextual/linear bandits. In the linear

bandits problem, the reward behavior is assumed to be low dimensional and this is

crucial for the improved regret bounds and sample complexity guarantees Lattimore

and Szepesvári (2020); Soare et al. (2014). In the current work, we do not make any

assumptions on the low dimensionality of the rewards but still show improvements in

sample complexity provided a good arm-similarity graph is available. We show a toy

example in Appendix 2.8 where a low dimensional linear bandit cannot be competitive

with the corresponding graph-bandit setting.

2.1.2 Overview of Contributions

We consider the pure exploration of multi-arm bandits problem when a graph that

captures similarities between the arms is available. In particular, we consider the

problem of finding the arm with the maximum reward (i.e., the maximizing problem)

or one that has sufficiently high reward (i.e., the satisficing problem 1 ) under the

assumption that arm rewards are smooth with respect to a known graph. Our main

contributions may be summarized as follows:

1named after Herbert Simon’s celebrated alternative model of decision making Simon (1955)
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(a) We devise a novel algorithm GRUB for the best arm identification problem (i.e.,

the maximizing problem) that specifically exploits the homophily (strong connections

imply similar average rewards) on the graph (Section 2.3).

(b) We provide a theoretical characterization of the performance of GRUB. To this

end, we define a novel measure I that we dub the “influence factor” which depends

on the resistance distance of the underlying graph. This measure captures the benefit

of the graph side information and plays a central role in the analysis of GRUB. In

the traditional (graph-free) best arm identification problem, the sample complexity

is known to scale as
∑n

i=1
1
∆2

i
, where ∆i is the gap between the expected rewards of

the best arm and arm i. On the other hand, we show that GRUB roughly has a

complexity that scales like
∑

i∈H
1
∆2

i
samples where the set H is a set dependent on the

influence factor, which contains arms which are hard to distinguish from the optimal

arm. For a broad range of problems |H| ≪ n, yielding significant improvement over

traditional best arm identification algorithms (Section 2.4).

(c) In Section 2.5, we provide lower bounds on the minimum number of samples

required for the identification of the optimal arm when a graph encoding arm similarities

is available. This shows the near-optimality of GRUB for an important class of

representative problems.

(d) In many real-world scenarios, the aim of finding the absolute best arm can

often be too costly or even intractable. In these situations, it may be more appropriate

to solve the satisficing problem, where the algorithm returns an arm that is good

enough. We propose a variant of GRUB, dubbed ζ-GRUB for this important setting

in Section 2.6

(e) Finally, in Section 5.6, we complement our theoretical results with an empirical

evaluation of our algorithms. We further provide algorithmic improvements to GRUB

and discuss novel sampling policies for best arm identification in the presence of graph

7



information.

2.2 Problem Setup and Notation

We consider an n-armed bandit problem with the set of arms given by [n] ≜

{1, 2, 3, . . . , n}. Each arm i ∈ [n] is associated with a σ-sub-Gaussian distribution νi.

That is, EX∼νi [exp (s(X − µi))] ≤ exp
(

σ2s2

2

)
∀s ∈ R, where µi = Eνi [X] is said to

be the (expected or mean) reward associated to arm i. We will let µµµ ∈ Rn denote

the vector of all the arm rewards. A “play” of an arm i is simply an observation of

an independent sample from νi; this can be thought of as a noisy observation of the

corresponding mean µi. The goal of the best-arm identification problem is to identify,

from such noisy samples, the arm a∗ ≜ argmaxi∈[n] µi that has the maximum expected

reward, denoted by µ∗. For each arm i ∈ [n], we will let ∆i ≜ µ∗ − µi denote the

sub-optimality of the arm.

As discussed in Section 5.2, our goal is to consider the best-arm identification

where one has additional access to information about the similarity of the arms under

consideration. In particular, we model this side information as a weighted undirected

graph G = (VG, EG, AG) where the vertex set, VG = [n], is identified with the set of

arms, the edge set EG ⊆
(
[n]
2

)
, and adjacency matrix AG ∈ Rn×n describes the weights

of the edges E between the arms which capture the similarity in means of connected

arms; the higher the weight, the more similar the rewards from the corresponding

arms. We will let LG = DG − AG denote the combinatorial Laplacian 2 of the graph

Chung and Graham (1997), where DG = diag(AG×1n) is a diagonal matrix containing

the weighted degrees of the vertices. We will suppress the dependence on G when

the context is clear. Subsequently, we show that if one has access to this graph and

2All our results continue to hold if this is replaced with the normalized, random walk, or generalized
Laplacian.
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the vector of rewards µµµ is smooth with respect to the graph (that is, highly similar

arms have highly similar rewards), then one can solve the pure exploration problem

extremely efficiently. We will capture the degree of smoothness of µµµ with respect to

the graph using the following seminorm 3 :

∥µµµ∥2G ≜ ⟨µµµ, LGµµµ⟩ =
∑

{i,j}∈EG

Aij(µi − µj)
2. (2.1)

The second equality above can be verified by a straightforward calculation. Also,

notice that ∥µµµ∥G being small implies µi ≈ µj for (i, j) ∈ E. In such scenario, we say

that the mean vector µµµ is smooth over graph G. This observation has inspired the use

of the Laplacian in several lines of work to enforce smoothness on the vertex-valued

functions Ando and Zhang (2007); Valko et al. (2014); Zhu (2005); LeJeune et al.

(2020). For ϵ > 0, we say that arms (rewards) are ϵ-smooth with respect to a graph G

if ∥µµµ∥G ≤ ϵ.

Let C(G) ⊂ 2[n] denote the set of all connected components and let k(G) ≜ |C(G)|

denote the number of connected components of the graph G. For a vertex i ∈ [n],

we will let Ci(G) ∈ C(G) denote the connected component that contains i. When

the context is clear we sometimes let Ci(G) also refer all the nodes in the connected

component. We say a graph G = ([n], E) has k-isolated cliques if it can be divided

into fully connected sub-graphs Gi = (Vi, Ei) such that Vi ⊆ [n], Ei =
(
Vi

2

)
for all

i ∈ [k], Vi ∩ Vj = ∅, Ei ∩ Ej = ∅ for all i, j ∈ [k], and
⋃k

i=1 Vi = [n],
⋃k

i=1 Ei = E.

Notice that we only have one clique if G is fully connected.

To solve the best-arm identification problem, we need a sampling policy to sequen-

tially and interactively select the next arm to play, and a stopping criterion. For any

time t ∈ N, the sampling policy πππt = {πs}s≤t is a function that maps t to an arm in [n]

given the history of observations up to time t− 1. With slight abuse of notation, we

3LG is not positive definite and can be verified to have as many zero eigenvalues as the number of
connected components in G
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will let πt denote the arm chosen by an agent at time t. Let rt,πt denote the random

reward observed at time t from arm πt. We use ti(πππt) (referred as ti for simplicity)

to denote the number of times arm i is played under the sampling policy πππt. In this

paper, we tackle the following problems:

P1 (Best arm identification): Given n arms and an arbitrary graph G capturing

similarity between the arms, can we design a policy πππT that exploits the similarity to

find the best arm efficiently?

P2 (ζ-best arm identification): Under the setting in P1, can we design a simi-

larity exploiting policy πππT so as to find an arm belonging to the set B(ζ) ≜ {i ∈ [n] :

|µi − µa∗| ≤ ζ} efficiently?

2.3 The GRUBAlgorithm

We now introduce GRUB (GRaph based Upper Confidence Bound), a novel but

natural algorithm for best arm identification in the presence of graph side informa-

tion. We begin with an intuitive description of how GRUB incorporates the graph

side information into an upper confidence bound (UCB) strategy. Most UCB algo-

rithms Lattimore and Szepesvári (2020); Valko et al. (2014) compute the estimates

of mean and variance, and use these to eliminate arms that have been deduced to

be sub-optima. The key idea behind GRUB is that the arm similarity information

allows us to create high-quality estimates of mean rewards and confidence intervals

for arms that have not been (sufficiently) sampled yet. In what follows, we describe

the building blocks of GRUB.
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2.3.1 Leveraging Graph Side Information

We introduce two key ideas that lie at the heart of the GRUB algorithm. First, at

each step, GRUB computes a regularized estimate of the means of all the arms ; the

regularization based on the graph Laplacian essentially promotes the smoothness of

the mean vector on the given graph. This allows the algorithm to estimate the means

of arms it has never sampled. To do this, at any given time step T , the algorithm

solves the following Laplacian-regularized least-squares optimization program:

µ̂µµT = argmin
µµµ∈Rn

{ [
T∑
t=1

(rt,πt − µπt)
2

]
+ ρ⟨µµµ, LGµµµ⟩

}
, (2.2)

where ρ > 0 is a tunable parameter. Equation (2.2) admits a closed form solution of

the form

µ̂µµT =

(
T∑
t=1

eπte
⊤
πt
+ ρLG

)−1( T∑
t=1

eπtrt,πt

)
,

provided the matrix VT ≜
∑T

t=1 eπte
⊤
πt
+ρLG is invertible; ei denotes the i-th standard

basis vector for the Euclidean space Rn. In Appendix A.1 we show that invertibility

holds if and only if the sampling policy yields at least one sample per connected

component of G. This is a rather mild condition that we arrange explicitly in our

algorithm, given that we know the graph G. In what follows we assume that every

connected component of graph G is sampled at least once. This regularized mean

estimation procedure yields an estimate of the mean that is both in agreement with

observations and smooth on the graph – thereby allowing information sharing among

similar arms.

The second key idea of our algorithm is the utilization of the graph G in tracking

the confidence bounds of all the arms simultaneously. Intuitively, for identifying the

best arm, we must be reasonably certain about the sub-optimality of the other arms.

This in turn would require the algorithm to track a high-probability confidence bound
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on the means of all the arms. In the traditional (graph-free) best arm identification

problem, the confidence interval of an arm’s mean estimate depends on the number

of times the arm has been played. Requiring multiple plays of all suboptimal arms

for obtaining high confidence bounds is potentially disastrous when the number of

arms is very large. In our setup, we show that the knowledge of the similarity graph

greatly improves this situation. In particular, we show that a play of any arm not only

tightens its own confidence interval but also has an impact on the confidence intervals

of all connected arms. To quantify the benefit of graph information for the confidence

bounds, we will define a novel quantity for each arm – the effective number of plays.

Definition 2.3.1 (Effective Number of Plays). Let ρ > 0 and {ti}ni=1 denote the

number of plays of each of the n arms when a sampling policy πππT is employed for T

time steps. Suppose that for each connected component C ∈ C(G), there is at least one

arm iC ∈ C such that tiC > 0. Then the effective number of plays for each arm i ∈ [n]

is defined as teff,i ≜
[
(NT + ρLG)

−1]−1

ii
, where NT is a diagonal matrix of {ti}ni=1, and

LG denotes the Laplacian of the given graph G.

The effective number of plays teff,i for any arm i is influenced by two factors: (a)

the number of samples of arm i itself, and (b) the number of samples of any arm in

the connected component j ∈ C(i), j ̸= i. It can be shown that for any arm i, teff,i

depends on the number of connections of node i in graph G, and its value increases as

the connectivity of the node increases. The choice of the terminology for this quantity

is justified by the following lemma, which provides a high confidence bound for the

mean estimate of each arm.

Lemma 2.3.2 (Concentration inequality). For any T > k(G), the following holds
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with probability at least 1− δ:

|µ̂i
T − µi| ≤

√
1

teff,i

(
2σ

√
14 log

(
2wi(πππT )

δ

)
+ ρ∥µµµ∥G

)
, ∀i ∈ [n] (2.3)

where wi(πππT ) = a0nt
2
eff,i for any constant a0 > 0, µ̂i

T is the i-th coordinate of the

estimate from (2.2)

Notice that the effective number of plays has a similar role as the number of plays in

traditional pure exploration algorithms Even-Dar et al. (2006). Indeed, in the absence

of graph information, teff,i reduces to ti, the total number of plays of individual arms.

Lemma 2.3.2 recovers high confidence bounds for standard best-arm identification

problem Even-Dar et al. (2006). It should be noted that while our work is the first

to identify this interpretable quantity explicitly, the result of Lemma 2.3.2 in other

forms has appeared before in the literature Abbasi-yadkori et al. (2011); Valko et al.

(2014); Yang et al. (2020).

We introduce our algorithm GRUB for best arm identification when the arms can

be approximately cast as nodes on a graph. GRUB uses insights from graph-based

mean estimation (2.2) and upper confidence bound estimation (2.3) for its elimination

policies to search for the optimal arm.

GRUB accepts as input a graph G on n arms (and its Laplacian LG), a regulariza-

tion parameter ρ > 0, a smoothness parameter ϵ > 0, and an error tolerance parameter

δ ∈ (0, 1). It is composed of the following major blocks.

Initialization: First, GRUB identifies the clusters in theG using a Cluster-Identification

routine. Any algorithm that can efficiently partition a graph can be used here, e.g.

METIS Karypis and Kumar (1998). GRUB then samples one arm from each cluster.

This ensures VT ≻ 0, which enables GRUB to estimate µ̂µµT using the closed form

solution of eq. (2.2). A great advantage of GRUB is that the initialization phase only

requires steps equal to the number of disconnected components in the graph. This is
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in direct contrast with traditional best arm identification algorithms, which require

atleast one sample from every arm initially.

Sampling policy: At each round, GRUB obtains a sample from the arm returned by

the routine Sampling-Policy, which cyclically samples arms from different clusters

while ensuring that no arm is resampled before all arms in consideration have the

same number of samples. This is distinct from standard cyclic sampling policies that

is traditionally used for best arm identification Even-Dar et al. (2006), but any of

them may be modified readily to provide a cluster-aware sampling policy for GRUB.

In our experiments, we show that replacing cyclic sampling with more statistics- and

structure-aware sampling greatly improves performance; a theoretical analysis of these

is a promising avenue for future work. One of the major advantages of GRUB is the

lite nature of the computation. Every loop just requires a rank-1 inverse update which

can be performed very efficiently and it does not need any subroutines, unlike (Kocák

and Garivier, 2020)

Bad arm elimination : At any time t, let A be the set of all arms in consideration for

being optimal. Using the uncertainty bound from (2.3), GRUB uses the following crite-

ria for sub-optimal arm elimination. At each iteration, GRUB identifies an arm amax ∈

A, amax = argmax
i∈A

[
µ̂i
t − βi(t)

√
t−1
eff,i

]
, where βi(t) =

(
2σ

√
14 log

(
2na0t2eff,i

δ

)
+ ρϵ

)
,

with the highest lower bound on its mean estimate.Following this, GRUB removes

arms from the set A according to the following elimination policy,

A←
{
a ∈ A | µ̂amax

t − µ̂a
t ≤ βa(t)

√
t−1
eff,a + βamax(t)

√
t−1
eff,amax

}
. (2.4)

Note that GRUB does not require any optimization innerloop as in Kocák and

Garivier (2020). This potentially provides GRUB with a significant computation

advantage, especially when the dimensionality of the problem is very large. The

pseudocode for GRUB can be found in Appendix A.4.
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Algorithm 1 GRUB

1: Input: Regularization parameter ρ, Smoothness parameter ϵ, Error bound δ,

Total arms n, Laplacian LG, Sub-gaussianity parameter σ

2: t← 0

3: A = {1, 2, . . . , n}

4: t = 0

5: V0 ← ρLG

6: C(G)← Cluster-Identification(LG)

7: for C ∈ C(G) do

8: t← t+ 1

9: Pick random arm k ∈ C to observe reward rt,k

10: Vt ← Vt−1 + eke
T
k , and xt ← xt−1 + rt,kek

11: end for

12: while |A| > 1 do

13: t← t+ 1

14: for i ∈ A do

15: teff,i ← ([V −1
t ]ii)

−1

16: βi(t)← 2σ

√
14 log

(
2nt2eff,i

δ

)
+ ρϵ

17: end for

18: k ← Sampling-Policy(t, Vt, A, C(G))

19: Sample arm k to observe reward rt,k

20: Vt ← Vt−1 + eke
T
k

21: xt ← xt−1 + rt,kek

22: µ̂µµt ← V −1
t xt

23: amax ← argmax
i∈A

[
µ̂i
t − β(t)

√
t−1
eff,i

]
24: A←

{
a ∈ A | µ̂amax

t − µ̂a
t ≤ βa(t)

√
t−1
eff,a

25: +βamax(t)
√

t−1
eff,amax

}
26: end while

27: return A
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Next, we derive performance guarantees on the sample complexity for GRUB to

return the best arm with high probability.

2.4 Theoretical Analysis of GRUB

In this section, we provide a formal statement of the sample complexity of GRUB.

To do this, we first introduce a novel quantity we call influence factor. The influence

factor of an arm is derived from resistance distance, a classical graph theoretic concept.

This adds to the interpretability and understanding of the instances where using graph

side information might be of tremendous use to the application. The usage of graphs

through the influence factor allows us to identify arms that can be eliminated quickly

from consideration.

2.4.1 Resistance Distance and Influence Factor

We first recall the definition of resistance distance in a graph.

Definition 2.4.1 (Resistance Distance). Bapat and Gupta (2010) For any graph G

with n nodes, given a constant δ > 0, the resistance distance rδ,G(i, j) between two

nodes i, j is defined as,

rδ,G(i, j) = Rii +Rjj −Rij −Rji, (2.5)

where R ≜
(
LG + δ11T

)†
; † denotes the Moore-Penrose inverse, LG is the Laplacian

of graph G, and 1 ∈ Rn is the vector of all 1’s.

When the context is clear we denote the resistance distance simply as rG(·, ·). The

terminology comes from circuit theory: Suppose that a graph G = ([n], E) is thought

of as a resistor network on the nodes [n] where each edge {i, j} has a unit resistance.

Then, the effective resistance between two nodes i and j is precisely the resistance

distance r(i, j). It can be shown in general that nodes that are close by or connected
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by several paths have a small resistance distance. Given its ability to capture the

closeness of nodes in the graph, the resistance distance has found a broad range of

applications and has been the subject of many studies; see e.g., (Klein and Randić,

1993; Bapat and Gupta, 2010; Xiao and Gutman, 2003).

Using the notion of resistance distance, we define the influence factor I(·, G) of a

vertex below. This novel measure quantifies the impact of the graph on the parameter

estimation of arm j, and in particular, allows us to use the combinatorial properties

of the graph and the arm means to classify arms into two sets: competitive and

non-competitive; the definition of these sets follows right after. As our theory will

show, the competitive arms are sampled as though we were in the traditional graph-free

setting; on the other hand, non-competitive arms are eliminated rapidly, often with

zero plays! Indeed, the smoother the reward vector is with respect to the graph, the

fewer competitive arms there are – it is this phenomenon that is captured using the

influence factor.

Definition 2.4.2 (Influence Factor). Let G be a graph on the vertex set [n]. For each

j ∈ [n], define influence factor I(j, G) as:

I(j,G) =


min

i∈Cj(G),i ̸=j
{rG(i, j)−1}, if |Cj(G)| > 1,

0, otherwise .

(2.6)

Here, rG(i, j) is the resistance distance between arm i and j in G as in Definition 2.4.1.

Definition 2.4.3 (Competitive and Non-Competitive Arms). Fix µµµ ∈ Rn, graph D,

regularization parameter ρ, confidence parameter δ, and smoothness parameter ϵ. We

define HD to be the set of competitive arms and ND to be the set of non-competitive

arms as follows:

HD =

{
j ∈ [n]

∣∣∆i ≤ 2

√
2

ρI(i,D)

(
2σ

√
14 log

(
2a0nρ2I(i,D)2

δ

)
+ ρϵ

)}
(2.7)
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and ND ≜ [n] \ HD.

As the name suggests, the arms in H are close to the optimal arm a∗ in mean

(competitive compared to the optimal arm a∗) and require several plays before they

can be discarded, as shown in the theorem below. Note from the above definition that

an arm is more likely to be part of this set if its mean is high (i.e., ∆i is low) and its

influence factor is low. Similarly, the non-competitive set is composed of arms whose

means are not competitive with the optimal arm.

Armed with these definitions, we are now ready to state our main theorem that

characterizes the performance of GRUB.

2.4.2 Sampling Policy Performance

Cyclic sampling policies have been traditionally used in multi-armed bandit prob-

lems for best-arm identification Even-Dar et al. (2006). The sample complexity bound

for GRUB with cyclic sampling is as follows:

Theorem 2.4.4 (GRUB Sample Complexity). Consider n-armed bandit problem with

mean vector µµµ ∈ Rn. Let G = (V,E) be the similarity graph with the vertex set V = [n]

and edge set E, let G be the set of subgraphs of G , and further suppose that µµµ is

ϵ-smooth i.e., ∥µµµ∥G ≤ ϵ. Define

Tsufficient ≜ argmin
D∈G

∑
C∈CD

 ∑
i∈C∩HD

i ̸=1

1

∆2
i

[
c1 log

c2
δ∆i

+
ρϵ

2

]
+ max

i∈C∩ND

2

∆2
i

[
c1 log

c2
δ∆i

+
ρϵ

2

] ,

where ∆i = µ∗−µi for all suboptimal arms, HD and ND are as in Definition 2.4.3, CD is

the set of connected components of a given graph D and c1, c2 are constants independent

of system parameters. Then, with probability at least 1− δ, GRUB: (a) terminates in

no more than Tsufficient rounds, and (b) returns the best arm a∗ = argmaxi µi.
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Remark 2.4.5. The required number of samples for the successful elimination of

suboptimal arms, and therefore the successful identification of the best arm can be split

into two categories based on the sets defined in Definition 2.4.3. Each sub-optimal

highly competitive arm j ∈ H requires O(1/∆2
j) samples, which is comparable to the

classical (graph-free) best-arm identification problem. Additionally, the non-competitive

arms N can be eliminated without being played, depending on the influence factor: one

round of the cyclic sampling suffices to eliminate these arms (even if they are never

played!). We refer the reader to Appendix A.4 for a more detailed discussion. Indeed,

the smaller |H| is, the more the graph side information benefits GRUB and vice-versa.

Remark 2.4.6. Note that Tsufficient in Theorem 2.4.4 involves the minimum over all

subgraphs. As we show in Lemma A.7.8 in the appendix, I can actually increase if one

restricts their attention to certain subgraphs of G; this, in turn, increases the size of

N and decreases the size of H, hence, giving a tighter upper bound on the performance

of the algorithm. GRUB automatically adapts to the best subgraph to maximize the

influence factor I(·, ·) to obtain the best possible sample complexity and this is reflected

in the statement of Theorem 2.4.4.

The complete proof of Theorem 2.4.4 can be found in Appendix A.4, where we

also provide more insights on the behavior of the confidence bound as a function of

the number of samples acquired. These results may be of independent interest to the

reader.

2.4.3 Improved Sampling Policies

As can be inferred from the pseudocode of Algorithm 1 the primary goal of the

Sampling-Policy is the quick and safe elimination of suboptimal arms, achieved

through shrinking of the confidence bounds βi(t)
√

(teff,i)−1 for all arms i still in
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consideration at time t.

Theorem 2.4.4 established guarantees on Tsufficient for naive cyclic sampling policy,

i.e. a sampling policy that doesn’t directly exploit the graph properties in this arm

choice. Note that, even if the sampling policy doesn’t utilize any graph properties,

the similarity graph is still being utilized in computing the mean estimate and the

confidence widths. To enhance the involvement of graph structural information in

arm sampling policy, a few alternatives can be characterized:

• Marginal variance minimization (MVM): Pick the arm which has the

highest confidence bound width. Specifically, at time t, let πT = argmin
i∈A

teff,i =

argmax
i∈A

[V −1
T ]ii, where A is the set of indices of the arms under consideration.

• Joint variance minimization – nuclear (JVM-N): This variant is inspired

from the concept of V-optimality Ji and Han (2012). JVM-N picks the arms which

leads to a maximum decrease in the value of confidence widths across all arms, in

the sense of nuclear norm. Specifically, πT = argmin
i∈A

∥(VT + eie
T
i )

−1∥∗−∥V −1
T ∥∗,

where ∥ · ∥∗ denotes the nuclear norm.

• Joint variance minimization – operator (JVM-O). Taking inspiration

from Σ-optimality Ma et al. (2015b, 2013b), JVM-O picks arms which leads to

maximum decrease in the value of confidence widths across all arms in the sense

of operator norm. πT = argmin
i∈A

∥(VT + eie
T
i )

−1∥op − ∥V −1
T ∥op

Comparison of the performance of MVM, JVM-N and JVM-O with the baseline of

cyclic sampling is provided through synthetic experiments in Section 5.6. In the next

section, we derive fundamental lower bounds on the sample complexity any algorithm

requires in order to solve the said problem
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2.5 Lower Bounds

Let us consider an n-armed bandit setup with arm indices [1, . . . , n]. Let µ∗

indicate the mean of the optimal arm and µi indicate the mean values of all other

arms such that µi < µ∗. For the rest of this section, without loss of generality, let the

index of the optimal arm be 1.

Theorem 2.5.1. Given an n-armed bandit model with associated mean vector µµµ ∈ Rn

and similarity graph G smooth on µµµ, i.e. ⟨µµµ, LGµµµ⟩ ≤ ϵ, for any 0 < ϵ < ϵ0. Let

G = ([n], E) be the graph with only isolated cliques and w.l.o.g let arm 1 be the optimal

arm. Then define

Tnecessary =
∑

C∈CG/C∗

min
j∈C

{
4σ2 log 5

(∆j −
√
ϵ)2

}
+
∑

j∈C∗/1

4σ2 log 5

∆2
j

, (2.8)

where C∗ is the clique with the optimal arm and ϵ0 := min
i∈[n]/1,j∈C(i)

[
∆j

[
1− ∆i√

∆2
i+∆2

j

]]2
.

Then any δ-PAC algorithm will need at-least Tnecessary steps to terminate, provided

δ ≤ 0.1.

Using Theorem 2.5.1, we can show that GRUB is minimax optimal for a n-armed

bandit problems for a certain class of similarity graph G. The following result shows

that the upper bound on the sample complexity provided in Theorem 2.4.4 matches

the lower bound established in Theorem 2.5.1 in ∆i up to a constant factor.

Corollary 2.5.2 (Isolated clusters). Consider the setup as in Theorem 2.5.1 with

the further restriction that graph G be such that the optimal node is isolated and

ϵ < minj∈[n]
∆2

j

2
. Define,

Tnecessary ≥
∑

C∈CG/{1}

max
j∈C

{
8σ2 log 5

∆2
j

}
. (2.9)

Then any algorithm that takes fewer than Tnecessary samples will have a probability of

error at least 0.1.
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As can be seen in Corollary 2.5.2, the lower bound expression can scale as standard

n-armed bandit (implying no added advantage of having graph side-information) or

can behave as a |CG|-armed bandit problem (scales as the number of clusters in graph

G rather than number of nodes n) purely by changing the similarity graph G. The

difference between CF (connected components in the subgraph constructed by making

optimal arm isolated) and CG (connected components in the given similarity graph)

can lead to more interesting behavior in terms of lower bound expressions on sample

complexity.

2.6 ζ Best Arm Identification

It can be observed from Theorem 2.4.4 that the fact that the means are ϵ-smooth

implies that distinguishing arm j from a∗ would require at least O(ϵ−2) samples. A

tighter upper bound on the violation ϵ and an edge between j and a∗ would make

the suboptimal arm j harder to eliminate. However, it stands to reason that in such

situations, it might be more practical to not demand for the absolute best arm, but

rather an arm that is nearly optimal. Indeed, in several modern applications, we

discuss in Section ??, finding an approximate best arm is tantamount to solving

the problem. In such cases, a simple modification of GRUB can be used to quickly

eliminate definitely suboptimal arms, and then output an arm that is guaranteed to be

nearly optimal. To formalize this, we consider the ζ-best arm identification problem

as follows.

Definition 2.6.1. For a given ζ > 0, arm i is called ζ-best arm if µi ≥ µa∗ − ζ, where

a∗ = argmaxi µi

The goal of the ζ-best arm identification problem is to return an arm ã that

is ζ−optimal. We achieve this by a simple modification to GRUB, which we dub
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ζ−GRUB, which ensures that all the remaining arms i satisfy 4β(ti)
√

t−1
eff,i ≤ ζ. It

then outputs the best arm amongst those that are remaining. The following theorem

characterizes the sample complexity for ζ-GRUB:

Theorem 2.6.2. Consider n-armed bandit problem with mean vector µµµ ∈ Rn. Let

G be the given similarity graph on the vertex set [n], and further suppose that µµµ is

ϵ-smooth. Let C be the set of connected components of G. Define,

Tsufficient ≜ argmin
D∈G

∑
C∈CD

[ ∑
i∈C∩HD

1

(∆i ∨ ζ)2

[
c1 log

c2
δ(∆i ∨ ζ)

+
ρϵ

2

]
+ max

i∈C∩ND

{
2

(∆i ∨ ζ)2

[
c1 log

c2
δ(∆i ∨ ζ)

+
ρϵ

2

]}]
, (2.10)

where ∆i = µ∗ − µi for all suboptimal arms, HD and ND are as in Definition 2.4.3,

CD is the set of connected components of a given graph Dand ∆i ∨ ζ = max{ζ,∆i}

and c1, c2 are constants independent of system parameters. Then, with probability at

least 1− δ , ζ-GRUB: (a) terminates in no more than Tsufficient rounds, and (b) returns

a ζ-best arm.

The pseudocode for the ζ-GRUB is as below :
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Algorithm 2 ζ-GRUB

1: Input: Regularization parameter ρ, Smoothness parameter ϵ, Error bound δ,

Total arms n, Laplacian LG, Sub-gaussianity parameter σ

2: t← 0

3: A = {1, 2, . . . , n}

4: t = 0

5: V0 ← ρLG

6: C(G)← Cluster-Identification(LG)

7: for C ∈ C(G) do

8: t← t+ 1

9: Pick random arm k ∈ C to observe reward rt,k

10: Vt ← Vt−1 + eke
T
k , and xt ← xt−1 + rt,kek

11: end for

12: while |A| > 1 do

13: t← t+ 1

14: β(t)← 2σ

√
14 log

(
2n(t+1)2

δ

)
+ ρϵ

15: k ← Sampling-Policy(t, Vt, A, C(G))

16: Sample arm k to observe reward rt,k

17: Vt ← Vt−1 + eke
T
k

18: xt ← xt−1 + rt,kek

19: µ̂µµt ← V −1
t xt

20: amax ← argmax
i∈A

[
µ̂i
t − β(ti)

√
[V −1

t ]ii

]
21: A←

{
a ∈ A | µ̂amax

t − µ̂a
t ≤ β(ta)

√
[V −1

t ]aa

22: +β(tamax)
√
[V −1

t ]amaxamax

}
23: A← A/

{
a ∈ A | β(ta)

√
[V −1

t ]aa ≤ ζ
2

}
24: end while

25: return argmax
{
µi| i ∈ {a ∈ [n]|β(ta)

√
[V −1

t ]aa ≤ ζ
2
} ∪ A

}
;
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2.7 Experiments

For all our experiments, we use a standard laptop with Intel® Core™ i7-10875H

CPU @ 2.30GHz × 16 with 32 GB memory. We set the probability of error δ = 1e− 3,

the penalizing constant ρ = 2.0, and noise variance of the subgaussian distribution σ =

2.0..For the additional graph information, we consider 2 cases: G is a Stochastic Block

model(SBM) with parameters (p, q) = (0.9, 1e−4) and G is a Barabási–Albert(BA)

graph with parameter m = 2, both containing 10 clusters. We record the stopping time

for 20 runs and plot the results. We evaluate GRUB with different sampling strategies

from section 2.4.3 and compare its performance to standard UCB algorithm (Lattimore

and Szepesvári, 2020). The full code used for conducting experiments can be found at

the following Github repository.

Figure 2.1 compares the baseline cyclic algorithm (UCB algorithm without graph

information) with GRUB and its variants (GRUB-MVM, JVM-O, JVM-N) as listed

in Section 2.4.3. The x-axis represents the number of arms while keeping the number

of clusters constant. As can be seen, all the graph-based methods keep performing

better compared to standard baseline UCB, which shows almost linear growth with the

number of arms. Interestingly, note that JVM-O, JVM-N, and MVM perform better

with an increase in the number of arms in the bandit problem. This is attributed to

the fact that increasing the number of arms while keeping the number of clusters static

increases the density of connections per arm and thereby improving performance.
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Figure 2.1: (Best seen in color) Stopping time vs number of arms of GRUB using

various sampling protocols for SBM ((p, q) = (0.95, 1e − 4)) [Top] and BA (m = 2)

[Bottom] . Graph based pure exploration methods outperform the standard cyclic

UCB method in terms of stopping time

Real Dataset: It is difficult to obtain a published dataset that exactly fits our

problem of pure exploration with graph side information. In order to create a semi-real

problem setup, we append an already existing network of users with a corresponding

(synthetic) mean structure so as to satisfy the graph side information constraint.

We use graphs from SNAP Leskovec and Krevl (2014) for these experiments. We

sub-sample the graphs using Breadth-First Search (to retain connected components)

to generate the graphs for our experiments. We use the LastFM Rozemberczki and

Sarkar (2020), subsampled to 229 nodes, and Github Social Rozemberczki et al. (2019)

subsampled to 242 nodes.
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Figure 2.2: (Best seen in color) Cardinality of |At| vs. time t of GRUB using different

sampling protocols for Github social graph (left) and LastFM graph (right). With

no graph information, UCB requires orders of magnitude more samples compared to

policies that use explicitly graph information. The cyclic sampling policy is not as

competitive on real world datasets

Figure 2.2 plots the number of arms still in consideration |At| vs. time t for a

single run of the pure exploration problems. This provides us better insights into the

behavior of GRUB with different sampling protocols (Section 2.4.3) and standard UCB

approach. In all the experiments, it is evident that GRUB with any of the sampling

policies outperform UCB algorithm Lattimore and Szepesvári (2020), which does not

leverage the graph. Further, within the various sampling policies, the MVM sampling

policy seems to outperform other sampling policies (Figure 2.2). For both Github and

LastFM datasets, the MVM policy obtains the best arm in ∼ 300 rounds compared

to traditional UCB that takes ∼ 4500 rounds. A rigorous theoretical characterization

of the above sampling policies is an exciting avenue for future research.

2.8 Comparison to Linear Bandits

In this section, we provide a toy example as well as a theoretical base to show the

difference between the framework of bandits with graph side information and linear
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bandits. In this appendix, we first explain the working of the toy example in more

detail and then head towards the proof of proposition.

2.8.1 Toy Example

Consider 3-armed bandit problem with graph side information: Let graph G encode

the similarity relation between the mean values of the three arms, i.e.

⟨µµµ, LGµµµ⟩ ≤ ϵ (2.11)

for some constant ϵ > 0. Let EG denote the edge set of graph G and 1(1,2),1(2,3) and

1(1,3) encodes the event if edges {(1, 2), (2.3), (1, 3)} ∈ EG are present in graph G. For

the sake of a non-trivial analysis, we take that either (1, 3) or (2, 3) is present in EG

(alternate case is argued later).

We can write equation (2.11) as,

1(1,2)(µ1 − µ2)
2 + 1(2,3)(µ2 − µ3)

2 + 1(1,3)(µ1 − µ3)
2 ≤ ϵ (2.12)

In order to compare the dependence behaviour of µ3 on µ1, µ2 we can rearrange the

above as,

µ2
3

(
1(2,3) + 1(1,3)

)
− 2µ3

(
1(2,3)µ2 + 1(1,3)µ1

)
+
(
1(2,3)µ

2
2 + 1(1,3)µ

2
1 + 1a(µ1 − µ2)

2 − ϵ
)
≤ 0 (2.13)

Looking at equation (2.13) as a quadratic in µ3 and finding the solutions, we obtain
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that,

µ3 ≥
(
1(2,3)µ2 + 1(1,3)µ1

)(
1(2,3) + 1(1,3)

)
−

√(
1(2,3)µ2 + 1(1,3)µ1

)2 − (1(2,3) + 1(1,3)

) (
1(2,3)µ

2
2 + 1(1,3)µ

2
1 + 1(1,2)(µ1 − µ2)2 − ϵ

)(
1(2,3) + 1(1,3)

)
µ3 ≤

(
1(2,3)µ2 + 1(1,3)µ1

)(
1(2,3) + 1(1,3)

)
+

√(
1(2,3)µ2 + 1(1,3)µ1

)2 − (1(2,3) + 1(1,3)

) (
1(2,3)µ

2
2 + 1(1,3)µ

2
1 + 1(1,2)(µ1 − µ2)2 − ϵ

)(
1(2,3) + 1(1,3)

)
(2.14)

Further simplifying it, we get the following:

µ3 ≥
(
1(2,3)µ2 + 1(1,3)µ1

)(
1(2,3) + 1(1,3)

)
−

√
ϵ
(
1(2,3) + 1(1,3)

)
− 1(2,3)1(1,3)(µ2 − µ1)2 − 1(1,2)

(
1(2,3) + 1(1,3)

)
(µ1 − µ2)2(

1(2,3) + 1(1,3)

)
µ3 ≥

(
1(2,3)µ2 + 1(1,3)µ1

)(
1(2,3) + 1(1,3)

)
+

√
ϵ
(
1(2,3) + 1(1,3)

)
− 1(2,3)1(1,3)(µ2 − µ1)2 − 1(1,2)

(
1(2,3) + 1(1,3)

)
(µ1 − µ2)2(

1(2,3) + 1(1,3)

)
(2.15)

The above equation leads to non-trivial bounds as ϵ satisfies equation (2.12).

For the simple case of when edge (2, 3) is present and (1, 3) is not, the above

analysis simplifies to,

µ2 −
√

ϵ− 1(1,2)(µ1 − µ2)2 ≤ µ3 ≤ µ2 +
√

ϵ− 1(1,2)(µ1 − µ2)2 (2.16)

A similar analysis can be made when edge (1, 3) is present and (2, 3) is not.

This shows that even with the complete knowledge of µ1, µ2 we can only estimate

µ3 to a interval [µlow, µhigh] where the endpoints of interval are given by equation (2.15).
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For the case when neither of the edges (1, 3) or (2, 3) are present (i.e. 1b,c = 0), then

µ3 ∈ [−∞,∞] even with the full knowledge of µ1, µ2 as there is no relation between

the means of arm 3 to arm 1, 2, this is also reflected in the equation (2.15)

We first formally rewrite the two setups:

Bandits with graph side information

Consider an n-armed linear bandit problem, each arm i ∈ [n] is associated with a mean

vector µ ∈ Rn, where µi corresponds to the mean value of arm i. We are provided

with further information using a graph G that ⟨µµµ, LGµµµ⟩ ≤ ϵ, where ϵ > 0. In each

round t, the learner chooses some arm i ∈ [n] and observes the reward yt = µi + ηt,

where ηt is a subgaussian random noise with σ2 variance. Denote the arm with the

best mean reward with i∗, i.e. i∗ = argmaxi∈[n] µi. The goal of the learner is to output

the index of the arm i∗ with probability 1− δ, δ > 0 in as few samples as possible.

Linear bandits

Consider an n-armed linear bandit problem, each arm i ∈ [n] is associated with a feature

vector xi ∈ Rd, where d can be lower than n. In each round t, the learner chooses an

action at = xi for some i ∈ [n] and observes the reward yt = ⟨at, θθθ⟩+ ηt, where θθθ ∈ Rd

is an unknown parameter and the ηt is a subgaussian random noise with σ2 variance.

Denote the arm with the best mean reward with i∗, i.e. i∗ = argmaxi∈[n]⟨xi, θθθ⟩. The

goal of the learner is to output the index of the arm i∗ with probability 1− δ, δ > 0

in as few samples as possible.

Graph vs Linear Bandit framework

In this section, we address the question of whether the n armed bandit problem,

with the additional information of ⟨µµµ, Lµµµ⟩ ≤ ϵ can be solved using a linear bandits
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framework. The metric we use for such a comparison is the set of n-armed bandit

problems i.e. set of µµµ which can be expressed once the parameters of the two frameworks

are fixed. For the case of linear bandits this would be the lower dimension k and

feature vector a corresponding to the reward and for graph bandit framework this

indicates the graph G and ϵ. Let the set of problems addressed by the linear bandit

framework be denoted by La and that by the graph bandits framework denoted by

LG,ϵ. We prove that La and LG,ϵ represent sets with fundamentally different properties.

Hence we prove that the set of problems addressed by linear bandits and the proposed

graph bandit framework of this paper are fundamentally different as there cannot

exist one-to-one mapping between the two.

We can further provide additional arguments for the case when ⟨µµµ, LGµµµ⟩ = 0. For

this, we demonstrate an example graph bandit problem that is cast as a linear bandit

to reveal the incomparability of these frameworks.

Firstly, a n-armed bandit problem without any graph can be easily seen as linear

bandits by associating the canonical basis for Rn {ei}ni=1 as the feature vectors and

the mean vector µµµ ∈ Rn as the unknown reward vector. This provides up with the

mean reward function for arm i ∈ [n] as ⟨ei,µµµ⟩ = µi.

In order to cast the graph bandit problem in a linear bandit framework, we need to

associate every arm index i with a feature vector xi and identify the unknown feature

vector θθθ for the problem. We achieve this by modifying the feature vectors {ei}ni=1

and the reward vector µµµ based on the graph Laplacian LG.

Following is the information available at hand in the current graph bandit problem:

we are provided with an n-armed bandit with an unknown mean vector µµµ smooth on

a graph G, i.e. ⟨µµµ, LGµµµ⟩ ≤ ϵ. For this toy problem, we consider the graph G to be

connected.

Let {νννi}ni=1 and 0 = λ1 < · · · < λn denote the eigenvectors and eigenvalues of
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the Laplacian LG respectively. It can be easily seen that µµµ =
∑n

i=1 aiνννi for some

ai ≥ 0 ∀i ∈ [n]. The reward function of arm j is

⟨ej,µµµ⟩ =
n∑

i=1

ai⟨ej, νννi⟩ = a1 +
n∑

i=2

ai⟨ej, νννi⟩

the second equality follows from the properties of graph Laplacian we know that

ννν1 = 1n, is the only eigenvector associated with 0 eigenvalues in a connected graph.

Without loss of generality, we can assume a1 = 0 as a1 does not depend on the

arm index j. Notice that letting a1 = 0 is equivalent to having
∑n

i=1 µi = 0. Also, the

graph constraint can be rewritten as follows:

⟨µµµ, LGµµµ⟩ ≤ ϵ⇒
n∑

i=1

λia
2
i = ⟨θθθ,θθθ⟩ = ∥θθθ∥22 ≤ ϵ

where θθθ = (
√
λ1a1, . . . ,

√
λnan).

Using the above we can cast the graph bandit problem as the linear bandit problem

with the mean reward function of arm j expressed as

⟨ej,µµµ⟩ =
n∑

i=2

θi√
λi

⟨ej, νi⟩ = ⟨xj, θθθ⟩

Hence, the new linear bandit problem is such that the set of arms is {xj}nj=1, the

unknown parameter is a vector θθθ, the expected reward of an arm is ⟨xj, θθθ⟩ and the

unknown parameter satisfies the constraint ∥θθθ∥22 ≤ ϵ.

We discuss below the drawbacks of casting a graph bandit problem into a linear

bandit framework:

• The original best-arm identification is an n-armed problem and the recasted

linear bandit problem still has feature vectors with dimensionality n hence no low-

dimensional benefit of linear bandits is completely lost. Having a performance

bound for any algorithm for linear bandits that scales in n, the number of arms

gives us no additional advantage.

32



• The above conversion to linear bandit setup only works when the graph G is

connected. Recasting problem setup with disconnected components requires

an assumption of
∑

i∈C µi = 0 on individual connected components, which is

unrealistic. The results of GRUB hold with or without this assumption.

• Consider the corner case of ϵ = 0, the linear bandit problem setup derived

becomes that of argmaxi⟨xi, θθθ⟩ such that ∥θθθ∥ ≤ 0 which is only possible if

∥θθθ∥ = 0 and in this case we can observe two interesting facts:

– If the graph G is completely connected then the problem is trivial, since

ϵ = 0⇒ ⟨µµµ, LGµµµ⟩ = 0⇒ (µi − µj)
2 = 0 ∀i, j ∈ [n], i ̸= j

This implies all arms are equal and optimal and the solution is trivial. Here

the mean reward function of all arms i is ⟨xi, θθθ⟩ = 0 since θ = 0 and hence

gives the correct output (any arm i).

– Suppose graph G has two connected components C1, C2, where Ck indicates

the arm indices in the connected component k. Further assume that

µi = 1 ∀i ∈ C1, µi = −1 ∀i ∈ C2. Considering the case of ϵ = 0 here gives

us the following :

ϵ = 0⇒ ⟨µµµ, LGµµµ⟩ = 0⇒ (µi − µj)
2 = 0 ∀i ̸= j, i, j ∈ Ck, k = 1, 2

Here the mean reward function of all arms i is ⟨xi, θθθ⟩ = 0 since θ = 0 but

this is incorrect since not all arms are optimal.

Our graph bandit setup and the performance of GRUB is independent of all of

these drawbacks and provides us with a better sample complexity than vanilla

best arm identification algorithms.

We solidify these arguments with the following Propositions.

33



Proposition 2.8.1. Consider n-armed bandit setup parameterized by mean vector

µµµ ∈ Rn. Given graph G and ϵ > 0, let DG,ϵ := {µµµ ∈ Rn| ⟨µµµ, LGµµµ⟩ ≤ ϵ} represent a

subset of bandit problems in Rn, LG denoting the laplacian matrix corresponding to

graph G. Then m(DG,ϵ) > 0 where m(·) is the Lebesgue measure on Rn.

Sketch of proof : We solidify the intuition from toy example 2.8.1 to show the

distinction in the two frameworks using measure theoretic argument. We split the n-

armed bandit problem with graph-side information into two complementary scenarios:

(a) L> : {µµµ ∈ Rn| 0 < ⟨µµµ, LGµµµ⟩ ≤ ϵ, ϵ > 0}

(b) L= : {µµµ ∈ Rn| ⟨µµµ, LGµµµ⟩ = 0}

We prove that the setDG,ϵ = L>∪L= has fundamentally different measure theoretic

properties than Dθθθ (linear bandits framework) and hence the two problems setups

tackle completely different domain of questions.

Theorem 2.8.2. Consider n-armed bandit setup. Let DG,ϵ, Dθθθ represent the subset of

problems in Rn as follows:

DG,ϵ = {µµµ ∈ Rn| 0 < ⟨µµµ, LGµµµ⟩ ≤ ϵ, ϵ > 0}

Dθθθ = {µµµ ∈ Rn| µi = ⟨ai, θθθ⟩, ai ∈ Rk, ∀i ∈ [n]}

where k < n,θθθ ∈ Rk indicates the reward vector and LG is the laplacian matrix

corresponding to graph G. Then DG,ϵ ̸⊂ Dθθθ, Dθθθ ̸⊂ DG,ϵ,m(DG,ϵ) > 0 and m(Dθθθ) = 0

where m(·) is the Lebesgue measure on Rn.

Proof. The two problem subset definitions represent the following :

a) DG,ϵ – Given a graph G and violation parameter ϵ, DG,ϵ represents mean-reward

vectors µµµ ∈ Rn which satisfy the graph bandit setup.

b) Dθθθ – Given lower dimension k < n and the corresponding reward vector θθθ, the

set Dθθθ indicates the set of all the mean rewards {µi}ni=1 for n-armed bandit setup such

that the mean-reward vector can be represented by k-dimensional feature vectors.
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First, consider the following arguments :

• Notice that if ααα,βββ ∈ Dθθθ then c1ααα + c2βββ ∈ Dθθθ and 0 ∈ Dθθθ, where 0 is the all

zero vector in Rn. Hence we can conclude Dθθθ is a subspace of Rn. Since all

the elements of the set Dθθθ can be as a linear map to a k-dimensional subspace

constructed out of {ai}ni=1, ai ∈ Rk for all i ∈ [n], hence Dθθθ is a k-dimensional

subspace of Rn. Accordingly, m(Dθθθ) = 0 where m is the Lebesgue measure on

the euclidean space Rn.

• Consider the set DG,ϵ and µµµ such that ⟨µµµ, LGµµµ⟩ = 0 (existence of such a µµµ is

easy to prove by making µi = µj for every edge in G). Given that ϵ > 0, ∃δ > 0

such that ∀σσσ ∈ B(0, δ),

⟨(µµµ+ σσσ), LG(µµµ+ σσσ)⟩ =
∑

{i,j}∈EG

Aij(µi + σi − µj − σj)
2

=
∑

{i,j}∈EG

Aij(σi − σj)
2 (⟨µµµ, LGµµµ⟩ = 0⇒ µi = µj ∀(i, j) ∈ EG)

≤ ∥AG∥∞
∑

{i,j}∈EG

(σi − σj)
2

≤ 4∥AG∥∞∥σσσ∥22

(2.17)

Taking δ < ϵ
4∥AG∥∞ proves that ∀σσσ ∈ B(0, δ), ⟨(µµµ+ σσσ), LG(µµµ+ σσσ)⟩ ≤ ϵ. Hence

B(0, δ) ⊂ DG,ϵ implying m(DG,ϵ) > m(B(0, δ)) = δn.

Further, consider θθθ ∈ Rn such that ⟨θθθ, LGθθθ⟩ = ϵ for some ϵ > 0 hence θθθ ∈ DG,ϵ.

Then it is easy to see that 2θθθ ̸∈ DG,ϵ as ⟨2θθθ, LG(2θθθ)⟩ = 4ϵ > ϵ.

We can thus conclude that Dθθθ is a k-dimensional subspace of Rn which is a measure

zero set and DG,ϵ is a positive measure set which is not closed under multiplication.

Hence we can easily see that DG,ϵ ̸⊂ Dθθθ, Dθθθ ̸⊂ DG,ϵ.
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Theorem 2.8.3. Consider n-armed bandit setup. Let DG,ϵ, Dθθθ represent the subset of

problems in Rn as follows:

DG,ϵ = {µµµ ∈ Rn| ⟨µµµ, LGµµµ⟩ ≤ ϵ, ϵ > 0}

Dθθθ = {µµµ ∈ Rn| µi = ⟨ai, θθθ⟩, ai ∈ Rk, ∀i ∈ [n]}

where k < n,θθθ ∈ Rk indicates the reward vector and LG is the laplacian matrix

corresponding to graph G. Then DG,ϵ ̸⊂ Dθθθ, Dθθθ ̸⊂ DG,ϵ,m(DG,ϵ) > 0 and m(Dθθθ) = 0

where m(·) is the Lebesgue measure on Rn.

Proof. We can split the argument into two parts:

• ⟨µµµ, LGµµµ⟩ > 0

• ⟨µµµ, LGµµµ⟩ = 0

Theorem 2.8.2 addresses the first part of the argument

For the case when second part, i.e. ⟨µµµ, LGµµµ⟩ = 0, let L= : {µµµ ∈ Rn| ⟨µµµ, LGµµµ⟩ = 0}.

Note that for any µµµ ∈ Rn only happens if and only if µµµ ∈ N (LG) where N (·) represents

the null space of the matrix. Since LG is rank deficient L= is a set in a subspace of

Rn and hence m(L=) = 0.

Thusm(L>∪L=) > 0 which is fundamentally different from linear bandits addresses

problems of measure zero.

Thus we can conclude that the two frameworks of graph and linear bandits address

fundamentally different domains of problems.

2.9 Discussion and Broader Impacts

In this work, we consider the problem of best arm identification (and approximate

best arm identification) when one has access to information about the similarity
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between the arms in the form of a graph. We propose a novel algorithm GRUB for

this important family of problems and establish sample complexity guarantees for

the same. In particular, our theory explicitly demonstrated the benefit of this side

information (in terms of the properties of the graph) in quickly locating the best

or approximate best arms. We support these theoretical findings with experimental

results in both simulated and real settings.

Future Work and Limitations. We outline several sampling policies inspired

by our theory in Section 5.6; an extension of our theoretical results to account for

these improved sampling policies is a natural candidate for further exploration. The

algorithms and theory of this paper assume knowledge of (an upper bound) on the

smoothness of the reward vector with respect to the graph. While this is where one

uses domain expertise, this could be hard to estimate in certain real world problems.

A generalization of the algorithmic and theoretical framework proposed here that is

adaptive to the unknown graph-smoothness is an exciting avenue for future work (Cai

and Yuan, 2012; Banerjee et al., 2020). The sub-Gaussianity assumption of this work

can also be generalized to other tail behaviors in follow up work. Another limitation

of this work is that the statistical benefit of the graph-based quadratic penalization

comes at a computational cost – each mean estimation step involves the inversion of

an n× n matrix which has a complexity of O(n2 log(n)). However, an exciting recent

line of work suggests that this matrix inversion can be made significantly faster when

coupled with a spectral sparsification of the graph G (Vishnoi et al., 2013; Spielman

and Teng, 2010) while controlling the statistical impact of such a modification. In

the context of this problem, this suggests a compelling avenue for future work that

studies the statistics-vs-computation tradeoffs in using graph side information.

For this work, we demonstrated the advantages of this side information in pure

exploration problems, given knowledge of such an ϵ. Extensions that consider goodness-
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of-fit and misspecification with respect to the graph G and smoothness parameters

ϵ are interesting avenues for follow up work. Finally, we focus on the ridge-type

regularizer of the form ⟨µ, LGµ⟩. For future work, it may be productive to expand

to a much broader class of regularizers such as those of the form of ∥Aµ∥pq, where A

represents an information/ structural constraint matrix and p, q are some positive

numbers.

Potential Negative Social Impacts. Our methods can be used for various

applications such as drug discovery, advertising, and recommendation systems. In

scientifically and medically critical applications, the design of the reward function

becomes vital as this can have a significant impact on the output of the algorithm.

One must take appropriate measures to ensure a fair and transparent outcome for

various downstream stakeholders. With respect to applications in recommendation and

targeted advertising systems, it is becoming increasingly evident that such systems may

exacerbate polarization and the creation of filter-bubbles. Especially, the techniques

proposed in this paper could reinforce emerging polarization (which would correspond

to more clustered graphs and therefore better recommendation performance) when

used in such contexts. It will of course be of significant interest to mitigate such

adverse outcomes by well-designed interventions or by considering multiple similarity

graphs that capture various dimensions of similarity. This is a compelling avenue for

future work.
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Chapter 3

QUADRATIC FEASIBILITY

This study addresses the quadratic feasibility problem, aiming to retrieve a complex

vector x ∈ Cn from m quadratic measurements ⟨Aix,x⟩mi=1. Despite its numerous

applications, solving this problem is NP-hard, and achieving identifiability poses

challenges. Gaussian random measuring matrices are ubiquitous in existing related

literature. In contrast, we focus our analysis on deterministic measurement matrices

that can possibly reflect physical setups and structural constraints. The removal of

randomness raises the challenge of the problem setup in deriving identifiability and

retrieval guarantees. To overcome this, we introduce novel conditions for the design

process that ensure identifiability and retrieval through first-order descent methods.

Upon satisfying these necessary conditions, we guarantee key characteristics of the

optimization landscape which enables gradient algorithms to converge to a globally

optimal solution with high probability, regardless of initialization. Optimization

landscape simulation provides supplementary intuition supporting the necessity of our

proposed conditions and demonstrates the superior performance of our deterministic

measurement matrices compared to random Gaussian measurements.

3.1 Introduction

Finding a solution to a system of quadratic equations is an important problem with

a wide range of applications. It arises in areas such as power system state estimation

Wang et al. (2016), phase retrieval Candes et al. (2015, 2013); Eldar and Mendelson

(2014); Balan and Zou (2014), x-ray crystallography Drenth (2007), the turnpike

problem Dakic (2000), and unlabeled distance geometry problemsDuxbury et al.
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(2016); Huang and Dokmanić (2018) among others. Such problems can be reduced to

a quadratic feasibility problem, where one is concerned with finding a feasible vector x

that conforms to a set of quadratic observations of the form {⟨Aix,x⟩}mi=1 with respect

to a set {Ai}mi=1 of measurement matrices. Formally, it can be cast as:

find x such that ⟨Aix,x⟩ = ci, ∀i = 1, 2, . . . ,m. (P1)

The quadratic feasibility problem is an instance of quadratically constrained

quadratic programs (QCQPs)Park and Boyd (2017), which has enjoyed a long and rich

research history dating back to 1941Dines (1941). Given their broad applicability to

critical problems, research in QCQPs continues to be of active interest Park and Boyd

(2017); Beck and Pan (2017); Beck (2009); Beck and Eldar (2006). Unfortunately,

it is known that solving generic QCQPs is an NP-hard problem Sahni (1974). This

combined with the lack of tractable duality properties Pólik and Terlaky (2007) has

made it hard to establish a sound theoretical framework for understanding the solutions

and computing them. However, an extremely productive line of research has instead

considered subclasses of QCQPs that are both practically relevant and can be analyzed.

While a significant portion of the research literature focuses on QCQPs characterized

with Gaussian random matrices, these don’t apply to deterministic situations where

the constraints represent physical restrictions of the underlying problem setup. In this

paper, we identify the necessary and sufficient conditions required for any quadratic

feasibility problem, deterministic or random, to be tractable, by which we mean that

the problem setup (P1) can uniquely identify the solution as well as retrieve it. We

provide a theoretical and intuitive understanding of the established conditions for

the identifiability of the solution, connect the existing literature on gaussian random

QCQPs with the specified conditions and further provide a novel extension of the

results to the case of noisy measurements, which is widely missing in the current
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literature.

Finding a solution to (P1) involves two tasks: i) Ensuring the problem is well-

defined, i.e. the intended unknown solution being the only solution solving the system

of equations, ii) Developing a trackable approach to recover the unknown solution. In

this paper, we solve both these issues for a deterministic system of equations as well

as provide guardrails as to when such a system of equations can be tagged as solvable.

(more on this later)

We start by analyzing quadratic mapping: x→ {⟨Aix,x⟩}mi=1, and focus on their

ability to generate injective maps up-to a phase factor (note that a quadratic function

of any matrix A ∈ Cn×n, i.e. ⟨Ax,x⟩ is invariant to phase shifts). Following up on

injective properties, we establish the distance metric to prove isometric properties of

quadratic mapping, thereby ensuring uniqueness of solution for (P1) up to a phase

constant. Next, we consider the question of computationally tractable approaches to

converge to this unique solution. Unlike most other works in literature, for this work

we assume that measurements are corrupted with Gaussian noise. A natural approach

to tackle (P1) is to reformulate the problem as a loss function. We prove that the loss

function is necessarily nonconvex in nature making it NP-hard. Our main result of

the paper revolves around showing that under certain conditions, this loss landscape

is well-behaved. While such statements of this nature are already established in the

literature, we are the first to prove it in the case of deterministic matrix ensemble.

Such nature of the loss landscape enables successful global recovery for any first-

order algorithm to solve QFP. As a clear connection to the related literature, we

also prove that these required conditions hold with very high probability for random

measurements (specifically an ensemble of Gaussian random matrices {Ai}mi=1 with

m > O(n))

The rest of the paper is organized as follows. Section 3.3 discusses about relevant
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works in literature. Section 3.4 highlights the main results of this work. We discuss

some related work in Section 3.3. In Section 3.5 we establish and analyze isome-

try/identifiability properties of the mapping {⟨Aix,x⟩}mi=1 when the measurement

matrices are complex Gaussian. Finally, Section 3.6 casts the problem as a quadratic

loss minimization problem (suitable for efficient algorithms) and establishes favorable

properties of the loss landscape that allow one to find a solution using gradient-based

methods with arbitrary initial points.

Before we state the main results of the paper, we introduce some notation that

will be used throughout the paper.

3.2 Notation

For any r ∈ N, we write [r] to denote the set {1, 2, . . . , r}. We let Cn and

Rn denote the n-dimensional complex and real vector spaces, respectively. Unless

otherwise stated, bold letters such as x indicate vectors in Cn; xR and xC denote

the real and the imaginary part of the vector x, respectively. We denote complex

conjugate of x by x̄. Capital letters such as X denote matrices in Cn×n. The use

of i (without serif) indicates the complex square root of -1 (we will use i to indicate

an indexing variable). We let Sa,b(Rn×n) denote the set of all matrices X ∈ Rn×n

having a non-negative eigenvalues and b negative eigenvalues, where a+ b = n. The

set Hn(C) denotes the set of all n× n Hermitian matrices. We write A⊤ and A† to

denote, respectively, the transpose and the Hermitian transpose (transpose conjugate)

of a matrix A. We use ⟨·, ·⟩ to denote the inner vector product in the complex space.

The symmetric outer product, denoted by [[·, ·]], is defined as [[u,v]] = uv† + vu†.

Finally, we will let ∼ denote the following equivalence relation on Cn: x ∼ y if and

only if x = cy for some c ∈ C with |c| = 1. We will write Cn
∠ ≜ Cn/ ∼ to denote the

associated quotient space. Given a set of matrices A = {Ai}mi=1 ⊂ Hn(C), we will let
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MA denote the following mapping from Cn
∠ → Cm:

MA(x) = (⟨A1x,x⟩, ⟨A2x,x⟩, . . . , ⟨Amx,x⟩). (3.1)

WhileMA technically operates on the equivalence classes in Cn
∠, we will abuse the

notation slightly and think ofMA as operating on the elements of Cn. Let d∠(·, ·)

denote the following Frobenius distance metric for rank-1 matrices,

d∠(x,y) = ∥xx† − yy†∥F for any x,y ∈ Cn. (3.2)

We further define cross distance between two vectors x,y ∈ Cn as follows,

dc(x,y) = ∥xy⊥ − yx⊥∥F for any x,y ∈ Cn. (3.3)

In order to give an intuitive understanding of the core reasoning for some of the

concepts in the work, we use the following toy setup.

3.3 Related Works

QCQPs have enjoyed a lot of attention over the last century. When it comes to

provably solving, due to the limitation of the duality properties of QCQPs Barvinok

(1995), a significant fraction of research has focused predominantly on heuristic

approaches to their solution Konar and Sidiropoulos (2017a,b); Konar (2017). Recently,

an ADMM-based method has been proposed inHuang and Sidiropoulos (2016) with

an asymptotic convergence result based on the duality properties of QCQPs. Our

results in this paper bring new insights to this area by analyzing a subset of QCQPs,

namely, the Quadratic feasibility problems.

The Quadratic feasibility problem (P1) arises in many applications, including

phase retrieval Candes et al. (2015) and power system state estimation Wang et al.
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(2016). Phase retrieval in and of itself finds applications in a wide variety of fields

such as imaging, optics, quantum tomography, and audio signal processing with a

wide literature, including Eldar and Mendelson (2014); Candes et al. (2015); Tan and

Vershynin (2017); Balan and Zou (2014). In Candes et al. (2013), an approximate ℓ1

isometry property was established for the phase retrieval problem, but the bounds

therein are not strong enough to provide RIP-like guarantees. In this paper, we

improve these bounds to establish isometry results for a large class of problems and

provide RIP-type bounds.

The authors in Wang and Xu (2017) provide lower bounds on the minimum number

of independent measurements required for a successful recovery for the quadratic

feasibility problem. Our high probability bounds are ordered optimal in the number

of measurements required for successful recovery. More recently, Huang et al. (2019)

showed that the quadratic feasibility problem Gradient descent can be solved, with

high probability, provided a good initialization is used.The current work takes an

alternate path by analyzing the landscape of the associated ℓ2-loss function. We suspect

that results, such as the recovery of solution using gradient descent, are a result of

underlying properties of the landscape of the function landscape. In particular, for the

ℓ2-loss function, we prove that all local minima are global and all saddle points are

strict. Thus, our results enable gradient-based algorithms with arbitrary initialization

to recover the solution for the quadratic feasibility problem.

The study of recovery performance for the quadratic feasibility problem has largely

centered around phase retrieval problems. The earliest work in this field can be traced

back to Balan et al. (2006), who established necessary and sufficient conditions for

measurement vectors to result in injective and stable intensity measurements. Sun

et al. (2018) showed that, when the measurements are i.i.d complex Gaussian and the

number of measurements is sufficient, there is a high probability that there are no false
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local minimizers and all global minimizers are equal to the target signal. Huang and

Xu (2020) provided a sharp estimation error of the model without noise distribution

assumptions, given that the measurement vectors are random Gaussian.

In the context of the general quadratic measurements model (QMR), Huang et al.

(2021) and Wang and Xu (2017) introduced the concept of phase retrieval property and

explored its connections to low-rank matrix recovery and nonsingular bilinear form.

They derived results on the minimum number of measurements needed for matrix

recovery and applied these to phase retrieval problems. Specifically, they showed that

a set of p× p matrices has the phase retrieval property if n ≥ 2p− 1 in the real case

and n ≥ 4p− 4 in the complex case. The concept of almost everywhere phase retrieval

property has also been investigated for a set of matrices.

In our previous work (Thaker et al. (2020)), we investigated the quadratic feasibility

problem and established conditions for its identifiability. We concluded that, if

the matrices A1, ..., An are Hermitian matrices sampled from a complex Gaussian

distribution, any first-order algorithm from an arbitrary starting point can converge

to a globally optimal solution with a high probability.

In the phase retrieval literature, the problem of designing the measurement matrix

received considerably less attention compared to the design of retrieval algorithms.

An important desirable property that measurement matrices should satisfy is a unique

relationship between the signal and the magnitudes of its projections, up to an inherent

phase ambiguity. In many works, particularly in theoretical performance analysis of

phase retrieval algorithms Candes et al. (2013, 2015); Candes (2008), the matrices are

assumed to be random, commonly with i.i.d. Gaussian entries. However, in practical

applications, the measurement matrix corresponds to a fixed physical setup, so it is

typically a deterministic matrix, with possibly structural constraints. For example, in

optical imaging, lenses are modeled using dft matrices and optical masks correspond
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to diagonal matrices Candes et al. (2015). Measurements based on oversampled dft

matrices were studied in Huang et al. (2016), measurement matrices which correspond

to the parallel application of several dfts to modulated versions of the soi were proposed

in Candes et al. (2015), and Drémeau et al. (2015) studied phase recovery using fixed

binary measurement matrices, representing hardware limitations in optical imaging

systems.

All the works above considered noiseless observations, hence, the focus was on

obtaining uniqueness of the magnitudes of the projections in order to guarantee

recovery, though the recovery method may be intractable Eldar and Mendelson (2014).

When noise is present, such uniqueness no longer guarantees recovery, thus a different

design criterion should be considered. Recovery algorithms as well as specialized

deterministic measurement matrices were considered in several works. In particular,

Jaganathan et al. (2016); Bendory et al. (2017) studied phase recovery from short-time

Fourier transform measurements, Pedarsani et al. (2017) proposed a recovery algorithm

and measurement matrix design based on sparse graph codes for sparse soi taking

values on a finite set, Iwen et al. (2016) suggested an algorithm using correlation based

measurements for flat soi, i.e., strictly non-sparse soi, and Bodmann and Hammen

(2014) studied recovery methods and the corresponding measurement matrix design for

the noisy phase retrieval setup by representing the projections as complex polynomials.

A feasibility problem is often cast as a minimization problem with a suitably chosen

loss function. Even with a nonconvex objective, gradient based methods have proven

to work for phase retrieval Tan and Vershynin (2017); Balan and Zou (2014); Candes

et al. (2015), matrix factorization Bhojanapalli et al. (2016a); Jin et al. (2016) and

robust linear regression Jain et al. (2017). The work in Sun et al. (2018) has established

landscape properties for the phase retrieval problem, which sheds light on the success

of gradient based methods in solving the problem. In this work, we extend these
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results to a wider class of problems along with additional insights into the problem

properties. In Ge et al. (2017), it was shown that many nonconvex loss functions

have specific landscape properties, which allows gradient based algorithms to recover

a globally optimal solution without any additional information. One unfortunately

cannot readily transport those results to our setting, mainly due to the significant

differences between the real and complex vector spaces. For instance, a quadratic

feasibility problem in Rn has only two isolated local minima, while it has a continuum

of minima in Cn.

A natural optimality condition for the noisy setup, without focusing on a specific

recovery algorithm, is to design the measurement matrix to minimize the achievable

mse in estimating the soi from the observations. However, in phase retrieval, the soi

and observations are not jointly Gaussian, which makes computing the mmse for a

given measurement matrix in the vector setting very difficult. Furthermore, even in

the linear non-Gaussian setting, a closed-form expression for the derivative of the

mmse exists only for the scalar case Guo et al. (2011), which corresponds to a single

observation. Therefore, gradient-based approaches for mmse optimization are difficult

to apply as well.

3.4 Main Results

We consider the quadratic feasibility problem (P1) where the aim is to recover a

complex decision vector x ∈ Cn through its m noisy quadratic measurements of the

form of ⟨Aix,x⟩ where Ai ∈ Cn×n are Hermitian matrices and the noisy measurements

are represented by ci ∈ R for all i ∈ [m]. We start by characterizing conditions under

which the quadratic feasibility problem (P1) is well-defined. We define (α, β)-stability

to establish the uniqueness of the solution x∗ of (P1).

Lemma 3.4.1. The mappingMA is injective iff it is (α, β)-stable for some constants
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0 < α ≤ β.

Having established that (P1) has a uniquely identifiable solution (upto a phase

ambiguity), we next turn our attention to finding a feasible solution in a computa-

tionally efficient manner, specifically through the usage of local gradient methods

(gradient-based methods which do not have access to any global information). To

this end, one may consider recasting the quadratic feasibility problem as a quadratic

minimization problem of the ℓ2-loss function, as follows:

min
x∈Cn

f(x), f(x) ≜
1

m

m∑
i=1

|⟨Aix,x⟩ − ci|2 . (F2)

Unfortunately, this optimization problem is non-convex (can be seen by analysing the

cost function at x∗,−x∗ and 0) and, in general, one may not guarantee any gradient

based method to converge to a global minimum.

We define κ-cross-stability in order for local gradient methods to successfully

recover a quadratic feasible point. Intuitively κ-cross-stability ensures that the set of

measuring matrices {Ad}m1 are capable enough to sense the energy in the direction

perpendicular to x∗. We prove that, provided the measuring matrices Ai’s satisfy the

α, β-stability, and κ-cross-stability, the landscape of said loss function can actually be

benign, making it possible for first-order methods to recover the solution.

Theorem 3.4.2 (sketch). Let A = {Ad}m1 be the set of measurement matrices for

the quadratic feasibility problem (P1) and let them satisfy α, β-stability and κ-cross-

stability. Suppose that z ∈ Cn be a global optimizer of (F2). Then the following

holds:

1. MA(w) =MA(z) for all local minima w of (F2).

2. The function f in (F2) has the strict saddle property.
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Theorem states that, with the conditions of α, β-stability and κ-cross-stability, the

minimization problem (F2) has no spurious local minima, and any saddle point of the

function f is strict in the sense that f has a strictly negative curvature at such a point.

The latter property, called the strict saddle property, is defined in Section 3.6, where

we also provide a formal statement of Theorem 3.6.7. Finally, based on the properties

established about the loss landscape, we establish that a solution to problem (F2) can

be obtained by applying a gradient based algorithm (from an arbitrary initial point),

since such an algorithm is unlikely to converge to a saddle point.

Generally, designing the set of measurement matrices A to satisfy the properties

can be quite non-trivial and may require area expertise. As a solution to this crisis,

we focus our attention on random hermitian matrices and prove that all the necessary

and sufficient conditions required for successful recovery of the unknown vector z are

satisfied by random matrices in expectation. Further, we show the exact measurement

complexity required for sub-gaussian random matrices to show such behavior with

very high probability.

Our main result here states, states that the mappingMA is a near-isometry when

the matrices Ai are chosen from a complex Gaussian distribution. A sketch of the

statement is provided below.

Theorem 3.4.3 (sketch). Let A = {Ai}mi=1 be a set of complex Gaussian Hermitian

random matrices. Suppose that the number m of measurements satisfies m > Cn, for

a large enough C > 0. Then, with a high probability, the following relation holds:

1. MA(w) =MA(z) for all local minima w of (F2).

2. The function f in (F2) has the strict saddle property.

In other words, we show that, with a sufficient number of random matrices {Ad}

and with high probability, the mappingMA nearly preserves distances with respect
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to the distance measure defined in (3.2) as well as contains enough energy in entire

Cn to be able to establish strict saddle property.

The formal statement along with the full proof is presented in Theorem B.4.3 in

Section 3.5.

Such arguments have been used to prove crucial robustness results for the phase

retrieval problem (however, only in Rn); see e.g., Bandeira et al. (2014); Balan and

Wang (2015); Candes et al. (2013). Our result for the optimization landscape of (F2)

is in fact amenable to gradient based methods!

We would like to point out some nuances of what we have proved,

• (α, β)-stability, with 0 < α ≤ β, is sufficient to guarantee the identifiability of

solution z of (P1). This alone is however not sufficient to guarantee the recovery

of z using gradient-based local methods by ℓ2 loss minimization due to the

possible existence of suboptimal local minimas.

• (α, β)-stability and κ-cross-stability, with 3α > 2β and κ ≥ 0, is sufficient for

ensuring successful recover of z (F2) using local gradient-based methods.

• Sampling A from Guassian random hermitian matrices for |A| > Cn for suffi-

ciently large C > 0 is sufficient to guarantee 3α > 2β and κ ≥ 0. Thereby being

sufficient for solving (P1) through (F2)

(Rewrite this para) Most of the results related to Non-convex landscape and

the strict saddle property of the optimization landscape provide guarantees only in

high probability when the measuring vectors or matrices are sampled using random

distributions. We are the first to isolate the properties of the measuring matrices A

which are sufficient for obtaining strict saddle properties and identifiable proprieties.

We also show Gaussian random matrices with enough measurement to satisfy these

properties and hence satisfy the problem.
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3.5 Identifiability of Quadratic Feasibility

The quadratic feasibility problem (P1) deals with recovering a complex vector

x ∈ Cn from the set of its quadratic measurements MA(x). To do so, we need

to analyze the nature of the quadratic mapping MA(·) and the role of the matrix

ensemble A in influencing the same.

Note that given any complex matrix A ∈ Cn×n, note that ⟨Ax,x⟩ = ⟨A(−x), (−x)⟩.

In more generality, this phenomenon can be attributed to the symmetric nature of

quadratic functions (or in general to even-powered homogeneous polynomials). The

quadratic problem (P1) has the property of being unaltered to phase transitions of the

unknown solution x, i.e. if x is a solution to (P1) then eiθx, θ ∈ [0, 2π] is a solution

to (P1) as well. Hence the system of quadratic measurement in (P1) is fundamentally

incapable of distinguishing up-to-a-sign ambiguity (in the real domain) and a phase

factor (in the complex domain). To this end, we define C∠ := C\ ∼ to be the phase

ambiguous quotient space, where x ∼ y if and only if x = cy for some c ∈ C with

|c| = 1. We utilize d∠(x,y) = ∥xx†−yy†∥F for any x,y ∈ Cn to be the phase invariant

distance metric for this work. Notice that this d∠(·, ·) is invariant under phase shifts,

i.e. d∠(x,y) = 0 if x = yeiθ, θ ∈ [0, 2π] and hence not a distance metric in Cn. But

d∠(·, ·) is a distance metric on C∠. This concept of phase invariant distance metric

is not novel and has been utilized in a lot of previous works Eldar and Mendelson

(2014).

In light of the inability to distinguish between the phases of x ∈ Cn, it is impertinent

to ask whether the system of quadratic measurementsMA(x) is capable of recovering

any unknown signal x ∈ Cn. Making this query mathematically precise, for all

x,y ∈ Cn, if x ≁ y then can we be confident thatMA(x) ̸=MA(y)? The answer to

this is Yes. We refer to this property as injectivity of the mappingMA (for ease of
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reference we sometimes refer to this as injectivity of matrix ensemble A). To quantify

this notion of injectivity of a given mappingMA : Cn
∠ → Cm we define (α, β)-stability

of mappingMA(·) as follows,

Definition 3.5.1 ((α, β)-stability). Consider the mapping MA characterized by

ensemble A as in (3.1). We say thatMA is (α, β)-stable w.r.t. metric d∠(·, ·), with

0 < α ≤ β, if the following relation holds for all x1,x2 ∈ Cn:

αd(x1,x2) ≤ ∥MA(x1)−MA(x2)∥2 ≤ βd(x1,x2). (3.4)

The constants α, β depend on the choice of the matrix ensemble A. The ratio of

the constants α, β can also be thought of as a condition number or distortion factor,

thereby allowing one to quantify the quality of the map; the higher the ratio between

α and β, the better the ability of the mapping to distinguish between two distinct

inputs. Our definition of (α, β)-stability requires both upper and lower bounds, which

is instrumental in future results as we will see in the next section. This is in contrast

to the stability concept considered for phase retrieval in Eldar and Mendelson (2014);

Duchi and Ruan (2017). Similar notions of stability have been used to prove crucial

robustness results for the phase retrieval problem (however, only in Rn); see e.g.,

Bandeira et al. (2014); Balan and Wang (2015); Candes et al. (2013).

With this definition of stability in place, the next lemma establishes the connection

between injectivity and stability ofMA.

Lemma 3.5.2. The mappingMA is injective iff it is (α, β)-stable for some constants

0 < α ≤ β.

Complete proof of Lemma 3.5.2 can be found in Appendix B.1. As we will see

in what follows, Lemma 3.5.2 allows one to assess the conditions under which the

measurement model implied by the mappingMA is identifiable. Next, we start by
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establishing necessary conditions on the quadratic mappingMA defined in (3.1) to

ensure injectivity. Notice that the injectivity of the mapping is equivalent to the

problem being identifiable (and hence solvable). The notion of injectivity and (α, β)-

stability widely hinges on the nature of the ensemble A. So how does one go about

constructing such ensembles? Answer: Random ensemble.

In the following result, we prove that an ensemble of random matrices with sub-

Gaussian entries suffices as A. More precisely, a matrix A ∈ Cn×n is a complex

Hermitian sub-Gaussian matrix, if,

1. ∀ i, aii ∼ SG(0, σ2).

2. ∀ i, j, i ̸= j, aij ∼ SG(0, σ
2

2
) + i SG(0, σ2

2
).

where SG(0, σ2) indicates the sub-gaussian distribution with mean 0 and variance

σ2 and ∼ indicates “sampled from”. An ensemble of complex Hermitian Gaussian

random matrices A = {Ad}md=1 satisfies (α, β)-stability as follows,

Theorem 3.5.3. Let A = {Ai}mi=1 be an ensemble of complex sub-gaussian random

matrices, and assume the number of measurements satisfies m > Cn for some C > 0.

Then, for any given ξ ∈ (0, 1), there exist constants C, δ, ϵ > 0 such that, with

probability at least 1− ξ, the following relation holds

αd(x,y) ≤ ∥MA(x)−MA(y)∥2 ≤ βd(x,y).

where α, β are given by

α ≜
((1− 2δ)2(1− ϵ)

(1 + 2δ)2
, β ≜

((1 + 2δ)2(1 + ϵ)

(1− 2δ)2
.

We refer the reader to Appendix B.4.2 for a proof of this lemma. The high

probability argument is not new and has found application in several results; see e.g.,

Huang et al. (2019); Vershynin (2010); Meckes (2004).
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Deterministic design of A so as to have (α, β)-stability can be a hard task and in

some cases might require area expertise. While designing the measurement ensemble A

is non-trivial, Wang and Xu (2017); Dan (2022) provide guidelines of the requirements

for A to be injective. The results in Wang and Xu (2017) prove that a large class

of matrix ensembles A does satisfy this injective property. In this next theorem, we

focus on establishing sufficiency criteria for the mappingMA to be injective.

Theorem 3.5.4. Consider A = {Ai}mi=1 and the mappingMA be defined as in (3.1).

Viewing {Aix}mi=1 as vectors in R2n, we can say the following:

1. MA is injective.

2. ∀I ⊂ [m], then either dim(span({Aix}i∈I))≥ 2n− 1 or dim(span({Aix}i∈IC))≥

2n− 1 for all vectors x ∈ Cn\0 (complementary property Balan et al. (2006))

3. ∀I ⊂ [m], then either span({Aix}i∈I) = span({ix})⊥ or span({Aix}i∈IC) =

span({ix})⊥ for all vectors x ∈ Cn\0.

Given an ensemble A, Theorem 3.5.4 states that as long as the mapping MA

satisfies the complementary property Balan et al. (2006), we can be assured thatMA

is injective. Please refer to Appendix B.1 for the complete proof. Even though α > 0

is a necessary and sufficient condition for (P1) to be solvable, when dealing with

data-analytic methods in the presence of noise, the more the disparity between α and

β values, the harder it gets to provide guarantees on obtaining the unknown signal x.

3.5.1 Problem Complexity : Rn vs Cn

The quadratic feasibility problem (P1) has vastly different behavior when the

problem is set up in Rn or Cn. Firstly consider the well-studied problem of phase

retrieval, a special case of quadratic feasibility when the ensemble A is a collection of
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rank-1 matrices, i.e. A = {aia
†
i}mi=1 (when considering Cn) or A = {aia

⊤
i }mi=1 (when

considering Rn). The authors in Botelho-Andrade et al. (2016) argue the fundamental

difference between the two concepts: phase retrieval and phaseless recovery (please

refer Botelho-Andrade et al. (2016) for more details). They prove that these two

concepts coincide when considering the phase retrieval in Rn but are different in Cn.

The solution space of Problem (P1) is isolated solutions z or −z in the case of Rn, but

a continuum [eiθz, θ = [0, 2π)] in the case of Cn. A fundamental lower bound on the

cardinality of A is established to be 2n− 1 for Rn but is still an open question for Cn

(some results can be seen in Heinosaari et al. (2013); Botelho-Andrade et al. (2016)).

Authors in Wang and Xu (2017) prove that, when the setup (P1) is considered

in Rn, the set {x :M(x) = 0} is discrete. We dedicate Appendix B.2 to developing

Lemma B.2.2 which mathematically proves that this is not the case for (P1) in Cn

and the set of {x :M(x) = 0} is a continuum, further depicting the dissimilarity and

the need to analyze Rn and Cn separately.

3.6 Solving Quadratic Feasibility

Having established conditions under which the mappingMA represents an iden-

tifiable measurement model and hence (P1) is solvable, we next focus on tractable

approaches for the retrieval of the unknown signal z ∈ Cn. Consider the ℓ2-loss

formulation of problem (P1),

min
x∈Cn

f(x), f(x) ≜
1

m

m∑
i=1

|⟨Aix,x⟩ − ci|2 . (F2)

The reader can easily reason that the above loss function is non-convex (being 0 at

the x = ±z but > 0 at x = 0). This negates a lot of the existing literature on gradient

descent and its convergence guarantees on convex functions. Naively attempting to

solve (F2) with gradient descent can lead to convergence to local minima, thereby
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failure in retrieving the unknown signal x.

It is a well-known result that, for nonconvex loss functions, first-order gradient-

based approaches need not converge to a global minimum. This is one of the central

challenges stopping the widespread application of local methods for tackling non-

convex problems. One of the primary attributes of this difficulty is the inability

to distinguish local from global minima due to a lack of global information. Hence

retrieving the generator z through the ℓ2-loss minimization problem (F2) is non-trivial.

In order to ensure that gradient-based algorithms can recover the unknown solutions

we define a sufficiency condition for the matrix ensemble A to ensure retrievability for

local gradient-based methods using (F2).

Lately, nonconvex optimization has received considerable attention due to the

abundant practical applications and recent advances in tackling a subset of this

problem category. In particular, methods like SGD and other gradient-based methods

have been shown to be astonishingly successful in converging to global minima in

many nonconvex problems Du et al. (2018); Chen et al. (2018); Jin et al. (2017).

Arguably, the reason for this is that the optimization landscape of these (somewhat

well-behaved) nonconvex problems enjoy advantageous properties which are crucial

in the empirical success of the gradient based methods Bower et al. (2018); Davis

et al. (2017); Sun et al. (2018). The work in Sun et al. (2018) proves that the ℓ2-loss

function for the phase retrieval problem enjoys properties such as all local minima

being global, and each saddle point having a strictly negative curvature.

Typically such landscape properties are proved in population studies and the

success of gradient descent is proved as a result of the concentration phenomenon.

While random matrix ensembles are alluring choices for setting up (P1), in many

applications, the setup in (P1) reflects the physical constraints in the physical world

which may not be justified to be modeled by Gaussian random matrices. Hence in the
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rest of the section, we focus on characterizing the relevant landscape properties of the

ensemble A so as to enable all local gradient methods to reach global minima. Note

that, under the right condition, our analysis obviates the need to provide initialization

to first-order gradient-based algorithms Huang et al. (2019); Chen et al. (2023a).

3.6.1 Conditioning on A

We provide an intuitive example in Rn to make the reader understand better.

Consider the toy problem of retrieving the signal z = [−1, 1] ∈ R2 as in (P1) with the

following measuring matrix ensemble Aa (parameterized by a ∈ R+, 0 < a < 1),

Aa =


1 0

0 0

 ,

0 0

0 1

 ,

0 2a

0 0

 ,

 0 0

2a 0


 (3.5)

Please note thatAa satisfies (min{2a, 1},max{2a, 1})-stability. The ℓ2-loss formulation

can be given by,

fa


x1

x2


 =

1

4

[
(x2

1 − 1)2 + (x2
2 − 1)2 + 2(2ax1x2 + 2a)2

]
(3.6)

Given a > 0, it is easy to verify that fa(x) = 0 if and only if x = [1,−1] or x = [−1, 1]

and fa(x) > 0 for all other x ∈ R2, a > 0. The following graphs show the landscape of

fa(·) for different values of a:

(a) a = 0.05 (b) a = 0.2 (c) a = 0.6

Figure 3.1: Function landscape of fa for different values of a
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As can be observed, increasing the value of a helps in elevating sites of potential

local minima (these being [1, 1] and [−1,−1]). To solidify this understanding, we

analyze it from the Hessian point of view,

∇2fa


1
1


 = ∇2fa


−1
−1


 =

2 + 4a2 12a2

12a2 2 + 4a2

 (3.7)

The eigenvalues can be computed to be λ1 = 2(8a2 + 1), λ2 = −2(4a2 − 1). Note that

λ2 > 0 ∀a < 1
2
and λ2 < 0 ∀a > 1

2
. Thus, even if Aa is (min{2a, 1},max{2a, 1})-

stable, if a < 1
2
, ∇f(x) ≻ 0 for x all x =

1
1

 ,

−1
1

 ,

 1

−1

 ,

−1
−1

. Note that, for

a > 1
2
, ∇f(x) ⊁ 0 (since λ1 > 0 but λ2 < 0) for x =

1
1

 ,

−1
−1

 hence not local

minima, but saddle points with strict negative curvature.

3.6.2 Phase Irregularity Correction

Following up on the intuition illustrated in Toy-example in Section 3.6.1, we

concretize the criteria to make sure ℓ2-loss function does not induce local minima on

any x apart from the solution to Problem (P1). We first formalize the definition of

the class of points which could potentially lead to situations as expressed in the toy

example.

Definition 3.6.1 (Phase-irregular vectors). Vectors x,y ∈ Cn are phase-irregular if

and only if ∄ a ∈ C such that x = ay.

Intuitively, Definition 3.6.1 formalizes the notion of distinguishing two vectors in

Cn only based on irregular phase changes between the individual dimensions of the

vectors. Note that Definition 3.6.1 displays a notion complimentary to “Unique up-to

phase ambiguity” when restricted to norm constrained x. To give a more intuitive
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example, let x = [x1, x2, . . . ],y = [y1, y2, . . . ] ∈ Cn be such that yi = xi ∀i ∈ [2, n]

and y1 = eiθx1 for some θ ∈ [0, 2π]. Then x and y are phase-irregular. Next we define

a distance notion dφ(·, ·) to capture the phase irregularity as follows,

dφ(x,y) = ∥xy⊤ − yx⊤∥F (3.8)

Note the following properties of dφ(·, ·),

1. dφ(x,y) > 0 is and only if x,y are phase-irregular.

2. dφ(x, ay) = |a|dφ(x,y) for any a ∈ C.

3. dφ(x,x+ y) = dφ(x,y)

4. dφ(x,y + z) ≤ dφ(x,y) + dφ(x, z)

The notion of phase-irregular distance dφ(·, ·) ties well with Toy example in

Section 3.6.1, as the dφ([1,−1], [1, 1]) > 0 since [1,−1], [1, 1] are phase-irregular. Next,

we define the condition for our ensemble A to incorporate dφ(·, ·) termed as κ-phase

discriminating, in order to ensure elimination of the suboptimal local minima emerging

due to x which are phase-irregular with solution of (P1),

Definition 3.6.2 (κ-phase discriminating). For any vectors x,y ∈ Cn and κ > 0, we

say that the matrix ensemble A is said to be κ-phase discriminating if

1

m

m∑
d=1

(
⟨Ad,yx

†⟩⟨Ad,xy
†⟩ − ⟨Ad,yy

†⟩⟨Ad,xx
†⟩
)

≥ κdφ(x,y)
2. (3.9)

Generalizing from the toy setup in subsection 3.6.1, the potential sites of saddle

point/local minima (with appropriate assumptions on a) were precisely the locations

in Cn where only a few dimensions have a phase shift. Intuitively, definition (3.9)
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ensures that the ensemble A eliminates these locations of potential local minima,

by making sure they behave as a saddle point (here κ > 0 behaves as a > 1
2
in

our toy example). The concern at this point would be the practicality of κ - phase-

discriminating (Definition 3.6.2). In the next result we show that such a condition is

satisfied by large class of ensemble A,

Theorem 3.6.3. Let A = {Ai}mi=1 be an ensemble of complex sub-gaussian random

matrices, and assume the number of measurements satisfies m > Cn for some C > 0.

Then, for any given ξ ∈ (0, 1), there exist constants C, δ, ϵ > 0 such that, with

probability at least 1− ξ, the following relation holds

1

m

m∑
d=1

(
⟨Ad,yx

†⟩⟨Ad,xy
†⟩ − ⟨Ad,yy

†⟩⟨Ad,xx
†⟩
)

≥ ((1− 2δ)2(1− ϵ)

(1 + 2δ)2
dφ(x,y)

2.

Our criteria in this section was to focus on phase irregularity correction and

hence out choice of utilizing dφ(·, ·) over d∠(·, ·) (Note that for any scalar number

a, |a| ≠ 1, dφ(x, ax) = 0 but d∠(x, ax) ̸= 0 showcasing the focus of dφ(·, ·) on only

phase irregularity detection)

Using the notions of α, β-stability and κ-phase discriminating, we provide guaran-

tees on the landscape of the ℓ2-loss function (F2) in the next subsection.

3.6.3 Benign Landscape Guarantees

While the toy setup in Section 3.6.1 is very limited in terms of its construction,

intuitively it suggests that under certain conditions on matrix ensembles A, the

landscape of Equation (F2) might be “nice” enough to enable gradient descent methods

to recover the unknown signal x. In this subsection, we go deeper and establish these

conditions concretely for ℓ2-loss function (F2)
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Observe that the ℓ2-loss function (F2) f : Cn → R is not differentiable in the

complex space Cn. Hence it is challenging to address the problem (F2) in a standard

analysis technique of gradient descent. Instead, we utilize techniques from Wirtinger

calculus Candes et al. (2015). Using this, our first step is to define the notion of a

strict saddle function.

Definition 3.6.4. A function f is said be strict saddle function if for any x ∈ Cn, at

least one of the following statements is true:

1. ∥∇f(x)∥ > 0;

2.

z
z̄


†

∇2f(x)

z
z̄

 < 0 for some z ∈ Cn;

3. x is the global minimum, i.e. if x ∈ Cn satisfies ∇f(x) = 0 and ∇2f(x) ⪰ 0

thenMA(x) =MA(y) where y is the unknown signal in (P1).

where the notion of gradient ∇f(·) and hessian ∇2f(·) are derived through wirtinger

calculus.

Intuitively, this implies that every x ∈ Cn either violates optimality (condition 1

and 2) or is a global optimum. A line of recent work Lee et al. (2016, 2017); Jain et al.

(2017) has explored the efficacy of gradient based methods in finding a local optimum

of functions satisfying Definition 3.6.4.

We analyze the optimization landscape of (P1). For a mild condition on the

stability parameters α, β and κ we show that every local minimum is in fact global

(upto the equivalence relation ∼). Our next main result states that the function f

in (F2) is strict saddle.

Theorem 3.6.5. Let the scalar vector c ∈ Rn be generated by quadratic measurements

of an unknown vector z ∈ Cn characterizing the measurements used in the objective
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function f of problem (F2). Let A be a set of measurement matrices which satisfy

(α, β)-stability with 2β < 3α and κ-phase-disciminating with κ ≥ 0. Then, the

following statements hold:

1) The function f is strict saddle, and

2) Every local minimum w of f satisfies d∠(w, z) = 0, where z is the global minima.

Proof sketch. Notice that to show that the function f in (P2) is a strict saddle function,

it suffices to only consider the points w ∈ Cn such that ∥∇f(w)∥ = 0 (otherwise, 1)

of Definition 3.6.4 is satisfied). For all such points, we analyze the behavior of the

Hessian and establish that there exists a direction ∆ ∈ Cn such that the following

inequality holds : ∆
∆̄


†

∇2f(w)

∆
∆̄

 < 0, (3.10)

whenever d∠(x,w) ̸= 0 and ∇f(w) = 0.

This implies that there is a direction where the hessian has a strict negative

curvature, and hence w cannot be a minima. In other words, we can conclude that: (1)

All local minima satisfy d(x, z) = 0, and (2) all saddle points have a strictly negative

curvature.

Theorem 3.6.5 is the first result we know of which extracts conditions on measuring

matrices A such that the loss functions have benign landscape properties. Most

of the results in terms of proving good landscape properties related to nonconvex

functions deal with high probability results in the presence of randomness. We establish

conditions that can be used as a design protocol for deterministic measuring matrices

A.
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While none of the works have concretely stated the precise condition as we have

in Theorem 3.6.5, a lot of works in literature have used 3α > 2β internally to prove

results Ge et al. (2017); Sun et al. (2018). Note that κ ≥ 0 is a requirement only when

analyzing Problem (P1) in the complex space Cn. The Authors in Ge et al. (2017)

could prove results for similar problems, without the need to invoke such property.

Finally, we remark that the properties of the optimization landscape that we have

established allow one to use any gradient based iterative method to find a global

optimum of the problem (P2) – hence, find a solution to the quadratic feasibility

problem. Furthermore, our results above also imply that a gradient method, with an

arbitrary initial point, would work, which is in sharp contrast with the existing works,

such as Huang et al. (2019). Formally, we have the following result.

Corollary 3.6.6. Consider a gradient method applied to minimize the function f

in (F2). Then, for an arbitrary initial point, the method point converges to a global

minimum of the loss function f associated with the quadratic feasibility problem.

Given the landscape properties we have derived in Theorem 3.6.5, this result follows

in a straightforward manner, for instance, from Theorem 4.1 in Lee et al. (2016). We

would like to remark here that the broad flow of ideas in our proof of Theorem 3.6.7

bears similarities to those in papers like Ge et al. (2017); Bhojanapalli et al. (2016b).

However, to the best of our knowledge, the present paper is the first to derive such

results based on the characterization of ensemble A in the complex domain. One of

the novel contributions of the paper is the isolation of the two conditions namely, one

which provides identifiablity to quadratic feasibility problems and another which lets

it be solved by computationally efficient algorithms. An interesting observation is that

in most of the previous works Eldar and Mendelson (2014); Sun et al. (2018) both of

these conditions are satisfied either by construction or by randomness and hence were
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never highlighted. In this work, we also focus on the necessary conditions required for

designing measurement matrices so as to solve (F2) by local-gradient-based methods.

We analyze the optimization landscape of (P2) when our measurement matrices

are Hermitian and complex Gaussian, and show that with a high probability every

local minimum is in fact global (upto the equivalence relation ∼). Our next main

result states that the function f in (P2) is the strict saddle.

Theorem 3.6.7. Let {Ai}mi=1 be a set of complex n× n Gaussian random matrices,

and let m > Cn for some constant C > 0. Let the scalars {ci}mi=1 characterizing the

objective function f of problem (P2) be generated by quadratic measurements of an

unknown vector z. Then, for any given ξ ∈ (0, 1), there exist positive constants β, γ,

and ζ such that the following statements hold with probability at least 1− ξ:

1) The function f is (β, ζ, γ)-strict saddle, and

2) Every local minimum w of f satisfies d(w, z) = 0

where (β, ζ, γ)-strict saddle is an extension of Definition 3.6.4 (more on this in

Appendix B.5). Note a crucial difference between Theorem 3.6.5 and Theorem 3.6.7

: While Theorem 3.6.7 holds with probability 1 − ξ, Theorem 3.6.5 does not need

such a condition. This is because in Theorem 3.6.5, 3α > 2β and κ ≥ 0 holds with

certainty and the same holds with high probability in Theorem 3.6.7. This showcases

the fundamental importance of (α, β)-stability and κ-phase discriminating property in

proving landscape results.

3.7 Robustness Analysis

The results in Theorem 3.6.5 & Theorem 3.6.7 hold only when the measurement

process is noiseless. This rarely holds in the real-world measurement processes and
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hence this section is devoted to the analysis of retrieving the unknown x from noisy

measurements. Consider the following corrupted problem definition:

find x (Pη)

such that ⟨Aix,x⟩ = ci + ηi, ∀i = 1, 2, . . . ,m

where the measurements ci are generated from an unknown z ∈ Cn, i.e. ci = ⟨Aiz, z⟩

and ηi ∼ N (0, σ2) ∀i ∈ [n] are i.i.d. Gaussian noise variables.

Due to the presence of Gaussian noise, an ideal method to find an estimate x̂ is by

minimizing the following ℓ2-loss function,

min
x∈Cn

gη(x) ≜
1

m

m∑
i=1

|⟨Aix,x⟩ − ci − ηi|2 . (Fη)

To this end, our next result bounds the distance between the generator z of the

measurements ci and the solution of the problem (Fη).

Theorem 3.7.1. Let {Ai}mi=1 be a set of complex n× n Gaussian random matrices,

and let m > Cn for some large constant C > 0. Let the scalars {ci}mi=1 characterizing

the objective function f of problem P1 be generated by quadratic measurements of

an unknown vector z. Let the Let x̂ ∈ Cn be such that ∥∇gη(x̂)∥ ≤ δ, where gη is

the ℓ2-loss function (Fη). Then with probability 1− c1e
−c2mϵ − 2e−c3mϵη the following

holds:

∥xx∗ − zz∗∥F ≤
4(δ + ϵηση)

1− 5ϵ
(3.11)

where ση ∈ R is the noise variance and c0, c1, c3 > 0 are some constants.

The above theorem proves that in the presence of Gaussian noise, the actual

solution of the problem (P1) is in close vicinity of the solution obtained by solving

the noisy ℓ2-loss function (Fη). For the complete proof of the above Theorem, please

refer to the appendix
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Chapter 4

BANDIT-BASED MULTI-AGENT SEARCH

4.1 Abstract

Autonomous search using teams of multiple agents needs tractable coordination

strategies between the search agents. The strategy must lower the time to identify

interesting areas in the search environment, lower the costs/energy usage by the

search agents during movement and sensing, and be resilient to the noise present in

the sensed data due to the use of low-cost and low-weight sensors. We propose a

data-driven, multi-agent search algorithm to achieve these goals using the framework

of thresholding multi-armed bandits. For our algorithm, we also provide finite upper

bounds on the time taken to complete the search, on the time taken to label all

interesting cells, and on the economic costs incurred during the search.

4.2 Introduction

Autonomous multi-agent search for objects/phenomena of interest over large areas is

crucial in several applications, including environmental monitoring, agriculture, search-

and-rescue, and wildlife monitoring. Given a grid environment to search, we study the

problem of identifying all interesting cells (cells that contain an object/phenomenon of

interest) using multiple search agents, each equipped with a noisy sensor. We require

the search agents to satisfy multiple requirements. First, the search agents must

coordinate and quickly identify interesting cells, which is essential in time-sensitive

applications like search-and-rescue. Additionally, they must minimize economic costs

associated with the search, which could include the energy used by the search agents
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due to movement and sensing. Finally, they must make decisions on locations to sense

based on noisy observations obtained online from low-cost and low-weight sensors

typical of such search systems. In this paper, we propose a data-driven, multi-agent

search algorithm that addresses these requirements using the framework of thresholding

bandits.

A solution to the search problem is the label-then-move search (see (Rolf et al.,

2021) for a variant of this search). In this search strategy, we partition the search

space into disjoint sets of grid cells that are assigned to the search agents. Each search

agent starts at some cell within its assigned set of cells, collects enough data at a grid

cell until it is confident enough to label the grid cell as interesting or uninteresting,

and then moves on to another grid cell within its assigned set. The label-then-move

search strategy ignores the data collected online to decide on the next location to sense.

Consequently, it can spend a significant amount of time in labeling uninteresting cells

and may not be well suited for time-sensitive applications.

Recently, multi-armed bandits (MAB) have also been proposed for the multi-

agent search problem. Recall that MAB is a special class of reinforcement learning

algorithms where the current actions do not impact future reward (Lattimore and

Szepesvári, 2020). MAB-based algorithms typically enjoy non-asymptotic guarantees

of performance with minimal assumptions, unlike general reinforcement learning

algorithms (Lattimore and Szepesvári, 2020). (Rolf et al., 2021; Du et al., 2021)

propose MAB-based search strategies that identify the maximal or top-k interesting

cells in a grid and require prior knowledge of the number of interesting cells. Instead,

our work focuses on identifying all interesting grid cells without prior knowledge of

the total number of interesting cells.

In this paper, we combine the label-then-move search and thresholding MAB-

based search strategies, as illustrated in Figure 4.1. Similarly to (Locatelli et al.,
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Figure 4.1: Data-driven multi-agent search under noisy observations. The proposed

approach switches between a bandit-based search and a label-then-move search with

a user-specified probability. The bandit-based search optimizes a surrogate function

constructed using noisy observations for making decisions on locations to sense.

The label-then-move search makes the agents follow a fixed, pre-determined pattern

independent of the data collected online.
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2016; Mason et al., 2020), we decide on the next locations to sense by maximizing a

surrogate function that is constructed using the data collected online. While a vanilla

application of the thresholding bandit-based approach is near-optimal in terms of

search completion time (Locatelli et al., 2016), it may have high economic costs. A

key feature of our approach is the ability to trade off the desire for efficient search

with the need to lower the economic costs associated with the search.

Several other strategies have also been proposed for multi-agent search (Drew, 2021;

Queralta et al., 2020). Popular approaches include algorithms based on submodular

maximization (Krause and Guestrin, 2007), algorithms combining Voronoi-based

search (Bullo et al., 2009) with function approximation (Schwager et al., 2015; Luo

et al., 2019), active sensing/perception algorithms (Bajcsy et al., 2018), graph-based

search algorithms (Kapoutsis et al., 2017; Best et al., 2018), and algorithms based on

statistical learning (Marchant and Ramos, 2012; Ghods et al., 2021; Banerjee et al.,

2022). However, these works may require perfect sensing, may not have finite-time

guarantees on the search performance, and/or may have high economic costs of search

associated with movement and sensing.

The main contributions of this paper are: 1) to propose a multi-agent search

algorithm that accommodates noisy observation data using a combination of thresh-

olding MAB and label-then-move search, and 2) to characterize the performance of

the algorithm by determining finite upper bounds on the time taken to complete

the search, time taken to label all interesting cells, and the economic costs incurred

during the search by our algorithm. We propose two metrics, priority labeling time

and economic cost, to study the performance of the proposed algorithm. Additionally,

with respect to the existing literature in MAB, we integrate coordination requirements

and the physical limitations of switching actions directly into the algorithm. Finally,

we demonstrate the efficacy of our approach in numerical simulations.
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4.3 Problem Formulation

Let G denote the set of grid cells defining the search environment. Let the

autonomous search team have d agents, each equipped with a noisy sensor. In

the autonomous multi-agent search problem, we must identify the sequence of grid

cells to visit and sense based on the noisy sensor data collected online, and return

a set of interesting grid cells. We refer to a cell as interesting if it contains an

object/phenomenon of interest. In this section, we formalize the autonomous multi-

agent search problem as a variant of the thresholding MAB, characterize suitable

metrics to analyze the performance of a search algorithm and state the problems

addressed in this paper.

MAB formulation of the multi-agent search problem:

We cast the search problem as a |G|-armed bandit problem where the arms are grid

cells with G ≜ {1, 2, 3 . . . , |G|}, and |G| denotes the cardinality of the set G. Let

S∁ = G \ S be the complement of any set S ⊆ G.

At each time step, the search team of d agents selects a set of d distinct grid cells

to visit simultaneously. Each visit to a grid cell returns a binary indication of whether

the cell is interesting. However, the observation data may be corrupted by noise,

arising from sensing limitations and perception errors. Formally, a visit to grid cell

i ∈ G results in a draw of a sample from a corresponding Bernoulli random variable

νi with mean µi. The mean µi is influenced by the underlying spatial distribution

of the interesting cells, the characteristics of the noisy sensors, and the perception

algorithms used by the agents. We assume that the Bernoulli random variables for

any two cells in G are mutually independent.

Remark 4.3.1. We do not assume prior knowledge of µi for any grid cell i ∈ G or
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the total number of interesting cells.

Desired outcome of the search:

For a user-specified threshold θ ∈ (0, 1), upon the completion of the search, we seek to

identify the set of grid cells,

Sθ = {i ∈ G|µi ≥ θ} ⊂ G. (4.1)

The set Sθ is the set of grid cells that may be sensed as interesting with a probability

of at least θ.

We make the following assumption to obtain finite-sample guarantees despite the

noisy sensors on the search agents.

Assumption 4.3.2 (Labeling error tolerance).

The labeling error for grid cells i ∈ G with µi ∈ (θ − ϵ, θ + ϵ) may be ignored for some

(small) tolerance ϵ > 0.

Assumption 4.3.2 is motivated by the observation that deciding if |µi − θ| > ϵ for

any grid cell i ∈ G using a finite number of samples becomes harder as µi approaches

θ (Jun et al., 2016; Lattimore and Szepesvári, 2020). Under Assumption 4.3.2, any

set K ⊆ G that satisfies

Sθ+ϵ ⊆ K ⊆ Sθ−ϵ, (4.2)

is an acceptable approximation of Sθ.

We use the notion of a search policy to characterize a multi-agent search.

Definition 4.3.3 (Search policy). Let H(τ) = {Hi(τ)}i∈G, where Hi(τ) is the

history of observations at grid cell i ∈ G collected by all agents until time τ . Let

πτ : H(τ)→ Gd be a function that maps H(τ) to d distinct grid cells in G. We define a
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search policy πt as a sequence of functions πt = {πτ}0≤τ≤t. We will drop the subscript

on πt when time is not relevant.

Performance metrics: Let the multi-agent search using the search policy π termi-

nates at time step Tπ ∈ N, and return a sequence of sets {K(t)}Tπ
t=0 with K(t) ⊆ G, ∀t.

A successful search policy π has a low labeling error upon termination, i.e., it satisfies

P [(Sθ+ϵ \ K(Tπ)) ∪ (K(Tπ) \ Sθ−ϵ) = ∅] ≥ 1− δ, (4.3)

for some user-specified labeling error probability δ ∈ (0, 1). Here, (4.3) enforces (4.2) by

requiring that K(Tπ) includes (almost) every one of the interesting cells and excludes

(almost) every one of the uninteresting cells upon termination, with probability 1− δ.

Additionally, the search must have:

1. low priority labeling time L(π),

L(π) = inf{t ≤ Tπ : P[Sθ+ϵ \ K(t) ̸= ∅] ≤ δ]}, (4.4)

i.e., the search identify (almost) every one of the interesting cells quickly. By

definition, L(π) ≤ Tπ.

2. low economic cost upon termination, i.e., the search has low costs associated

with movement and sensing,

E(π) =
Tπ∑
t=1

 ℓ(at, at−1)︸ ︷︷ ︸
movement cost

+ βd︸︷︷︸
sensing cost

 (4.5)

where at is the set of d grid cells being sampled at time t according to search

policy πt−1, ℓ : Gd × Gd → R is a metric on Gd, and β > 0 is a known constant

sensing cost for each agent. Consequently, βd is the sensing cost for the team at

each time step.
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We pursue probabilistic performance metrics in (4.3) and (4.4) due to the uncer-

tainty in sensing and perception.

We now state the two problems tackled by this paper: Design a multi-agent search

algorithm on G that simultaneously satisfies the criteria (4.3), (4.4), and (4.5).

Determine upper bounds on the time to terminate the search (4.3), the priority

labeling time (4.4), and the economic cost (4.5) for the proposed solution to Problem 4.3.

4.4 Proposed Solution

Algorithm 3 describes the proposed solution for Problem 4.3. It augments label-

then-move search with a thresholding bandit-based search (inspired from (Locatelli

et al., 2016)) to satisfy the criteria in (4.3), (4.4), and (4.5). In Algorithm 3, the keep

set K(t) ⊆ G and the reject set R(t) ⊆ G are the sets of grid cells labeled as interesting

and uninteresting respectively, at the time instant t.

Algorithm 3 runs in a loop until all grid cells in G are assigned to K(t) or R(t)

(or both). Each loop starts with a toss of a biased coin with the bias set to the

aggressiveness parameter, α ∈ (0, 1).

When the current toss of the biased coin returns heads, we use upper confidence

bounds typical of bandit-based algorithms (Locatelli et al., 2016; Mason et al., 2020;

Lattimore and Szepesvári, 2020) to sample the unlabeled cells “most likely” to be

interesting. Specifically, we choose d distinct cells that achieve the highest values of
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acquisition function J : G × N→ R ∪ {∞} at time t,

Jπ(i, t) = µ̂i,π(t) + Ui,π(t, δ), (4.6a)

µ̂i,π(t) =

∑
h∈Hi(t)

h

|Hi(t)|
, (4.6b)

Ui,π(t, δ) = 2

√
2 log(log2(2|Hi(t)|)) + log (12|G|/δ)

2|Hi(t)|
, (4.6c)

with µ̂i,π(t) = Ui,π(t, δ) =∞, whenever Hi(t) = ∅.

Otherwise, we minimize the movement cost ℓ in (4.5) to decide on the next location

to sample. Since ℓ is a metric, a search agent continues to sample its current cell in

the next iteration, if the current cell is unlabeled.
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Algorithm 3 Multi-agent search under noisy observation

1: Input : Set of grid cells G, number of agents d ∈ N, threshold θ ∈ (0, 1), tolerance

ϵ > 0, labeling error probability δ ∈ (0, 1), aggressiveness param. α ∈ (0, 1)

2: Output : {K(t)}t≥1, a sequence of (keep) sets of grid cells

3: Initialize time counter t← 1

4: while R(t) ∪ K(t) ̸= G do

5: if current toss of α-biased coin returns heads then

6: Define at by selecting d distinct grid cells that score the highest values in Jπ

(4.6)

7: else

8: Define at by assigning each agent to a distinct unlabeled cell that minimizes

ℓ in (4.5);

9: end if

10: Deploy the agents to grid cells at and update the history H(t) based on collected

noisy sensors;

11: Update sets of labeled grid cells;

K(t)← {i ∈ G|µ̂i,π(t)− Ui,π(t, δ) ≥ θ − ϵ}, (4.7a)

R(t)← {i ∈ G|µ̂i,π(t) + Ui,π(t, δ) ≤ θ + ϵ}. (4.7b)

12: Increment time counter t← t+ 1

13: end while

14: return {K(t)}t≥1

Finally, we complete the loop by updating the sets K(t+ 1) and R(t+ 1) using

(4.7) based on the data collected in the iteration t. Since Ui,π(t, δ) is a non-increasing

function of |Hi(t)|, the sets K(t) and R(t) are monotonic in t. The definitions used in
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(4.7) are motivated by the desire to obtain anytime guarantees for Algorithm 3.

Proposition 4.4.1 (Anytime algorithm). The following

holds for Algorithm 3 at any time t ≥ 1 with probability of at least 1− δ: K(t) ⊆ Sθ−ϵ

and R(t) ⊆ S∁
θ+ϵ.

We provide the proof of Proposition 4.4.1 in Appendix C.1. By Proposition 4.4.1,

Algorithm 3 yields a correct-by-construction (albeit incomplete) labeling of the grid

cells, even when it is terminated prematurely.

We conclude this section by noting that Algorithm 3 simplifies to a label-then-move

search when α = 0, and a thresholding bandit-based search when α = 1.

4.5 Performance Analysis

We now focus on Problem 4.3, and study the performance of Algorithm 3. We show

that Algorithm 3 has finite time termination guarantees, and admits high likelihood

upper bounds to the incurred economic costs and priority labeling time. These bounds

are a natural consequence of the bandit framework which yields non-asymptotic

performance guarantees under minimal modeling assumptions.

We will use the following problem-specific parameters for each cell i ∈ G,

∆i = |µi − θ|+ ϵ, and Ωi = min
j∈Sθ+ϵ

|µj − µi|. (4.8)

Informally, ∆i signifies the separation of the mean µi from the threshold, while Ωi

signifies the separation of the mean µi from the set Sθ+ϵ. We will state our results

using parameters ϕi and γi for each cell i ∈ G,

ϕi =
1

∆2
i

log

(
|G|
δ

log

(
|G|
∆4

i δ

))
, (4.9a)

γi =
1

Ω2
i

log

(
|G|
δ

log

(
|G|
Ω4

i δ

))
. (4.9b)
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Similar to the bandit literature (Lattimore and Szepesvári, 2020), we will show that

∆i and Ωi together characterize the difficulty of the search problem in Theorem 4.5.2.

Remark 4.5.1. For any two scalar functions f, g : R → R, we write f = O(g) if

there exists a constant C > 0 and a scalar x0 ∈ R such that f(x) ≤ Cg(x) for every

x ≥ x0.

Theorem 4.5.2 (Upper bounds for Algorithm 3). Each

one of the following statements hold for Algorithm 3 with probability 1− δ:

1. Algorithm 3 terminates at Tπ and satisfies the low labeling error criterion (4.3)

with

Tπ ≤ maxi∈D∆
O (ϕi) +

1

d

∑
i∈D∁

∆

O (ϕi) , (4.10)

where D∆ is the union of a grid cell with the smallest ∆i with a set of d− 1 grid

cells with the largest ∆i among all cells i ∈ G.

2. The priority labeling time (4.4) for Algorithm 3 is bounded from above as follows,

L(π) ≤maxi∈DΩ O (ϕi) +
1

d

∑
i∈Sθ+ϵ\DΩ

O (ϕi)

+
1

d

∑
i∈S∁

θ+ϵ
\DΩ

min

{
O (γi) +

4(1− α)|G|2

αδ
,O (ϕi)

}
, (4.11)

where DΩ is a set of d grid cells characterized by ∆i, Ωi, and α.

3. The economic cost (4.5) incurred by Algorithm 3 is bounded from above (with

M = max
a,a′∈Gd

ℓ(a,a′)),

E(π) ≤ O(|G| − 1) + dmaxi∈D∆
O ((Mα + β)ϕi)

+
∑

i∈D∁
∆

O ((Mα + β)ϕi) . (4.12)

77



See Appendix C.2 for a sketch of the proof of Theorem 4.5.2. In Theorem 4.5.2,

big-O notation hides constants factors which are independent of system parameters.

From (4.10), Algorithm 3 may take more time to terminate when ∆i is small for at

least one grid cell, i.e., µi is close to θ for some i ∈ G. Additionally, the upper bound on

the termination time Tπ does not have a purely inverse-linear relationship the number of

agents d, i.e., Tπ is not upper bounded by an expression containing only 1
d

∑
i∈G O (ϕi).

Instead, the upper bound in (4.10) has an additional term maxi∈D∆
O (ϕi) independent

of d, which corresponds to the diminishing benefit of significantly increasing the

number of agents.

We now analyze the role played by the aggressiveness parameter α in the perfor-

mance of Algorithm 3. We observe that the upper bound on Tπ is independent of α,

consistent with the intuition that Algorithm 3 with α > 0 and label-then-move search

(Algorithm 3 with α = 0) takes the same number of iterations for a search problem

with identical ∆i. This is because all grid cells must be labeled at the end, and both

approaches rely on similar concentration inequalities to label a cell.

Recall that Algorithm 3 simplifies to label-then-move search for α = 0, where the

deployments of the agents are decided solely based on the associated movement costs.

Consequently, as seen from the upper bounds, such an approach incurs a low economic

cost E(π), but may incur a high priority labeling time L(π). On the other hand,

setting α = 1 simplifies Algorithm 3 to a pure bandit-based search that samples grid

cells based on the maxima of the acquisition function Jπ (4.6). Consequently, as also

seen from the upper bounds, such an the approach will result in low priority labeling

time L(π), but high economic cost E(π). Thus, by varying α ∈ (0, 1), the the method

can achieve the desired trade-off between the priority labeling time and the economic

costs of search.
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4.6 Experiments

We use a numerical simulation to compare Algorithm 3 to three baselines, AdaSearch (Rolf

et al., 2021), a pure bandit-based search (Algorithm 3 with α = 1), and label-then-move

search (Algorithm 3 with α = 0).

We setup the multi-agent search problem as follows: Consider a search environment

of 10 × 10 grid cells with mean µi = 0.85 for interesting cells i ∈ G and µj = 0.15

for uninteresting cells j ∈ G. We set the team size d = 5 with randomly chosen

starting locations. We also set 10 randomly chosen grid cells as interesting. We set the

tolerance ϵ = 10−3, labeling error probability δ = 10−3, and the threshold parameter

θ = 0.5. We set sensing costs β = 0.01, and define ℓ as the sum of the Manhattan

distance between the agents’ current and next locations.

We adapt AdaSearch (Rolf et al., 2021) to solve the multi-agent search problem.

Recall that AdaSearch adjusts the number of samples collected at each cell based on

any valid data-driven confidence bounds. In our implementation of AdaSearch, we

utilized the confidence bounds defined in (4.6). We also assumed that the agents follow

identical raster paths and recompute the sample visitation counts upon completing a

loop around the environment. Unlike Algorithm 3, AdaSearch additionally requires

the total number of interesting cells to label the cells.

We analyze how the different search strategies label interesting cells to the keep

set K(t) as time progresses in the algorithm. Figure 4.2 shows the performance of the

algorithms on 100 randomly generated search problems. Based on our experiments,

we recommend the choice of α = 0.2 for the given choice of ℓ and β.
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Figure 4.2: Priority labeling time for various search strategies with number of samples

collected by the team over G (top), and incurred economic cost (bottom). The proposed

solution (Algorithm 3 with α = 0.2) achieves a good compromise as compared to other

strategies — label-then-move search (Algorithm 3 with α = 0), a pure bandit-based

search (Algorithm 3 with α = 1), and AdaSearch (Rolf et al., 2021).
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Priority labeling time (Fig. 4.2, top):

As expected, the proposed solution (Algorithm 3 with α = 0.2) and a pure bandit-

based search (Algorithm 3 with α = 1) detects Sθ+ϵ with a smaller number of samples

as compared to AdaSearch and label-then-move search (Algorithm 3 with α = 0).

The latter search strategies require a large amount of samples, possibly due to the

pre-determined search pattern used by the agents.

Economic cost (Fig. 4.2, bottom):

The proposed solution and label-then-move search incur lower economic costs when

compared to AdaSearch and pure bandit-based search. From (4.5), the economic cost

is a linear combination of sampling cost and movement cost. Since β is small, the

incurred costs are primarily driven by the movement costs, and the proposed solution

and label-then-move search make the agents move relatively less when compared to

other approaches. We expect the performance of the search strategies to be similar

to Fig. 4.2, top, in applications where sensing is expensive and movement is cheap

(higher β).

Impact of the team size d on the search (Fig. 4.3):

As expected, the number of samples needed per agent to characterize the keep set

K(Tπ) decreases with increasing team size d. However, the reduction in the samples

needed per agent does not exhibit an inversely proportional relationship with the team

size, as indicated by Theorem 4.5.2.

We conclude with a note that Algorithm 3 has minimal computational overhead.

A non-optimized Python code took ≈ 0.3 milliseconds per iteration on a standard

laptop.
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Figure 4.3: The median number of samples needed per agent to characterize the keep

set K(Tπ) (magenta line with crosses) in 100 randomly chosen search problems using

the proposed solution (Algorithm 3 with α = 0.2) decreases with increasing team

size d. The blue line shows the trend needed to achieve an inversely proportional

relationship between the samples needed per agent and the team size.

4.7 Conclusion & Future Work

We propose a data-driven, multi-agent search algorithm that accommodates noisy

observations when searching for all interesting grid cells. We combined recent results

from thresholding MABs with a standard label-then-move search to lower the time to

identify interesting areas in the search environment and lower the costs incurred by the

search agents during movement and sensing, while accommodating noisy observations.

The multi-agent search strategy proposed in this work has two drawbacks. First,

it does not enforce the physical limitations on the mobile sensors are enforced as hard

constraints during exploration. Second, it does not consider the effect of temporal

changes in the search environment. Our future work will extend the proposed solution

to address these drawbacks.
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Chapter 5

PERIODIC BANDITS

5.1 Abstract

In traditional multi-armed bandits (MAB), a standard assumption is that the

mean rewards are constant across each arm, a simplification that can be restrictive in

nature. In many real-world settings, the rewards exhibit a periodic pattern on which

traditional MAB algorithms would fail. This paper addresses the problem of regret

minimization when the mean rewards change periodically. To this end, we propose an

approach that utilizes the Ramanujan periodicity transform to estimate the support

of the periods efficiently and, furthermore, use this information to minimize regret.

5.2 Introduction

Sequential decision-making under uncertainty is crucial in a wide variety of fields.

Ideally, given ample time, one would exhaustively sample all available options before

making decisions. However, in modern problems which present the decision maker

with an enormous number of choices, such an approach is infeasible. The Multi-armed

bandits (MAB) framework Slivkins et al. (2019) addresses this by efficiently identifying

optimal options in minimal time. Central to MABs is the Exploration-exploitation

dilemma: one must balance exploring unknown choices and exploiting the best-known

option. Given its strong theoretical foundations and its efficacy in a wide range of

domains like recommendation systems, clinical trials, and online advertising, this

framework and its variants have received much attention in recent years Slivkins et al.

(2019); Langford and Zhang (2007); Abbasi-yadkori et al. (2011).

83



A key limitation of this framework, however, is its traditional reliance on stationarity

of the underlying “reward” distribution. Real-world applications often exhibit non-

stationarity. Introducing non-stationary reward distributions complicates matters due

to potential erratic patterns. Although there have been endeavors to address this (see,

e.g., Besbes et al. (2019); Garivier and Moulines (2008); Slivkins and Upfal (2008)),

formulating a universal learning policy for non-stationarity remains challenging.

In this paper, we focus on Periodic Bandits, a class of non-stationary bandits that

are characterized by a periodic pattern in their rewards. Such periodicity is common

in a range of real-world scenarios, such as cell-tower congestion, advertisement trends,

and the behavior of electronic systems reliant on discharging power sources. Ignoring

these patterns can result in highly suboptimal decisions Villamediana et al. (2019).

Incorporating periodicity into multi-armed bandit algorithms enables one to make

decisions that align more closely with the natural rhythms and temporal variations

present in the problem domain.

Research such as Benedetto et al. (2020) has addressed seasonal reward shifts, while

Re et al. (2021) leverages historical data for sudden changes. Other studies, like Zhou

et al. (2021), focus on regime-switching rewards, while Chen et al. (2023b) considers

rewards based on auto-regressive models. Cai et al. (2021) integrates periodicity in

Gaussian process bandits. Our work aligns most closely with Chen et al. (2020), which

combines Fourier analysis with a confidence-bound-based learning procedure to learn

the periods and minimize the regret.

This paper proposes a tractable methodology for tacking the periodic bandit

framework. To this end, we utilize the framework of Ramanujan Periodicity Transforms

(RPT) to estimate the length of the period and identify the fundamental periods if the

signal is a combination of two or more periodic signals. The authors in Tenneti and

Vaidyanathan (2015); Vaidyanathan (2014) introduced the notion of RPT and showed
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that one can utilize RPTs to estimate the underlying period of a periodic signal. In

addition, the authors demonstrated that RPT-based methods are more robust in the

presence of noise and showed the advantages of RPTs over the classical DFT-based

techniques Tenneti and Vaidyanathan (2015). RPTs have been used in practice such

as detecting periodicity in visually evoked potentials in brain-computer interfaces

Saidi et al. (2019) and detecting the tandem DNA repeats Tenneti and Vaidyanathan

(2016) and have shown promising results.

Contributions. The main contributions of this work are the following.

a) We propose an online learning algorithm called Bandit Tracking System via Ra-

manujan Periodic transform (BTS-RaP) for non-stationary environments with seasonal

patterns and unknown periods.

b) We propose the use of RPT dictionaries to estimate the length of periods across

different arms which are known to overcome the limitations of the DFT-based tech-

nique.

c) Using computer simulations we show that the BTS-RaP algorithm can achieve

sublinear regret.

5.3 Ramanujan Periodicity Transforms

In this section, we briefly review the structure of the RPT dictionary, and their

applicability to estimate the period of a periodic signal.

5.3.1 RPT Dictionaries

RPT dictionaries are constructed based on the properties of Ramanujan sums,

defined as Ramanujan (1918)

cp (n) =

p∑
k=1

(k,p)=1

exp (j2πkn/p), (5.1)
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where (k, p) is the greatest common divisor of k and p. cp indicates the vector form

of cp (n), and c
(i)
p shows the circularly shifted version of cp with step size i. For each

value p construct a p× ϕ (p) submatrix Cp as follows

Cp =

[
cp c

(1)
p . . . c

(ϕ(p)−1)
p

]
, (5.2)

where ϕ (p) is the Euler totient function (the number of integers that are co-prime to p).

The author in Vaidyanathan (2014) showed that the ϕ (p) columns in Cp are linearly

independent. Thus, one can construct the RPT dictionary K in three consecutive

steps.

i) Build all the submatrices Cp for every p ∈ P, where P = {1, 2, . . . , Pmax} and

Pmax is the largest possible period in the signal.

ii) Build the L×ϕ (p) submatrices Rp, by periodically extending all the columns

of Cp to length L.

iii) Concatenate the matrices Rp as

K =

[
R1 R2 . . . RPmax

]
. (5.3)

Therefore, denoting ϕ(Pmax) =
∑Pmax

p=1 ϕ(p), the size of the dictionary is L× ϕ(Pmax).

5.3.2 Period Estimation Using RPT Dictionary

Discrete periodic signals can be expressed using the RPT dictionary in a noise-free

setup as:

y = Kx (5.4)

where y is the vector form of the periodic signal with period p, K is the RPT dictionary

introduced in section 5.3, and x is the sparse representation of the periodic signal

under the RPT dictionary. Given a sufficiently long vector y, vector x exhibits a

sparse structure and its non-zero values correspond to the sub-matrices in K, that
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have periodic columns with periods qi that are divisors of p, or qi|p. Therefore, it

is possible to estimate the period of a periodic signal by first recovering the sparse

representation of the signal under the RPT dictionary. Then, the support set of the

signal identifies the divisors of the underlying period of the signal. The support set of

a sparse vector are a set of indices that contain the location of the non-zero values of

the vector. Finally, the estimate of the period is equal to the least common multiplier

(LCM) of the divisors from the recovered support set. One can recover the support of

the sparse vector x using sparse recovery algorithms Baraniuk (2007). In this work,

we adopt the proposed approach in Tenneti and Vaidyanathan (2015) and solve the

following minimization program:

min ∥Dx∥2 s.t. y = Kx (5.5)

where, D is a diagonal penalty matrix with i-th entry on the diagonal being equal

to p2i , where pi is the period of the i-th column of the dictionary K. An illustration of

this method is presented in Fig. 5.1. In Part (a), we observe an incomplete segment

of a signal with a period of 231, which has been affected by noise. This 231-period

signal was constructed by combining three periodic signals with underlying periods

of 3, 7, and 11. Following Tenneti and Vaidyanathan (2015), we compute the energy

corresponding to each subvector in x as follows and plot the strength vs. period. Part

(b) illustrates the strength vs. period after solving (5.5). The strength at each period

p is defined as:

E(p) =

P+ϕ(p)∑
k=P+1

|x(k)|2, P =

p−1∑
d=1

ϕ(d). (5.6)

Similarly, in part (c) the periodogram displays the strength of the different period

components in the signal. It is evident that, RPT basis is robust towards estimating

the fundamental periods of a given signal.
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Figure 5.1: (a) A noisy period 231 time series signal with that was generated as sum

of period 3, 7 and 11 signals. The strength vs period plot for the solutions of the

convex problem (5.5) using (b) Ramanujan basis, and (c) DFT basis.

5.4 Problem Setup

Consider a multi-armed bandit setting with K being the set of all arms such that

mean of each arm i ∈ K is represented by function µi : N→ [a, b] ∀i ∈ [K] such that

µi[t + Ti] = µi[t] for some unknown Ti ∈ N. Throughout the paper, we sometimes

refer µi[t] as µt,i. At each round, the learner chooses an arm at ∈ K to sample and
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observes a noisy reward

rt,i = µt,i + ηt,i ,

where, {ηi,t}i,t are i.i.d. noise samples from a σ2- sub-Gaussian distribution. The goal

of the problem is to minimize the regret up to a known time horizon T defined as,

R(T ) =
T∑
t=0

(
max
i∈K

µt,i − µt,at

)
, (5.7)

where the decision maker chooses an arm at at time step t. The aim of the work is

to propose an algorithm to minimize regret as mentioned in (5.7). This can only be

obtained if the decision maker chooses an arm that is optimal for every time t. If,

at the current time instant, one of the arms is optimal, it is not necessary that the

previously chosen arm will be optimal again at the next time step, which is well-suited

for handling time-varying reward changes. The notion in (5.7) is different than the

standard notion of regret Bubeck et al. (2015), which focuses on selecting the one

optimal choice for every time-step t.

5.4.1 Baseline Method

Recently Chen et al. (2020) proposed for addressing periodic bandits a two-stage

approach which provides a sub-linear regret that scales as O
(√

T
∑n

i=1 Ti

)
, where

Ti is the period of arm i. The authors first propose to use (DFT) to estimate the

length of the periods Ti’s. Since the mean of arm i returns to the same value every Ti

step, the authors propose that for every arm i, the number of ‘effective arms’ is Ti

(1 arm for every step until time reaches Ti). Therefore, we end up with d̂ :=
∑

k T̂k

effective arms (unique mean rewards) to learn. In the second stage of the algorithm,

the authors utilize the estimated number of effective arms to implement a UCB-based

approach to minimize regret (5.7). We refer to this as MAB-UCB.
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This approach suffers drawbacks due to the utilization of DFT as well as two

distinct stages leading to sample inefficiency. We address this by using RPT and

merging the two stages into one main algorithm thereby painting optimal sample

efficiency.

5.5 Proposed Approach: BTS-RaP (Bandit Tracking System)

We first provide an overview of the linear bandits and then show how it connects

to RPT-based reward representation.

5.5.1 Linear Bandits

Linear bandits Abbasi-yadkori et al. (2011) have emerged as a powerful and versatile

tool in the field of bandit research literature. These algorithms are particularly well-

suited for scenarios where the relationship between actions and rewards can be

approximated linearly. Let the arm set be defined by the set K. In a linear bandit

setup, every arm is associated with a feature vector Rd such that d < n. On sampling

the arm i at time t, the reward observed satisfies the relation rt,i = ⟨ai, θθθ∗⟩+ ηt, where

θθθ∗ ∈ Rd dented the unknown reward parameter, ai ∈ Rd denote the feature vector

associated with arm i and ηt is the i.i.d. Gaussian noise realized from a σ2-subgaussian

distribution at time t.

Due to the low dimensional structure of the linear bandit problem, it has been

proven, both theoretically and experimentally that the regret upper bound scales as

O(
√
dT ) (sublinear in time T ), where d is the feature dimensionality. Note that for

the case of stationary linear bandit, the regret takes the form as defined below,

RLB(T ) =
T∑
t=0

(
max
k∈K
⟨ak, θθθ

∗⟩ − ⟨at, θθθ
∗⟩
)

(5.8)

Taking a step further Wang et al. (2020) showcases that the regret upper bound can
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be further tightened to nearly O(
√
s0T ), where s0 : ∥θθθ∗∥0 ≤ s0 is the support of θθθ∗.

5.5.2 Connection to RPT Decomposition

Let K be the RPT dictionary and xi be the corresponding sparse vector associated

with the arm i with support set Si. We can map our problem setup to linear bandits

as follows:

i) Construct the block diagonal matrix KK = diag(K,K, . . . ), where each

K ∈ RT×ϕ(Pmax) are blocks on the diagonal and constructed as per Equation (5.3). For

an arm i, the arm features, at time t is at,i = KK[i ∗ T + t], which is the (i ∗ T + t)th

row of KK.

ii) The unknown feature vector θθθ∗ is a vector stack of xi, where xi is the

true solution to the minimization problem (5.5) in the noiseless case. The reward is

obtained as rt,i = ⟨at,i,xi⟩.The pseudocode of the proposed algorithm is provided in

Algorithm 4 Following directly from Wang et al. (2020), we can provide the following

theoretical backing to BTS-RaP:

Theorem 5.5.1. Let xi be the sparse representation of a periodic signal under the RPT

dictionary with support set Si that has |Si| nonzero values, for all xi i ∈ K, then the

regret of Bandit Tracking System (BTS-RaP) is upper bounded by O(
√

T
∑

i∈K |Si|).
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Figure 5.2: Regret R vs time t plots on two armed periodic bandits setting for (a)

BTS-RaP and (b) MAB-UCB. Rewards of each arm is generated as per Equation

(5.10).

Algorithm 4 Bandit Tracking System (BTS-RaP)

1: Given T , K arms, form K ∈ RT×ϕ(Pmax) pull each arm once and form the observa-

tion vector µi ∀i ∈ K

2: Create mini-dictionaries Ki for i ∈ K which will grow as arms get pulled. Initially

each Ki is of size 1× ϕ(Pmax)

3: Initialize support for each arm xi for all i ∈ K t = K + 1 . . . T

4: Choose arm at = argmaxk∈{1,...,K}⟨K[t],xi⟩+
√

2α ln t/nt−1,i, where, K[t] is the tth

row of K

5: Append the row K[t] to the mini-dictionary Kat

6: Observe rt,at = µt,at + ηt and append this observation to µat

7: Solve : min ∥Dxat∥2 s.t. µat = Katxat to return updated xat

8: {at}Tt=K+1
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Figure 5.3: Regret R vs time t plots on two armed periodic bandits setting for MAB-

UCB and BTS-RaP. Rewards of each arm is generated based on (5.9) with {p1, p2}

taking values (a) {7, 3} , (b) {9, 11}

5.6 Simulation Results

We consider a two-armed bandit setup with three different experiments. In the

first and second experiments, we represent the means of the two arms by:

µ1(t) = c+ sin

(
2πt

p1

)
, µ2(t) = c+ sin

(
2πt

p2

)
, (5.9)

where, t = {1, 2, . . . , T} and c is some positive scalar. For the first experiment the

tuple {p1, p2} take the values {9, 11} and for the second one it takes the values {7, 3}.

For the third experiment, we consider periodic mixtures to generate rewards as

follows,

µ1(t) = c+
3∑

i=1

sin

(
2πt

pi

)
, µ2(t) = c+ sin

(
2πt

p

)
, (5.10)

where, for the first arm the periods are {p1, p2, p3} = {3, 7, 11} and second arm period

is p = 9. In the first two experiments (Figures 5.2(a), (b)), we see that our proposed

algorithm BTS-RaP outperforms MAB-UCB. While plotting the regret of MAB-UCB

we do not consider the stage one (estimation of period) cost. One advantage of using
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RPT is that even if the period is large, we can still estimate it using RPT with

fewer samples, sometimes, even when we have an incomplete period length signal as

illustrated in Figure 1. While MAB-UCB does achieve sub-linear regret it does so at

a very slow pace compared to BTS-RaP. This is because we are selecting an optimal

arm from a set of
∑

k Tk arms and not 2 as stated in the problem. This increases the

complexity of the MAB problem and is reflected in the regret curve.

The real issue is revealed in the third experiment where one of the arms rewards is

a combination of the sum of smaller periodic signals (7,3,11). Therefore, the resulting

signal is a 231-length period signal. The second arm is a single period signal with

period 9. So effectively, the MAB-UCB algorithm has 240 effective arms to select

from. Whereas, BTS-RaP effectively learns non-zero coordinates of the support vector

x associated with each arm. This vector as highlighted earlier is sparse and the regret

scales with the sum ℓ0-norm of this support vector. Therefore, as seen in Figure

5.3, BTS-RaP achieves minimum regret quickly and MAB-UCB has to run for a

significantly longer time (∼ 100×) to start learning the periodic pattern.

5.7 Conclusion

In this paper, we consider bandits that exhibit periodicity. We incorporated

the periodic structure of the rewards and proposed an algorithm to minimize the

regret. To this end, we utilized the newly introduced, Ramanujan-based periodicity

estimation techniques to sequentially update the estimate of the periods of each arm,

and subsequently select the best arm at each time step. Our results indicate that our

RPT-based method dubbed BTS-RaP, can achieve sub-linear regret.
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Kaufmann, E., O. Cappé and A. Garivier, “On the complexity of a/b testing”, (2015).

Kaufmann, E., O. Cappé and A. Garivier, “On the complexity of best arm identification
in multi-armed bandit models”, (2016).
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Pólik, I. and T. Terlaky, “A survey of the s-lemma”, SIAM review 49, 3, 371–418
(2007).

Queralta, J., J. Taipalmaa, B. Pullinen, V. Sarker, T. Gia, H. Tenhunen, M. Gabbouj,
J. Raitoharju and T. Westerlund, “Collaborative multi-robot search and rescue:
Planning, coordination, perception, and active vision”, IEEE Access 8, 191617–
191643 (2020).

Ramanujan, S., “On certain trigonometrical sums and their applications in the theory
of numbers”, Trans. Cambridge Philosoph. Soc XXll, 13, 259–276 (1918).

Rao, N., H.-F. Yu, P. Ravikumar and I. S. Dhillon, “Collaborative filtering with graph
information: Consistency and scalable methods.”, in “NIPS”, vol. 2, p. 7 (Citeseer,
2015).
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The appendix is organized as follows. Appendices A.1-A.3 and Appendix A.7
provide various supporting results and insights into our main theoretical results.
Appendix A.4 and Appendix A.6 provide sample complexity guarantees for GRUB
and ζ-GRUB respectively. Appendix A.5 states and proves necessary conditions on
the sample complexity, and Appendix 2.8 presents a discussion on the incomparability
of our graph bandits problem with that of linear bandits.

A.1 Parameter Estimation

At any time T , GRUB, along with the graph-side information, uses data gathered
to estimate the mean µ̂µµT in order to decide the sampling and elimination protocols.
The following lemma gives the estimation routine used for GRUB.

Lemma A.1.1. The closed form expression of µ̂µµT is given by,

µ̂µµT =

(
T∑
t=1

eπte
T
πt
+ ρLG

)−1( T∑
t=1

eπtr
πt
t

)
(A.1)

Proof. Using the reward data {rt,πt}Tt=1 gathered up-to time T and the sampling policy
πππT , the mean vector estimate µ̂µµT is computed by solving the following laplacian-
regularized least-square optimization schedule:

µ̂µµT = argmin
µµµ∈Rn

T∑
t=1

(µπt − rt,πt)
2 + ρ⟨µµµ, LGµµµ⟩ (A.2)

where ρ > 0 is a tunable penalty parameter. The above optimization problem can be
equivalently written in the following quadratic form:

µ̂µµT = argmin
µµµ∈Rn

(
⟨µµµ, V (πππT , G)µµµ⟩ − 2

〈
µµµ,

(
T∑
t=1

eπtrt,πt

)〉
+

T∑
t=1

r2t,πt

)

where V (πππT , G) denotes,

V (πππT , G) =
T∑
t=1

eπte
T
πt
+ ρLG (A.3)

In order to obtain µ̂µµT , we compute vanishing point of the gradient as follows,(
⟨µµµ, V (πππT , G)µµµ⟩ − 2

〈
µµµ,

(
T∑
t=1

eπtrt,πt

)〉
+

T∑
t=1

r2t,πt

)
|µµµ=µ̂µµT

= 0

⇒ µ̂µµT = V (πππT , G)−1

(
T∑
t=1

eπtr
πt
t

)
(A.4)
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The sampling policy in GRUB uses the mean estimates and their high probability
confidence bounds to eliminate suboptimal arm. In the following lemma we compute
the high probability confidence bounds on the estimates of the mean and introduces
the idea of effective samples of each arm given the graph side information.

Lemma A.1.2. For any T > k(G) and i ∈ [n], the following holds with probability no
less than 1− δ

wi(πππT )
:

|µ̂i
T − µi| ≤

√
1

teff,i

(
2σ

√
14 log

(
2wi(πππT )

δ

)
+ ρ∥µµµ∥G

)
(A.5)

where wi(πππT ) = a0nt
2
eff,i for some constant a0 > 0, µ̂i

T is the i-th coordinate of the
estimate from A.1.1 and,

teff,i =
1[(∑T

t=1 eπte
⊤
πt
+ ρLG

)−1
]
ii

Proof. Let the sequence of bounded variance noise and data gathered up-to time T
be denoted by {ηt, rπt,t}Tt=1. Let ST =

∑T
t=1 ηteπt and NT =

∑T
t=1 eπte

T
πt
. Using the

closed form expression of µ̂µµT from eq. A.1.1, the difference between the estimate and
true value µ̂i

T − µi can be obtained as follows:

µ̂i
T − µi = ⟨ei, µ̂µµT − µµµ⟩ = ⟨ei, V −1

T ST − ρV −1
T LGµµµ⟩

The deviation µ̂i
T − µi can be upper-bounded as follows:

|⟨ei, µ̂µµT − µµµ⟩| ≤ |⟨ei, V −1
T ST ⟩|+ |⟨ei, ρV −1

T LGµµµ⟩|

Further, in order to obtain the variance of the estimate µ̂µµT , we bound the deviation
|µi

T − µi| by separately bounding |⟨ei, V −1
T ST ⟩| and |⟨eiρV −1

T LGµµµ⟩|.
With regards to the first term ⟨ei, V −1

T ST ⟩, note that

⟨ei, V −1
T ST ⟩ =

〈
ei, V

−1
T

(
T∑
t=1

eπtηt

)〉

=
T∑
t=1

〈
ei, V

−1
T eπt

〉
ηt

Using a variant of Azuma’s inequality Shamir (2011); Valko et al. (2014), for any
κ > 0 the following inequality holds,

P
(
|⟨ei, V −1

T ST ⟩|2 ≤ κ2
)
≥ 1− 2 exp

{
− κ2

56σ2
∑T

t=1

(〈
ei, V

−1
T eπt

〉)2
}

(A.6)
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Using the fact that VT ≻
(∑T

t=1 eπte
T
πt

)
, we can further simplify the above bound

using the following computation,

T∑
t=1

(〈
ei, V

−1
T eπt

〉)2
=

〈
V −1
T ei,

(
T∑
t=1

eπte
T
πt

)
V −1
T ei

〉
≤ ⟨ei, V −1

T ei⟩ = [V −1
T ]ii (A.7)

Substituting δ′ = 2 exp

{
− κ2

56σ2
∑T

t=1(⟨ei,V −1
T eπt⟩)2

}
, we can finally conclude that given

the historical data FT−1 till time T − 1, following is true with probability 1− δ′,

|⟨ei, V −1
T ST ⟩|2 ≤ 56σ2[V −1

T ]ii log

(
2

δ′

)
(A.8)

Second term ⟨ei, ρV −1
T LGµµµ⟩ can be upperbounded using cauchy-schwartz inequality,

|⟨ei, ρV −1
T LGµµµ⟩| = ρ⟨ei, LGµµµ⟩V −1

T

≤ ρ
√
⟨ei, V −1

T ei⟩
√
⟨LGµµµ, V

−1
T LGµµµ⟩

≤ ρ
√

[V −1
T ]ii∥µµµ∥G (A.9)

Combining the upperbound (A.9), (A.8) and substituting δ′ = δ
w(πππT )

we get Lemma 2.3.2.

Hence proved.

A.2 Influence Factor

A key component in our characterization of the performance of GRUB is the
influence factor for each arm; recall that for a given graph D, Ci(D) denotes the
connected component that contains i. The influence factor for each arm is defined as,

Definition A.2.1. Let D be a graph on the vertex set [n]. For each j ∈ [n], define
influence factor I(j,D) as:

I(j,D) =

{
min

i∈Cj(D),i ̸=j
{rD(i, j)−1} if |Cj(D)| > 1

0 otherwise
(A.10)

where, rD(i, j) is the resistance distance between arm i and j on graph D as in
Definition 2.4.1.

Note that we refer the resistance distance without the parameter δ, as the value
of resistance distance is independent of the value of δ. This happens due to the
cancellation of δ factor in Rii + Rjj − Rji − Rij. The influence factor can also be
thought of as the minimum influence any arm i in the connected component of arm j
has over the arm j
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A.3 Effective Samples

Theorem A.3.1. Let πππT indicate the sampling policy until time T . Let G be the
given graph, I(., G) indicates the minimum influence factor for arms. Then effective
samples can be lower bounded by,

teff,i ≥ ti +
1

2
⌊min{ρI(i, G),

∑
j∈C(i)

tj}⌋ (A.11)

where ti indicates the no. of samples of arm i and ⌊ · ⌋ indicates the floor.

Proof. Using Lemma A.7.5, we have the following bound on [V −1
T ]ii,

[V (πππT , G)−1]ii ≤ max

{
1

ti +
ρI(i,G)

2

,
1

ti +
tC−ti

2

}
(A.12)

where T is the total number of samples and tC is all the samples from the connected
component C(i) apart from arm i. Thus rewriting the equation for teff,i, we get,

teff,i ≥ ti +
1

2
min{ρI(i, G),

∑
j∈C(i)

tj} (A.13)

Hence proved.

A.4 GRUB Sample Complexity

In order to compute the sample complexity for GRUB, we classify the arms into
two categories: competitive and non-competitive. The split of arms into these two
categories is not required for the algorithm, but provides tighter complexity bounds
as will be observed in this appendix. The division of the arms is contingent on its
suboptimality and the structure of the provided graph side information. A modified
version of the Definition (2.4.3) of competitive set and non-competitive set is as follows:

Definition A.4.1. Fix µµµ ∈ Rn, graph D, regularization parameter ρ, confidence
parameter δ, and smoothness parameter ϵ and noise variance σ. We define H to be
the set of competitive arms and N to be the set of non-competitive arms as follows:

H(D,µµµ, δ, ρ, ϵ) =

{
j ∈ [n]

∣∣∆i ≤ 2

√
2

ρI(i)

(
2σ

√
14 log

(
2a0nρ2I(i)2

δ

)
+ ρϵ

)}
,

N (D,µµµ, δ, ρ, ϵ) ≜ [n] \ H(D,µµµ, δ, ρ, ϵ)

When the context is clear, we will use suppress the dependence on the parameters
in Definition A.4.1.

Further, we derive an expression for the worst-case sample complexity by analysing
the number of samples required to eliminate arms with different difficulty levels, i.e.
arms in competitive set and non-competitive set. We first derive the sample complexity
results for the case when graph G is connected and then extend it to disconnected
graphs.
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Lemma A.4.2. Consider n-armed bandit problem with mean vector µµµ ∈ Rn. Let G
be a given connected similarity graph on the vertex set [n], and further suppose that µµµ
is ϵ-smooth. Define

Tsufficient ≜
∑
i∈H

1

∆2
i

[
c1 log

c2
δ∆i

+
ρϵ

2

]
+max

i∈N

{
2

∆2
i

[
c1 log

c2
δ∆i

+
ρϵ

2

]}
(A.14)

Then, with probability at least 1− δ, GRUB: (a) terminates in no more than Tsufficient

rounds, and (b) returns the best arm a∗ = argmaxi µi.

Proof. With out loss of generality, assume that a∗ = 1. Let {ti}ni=1 denote the number
of plays of each arm upto time T . By Lemma 2.3.2, we can state that,

P
(
|µ̂i

T − µi| ≥ γi(πππT )
)
≤ 2δ

a0nt2eff,i
(A.15)

where, γi(πππT ) = βi(πππT )
√

t−1
eff,i and βi(πππT ) =

(
2σ

√
14 log

(
2a0nt2eff,i

δ

)
+ ρ∥µµµ∥G

)
.

As is reflected in the elimination policy (2.4), at any time t, arm 1 can be mistakenly
eliminated in GRUB only if µ̂i

t > µ̂1
t + γi(πππt) + γ1(πππt). Let Ts be the stopping time of

GRUB, then the total failure probability for GRUB can be upper-bounded as,

P(Failure) ≤
Ts∑
t=2

n∑
i=2

P
(
µ̂i
t ≥ µ̂1

t + γi(πππt) + γ1(πππt)
)

Note that P (µ̂i
t ≥ µ̂1

t + γi(πππt) + γ1(πππt)) ≤ [P (µ̂i
t ≥ µi + γi(πππt)) + P (µ̂1

t ≤ µ1 − γ1(πππt))],
provided that γi(πππt), γ1(πππt) ≤ ∆i

2
. Hence the failure probability can be upperbounded

as,

P(Failure) ≤
n∑

i=2

Ts∑
t=2

[
P
(
µ̂i
t ≥ µi + γi(πππt)

)
+ P

(
µ̂1
t ≤ µ1 − γ1(πππt)

)]
(A.16)

conditioned on γi(πππT ), γ1(πππT ) ≤ ∆i

2
.

Let a0 ≥ 4
∑∞

t=1 t
−2
eff,i, then from Lemma 2.3.2,

P(Failure) ≤
n∑

i=2

Ts∑
t=2

2δ

a0nt2eff,i

≤ δ (A.17)

The finiteness of the infinite sum of teff,i
−2 can be found in Lemma A.7.13.

Thus, in order to keep P(Failure) ≤ δ, it is sufficient if, at the time of elimination
of arm i, we have enough samples to ensure,

γi(πππT ) ≤
∆i

2√
1

teff,i

2σ

√
14 log

(
2a0nt2eff,i

δ

)
+ ρϵ

 ≤ ∆i

2
(A.18)

112



In the absence of graph information, equation (A.18) devolves to the same sufficiency
condition for number of samples required for suboptimal arm elimination as Even-Dar
et al. (2006), upto constant factor. Rewriting the above equation,

log (ai)

ai
≤
√

δ

d1

∆2
i

d0
(A.19)

where d0 = 64× 14σ2, d1 = 2na0e
ρ2ϵ2

4×14σ2 and ai =
√

d1
δ
teff,i. The following bound on ai

is sufficient to satisfy eq. (A.19),

ai ≥ 2

√
d1
δ

d0
∆2

i

log

(√
d1
δ

d0
∆2

i

)

Resubstituting teff,i, we obtain the sufficient number of plays required to eliminate
arm i as,

teff,i ≥
c1
∆2

i

[
log

(
c2

δ
1
2∆2

i

)
+ c3

]
(A.20)

where c1 = 2× 64× 14σ2, c2 = 64× 14σ2
√
2na0 and c3 =

ρ2ϵ2

8×14σ2 . In the further text
we are suppressing the powers of δ,∆i within the log factor as it adds only a constant
multiple to the lower bound.

The further part of the proof we use the following bound on teff,· from Theorem A.3.1
as follows:

teff,i ≥ ti +
1

2
min {ρI(i), T − ti} ∀i ∈ [n] (A.21)

Hence a sufficiency condition for the GRUB to produce the best-arm with probability
1− δ is given when both the following conditions are satisfied,

ti +
ρI(i)

2
≥ 1

∆2
i

[
c1 log

(
c2
δ∆i

)
+

ρϵ

2

]
(A.22)

and,

T + ti ≥ T ≥ 2

∆2
i

[
c1 log

(
c2
δ∆i

)
+

ρϵ

2

]
(A.23)

From the Definition A.4.1 of competitive arms H and non-competitive arms N ,
we have,

H =

{
j ∈ [n]

∣∣∆i ≤ 2

√
2

ρI(i)

(
2σ

√
14 log

(
2a0nρ2I(i)2

δ

)
+ ρϵ

)}
(A.24)

113



After the first maxi∈N

{
2
∆2

i

[
c1 log

c2
δ∆i

+ ρϵ
2

]}
samples, all arms in N are eliminated.

Further, let k1 be the index of the first arm to be eliminated (in H) and t∗k1 be the
number of samples of arm k1 before getting eliminated then the total number of
additional time steps played until the arm k1 is eliminated is at most |H|t∗k1 . Let k2
be the index of the next arm in H to be eliminated. The number of additional plays
until the next arm is eliminated is given by (|H| − 1)[t∗k2 − t∗k1 ] and so on.

Summing up all the samples required to converge to the optimal arm is given by,
(let t∗k0 = 0)

|H|∑
h=1

(|H| − h))[t∗kh − t∗kh−1
] =

|H|−1∑
h=1

t∗kh =
∑
i∈H/1

t∗i (A.25)

Hence the final sample complexity can be computed as follows:

• Number of plays required for arms in H :∑
i∈H/1

t∗i ≥
∑
i∈H/1

1

∆2
i

[
c1 log

c2
δ∆i

+
ρϵ

2

]
(A.26)

• Number of plays required for all the arms in N := [n]/H to be eliminated:

T ≥ max
i∈N

{
2

∆2
i

[
c1 log

c2
δ∆i

+
ρϵ

2

]}
(A.27)

Hence the final sample complexity can be given by,

Tsufficient ≜ max
i∈N

{
2

∆2
i

[
c1 log

c2
δ∆i

+
ρϵ

2

]}
+
∑
i∈H/1

1

∆2
i

[
c1 log

c2
δ∆i

+
ρϵ

2

]
(A.28)

Hence proved.

We extend Lemma A.4.2 to the case when graph G has disconnected clusters.
Note: The following theorem stated in the thesis has a typographical error in the

equation for Tsufficient in place of argmin it is supposed to be min.

Theorem A.4.3. Consider n-armed bandit problem with mean vector µµµ ∈ Rn. Let G
be the set of subgraphs of given similarity graph G on the vertex set [n], and further
suppose that µµµ is ϵ-smooth. Define

Tsufficient ≜ min
D∈G

∑
C∈CD

[ ∑
i∈C∩HD

1

∆2
i

[
c1 log

c2
δ∆i

+
ρϵ

2

]
+ max

i∈C∩ND

{
2

∆2
i

[
c1 log

c2
δ∆i

+
ρϵ

2

]}]
(A.29)

where ∆i = µ∗ − µi for all suboptimal arms, HD and ND are as in Definition A.4.1,
CD is the set of connected components of a subgraph D ∈ G and c1, c2 are constants
independent of system parameters. Then, with probability at least 1 − δ, GRUB:
(a) terminates in no more than Tsufficient rounds, and (b) returns the best arm a∗ =
argmaxi µi.
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Proof. Let CG denote the connected components of graph G. From Lemma A.4.2, the
number of samples for each connected component C ∈ CG can be given as,

Tsufficient =

[ ∑
i∈C∩H

1

∆2
i

[
c1 log

c2
δ∆i

+
ρϵ

2

]
+ max

i∈C∩N

{
2

∆2
i

[
c1 log

c2
δ∆i

+
ρϵ

2

]}]
(A.30)

We can obtain the sample complexity for obtaining the best arm by summing it over all
the components C ∈ C, gives us the sample complexity for GRUB while considering
graph G.

Tsufficient =
∑
C∈CG

[ ∑
i∈C∩H

1

∆2
i

[
c1 log

c2
δ∆i

+
ρϵ

2

]
+ max

i∈C∩N

{
2

∆2
i

[
c1 log

c2
δ∆i

+
ρϵ

2

]}]
(A.31)

Any subgraph D of graph G satisfies,

⟨µµµ, LGµµµ⟩ ≤ ϵ⇒ ⟨µµµ, LDµµµ⟩ ≤ ϵ (A.32)

As seen in Definition A.4.1, the influence factor is instrumental in deciding the
competitive and non-competitive sets, which further dictates the sample complexity
bounds. Further, notice from Lemma A.7.8 that the influence factor I(i,D) is not
monotonic when considering subgraph D of graph G. Hence considering a subgraph
of G could potentially increase the number of non-competitive arms and provide us
with a tighter bound on the performance for GRUB.

Hence Tsufficient in (A.30) can be made tighter by considering the minimum value
over the entire set of subgraphs G.

We next derive sample complexity upper bounds for GRUB in certain illuminating
special cases.

Corollary A.4.4 (Isolated clusters). Consider the setup as in Theorem 2.4.4 with the
further restriction that G consists of a subgraph F such that optimal node is isolated and

arms [2, . . . , n] are split in k clusters and ∆i ≥ 2
√

2
ρI(i,F )

(
2σ

√
14 log

(
2a0nρ2I(i,F )2

δ

)
+ ρϵ

)
,

∀i ∈ [2, . . . , n]. Define

Tsufficient ≜
∑

C∈CF /1

max
j∈C

2

∆2
j

[
c1 log

(
c2
δ∆i

)
+

ρϵ

2

]
(A.33)

Then, with probability at least 1− δ, GRUB: (a) terminates in no more than Tsufficient

rounds, and (b) returns the best arm a∗ = argmaxi µi.

Corollary A.4.4 shows that in scenarios where the arms are well clustered, the
sample complexity of GRUB can scale with the number of clusters, a quantity that is
typically significantly smaller than the total number of nodes in the graph.
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Corollary A.4.5 (Star graph). Consider the setup as in Theorem 2.4.4 with the
further restriction that G consists of a star subgraph with the central node as the

optimal arm and ∆i ≤ 2
√

2
ρI(i,F )

(
2σ

√
14 log

(
2a0nρ2I(i,F )2

δ

)
+ ρϵ

)
, ∀i ∈ [2, . . . , n].

Define

Tsufficient ≜
n∑

i=2

1

∆2
i

[
c1 log

(
c2
δ∆i

)
+

ρϵ

2

]
(A.34)

Then, with probability at least 1− δ, GRUB: (a) terminates in no more than Tsufficient

rounds, and (b) returns the best arm a∗ = argmaxi µi.

In Corollary A.4.5, Tsufficient is the same sample complexity as vanilla best arm
identification, upto constant factors which is due to the fact that pulling one of the
spoke arms does not yield much information about the other spoke arms, and this is
the exact situation in the standard pure exploration setting.

A.5 Lower Bounds

In this section we give a lower bound on the sample complexity for any δ-PAC to
return the best arm for a n armed bandit problem along with graph side information.

Theorem A.5.1. Given an n-armed bandit model with associated mean vector µµµ ∈ Rn

and similarity graph G smooth on µµµ, i.e. ⟨µµµ, LGµµµ⟩ ≤ ϵ, for any 0 < ϵ < ϵ0. Let
G = ([n], E) be the graph with only k isolated cliques and w.l.o.g let arm 1 be the
optimal arm. Then define

Tnecessary =
∑

C∈CG/C∗

min
j∈C

{
4σ2 log 5

(∆j −
√
ϵ)2

}
+
∑

j∈C∗/1

4σ2 log 5

∆2
j

(A.35)

where C∗ is the clique with the optimal arm and ϵ0 := min
i∈[n]/1,j∈C(i)

[
∆j

[
1− ∆i√

∆2
i+∆2

j

]]2
.

Then any δ-PAC algorithm will need at-least Tnecessary steps to terminate, provided
δ ≤ 0.1.

Proof. We prove the theorem in two steps: Firstly, we construct the sample complexity
lower bound for the similarity graph with the isolated optimal arm and a clique of
rest of the sub-optimal arms, followed by step 2 the sample complexity lower bound
for a graph with single cluster

Step 1:
Consider a n+ 1 armed bandit problem with mean vector µµµ ∈ Rn+1 and similarity

graph M with an isolated optimal arm (arm 1) and n-clique cluster of suboptimal arms,
satisfying the condition for smoothness of rewards over the graph,i.e., ⟨µµµ, LMµµµ⟩ ≤ ϵ.
Then the following holds

max
i ̸=1

µi ≤ min
j ̸=1
{µj +

√
ϵ} (A.36)
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Assume that ordering of mean in n-clique of suboptimal arms is known. From
(Kaufmann et al., 2015), there exists a δ-PAC algorithm, for δ ≤ 0.1, which can
successful identify the best arm for the subproblem with just the optimal arm and
arm with the maximum mean in the n-clique cluster, i.e. j′ = arg

j ̸=1
maxµj with the

total number of samples given by,

T ≥ 4 log 5σ2

∆2
j′

(A.37)

Now consider the case where the ordering of the mean in n-clique is unknown. In
order to remove all the suboptimal arms provided ϵ ≤ minj ̸=1 ∆2

j and (A.36) holds,
it is suffices to be able to distinguish between the optimal arm and a hypothetical
suboptimal arm with mean µj +

√
ϵ where j is any arm from suboptimal n-clique,

and the minimum number of samples required by any δ-PAC algorithm to successfully
identify the best arm with δ ≤ 0.1 is given by,

T ≥ 4 log 5σ2

(∆j −
√
ϵ)2

(A.38)

The best performance in terms of sample complexity out of all the random choice of
arm from the suboptimal n-clique cluster is,

T ≥ min
j ̸=1

{
4 log 5σ2

(∆j −
√
ϵ)2

}
(A.39)

Given ϵ0 := min
i∈[n]/1,j∈C(i)

[
∆j

[
1− ∆i√

∆2
i+∆2

j

]]2
and ϵ < ϵ0, it can be verified that for

any arm i, j ̸= 1,

min
j ̸=1

4 log 5σ2

(∆j −
√
ϵ)2

<
4 log 5σ2

∆2
i

+
4 log 5σ2

∆2
j

(A.40)

where the left hand side corresponds to the sample complexity lower bound of removing
the suboptimal arms i, j with the graph side information and the right hand side
corresponds to the same without graph side information.

Hence it can be inferred that it is inefficient to remove the arms individually
(disregarding the graph information).

Step 2 :
Consider a n+ 1 armed bandit problem with mean vector µµµ ∈ Rn+1 with a given

similarity graph N such that ⟨µµµ, LNµµµ⟩ ≤ ϵ. Let all the suboptimal arms be connected
to the optimal arm.

Here we show by an adversarial example that it is not possible to have a lower
bound on the sample complexity which scales better than,

T ≥
∑
j ̸=1

4 log 5σ2

∆2
j

(A.41)
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There exists a δ-PAC algorithm which can determine that arms j = 3, . . . , n are
suboptimal after T ≥

∑
j ̸=1,2

1
∆2

j
samples. From the smoothness of rewards on the

similarity graph N we know that,

−
√
ϵ ≤ µ1 − µj ≤

√
ϵ ∀j ∈ [2, 3, . . . , n] (A.42)

This information does not help us identify or even reduce the number of samples
required to identify optimal arm between arm 1 and arm 2. Thus no δ-PAC algorithm,
δ ≤ 0.1, can determine the optimal arm from arm 1 and arm 2 without an additional
4 log 5σ2

∆2
2

samples for determining the best arm.

Using above two steps, we construct the proof for lower bound as follows:
Now consider the graph side information as defined in the theorem, and let CG

denote the set of connected components of graph G and C∗ ∈ CG be the component
containing the optimal arm. Finding the best arm in this setup requires elimination of
the suboptimal arms with in the connected component containing optimal arm j ∈ C∗

and elimination of the other connected components with suboptimal arms j ∈ CG/C∗.
Hence, the sample complexity lower bounds (Kaufmann et al., 2015, 2016) for any
δ-PAC algorithm with δ ≤ 0.1 to eliminate these arms using the tools developed in
step 1 and step 2, is given by

T ≥
∑

j∈C∗/1

4σ2 log 5

∆2
j

+
∑

C∈CG/C∗

min
j∈C

{
4σ2 log 5

(∆j −
√
ϵ)2

}
(A.43)

A.6 ζ-GRUB Sample Complexity Proof

Definition A.6.1. Fix µµµ ∈ Rn, graph D, confidence parameter δ, noise variance σ,
and relaxation parameter ζ. We define H to be the set of competitive arms and N to
be the set of non-competitive arms for ζ-GRUB as follows:

H(D,µµµ, δ, ζ) =

{
j ∈ [n]

∣∣∆ζ
i ≤ 2

√
2

ρI(i)

(
2σ

√
14 log

(
2a0nρ2I(i)2

δ

)
+ ρϵ

)}
,

N (D,µµµ, δ, ζ) ≜ [n] \ H(D,µµµ, δ, ζ)

where ∆ζ
i ≜ max{∆i, ζ}.

Lemma A.6.2. Consider n-armed bandit problem with mean vector µµµ ∈ Rn. Let G
be a given connected similarity graph on the vertex set [n], and further suppose that µµµ
is ϵ-smooth. Define

Tsufficient ≜
∑
i∈H

1

(∆ζ
i )

2

[
c1 log

c2

δ∆ζ
i

+
ρϵ

2

]
+max

i∈N

{
2

(∆ζ
i )

2

[
c1 log

c2

δ∆ζ
i

+
ρϵ

2

]}
(A.44)

where ∆ζ
i ≜ max{∆i, ζ}. Then, with probability at least 1− δ, GRUB: (a) terminates

in no more than Tsufficient rounds, and (b) returns a ζ-best arm
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Proof. With out loss of generality, assume that a∗ = 1. Let {ti}ni=1 denote the number
of plays of each arm upto time T . By Lemma 2.3.2, we can state that,

P
(
|µ̂i

T − µi| ≥ γi(πππT )
)
≤ 2δ

a0nt2eff,i
(A.45)

where, γi(πππT ) = βi(πππT )
√

t−1
eff,i and βi(πππT ) =

(
2σ

√
14 log

(
2a0nt2eff,i

δ

)
+ ρ∥µµµ∥G

)
.

As is reflected in the elimination policy (2.4), at any time t, arm 1 can be mistakenly
eliminated in GRUB only if µ̂i

t > µ̂1
t + γi(πππt) + γ1(πππt). Let Ts be the stopping time of

GRUB, then the total failure probability for GRUB can be upper-bounded as,

P(Failure) ≤
Ts∑
t=2

n∑
i=2

P
(
µ̂i
t ≥ µ̂1

t + γi(πππt) + γ1(πππt)
)

Note that P (µ̂i
t ≥ µ̂1

t + γi(πππt) + γ1(πππt)) ≤ [P (µ̂i
t ≥ µi + γi(πππt)) + P (µ̂1

t ≤ µ1 − γ1(πππt))],

provided that γi(πππt), γ1(πππt) ≤ ∆ζ
i

2
. Hence the failure probability can be upperbounded

as,

P(Failure) ≤
n∑

i=2

Ts∑
t=2

[
P
(
µ̂i
t ≥ µi + γi(πππt)

)
+ P

(
µ̂1
t ≤ µ1 − γ1(πππt)

)]
(A.46)

conditioned on γi(πππT ), γ1(πππT ) ≤ ∆ζ
i

2
.

Let a0 ≥ 4
∑∞

t=1 t
−2
eff,i, then from Lemma 2.3.2,

P(Failure) ≤
n∑

i=2

Ts∑
t=2

2δ

a0nt2eff,i

≤ δ (A.47)

The finiteness of the infinite sum of teff,i
−2 can be found in Lemma A.7.13.

Thus, in order to keep P(Failure) ≤ δ, it is sufficient if, at the time of elimination
of arm i, we have enough samples to ensure,

γi(πππT ) ≤
∆ζ

i

2√
1

teff,i

2σ

√
14 log

(
2a0nt2eff,i

δ

)
+ ρϵ

 ≤ ∆ζ
i

2
(A.48)

Rewriting the above equation,

log (ai)

ai
≤
√

δ

d1

(∆ζ
i )

2

d0
(A.49)
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where d0 = 64× 14σ2, d1 = 2na0e
ρ2ϵ2

4×14σ2 and ai =
√

d1
δ
teff,i. The following bound on ai

is sufficient to satisfy eq. (A.49),

ai ≥ 2

√
d1
δ

d0

(∆ζ
i )

2
log

(√
d1
δ

d0

(∆ζ
i )

2

)

Resubstituting teff,i, we obtain the sufficient number of plays required to eliminate
arm i as,

teff,i ≥
c1

(∆ζ
i )

2

[
log

(
c2

δ
1
2 (∆ζ

i )
2

)
+ c3

]
(A.50)

where c1 = 2× 64× 14σ2, c2 = 64× 14σ2
√
2na0 and c3 =

ρ2ϵ2

8×14σ2 .
The further part of the proof depends crucially on the following bound on teff,i for

all i ∈ [n] from Theorem A.3.1 as follows:

teff,i ≥ ti +
1

2
min {ρI(i), T − ti} (A.51)

Hence a sufficiency condition for the GRUB to produce the ζ-best arm with probability
1− δ is given when both the following conditions are satisfied,

ti +
ρI(i)

2
≥ 1

(∆ζ
i )

2

[
c1 log

(
c2

δ∆ζ
i

)
+

ρϵ

2

]
(A.52)

and,

T + ti ≥ T ≥ 2

(∆ζ
i )

2

[
c1 log

(
c2

δ∆ζ
i

)
+

ρϵ

2

]
(A.53)

From the Definition A.6.1 we have the set of competitive arms H and non-
competitive arms N as follows:

H =

{
j ∈ [n]

∣∣∆ζ
i ≤ 2

√
2

ρI(i)

(
2σ

√
14 log

(
2a0nρ2I(i)2

δ

)
+ ρϵ

)}
(A.54)

After the first maxi∈N

{
2

(∆ζ
i )

2

[
c1 log

c2
δ∆ζ

i

+ ρϵ
2

]}
samples, all arms in N are eliminated.

Further, let k1 be the index of the first arm to be eliminated (in H) and t∗k1 be the
number of samples of arm k1 before getting eliminated then the total number of
additional time steps played until the arm k1 is eliminated is at most |H|t∗k1 . Let k2
be the index of the next arm in H to be eliminated. The number of additional plays
until the next arm is eliminated is given by (|H| − 1)[t∗k2 − t∗k1 ] and so on.
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Summing up all the samples required to converge to the optimal arm is given by,
(let t∗k0 = 0)

|H|∑
h=1

(|H| − h))[t∗kh − t∗kh−1
] =

|H|−1∑
h=1

t∗kh =
∑
i∈H/1

t∗i (A.55)

Hence the final sample complexity can be computed as follows:

• Number of plays required for arms in H :

∑
i∈H/1

t∗i ≥
∑
i∈H/1

1

(∆ζ
i )

2

[
c1 log

c2

δ∆ζ
i

+
ρϵ

2

]
(A.56)

• Number of plays required for all the arms in N := [n]/H to be eliminated:

T ≥ max
i∈N

{
2

(∆ζ
i )

2

[
c1 log

c2

δ∆ζ
i

+
ρϵ

2

]}
(A.57)

Hence the final sample complexity can be given by,

Tsufficient ≜ max
i∈N

{
2

(∆ζ
i )

2

[
c1 log

c2

δ∆ζ
i

+
ρϵ

2

]}
+
∑
i∈H/1

1

(∆ζ
i )

2

[
c1 log

c2

δ∆ζ
i

+
ρϵ

2

]
(A.58)

We extend Lemma A.6.2 to the case when graph G has disconnected clusters.

Theorem A.6.3. Consider n-armed bandit problem with mean vector µµµ ∈ Rn. Let
G be the set of subgraphs given similarity graph G on the vertex set [n], and further
suppose that µµµ is ϵ-smooth. Define

Tsufficient ≜ min
D∈G

∑
C∈CD

[ ∑
i∈C∩HD

1

(∆ζ
i )

2

[
c1 log

c2

δ∆ζ
i

+
ρϵ

2

]

+ max
i∈C∩ND

{
2

(∆ζ
i )

2

[
c1 log

c2

δ∆ζ
i

+
ρϵ

2

]}]
(A.59)

where ∆ζ
i = max{∆i, ζ} for all suboptimal arms, HD and ND are as in Definition A.6.1,

CD is the set of connected components of subgraph D ∈ G and c1, c2 are constants
independent of system parameters. Then, with probability at least 1− δ, GRUB: (a)
terminates in no more than Tsufficient rounds, and (b) returns a ζ-best arm
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Proof. From Lemma A.6.2, the sample complexity for each connected component
C ∈ C can be given as,

Tsufficient =

[ ∑
i∈C∩H

1

(∆ζ
i )

2

[
c1 log

c2

δ∆ζ
i

+
ρϵ

2

]
+ max

i∈C∩N

{
2

(∆ζ
i )

2

[
c1 log

c2

δ∆ζ
i

+
ρϵ

2

]}]
(A.60)

where, summing it over all the components C ∈ C, gives us the sample complexity for
GRUB while considering graph G.

Any subgraph D of graph G satisfies,

⟨µµµ, LGµµµ⟩ ≤ ϵ⇒ ⟨µµµ, LDµµµ⟩ ≤ ϵ (A.61)

As seen in Definition A.6.1, the influence factor is instrumental in deciding the
competitive and non-competitive sets, which further dictates the sample complexity
bounds. Further, notice from Lemma A.7.8 that the influence factor I(i,D) is not
monotonic when considering subgraph D of graph G. Hence considering a subgraph
of G could potentially increase the number of non-competitive arms and provide us
with a tighter bound on the performance for GRUB.

Hence Tsufficient can be made tighter by considering the minimum value over the
entire set of subgraphs G.

Note that, as in the case of GRUB, the ζ-GRUB algorithm’s performance auto-
matically adapts to the best possible subgraph in G.

A.7 Supporting Proofs

This appendix is devoted to providing supporting results for many of the theorems
and lemmas in the paper. Let {ti(T )}ni=1 (denoted as {ti}ni=1 for ease of reading)
indicate the number of plays of each arm until time T . Let X ∈ Rn×n be a matrix,
then {λi(X)}ni=1 indicate the eigenvalues of matrix X in an increasing order.

Let N(πππT ) =
∑T

t=1 eπte
T
πt

be the diagonal counting matrix. Note that N(πππT ) can
be written as N({ti}ni=1) since the diagonal counting matrix only depends on the
number of plays of each arm, rather than the each sampling sequence πππT .

We next establish some properties of the influence function I.

Lemma A.7.1. Let D be an arbitrary graph with n nodes and let {ti}ni=1 be the
number of times all arms are sampled till time T . For each node j ∈ [n], the following
are equivalent:

1

I(j,D)
= max∑

i∈Dj,i ̸=j ti=T
{[K(i,D)]jj} (A)

= max
k∈Dj ,

∑
i∈Dj,i ̸=j ti=T

{
[Vj({ti}i∈Dj

, D)−1]jj − [Vj({ti}i∈Dj
, D)−1]kk

}
(B)

= max∑
i∈Dj,i ̸=j ti=T

{
[Vj({ti}i∈Dj

, D)−1]jj − min
k∈Dj

[Vj({ti}i∈Dj
, D)−1]kk

}
(C)

= max∑
i∈Dj,i ̸=j ti=T

{
[Vj({ti}i∈Dj

, D)−1]jj −
1

T

}
(D) (A.62)
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where K(i,D) be defined as in Definition 2.4.2

Proof. Let f(·, ·) denote the following:

f(i,D) = max∑
i∈Dj,i ̸=j ti=T

{[K(i,D)]jj}

We prove the rest by showing equivalence between (A), (B), (C) and (D).

• (A) ⇔ (D) : A simple extension of Lemma A.7.3 to the case of disconnected
clustered graph D, ∀πππT ∈ U(T,Dj) we obtain,

Vj(πππT , D)−1 =
1

T
⊮⊮T +K(π1, D) (A.63)

where K(π1, D) is as defined in Definition 2.4.2. Thus, we have the equivalence
by explicitly writing the diagonal element of eq (A.63),

[Vj(πππT , D)−1]jj −
1

T
= [K(π1, D)]jj (A.64)

Hence we have the equivalence as,

f(i,D) = max∑
i∈Dj,i ̸=j ti=T

{
[Vj({ti}i∈Dj

, D)−1]jj −
1

T

}
(A.65)

• (C)⇔ (D) : Let {t∗i }i∈Dj
denote the following:

{t∗i (j)}i∈Dj
∈ argmax∑

i∈Dj,i̸=j ti=T

{
[Vj({ti}i∈Dj

, D)]−1
jj −

1

T

}
(A.66)

From Lemma A.7.2, the optimal {t∗i (j)}i∈Dj
occurs in U(j, T ), i.e. ∃{t∗i (j)}i∈Dj

such that t∗l (j) = T and t∗k(j) = 0 ∀k ≠ l for some l ∈ Dj. Further by
Lemma A.7.4,

min
k∈Dj

[Vj({ti}i∈Dj
, D)−1]kk =

1

T
(A.67)

Hence {t∗i (j)}i∈Dj
is also a solution for the following problem:

{t∗i (j)}i∈Dj
∈ argmax∑

i∈Dj,i ̸=j ti=T

{
[Vj({ti}i∈Dj

, D)]−1
jj

−min
k∈Dj

[Vj({ti}i∈Dj
, D)−1]kk

}
(A.68)

Hence we can conlcude that,

f(i,D) = max∑
i∈Dj,i ̸=j ti=T

{
[Vj({ti}i∈Dj

, D)]−1
jj

−min
k∈Dj

[Vj({ti}i∈Dj
, D)−1]kk

}
(A.69)
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• (B)⇔ (C) :

Note that max
k∈Dj ,

∑
i∈Dj,i ̸=j ti=T

[Vj({ti}i∈Dj
, D)−1]jj] does not depend on arm node

index k ∈ Dj. Hence, the equivalence follows.

The resistance distance r(i, j) Definition 2.4.1 is independent of δ for all i, j ∈ [n]
(The addition of diagonal elements and subtraction of off diagonal elements removes
the dependence on δ Bapat and Gupta (2010)).

Note that VT = NT + ρLG, hence V −1
T gives the psuedo-inverse of the Laplacian

matrix for graph G. We show in Lemma A.7.2 that the matrix R (denoting as R(δ)
to explicitly show dependence on δ) linked with V −1

T is independent of number of
samples T . Since both matrix R and VT are psuedo-inverse of the Laplacian LG. Thus
we can conclude the following :

lim
δ→0

[R(δ)]ij −
1

δ
= lim

T→0
[V ({ti}ni=1, G)−1]ij −

1

T
(A.70)

where T → 0 implies ti → 0 ∀i ∈ [n]. Further,

lim
δ→0

R(δ)ii +R(δ)jj −R(δ)ij −R(δ)ji

= lim
T→0

[V ({ti}ni=1, G)−1]ii + [V ({ti}ni=1, G)−1]jj

− [V ({ti}ni=1, G)−1]ij − [V ({ti}ni=1, G)−1]ji (A.71)

where T → 0 implies ti → 0 ∀i ∈ [n].
Since the equation (A.71) holds for ti → 0 for all i ∈ [n], computing the value of

limit for one trajectory should suffice for finding the value of the limit. Thereby, we
provide an alternate equation for obtaining the resistance distance r(i, j) by

r(i, j) = [K(π1 = i,D)]jj (A.72)

Note that [K(π1 = i,D)]ii = [K(π1 = i,D)]ij = [K(π1 = i,D)]ji = 0 from
Lemma A.7.3). Thus we can say from Definition 2.4.2,

f(i,D) =
1

I(j,D)

Hence proved.

Lemma A.7.2. Let D be a given graph with n nodes. For every node j ∈ D, let
{t∗i (j)}i∈Dj

denote the following:

{t∗i (j)}i∈Dj
∈ argmax∑

i∈Dj,i ̸=j ti=T

{
[Vj({ti}i∈Dj

, D)]−1
jj −

1

T

}
(A.73)

Then ∃{t∗i (j)}i∈Dj
, l ∈ Dj such that t∗l (j) = T and t∗k(j) = 0 ∀k ̸= l.
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Proof. To simplify our proof, let graph D be connected. The proof for the case of
disconnected components is an extension of the connected graph case, by analysing
each individual connected component together.

If graph D is connected then Di = D. For the rest of the proof we sometimes
denote V (πππT , D) as V ({ti}ni=1, D) to make it more context relevant.

Let g : Rn → Rn×n be a partial function of V (πππT , D) as follows:

g({ti}ni=1) = V ({ti}ni=1, D) (A.74)

For all i ∈ [n], let ti = αiT such that
∑n

i=1 αi = 1. Then we can say that,

g({ti}ni=1) = g({αiT}ni=1)

=
n∑

i=1

αig({0, 0, . . . ti = T, . . . 0}) (A.75)

Using convexity of matrix invertibility Nordström (2011) V (πππT , G)−1 satisfies,

g({ti}ni=1)
−1 ⪯

n∑
i=1

αig({0, 0, . . . ti = T, . . . 0})−1 (A.76)

Hence g(·)−1 is a convex function. Since we have the restriction as
∑n

i=1,i ̸=j ti = T .
We can say that,

argmax∑
i∈Dj,i̸=j ti=T

{
[V ({ti}ni=1, D)]−1

jj −
1∑n
i=1 ti

}
= argmax∑

i∈Dj,i ̸=j ti=T

[V ({ti}ni=1, D)]−1
jj

= argmax∑
i∈Dj,i ̸=j ti=T

⟨ej, [V ({ti}ni=1, D)]−1ej⟩

= argmax∑
i∈Dj,i ̸=j ti=T

⟨ej, g({ti}ni=1)
−1ej⟩ (A.77)

Since g(·)−1 is convex, for a convex function the maximization over a simplex happens
at one of the vertices. Hence the max happens when ti = T and tk = 0 ∀k ̸= i.

Hence proved.

Lemma A.7.3. Let G be a given connected graph of n nodes and ti be the number of
samples of each arm i. Then ∀πππT ∈ U(T ),

V (πππT , G)−1 =
1

T
11

T +K(π1, G) (A.78)

where, 1 ∈ Rn is a vector or all ones and K(π1, G) ∈ Rn×n is the matrix defined in
Definition 2.4.2.
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Proof. Let I be an identity matrix of dimension n×n. We prove the result by showing
that, ∀πππT ∈ U(T ), V (πππT , G)−1V (πππT , G) = I,

V (πππT , G)−1V (πππT , G)

=

(
1

T
11

T +K(π1, G)

)( T∑
t=1

eπte
T
πt
+ ρLG

)

=

(
1

T
11

T +K(π1, G)

)(
Teπ1e

T
π1

+ ρLG

)
= 1eTπ1

+ TK(π1, G)eπ1e
T
π1

+ ρK(π1, G)LG (A.79)

From Definition 2.4.2, K(π1, G)eπ1e
T
π1

= 0 and 1eTπ1
+ ρK(π1, G)LG = I implying that

V (πππT , G)−1V (πππT , G) = I.
Hence proved.

Lemma A.7.4. Let G be any connected graph and πππT ∈ U(T,G). Then,

min
j∈[n]
{[V (πππT , G)−1]jj} =

1

T
(A.80)

Proof. From Definition 2.4.2, K(π1, G) satisfies

K(π1, G)LG =
1

ρ

(
I − 1eTπ1

)
Observe that 1eTi is a rank 1 matrix with eigenvalue 1 and eigenvector ei and

Identity matrix I is of rank n with all eigenvalues 1 and eigenvectors {ei}ni=1. Hence(
I − 1eTπ1

)
is a rank n− 1 matrix with rest nonzero eigenvalues as 1. Since the graph

G is connected, λ1(LG) = 0 and λ2(LG) > 0. The eigenvector corresponding to λ1(LG)
is ⊮, the all 1 vector.

Given ρ > 0, we can conclude,

K(π1, G)LG ⪰ 0 s.t. rank(K(π1, G)LG) = n− 1 (A.81)

Hence, in order to satisfy eq. (A.81), K(π1, G) ⪰ 0 and rank(K(π1, G)) ≥ n− 1. By
lower bounds on Rayleigh quotient we can conclude,

⟨ej, K(π1, G)ej⟩ = [K(π1, G)]jj ≥ 0 ∀j ∈ [n] (A.82)

From Lemma A.7.3, [K(π1, G)]jj = [V (πππT , G)−1]jj− 1
T
implying that [V (πππT , G)−1]jj ≥

1
T
. From Definition 2.4.2 it can be seen that [K(π1, G)]π1π1 = 0 and hence [V (πππT , G)−1]π1π1 =

1
T
which concludes the proof.

Lemma A.7.5. Given a connected graph G, the following bound holds for all the
diagonal entries of [V (πππT , G)−1]ii for i ∈ [n]:

[V (πππT , G)−1]ii ≤ 1 (ti = 0)

(
1

ρI(i,G)
+

1

T

)
+ 1 (ti > 0)max

{
1

ti +
ρI(i,G)

2

,
1

ti +
T
2

}
(A.83)
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Proof. From Definition 2.4.2 of I(·,G) and Lemma A.7.1, Breaking the lemma state-
ment into cases:

• Unsampled Arms : From Lemma A.7.1

1

I(j,G)
= max∑

i∈Gj,i ̸=j ti=T

{
[Vj({ti}i∈Gj

, G)−1]jj −
1

T

}
∀j ∈ [n] (A.84)

Thus for any unsampled arm j,

[V (πππT , G)]−1
jj ≤

(
1

I(j,G)
+

1

T

)
(A.85)

• Sampled Arms : Since the matrix V (πππT , G) depends only on the final sampling
distribution {ti}ni=1 rather than the sampling path πππT . Consider a sampling path
such that πt ̸= j for t ≤ T − tj and πt = j for T − tj ≤ t ≤ T .

Assuming such a sampling path πππT , after πππT−tj samples,

[V (πππT−tj , G)−1]jj ≤
1

T
+

1

I(j, G)
(A.86)

Then by the Sherman-Morrison rank 1 update identity (Hager, 1989),

1

[V (πππT , G)−1]jj
=

1

[V (πππT−tj , G)−1]jj
+ tj

[V (πππT , G)−1]jj =
1

tj +
1

[V (πππT−tj
,G)−1]jj

≤ 1

tj +
1(

1
I(j,G)

+ 1
T−tj

)

Hence we have the bound on [V (πππT , G)−1]jj as follows:

[V (πππT , G)−1]jj ≤ max

{
1

tj +
I(j,G)

2

,
1

tj +
T−tj
2

}
(A.87)

Hence proved.

Lemma A.7.6. Let D be a graph with n nodes and k disconnected components. If
each of the connected components {Ci(D)}ki=1 is a complete graph then ∀ j ∈ [n],

I(j,D) =
|C(j,D)|

2
(A.88)
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Proof. Let D be a complete graph (k = 1), πππT ∈ U(T ) and ρ = 1. Then,

V (πππT , G)−1 =
1

T
11

T +K (A.89)

where 1 ∈ Rn is a vector or all ones and K ∈ Rn×n is a matrix given by,

Kπ1π1 = 0, Kjj =
2

n
∀j ∈ [n]/{π1}

Kkπ1 = 0, Kπ1j = 0, Kjk =
1

n
∀j, k ∈ [n]/{π1}, j ̸= k

The form of V (πππT , G)−1 in eq.(A.89) can be verified by V (πππT , G)−1V (πππT , G) = I.
The final statement of the lemma can be obtained by considering this analysis

to just the nodes within a connected component of a diconnected graph G and
Lemma A.7.1.

Lemma A.7.7. Let D be a graph with n nodes and k disconnected components. If
each of the connected components {Ci(D)}ki=1 is a line graph then ∀ j ∈ [n],

I(j,D) >
1

|C(j,D)|
(A.90)

Proof. Let D be a complete graph (k = 1), πππT ∈ U(T ) and ρ = 1. Then,

V (πππT , G)−1 =
1

T
11

T +K (A.91)

where 1 ∈ Rn is a vector or all ones and K ∈ Rn×n is a matrix given by,

Kπ1π1 = 0, Kjj = d(π1, j) ∀j ∈ [n]/{π1},
Kkπ1 = 0, Kπ1j = 0,

Kjk = min{d(π1, j), d(π1, k)} ∀j, k ∈ [n]/{π1}, j ̸= k

The form of V (πππT , G)−1 in eq.(A.91) can be verified by V (πππT , G)−1V (πππT , G) = I.
The final statement of the lemma can be obtained by considering this analysis

to just the nodes within a connected component of a diconnected graph G and
Lemma A.7.1.

Lemma A.7.8. Let A = ([n], E) be any graph and let e ∈ E be an edge of graph A.
Let B = ([n], E − {e}) be a subgraph of A with one edge removed. Then the following
holds for all non-isolated nodes i in B:

• If |C(A)| = |C(B)|,

I(i, A) ≥ I(i, B)

• If |C(A)| < |C(B)|,

I(i, A) ≤ I(i, B)
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Proof. From Lemma A.7.1, for any graph D, I(·, ·) satisfies,
1

I(j,D)
= max

k∈Dj ,
∑

i∈Dj
ti=T

{
[Vj({ti}i∈Dj

, D)−1]jj

−[Vj({ti}i∈Dj
, D)−1]kk

}
∀j ∈ [n] (A.92)

Case I : |C(A)| = |C(B)|
The edge set of B is smaller than edge set of A. Hence, from Lemma I(i, A) ≥

I(i, B)
Case II : C(A) < C(B) In this case, |Bi| ≤ |Ai|. Hence the max is over a smaller

set of options, we can conclude that I(i, A) ≤ I(i, B). Hence proved.

Given a graph D, we define a class of sampling policies U(T,D) as follows,

Definition A.7.9. Let U(T,D) denote the set of sampling policies,

U(T,D) = {πππT | ∃l ∈ D s.t. πt = l ∀t ≤ T}
Lemma A.7.10. Let G be the given graph and sampling policy πππT has been played
for T time steps, then VT satisfies the following structure,

V (πππT , D) = diag([V1, V2, . . . , Vk(G)]) (A.93)

where Vi depends on the connected component Ci ∈ CD of the graph and the number of
samples of the arms within the connected component {tj}j∈Ci

.

Proof. Rewriting the definition of V (πππT , D),

V (πππT , D) ≜
T∑
t=1

eπte
⊤
πt
+ ρLD

= N({ti}ni=1) + LD (A.94)

Both component matrices N({ti}ni=1) (diagonal matrix) and LD (Laplacian matrix of
a graph) adhere to a block diagonal structure and hence V (πππT , D) matrix also adheres
to a block diagonal structure analogous to LD. The block diagonal structure in LD is
dictated by connected components of graph D.

The following lemma establishes the invertibility of V (πππT , G) for a connected graph
and T > 1 :

Lemma A.7.11. For a connected graph G, V (πππ1, G) is invertible, but V (πππ0, G) is
not invertible.

Proof. Since the graph G is connected, λ1(LG) = 0 and λ2(LG) > 0. The eigenvector
corresponding to λ1(LG) is ⊮, the all 1 vector. At time T = 0, V (πππT , G) = LG and
hence V (πππT , G) is positive semi-definite matrix with one zero eigenvalues.

Let arm i be pulled at T = 1, i.e. π1 = i, then the corresponding counting matrix
is a positive semi definite matrix of rank one with the eigen value λn(N) = 1 for the
eigenvector ei.

Observe that eTi 1 > 0. Also, NT and LG are positive semi-definite matrices with
ranks 1 and n− 1 respectively. The subspace without information (corresponding to
the direction of zero eigenvalue) for matrix LG is now provided by N(πππ1) and hence
λmin(V (πππ1, G)) > 0 making it invertible.
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Lemma A.7.12. Let G = ([n], EG, A), H = ([n], EH , A) are two graphs with n nodes
such that EG ⊇ EH . Then, assuming invertibility of [V (G, T )−1] and [V (H,T )−1],

[teff,i]G ≥ [teff,i]H ∀i ∈ [n], T > k(G) (A.95)

where ∀i ∈ [n], [teff,i]G, [teff,i]H indicates the effective samples with graph G and H
respectively.

Proof. Given graphs G = ([n], EG), H = ([n], EH) satisfy EG ⊇ EH .
The quadratic form of Laplacian for the graph G,H is given by,

xLGx =
∑

(i,j)∈EG

(xi − xj)
2

xLHx =
∑

(i,j)∈EH

(xi − xj)
2

Since EG ⊇ EH ,

xLGx ≥ xLHx ∀ x ∈ Rn

⇒ LG ⪰ LH

Further, provided a sampling policy πππT , we can say that,

V (πππT , G) ⪰ V (πππT , H)

For the number of samples T sufficient to ensure invertibility of V (πππT , H), we have

V (πππT , G)−1 ⪯ V (πππT , H)−1

xTV (πππT , G)−1x ≤ xTV (πππTH)−1x ∀x ∈ Rn

[V (πππT , G)−1]ii ≤ [V (πππT , H)−1]ii (taking x = ei)

1

[V (πππT , G)−1]ii
≥ 1

[V (πππT , H)−1]ii

Hence from the definition of effective samples 2.3.1, it is clear that for any i ∈ [n],

[teff,i]G ≥ [teff,i]H (A.96)

Hence proved.

Lemma A.7.13. Let effective samples teff,i be as is defined in Definition 2.3.1 and let
πππT denote a cyclic sampling policy for T > k(G), then the infinite sum

∑∞
T=k(G)+1 t

−2
eff,i

is bounded. In fact,

∞∑
T=k(G)+1

t−2
eff,i < n

(
2(n− 1)

ρ

)2

+
nπ2

6
(A.97)
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Proof. We first prove the lemma statement for connected graph G and then go towards
a more general graph G. From Lemma A.3.1,

teff,i ≥ ti +min{ρI(i, G), T − ti}

if T − ti ≤ ρI(i, G), then teff,i ≥ T+ti
2
≥ T

2
. For the reverse case of T − ti ≥ ρI(i, G),

teff,i ≥ ti +
ρI(i,G)

2
≥ ti +

ρ
2(n−1)

(since I(i, G) ≥ 1
n−1

by Lemma A.7.5).

Since πππT is a cyclic sampling policy, hence ti increases by 1 at-least once every n
samples. Thus, we can upperbound the infinite sum as,

∞∑
T=1

1

t2eff,i
≤

∞∑
T=1

1(
ti +

ρ
2(n−1)

)2
≤ n

(
2(n− 1)

ρ

)2

+ n
∞∑

ti=1

1

t2i

< n

(
2(n− 1)

ρ

)2

+
nπ2

6
(A.98)

Hence proved.
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APPENDIX B

QUADRATIC FEASIBILITY
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B.1 Appendix A : Injectivity

B.1.1 Proof of Lemma 3.5.2

The following result from Wang and Xu (2017) is quite crucial for the further
proof, restating,

Theorem B.1.2 (Theorem 2.1, Wang and Xu (2017)). Let A = {Ai}mi=1 ⊂ Hn(C).
The following statements are equivalent:

1. For a given A = {Ai}mi=1, the mappingMA has phase retrieval property.

2. There exists no nonzero vector v,u ∈ Cn with u ̸= icv, c ∈ R, such that
Re(⟨Aju,v⟩) = 0 for all 1 ≤ j ≤ m.

Lemma B.1.3. The following statements are equivalent:

1. The nonlinear mapMA : Ĉn → Cm is injective.

2. There exist constants α, β > 0 such that ∀u,v ∈ Cn,

β∥[[u,v]]∥2F ≥
m∑
i=1

|⟨Ai, [[u,v]]⟩|2 ≥ α∥[[u,v]]∥2F .

Proof. ( 1→2 )
For the mappingMA to be injective, the following should holds,

MA(x) =MA(y) iff x ∼ y

Hence for x ≁ y, MA(x) ̸= MA(y). It can be verified that for any ϕ ∈ [0, 2π],
u = x− eiϕy,v = x+ eiϕy satisfies the following transformation,

(xx∗ − yy∗) = (uv∗ + vu∗) = [[u,v]] (B.1)

Thus,

∥MA(x)−MA(y)∥22 =
m∑
i=1

|⟨Ai, [[u,v]]⟩|2

We define the lower bound α and upper bound β as below,

α := min
T∈S1,1,∥T∥F=1

m∑
i=1

|⟨Ai, T ⟩|2,

β := max
T∈S1,1,∥T∥F=1

m∑
i=1

|⟨Ai, T ⟩|2

The set T ∈ S1,1, ∥T∥F = 1 is compact, hence the constants α, β exists.
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From Theorem B.1.2 statement, it is clear that ⟨Ai, [[u,v]]⟩ = ⟨Ai,uv
∗⟩+⟨Ai,vu

∗⟩ =
Re(⟨Aiv,u⟩) = 0 cannot be satisfied for all i ∈ [1,m] if x ≁ y satisfying equation
(B.1).

( 1←2 )
Instead of proving 1←2 , we argue the negation holds, i.e. 1↛2.
Suppose the mappingMA is not injective.
Then ∃x,y ∈ Cn such that,

x ≁ y, MA(y) =MA(x)

Thus ∥xx∗ − yy∗∥F ̸= 0, but ∥MA(y) −MA(x)∥2 = 0. Thus α = 0 and hence the
negation follows.

Using the result from Lemma B.1.3, we are now equipped to prove Lemma 3.5.2.

Lemma B.1.4. The mappingMA is injective iff it is (α, β)-stable for some constants
0 < α ≤ β.

Proof. In order to prove the theorem statement, we examine the properties of the
ratio,

V (x,y) =

∑m
i=1 |⟨Ai,xx

∗ − yy∗⟩|2

∥xx∗ − yy∗∥2F

The (α, β)-stability of the mappingMA directly follows from Lemma B.1.3 and the
existence of u,v ∈ Cn satisfying equation (B.1).

Theorem B.1.5. Consider A = {Ai}mi=1 and the mappingMA be defined as in (3.1).
Viewing {Aix}mi=1 as vectors in R2n, we can say the following:

1. MA is injective.

2. ∀I ⊂ [m], then either dim(span({Aix}i∈I))≥ 2n− 1 or dim(span({Aix}i∈IC))≥
2n− 1 for all vectors x ∈ Cn\0

3. ∀I ⊂ [m], then either span({Aix}i∈I) = span({ix})⊥ or span({Aix}i∈IC) =
span({ix})⊥ for all vectors x ∈ Cn\0.

Proof. 2 ← 3: immediately follows

2 → 3: Given span({Aix}i∈I)R ≥ 2n− 1, note that

⟨Aix, ix⟩R = (i⟨Aix,x⟩)R = 0

since Im(⟨Aix,x⟩) = 0. Thus we can conclude that span{ix}R ⊂span({Aix}i∈I)⊥.
Further, given that span({Aix}i∈I)⊥ ≤ 1, the relation is proved.

1 → 3: We need to show that the spanned space is span({ix})⊥ i.e. orthogonal space
to ix. Consider the following:

⟨A(x+ z),x+ z⟩ − ⟨A(x− z),x− z⟩ = 4Re⟨Ax, z⟩ (B.2)
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Given that the mapping MA is injective, equation (B.2) can be 0 if and only if
x+ z = c(x− z) such that c ∈ C, |c| = 1. This gives us,

x+ z = c(x− z) ⇒ z = −1− c

1 + c
x = − 2Imc

|1 + c|2
ix (B.3)

This means (spanR{ix}⊥)⊥ ⊂spanR{ix}. To prove spanR{ix} ⊂ (spanR{ix}⊥)⊥ take
z = iαx and c = 1+αi

1−αi
. It can be seen that |c| = 1. Then,

x+ z = (1 + iα)x

=
1 + iα

1− iα
(x− z)

= c(x− z) (B.4)

Thus spanR{ix} ⊂ (spanR{ix}⊥)⊥.
3 → 1: Suppose A(x) = A(y) and x = cy, c ∈ C, |c| = 1 then we are done.
If A(x) = A(y) and x ̸= cy, c ∈ C, |c| = 1 then note that,

⟨Ai(x− y), (x+ y)⟩R
= ⟨Aix,x⟩R + ⟨Aix,y⟩R − ⟨Aiy,x⟩R − ⟨Aiy,y⟩R
= Re (⟨Aix,y⟩ − ⟨Aiy,x⟩⟩)

= Re
(
⟨Aix,y⟩ − ⟨Aix,y⟩

)
= 0 (B.5)

Thus from 3), x+y ∈ S(x−y)⊥ =spanR{i(x−y)}. Further, there exists α ∈ C, |α| = 1
such that x+ y = iα(x− y). After rearranging, we have,

x =
1 + iα

1− iα
y (B.6)

i.e. x = cy, c ∈ C, |c| = 1.

B.2 Appendix : Nature of Minima in Cn

We first provide basics on mapping vectors in Cn to R2n.

B.2.1 Mapping from Cn to R2n

Let a, b ∈ Cn. Define the operation J : Cn → R2n as follows,

J (a+ bi) = (a, b)

Define the conjugation operation J : R2n × R2n → R2n × R2n as:

J(η, ζ) = (−ζ, η) ∀η, ζ ∈ R2n
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Notice that J can be considered to be the matrix,

J =

[
0 −I2n
I2n 0

]
The outer product operation [[., .]] : Cn × Cn → Cn×n as follows:

[[u,v]] =
1

2
(uv∗ + vu∗)

Let A = {ai}ni=1, B = {bi}ni=1 denote two orthonormal basis sets for Cn. Define
the linear operator TA,B : Cn → Cn as follows,

TA,B(u) =

(
n∑

i=1

bia
∗
i

)
u =

m∑
i=1

⟨u, ai⟩bi

Let ζ ∈ R2n. Define T̃ to be the analogous operator of T in R2n as T̃A,B : R2n → R2n,

T̃A,B(ζ)

=
n∑

i=1

⟨ζ,J (ai)⟩J (bi) + ⟨ζ,J (iai)⟩J (ibi)

=

(
n∑

i=1

J (bi)J (ai)
⊤ + J (ibi)J (iai)

⊤

)
ζ

=

(
n∑

i=1

J (bi)J (ai)
T + JJ (bi)J (ai)

TJT

)
ζ

=

(
n∑

i=1

J (bi)J (ai)
T + JJ (bi)J (ai)

TJT

)
ζ

Let M =
∑n

i=1 J (ai)J (bi)
T . Thus,

T̃A,B(ζ) = Mζ + JMJT ζ

Define the map τ : Cn × Cn → R2n × R2n such that,

τ(TA,B) = T̃A,B

Notice that the outer product [[., .]] under τ operation can be worked out to be Balan
(2016),

τ([[x,y]]) = [[J (x),J (y)]] + [[J (ix),J (iy)]]
Let u,v ∈ Cn. We know u = uR + iuC,v = vR + ivC, uR,uC,vR,vC ∈ Rn. The

inner product operation ⟨., .⟩ in R2n × R2n can be seen as,

⟨J (u),J (v)⟩ = ⟨uR,vR⟩+ ⟨uC,vC⟩ = ⟨u,v⟩R (B.7)
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Note that ∀Ak ∈ A, we can define orthogonal vectors {ak
i }ni=1, {bk

i }ni=1 such that
Ak =

∑n
i=1 a

k
i (b

k
i )

∗. Let Mk =
∑n

i=1 J (ak
i )(J (bk

i ))
T . Define Φk ∈ R2n×2n as,

Φk = τ(Ak) = Mk + JMkJ
T

Thus ∀ζ ∈ R2n we have,

Φkζ = Mkζ + JMkJ
T ζ

=
n∑

i=1

⟨ζ,J (ak
i )⟩J (bk

i )
T + ⟨ζ, JJ (ak

i )⟩(JJ (bk
i ))

T

Let {ei}ni=1 be the orthonormal basis for Cn. Consider any rank-1 matrix P ∈ Cn×n.
We can take, without loss of generality, P = e1e

H
1 , where e1 can be any unit norm

vector in Cn. We can easily show that

τ(P ) = ϵ1ϵ
T
1 + Jϵ1ϵ

T
1 J

T

where ϵ1 = J (e1).
Let Q ∈ Cn×n be a rank-k matrix. Then,

Q =
k∑

i=1

eie
H
i w.l.o.g

τ(Q) =
k∑

i=1

ϵiϵ
T
i + Jϵiϵ

T
i J

T , ϵi = J (ei)

Using (B.7), notice that the following conditions on the orthonormal basis hold,

⟨Jϵl, Jϵk⟩ = ⟨ϵl, ϵk⟩ = ⟨el, ek⟩R = δl,k
⟨Jϵl, ϵk⟩ = ⟨iel, ek⟩R = 0

Note that {ϵi, Jϵi}k1 spans τ(Q) hence making the rank of τ(Q) as 2k.
In order to observe properties of the mappingMA in the real vector space R2n,

we need to find the analog of ⟨Ai,xx
H⟩ in R2n.

Towards this end, we prove a relation between tr{τ(T ), τ(S)} and tr{TS}. Notice
that since {ϵi, Jϵi}ni=1 is orthonormal basis for R2n, the following holds,

tr{τ(T ), τ(S)}

=
n∑

i=1

⟨τ(S)ϵi, τ(T )ϵi⟩+ ⟨τ(S)Jϵi, τ(T )Jϵi⟩

=
n∑

i=1

⟨Sei, Tei⟩+ ⟨Siei, T iei⟩

= 2
n∑

i=1

⟨Sei, Tei⟩

= 2⟨T, S⟩
= 2tr{TS} (B.8)
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B.2.2 Nature of Global Minima in Cn

We prove the following theorem to provide insights into the properties of the
mappingMA.

Theorem B.2.1. The following statements are equivalent:

1. There exists constants α, β > 0 such that ∀u, v ∈ Cn, we have that,

b0∥[[u, v]]∥21 ≥
m∑
i=1

|⟨Ak, [[u, v]]⟩|2 ≥ a0∥[[u, v]]∥21 (B.9)

2. ∀η ∈ R2n ̸= 0, ∃ c0, d0 > 0 such that,

d0∥η∥2P⊥
Jη ⪰ R(η) ⪰ c0∥η∥2P⊥

Jη (B.10)

Where,

P⊥
Jη = I − 1

∥η∥2
JηηTJT

Next, we prove (2)↔1
Note that,

⟨τ(Ai), τ([[u,v]])⟩ = ⟨Mi + JMiJ
T , [[ζ, η]])⟩

= [ζTMiη + ζTJMiJ
Tη]

= ζTΦiη

m∑
i=1

(⟨τ(Ai), τ([[u,v]])⟩)2 =
m∑
i=1

(ζTΦiη)
2

=
m∑
i=1

ζT
(
Φiηη

TΦT
i

)
ζ

Let us defined R(η) =
∑m

i=1Φiηη
TΦT

i . Thus we can rewrite,

m∑
i=1

(⟨τ(Ai), τ([[u,v]])⟩)2 = ζTR(η)ζ

From Balan (2016), note that,

∥[[u,v]]∥2F = ∥u∥2∥v∥2 − (imag(⟨u,v⟩))2

= ∥u∥2∥v∥2 − (real(⟨iu,v⟩))2

= ∥u∥2∥v∥2 − ⟨iu,v⟩2R
= ∥ζ∥2∥η∥2 − (⟨Jζ, η⟩)2

= ζT
(
∥η∥2I − JηηTJT

)
ζ
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where J (u) = ζ,J (v) = η.
Using the results from 1 and equation (B.8), We can write,

b0∥η∥2P⊥ ⪰ R(η) ⪰ a0∥η∥2P⊥

where P⊥ =
(
I − 1

∥η∥2Jηη
HJH

)
.

Hence 1 ⇔ 2 holds with the same constants c0 = a0 and d0 = b0.
∀η ∈ R2n ̸= 0, ∃ c0, d0 > 0 such that,

d0∥η∥2P⊥
Jη ⪰ R(η) ⪰ c0∥η∥2P⊥

Jη

where,

P⊥
Jη = I − 1

∥η∥2
JηηTJT

Lemma B.2.2. for any η ∈ R2n ̸= 0, we have that rank(R(η)) = 2n-1 .

Proof. We know,

P⊥ =

(
I − 1

∥η∥2
JηηHJH

)
Consider ζ, γ ∈ R2n such that ζ = cJη + γ for some constant c ∈ R, then〈(

I − 1

∥η∥2
JηηTJT

)
ζ, ζ

〉
= ∥ζ∥2 − 1

∥η∥2
⟨ζ, Jη⟩⟨Jη, ζ⟩

= ∥cJn+ λ∥2 − 1

∥η∥2
(⟨cJη + λ, Jη⟩)2

= ∥cJn+ λ∥2 − 1

∥η∥2
(
c∥Jη∥2 + ⟨λ, Jη⟩

)2
= c2∥Jn∥2 + 2c⟨Jη, λ⟩+ ∥λ∥2

− 1

∥η∥2
(
c2∥Jη∥4 + 2c∥Jη∥2⟨λ, Jη⟩+ ⟨λ, Jη⟩2

)
Note that ∥Jη∥ = ∥η∥. Hence we can simplify the expression as,〈(

I − 1

∥η∥2
JηηTJT

)
ζ, ζ

〉
= ∥λ∥2 − ⟨λ, Jη⟩

2

∥η∥2

As can be noted from above, that the values of λ at which the above expression
vanishes is λ = 0.

Hence we can conclude that the rank of P⊥
Jη is 2n-1. And taking into account

equation (B.10), we have our required result.

139



Lemma B.2.2 shows that the value of the bounds on the function R(η0) will not
change at R(η0 + Jη).

Notice that the operation J in the R2n is analogue to shifting the phase by
multiplying complex vector by i.

For the vectors x,y,u,v ∈ Cn satisfying equation (B.1), the analogous distance
metric satisfies the property,

τ(d(x,y)) = τ(∥xxH − yyH∥F )
= τ([[u,v]])

= ζTP⊥
Jηζ

and hence, considering that rank(P⊥
Jη) =2n-1, there can be only one direction for

the distance metric where the value doesn’t change. This is the direction of the phase
shift of any of the vectors x,y.

B.3 Appendix : Non-convex Landscape for Deterministic A

B.3.1 Supporting Results

Throughout the rest of the appendix, define ∆ = x−eiϕz such that ϕ = argmin
θ∈[0,2π]

∥x−

eiθz∥2 for any x, z ∈ Cn.

Lemma B.3.1. For any x ∈ Cn,

∥xx∗∥2F = ∥x∥42

Proof.

∥xx∗∥2F

=
n∑

i,j=1

|xix̄j|2 =
n∑

i,j=1

(xix̄j)
∗(xix̄j) =

n∑
i,j=1

xjx̄ixix̄j

=
n∑

i,j=1

|xj|2|xi|2 = (
n∑

i=1

|xi|2)2 = ∥x∥42

Lemma B.3.2. The vectors x−eiϕz and x+eiϕz are such that Im(⟨x−eiϕz,x+eiϕz⟩) =
0, where ϕ = argmin

θ∈[0,2π]
∥x− eiθz∥2

Proof. We know from Lemma 3.7 Balan (2016) that ∀x, z ∈ Cn ∃u,v ∈ Cn such that,

xx∗ − zz∗ = uv∗ + vu∗ = [[u,v]]

It can be easily verified that few such pairs u,v are given by,

u = x− eiθz, v = x+ eiθz, ∀θ ∈ [0, 2π]
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Next, we focus on ⟨u,v⟩. We argue that ∃θ such that Im(⟨(x−eiθz), (x+eiθz)⟩) = 0
To this end consider the following,

⟨u,v⟩ = uT v̄

=
(
x− eiθz

)T
(x+ eiθz)

=
(
x− eiθz

)T (
x̄+ e−iθz̄

)
= ⟨x,x⟩ − eiθ⟨z,x⟩+ e−iθ⟨x, z⟩ − ⟨z, z⟩
= ⟨x,x⟩ − ⟨z, z⟩ − 2iIm(eiθ⟨z,x⟩)

Im(eiθ⟨z,x⟩) can only vanish if θ = ω where ω ∈ [0, 2π] is the angle between the two
vectors, i.e. ω is such that ⟨x, z⟩ = eiω∥x∥∥z∥. Next we prove that ω = ϕ where,

ϕ = argmin
θ∈[0,2π]

∥x− eiθz∥2

Consider the following argument,

argmin
θ∈[0,2π]

∥x− eiθz∥22 = argmin
θ∈[0,2π]

(
x− eiθz

)∗ (
x− eiθz

)
= argmin

θ∈[0,2π]
∥x∥2 + ∥z∥2 − e−iθz∗x− eiθx∗z

= argmin
θ∈[0,2π]

∥x∥2 + ∥z∥2 − 2Re(e−iθ⟨x, z⟩)

= ∥x∥2 + ∥z∥2 − 2argmax
θ∈[0,2π]

Re(e−iθ⟨x, z⟩)

It can be seen easily that the argmax
θ∈[0,2π]

Re(e−iθ⟨x, z⟩) is achieved when θ = ω. Thus we

have proved that ϕ = ω.

Lemma B.3.3. Let x, z ∈ Cn. Then,

∥(x− eiϕz)(x− eiϕz)∗∥2F ≤ 2∥xx∗ − zz∗∥

where ϕ = argmin
θ∈[0,2π]

∥x− eiθz∥

Proof. Note,

argmin
θ∈[0,2π]

∥x− eiθz∥2 = argmin
θ∈[0,2π]

(
x− eiθz

)∗ (
x− eiθz

)
= argmin

θ∈[0,2π]
∥x∥2 + ∥z∥2 − e−iθz∗x− eiθx∗z

= argmin
θ∈[0,2π]

∥x∥2 + ∥z∥2 − 2Re(⟨x, eiθz⟩)

The minimum can only be achieved at a point where Re(x∗(eiϕz)) ≥ 0. Further notice
that the following relation holds,

xx∗ − zz∗ +∆∆∗ = x∆∗ +∆x∗ (B.11)
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Hence we can see that,

∥xx∗ − zz∗∥2F = ∥x∆∗ +∆x∗ −∆∆∗∥2F
We know that for any matrix A, ∥A∥2F =Tr(AHA),

∥xx∗ − zz∗∥2F
= Tr ((x∆∗ +∆x∗ −∆∆∗)∗(x∆∗ +∆x∗ −∆∆∗))

= ∥x∆∗∥2F + (⟨x,∆⟩)2 + (⟨∆,x⟩)2 + ∥∆x∗∥2F
− 2⟨x,∆⟩∥∆∥2F − 2⟨∆,x⟩∥∆∥2F + ∥∆∆∗∥2F

Note that,

(⟨x,∆⟩)2 + (⟨∆,x⟩)2 = (⟨x,∆⟩)2 + (⟨x,∆⟩)2

= 2Re(⟨x,∆⟩)2

⟨x,∆⟩∥∆∥2F + ⟨∆,x⟩∥∆∥2F = ⟨x,∆⟩∥∆∥2F + ⟨x,∆⟩∥∆∥2F
= 2Re(⟨x,∆⟩)∥∆∥2F

Thus we can conclude,

∥xx∗ − zz∗∥2F
= 2∥⟨x,∆⟩∥2F + 2Re((⟨x,∆⟩)2)
− 4Re(⟨x,∆⟩)∥∆∥2F + ∥∆∆∗∥2F
= 2x∗x∆∗∆+ 2Re((⟨x,∆⟩)2)
− 4Re(x∗∆∆∗∆) + ∥∆∆∗∥2F

Since x∗x∆∗∆ = ∥⟨x,∆⟩∥2F , its a real value.

∥xx∗ − x∗(x∗)∗∥2F
= 2x∗ (x−∆)∆∗∆+ 2Re((⟨x,∆⟩)2)
− 2Re(x∗∆∆∗∆) + ∥∆∆∗∥2F
= 2x∗ (x−∆)∆∗∆+ (⟨x,∆⟩)2 + (⟨∆,x⟩)2

− ⟨x,∆⟩∥∆∥2F − ⟨∆,x⟩∥∆∥2F + ∥∆∆∗∥2F

= 2x∗ (x−∆)∆∗∆+

(
⟨x,∆⟩ − 1

2
⟨∆,∆⟩

)2

+

(
(⟨∆,x⟩ − 1

2
⟨∆,∆⟩

)2

+
1

2
∥∆∆∗∥2F

= 2x∗ (x−∆)∆∗∆+ 2Re

(
(⟨∆,x− 1

2
∆⟩
)2

+
1

2
∥∆∆∗∥2F

= 2x∗eiϕz∆∗∆+
1

2
Re
(
(⟨∆,x+ eiϕz⟩

)2
+

1

2
∥∆∆∗∥2F
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From Lemma B.3.2, it can be seen that Im
(
⟨∆,x+ eiϕz⟩

)
= 0. Hence we can say,

∥xx∗ − zz∗∥2F ≥
1

2
∥∆∗∆∥2F

B.3.2 Wirtinger Calculus

We use standard arguments from wirtinger calculus Wang and Xu (2017) to prove
results Theorem 3.6.7. The basic intuition is to look at the ℓ2-loss function f (F2)
as function of two real variables in Rn rather instead of single complex variable
in Cn. This workaround is required for the analysis of real function of complex

variables because of notions of complex differentiability and conclusions from Cauchy-
Reimann equations Shunmugaraj (????). Hence we map the function f : Cn → R
to g : Rn × Rn → R and instead of analysing the properties of ∇2f , we analyse the
properties of ∇2g.

We first introduce the mapped function g and the corresponding expressions for ∇g
and ∇2g

f(x) = g(x, x̄) =
1

m

m∑
i=1

gi(x, x̄)

=
1

m

n∑
i=1

|x̄⊤Aix− ci|2

For the gradient ∇g we have,

∇g(x, x̄) = 1

m

n∑
i=1

[
(x̄⊤Aix− ci)Aix
(x̄⊤Aix− ci)Aix̄

]
For the hessian ∇2g, we have

∇2g(x, x̄) =
1

m

m∑
i=1

[
(2x̄⊤Aix− ci)Ai (Aix)(Aix)

⊤

(Aix̄)(Aix̄)
⊤ (2x̄⊤Aix− ci)Ai

]
The following can be verified easily,

⟨∇g(x),
[
∆
∆̄

]
⟩

=
1

m

m∑
i=1

⟨Ai,xx̄
⊤ − z(z̄)⊤⟩⟨Ai,x∆̄

⊤ +∆x̄⊤⟩

=
1

m

m∑
i=1

⟨Ai,xx̄
⊤ − z(z̄)⊤⟩⟨Ai,xx̄

⊤ − z(z̄∗)⊤ +∆∆̄⊤⟩ (B.12)
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[
∆
∆̄

]∗
∇2g(x, x̄)

[
∆
∆̄

]
=

1

m

m∑
i=1

[
∆
∆̄

]∗
∇2gi(x, x̄)

[
∆
∆̄

]
=

1

m

m∑
i=1

(2x⊤Aix̄− bi)(∆̄
⊤Ai∆+∆⊤Ai∆̄)

+
(
(∆⊤Aix̄)

2 + (∆̄Aix)
2
)

Theorem B.3.4. Let A be a set of measurement matrices which satisfy (α, β)-stability
with 2β < 3α and κ-phase-discriminating with κ ≥ 0. Let the scalar vector c be
generated by quadratic measurements of an unknown vector z characterizing the
measurements used in the objective function f of problem (P2) . Then the following
statements holds:

1) The function f is strict saddle, and

2) Every local minimum w of f satisfies d(w, z) = 0

Proof. Notice that,

(∆Ax̄)2 + (∆̄⊤Ax)2

=
(
⟨A,x∆̄⊤ +∆x̄⊤⟩

)2 − 2(∆⊤Ax̄)(∆̄⊤Ax)

=
(
⟨A,xx̄⊤ − z(z̄)⊤ +∆∆̄⊤⟩

)2 − 2(⟨A,∆x̄⊤⟩)(⟨A,x∆̄⊤⟩)

Using (B.11), we can reorganize,[
∆
∆̄

]∗
∇2gi(x, x̄)

[
∆
∆̄

]
= ⟨Ai, 2xx̄

⊤ − z(z̄)⊤⟩⟨Ai, 2∆∆̄⊤⟩+
(
⟨A,xx̄⊤ − z(z̄)⊤ +∆∆̄⊤⟩

)2
− 2(⟨A,∆x̄⊤⟩)(⟨A,x∆̄⊤⟩)
= 2

(
⟨Ai, 2xx̄

⊤ − z(z̄)⊤⟩⟨Ai, i,xx̄
⊤ − z(z̄)⊤⟩⟨Ai,∆∆̄⊤⟩

)
+ ⟨Ai,∆∆̄⊤⟩⟨Ai,xx̄

⊤ − z(z̄)⊤⟩+ ⟨Ai,∆∆̄⊤⟩⟨Ai,∆∆̄⊤⟩
+ ⟨Ai,xx̄

⊤ − z(z̄)⊤⟩⟨Ai,∆∆̄⊤ + xx̄⊤ − z(z̄)⊤⟩
− 2(⟨A,∆x̄⊤⟩)(⟨A,x∆̄⊤⟩)
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Adding and subtracting 2⟨Ai,xx̄
⊤ − z(z̄)⊤⟩⟨Ai,xx̄

⊤ − z(z̄)⊤⟩, reorganizing,[
∆
∆̄

]∗
∇2gi(x, x̄)

[
∆
∆̄

]
= 2⟨Ai,∆∆̄⊤⟩⟨Ai,xx̄

⊤⟩
+ 2

(
⟨Ai,xx̄

⊤ − z(z̄)⊤⟩⟨Ai,∆∆̄⊤ + xx̄⊤ − z(z̄)⊤⟩
)

− 2⟨Ai,xx̄
⊤ − z(z̄)⊤⟩⟨Ai,xx̄

⊤ − z(z̄)⊤⟩
+ ⟨Ai,∆∆̄⊤⟩⟨Ai,xx̄

⊤ − z(z̄)⊤⟩
+ ⟨Ai,∆∆̄⊤⟩⟨Ai,∆∆̄⊤⟩ − 2(⟨A,∆x̄⊤⟩)(⟨A,x∆̄⊤⟩)
+ ⟨Ai,xx̄

⊤ − z(z̄)⊤⟩⟨Ai,∆∆̄⊤ + xx̄⊤ − z(z̄)⊤⟩

Adding and subtracting ⟨Ai,xx̄
⊤ − z(z̄)⊤⟩⟨Ai,xx̄

⊤ − z(z̄)⊤⟩, reorganizing,[
∆
∆̄

]∗
∇2gi(x, x̄)

[
∆
∆̄

]
= 2⟨Ai,∆∆̄⊤⟩⟨Ai,xx̄

⊤⟩ − 2(⟨A,∆x̄⊤⟩)(⟨A,x∆̄⊤⟩)
− 3⟨Ai,xx̄

⊤ − z(z̄)⊤⟩⟨Ai,xx̄
⊤ − z(z̄)⊤⟩

+ ⟨Ai,∆∆̄⊤⟩⟨Ai,∆∆̄⊤⟩
+ 4⟨Ai,xx̄

⊤ − z(z̄)⊤⟩⟨Ai,∆∆̄⊤ + xx̄⊤ − z(z̄)⊤⟩

Using equation (B.12),[
∆
∆̄

]∗
∇2gi(x, x̄)

[
∆
∆̄

]
= 2⟨Ai,∆∆̄⊤⟩⟨Ai,xx̄

⊤⟩ − 2(⟨A,∆x̄⊤⟩)(⟨A,x∆̄⊤⟩)
− 3⟨Ai,xx̄

⊤ − z(z̄)⊤⟩⟨Ai,xx̄
⊤ − z(z̄)⊤⟩

+ ⟨Ai,∆∆̄⊤⟩⟨Ai,∆∆̄⊤⟩+ 4⟨∇gi(x, x̄),
[
∆
∆̄

]
⟩

Overall, we can conclude that,[
∆
∆̄

]∗
∇2g(x, x̄)

[
∆
∆̄

]
=

1

m

m∑
i=1

[
∆
∆̄

]∗
∇2gi(x, x̄)

[
∆
∆̄

]
=

2

m

m∑
i=1

⟨Ai,∆∆̄⊤⟩⟨Ai,xx̄
⊤⟩ − (⟨A,∆x̄⊤⟩)(⟨A,x∆̄⊤⟩)

− 3

m

m∑
i=1

⟨Ai,xx̄
⊤ − z(z̄)⊤⟩⟨Ai,xx̄

⊤ − z(z̄)⊤⟩

+
1

m

m∑
i=1

⟨Ai,∆∆̄⊤⟩⟨Ai,∆∆̄⊤⟩+ 4

m

m∑
i=1

⟨∇gi(x, x̄),
[
∆
∆̄

]
⟩
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Using the definition of (α, β)-stable and κ-cross stable, we can conclude that for
every critical point (

∑m
i=1∇gi(x) = 0),[

∆
∆̄

]∗
∇2g(x, x̄)

[
∆
∆̄

]
≤ −κ∥∆xT − x∆T∥2F + β∥∆∆∗∥2F − 3α∥xx∗ − z(z)∗∥2F
≤ −κ∥∆xT − x∆T∥2F + 2β∥xx∗ − z(z)∗∥2F
− 3α∥xx∗ − z(z)∗∥2F
≤ (2β − 3α) ∥xx∗ − z(z)∗∥2F − κ∥∆xT − x∆T∥2F

as stated in the statement of the Theorem, since 2β < 3α and κ > 0, we can conclude
that the function f(x) = g(x,x) satisfies at-least one of the following is true,

• ∥∇g(x)∥ > 0

• ∀x ∈ Cn such that d(x, z) ̸= 0, the following holds,[
∆
∆̄

]∗
∇2g(x, x̄)

[
∆
∆̄

]
< 0

• d(x, z) = 0

Thus the function f(x) is strict saddle.
Following up on equation (B.28), the only possible way that the hessain∇2g(x,x) ⪰

0 is if ∥xx∗ − zz∗∥F = 0 and ∥∆xT − x∆T∥F = 0. Hence we can conclude that all
local minimas, i.e. all w such that ∇2g(w,w) ⪰ 0 has to satisfy ∥ww∗ − zz∗∥ = 0,
∥∆xT − x∆T∥F = 0 and hence satisfies z ∼ w which makes w the solution of the
problem (P1).

Following up on equation (B.28), the only possible way that the hessain∇2g(x,x) ⪰
0 is if ∥xx∗ − zz∗∥ = 0. Hence we can conclude that all local minimas, i.e. all w such
that ∇2g(w,w) ⪰ 0 has to satisfy ∥ww∗ − zz∗∥ = 0 and hence satisfies z ∼ w which
makes w the solution of the problem (P1).

B.4 Appendix : Properties of Gaussian Random A

Lemma B.4.1. Let A = {Ai}mi=1 be a set of complex Hermitian Gaussian random
matrices for the measurement model given by (P1). Then, given ϵ > 0 and vectors
x,y ∈ Cn, there are constants c, d > 0 such that

P

(∣∣∣∣∣
m∑
i=1

1

m
|⟨Ai,xx

∗ − yy∗⟩|2 − d(x,y)2

∣∣∣∣∣ ≥ ϵd(x,y)2

)
≤ de−cmϵ.

Proof. A matrix A ∈ Cn×n is a complex Hermitian Gaussian random matrix, if,

1. ∀ i, aii ∼ N (0, σ2).
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2. ∀ i, j, i ̸= j, aij ∼ N (0, σ
2

2
) + iN (0, σ

2

2
).

Let {Ad}md=1 be a set of complex Hermitian Gaussian random matrices. Define the
random variable Y ,

Y =
1

m

m∑
d=1

|⟨Ad,xx
∗ − yy∗⟩|2

=
1

m

m∑
d=1

(⟨Ad,xx
∗ − yy∗⟩)(⟨Ad,xx

∗ − yy∗⟩)

=
1

m

m∑
d=1

(∑
ij

aij(xix̄j − yiȳj)

)(∑
kl

akl(xkx̄l − ykȳl)

)

Expectation of Y can be evaluated as,

E[Y ]

= E

(
1

m

m∑
d=1

(∑
ij

aij(xix̄j − yiȳj)

)(∑
kl

akl(xkx̄l − ykȳl)

))
(B.13)

For every matrix Ad, we can split the entire summation (B.13) into the following 4
sets:

1. B := {(i, j, k, l)|i = j = k = l}

2. C := {(i, j, k, l)|i = l, j = k} ∩ AC

3. D := {(i, j, k, l)|i = k, j = l} ∩ AC

4. E := {(i, j, k, l)} ∩ AC ∩BC ∩ CC

Calculating the expectation of the sum of the elements in each individual sets:

1. Set B,

E

 ∑
(i,j,k,l)∈B

aijakl(xix̄j − yiȳj)(xkx̄l − ykȳl)


= E

(
n∑

i=1

|aii|2(|xi|2 − |yi|2)2
)

= σ2

n∑
i=1

|xi|4 + |yi|4 − 2|xi|2|yi|2
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2. Set C, note that for every Hermitian matrix Ad, aij = āji

E

 ∑
(i,j,k,l)∈C

aijakl(xix̄j − yiȳj)(xkx̄l − ykȳl)


= E

(
n∑

i,j=1,i ̸=j

|aij|2(|xi|2|xj|2 − yiȳjxjx̄i

−xix̄jyj ȳi + |yi|2|yj|2)
)

= σ2

n∑
i,j=1,i ̸=j

(|xi|2|xj|2 − yiȳjxjx̄i

− xix̄jyj ȳi + |yi|2|yj|2)

3. Set D,

E

 ∑
(i,j,k,l)∈D

aijakl(xix̄j − yiȳj)(xkx̄l − ykȳl)


= E

(∑
ij

(aij)
2(xix̄j − yiȳj)

2)

)
= 0

Notice that ∀i, j

(aij)
2 = ((arij)

2 − (aiij)
2 + iarija

i
ij)

Thus,

E
[
(aij)

2
]
= E

[
(aij)

2
]
= E

[
((arij)

2 − (aiij)
2 + iarija

i
ij)
]

Since both the real and imaginary parts are independent, we can conclude,
E
[
((arij)

2 − (aiij)
2 + iarija

i
ij)
]
= 0

4. Set E,

All elements aij, akl are independent in (i, j, k, l) ∈ E,

E

 ∑
(i,j,k,l)∈E

aijakl(xix̄j − yiȳj)(xkx̄l − ykȳl)

 = 0
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In conclusion,

E[Y ]

= σ2

( n∑
i=1

|xi|2
)2

+

(
n∑

i=1

|yi|2
)2

−2
n∑

i=1

|xi|2|yi|2 −
∑
i,j,i̸=j

yiȳjxjx̄i −
∑
i,j,i̸=j

yj ȳixix̄j

)
= σ2

[
∥x∥42 + ∥y∥42 − |⟨x,y⟩|2

]
From Lemma 3.9 Balan (2016), note that tr{(xx∗−yy∗)2} = [∥x∥42 + ∥y∥42 − |⟨x,y⟩|2],
where tr{·} represents the trace of a matrix. Since xx∗ − yy∗ is a Hermitian matrix
tr{(xx∗ − yy∗)2} = ∥xx∗ − yy∗∥2F . Hence, finally we can state,

E[Y ] = ∥xx∗ − yy∗∥2F
Next we focus on obtaining concentration bounds. Just as with expectation E[Y ], we
evaluate the behaviour of deviation in each individual set B,C,D and E.

1. Set B, ∑
(i,j,k,l)∈B

aijakl(xix̄j − yiȳj)(xkx̄l − ykȳl)

− E

 ∑
(i,j,k,l)∈B

aijakl(xix̄j − yiȳj)(xkx̄l − ykȳl)


=

n∑
i=1

(
|aii|2 − σ2

) (
|xi|4 + |yi|4 − 2|xi|2|yi|2

)
Note that ∀i ∈ [1, n], |aii|2 − σ2 is a centered subexponential random variable.

2. Set C, ∑
(i,j,k,l)∈C

aijakl(xix̄j − yiȳj)(xkx̄l − ykȳl)

− E

 ∑
(i,j,k,l)∈C

aijakl(xix̄j − yiȳj)(xkx̄l − ykȳl)


=

n∑
i,j=1,i ̸=j

(|aij|2 − σ2)

(|xi|2|xj|2 − yiȳjxjx̄i − xix̄jyj ȳi + |yi|2|yj|2)

Again, note that ∀i, j ∈ [1, n]2, i ̸= j, |aij|2 − σ2 is a centered subexponential
random variable.
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3. Set D, ∑
(i,j,k,l)∈D

aijakl(xix̄j − yiȳj)(xkx̄l − ykȳl)

− E

 ∑
(i,j,k,l)∈D

aijakl(xix̄j − yiȳj)(xkx̄l − ykȳl)


=

n∑
i,j=1,i ̸=j

(aij)
2(xi)

2(x̄j)
2

Note that a2ij = (arij)
2 − (aiij)

2 + iarija
i
ij. This makes it easier to argue that

∀i, j ∈ [1, n]2, i ̸= j, (aij)
2 is a centered subexponential random variable.

4. For elements in set E,∑
(i,j,k,l)∈E

aijakl(xix̄j − yiȳj)(xkx̄l − ykȳl)

− E

 ∑
(i,j,k,l)∈E

aijakl(xix̄j − yiȳj)(xkx̄l − ykȳl)


=

∑
(i,j,k,l)∈E

aijakl(xix̄j − yiȳj)(xkx̄l − ykȳl)

Since aij, akl for (i, j, k, l) ∈ E are independent, it can be easily seen that aijakl
is a centered subexponential random variable ∀(i, j, k, l) ∈ E.

Take σ2 = 1. We then have the Bernstein type inequality Vershynin (2010) as,

P

(∣∣∣∣∣
n∑

d=1

1

m
|⟨Ad,xx

∗ − yy∗⟩|2 − ∥xx∗ − yy∗∥2F

∣∣∣∣∣ ≤ t

)

≥ 1− c0exp

(
−c1mmin

{
t2

K2
4∥xx∗ − yy∗∥42

,
t

K4∥xx∗ − yy∗∥2∞

})
for some constants c0, c1 > 0.

We introduce the normalized variable ϵ = t
∥xx∗−yy∗∥2F

,

P

(∣∣∣∣∣
n∑

d=1

1

m
|⟨Ad,xx

∗ − yy∗⟩|2 − ∥xx∗ − yy∗∥2F

∣∣∣∣∣
≥ ϵ∥xx∗ − yy∗∥2F

)
≤ c0exp

−c1mE(ϵ)

where E(ϵ) := min
{

ϵ2

K2 ,
ϵ
K

}
.
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Note that ∥xx∗ − yy∗∥2F is the distance metric d(·, ·) defined in (3.2). Hence we
can rewrite the high probability result more consicely as,

P

(∣∣∣∣∣
n∑

d=1

1

m
|⟨Ad,xx

∗ − yy∗⟩|2 − d(x,y)2

∣∣∣∣∣
≥ ϵd(x,y)2

)
≤ c0exp

−c1mE(ϵ)

Lemma B.4.2. Given δ > 0, let Nδ be the smallest collection of n-dimensional balls
of radius δ whose union covers the sphere Sn−1. Then, for any matrix A ∈ Cn×n, we
have

(1− 2δ) sup
x1,x2∈Sn−1

|⟨A,x1x
∗
1 − x2x

∗
2⟩|

≤ sup
x1,x2∈Nδ

|⟨A,x1x
∗
1 − x2x

∗
2⟩|

≤ (1 + 2δ) sup
x1,x2∈Sn−1

|⟨A,x1x
∗
1 − x2x

∗
2⟩|.

Proof. In the proof, we relate the supremum of |⟨A,x1x
∗
1 − x2x

∗
2⟩| over x,y ∈ Sn−1 to

its supremum over x,y ∈ Nδ.
Since Nδ covers S

n−1, ∀x ∈ Sn−1, ∃u ∈ Nδ such that ∥x− u∥ ≤ δ.
Hence ∀x1,x2 ∈ Sn−1, ∃y1,y2 ∈ Nδ such that,

|⟨A,x1x
∗
1 − x2x

∗
2⟩ − ⟨A,y1y

∗
1 − y2y

∗
2⟩|

= |⟨Ax1,x1⟩ − ⟨Ay1,y1⟩| − ⟨Ax2,x2⟩ − ⟨Ay2,y2⟩|
= |⟨Ax1,x1⟩ − ⟨Ax1,y1⟩+ ⟨Ax1,y1⟩ − ⟨Ay1,y1⟩|
+ |⟨Ax2,x2⟩ − ⟨Ax2,y2⟩+ ⟨Ax2,y2⟩ − ⟨Ay2,y2⟩|
= |⟨Ax1,x1 − y1⟩+ ⟨Ay1,x1 − y1⟩|
+ |⟨Ax2,x2 − y2⟩+ ⟨Ay2,x2 − y2⟩|
≤ 2∥A∥∥x1 − y1∥+ 2∥A∥∥x2 − y2∥
≤ 4δ∥A∥

where ∥A∥ denotes the spectral norm of the matrix A, i.e.,

∥A∥ = sup
x∈Sn−1

|⟨Ax,x⟩|

=
1

2
sup

x∈Sn−1

|⟨Ax,x⟩|+ 1

2
sup

y∈Sn−1

|⟨Ay,y⟩|

=
1

2
sup

x,y∈Sn−1

|⟨A,xx∗ − yy∗⟩|

We conclude,

|⟨A,x1x
∗
1 − x2x

∗
2⟩| − |⟨A,y1y

∗
1 − y2y

∗
2⟩| ≤ 4δ∥A∥

|⟨A,y1y
∗
1 − y2y

∗
2⟩| ≥ |⟨A,x1x

∗
1 − x2x

∗
2⟩| − 4δ∥A∥
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And,

|⟨A,y1y
∗
1 − y2y

∗
2⟩| − |⟨A,x1x

∗
1 − x2x

∗
2⟩| ≤ 4δ∥A∥

|⟨A,y1y
∗
1 − y2y

∗
2⟩| ≤ |⟨A,x1x

∗
1 − x2x

∗
2⟩|+ 4δ∥A∥

Taking supremum,

sup
x∈Nδ

|⟨A,x1x
∗
1 − x2x

∗
2⟩|

≥ sup
x∈Sn−1

|⟨A,x1x
∗
1 − x2x

∗
2⟩| − 4δ∥A∥

= (2− 4δ)∥A∥
= (1− 2δ) sup

x∈Sn−1

|⟨A,x1x
∗
1 − x2x

∗
2⟩|

sup
x∈Nδ

|⟨A,x1x
∗
1 − x2x

∗
2⟩|

≤ sup
x∈Sn−1

|⟨A,x1x
∗
1 − x2x

∗
2⟩|+ 4δ∥A∥

= (2 + 4δ)∥A∥
= (1 + 2δ) sup

x∈Sn−1

|⟨A,x1x
∗
1 − x2x

∗
2⟩|

Theorem B.4.3. Let A = {Ai}mi=1 be the set of complex Gaussian random matrices,
and assume the number of measurements satisfies m > Cn. Then, for any given
ξ ∈ (0, 1), there exist constants C, c0, d0 > 0 and β ≥ α > 0 such that, with probability
at least 1− ξ, the following relation holds

αd(x,y) ≤ ∥MA(x)−MA(y)∥2 ≤ βd(x,y).

Proof. Consider x,y ∈ Cn. If x ∼ y, then d(x,y) = 0 andMA(x) =MA(y), and the
result holds trivially. Therefore, in the sequel, we assume that the vectors are distinct,
implying that d(x,y) > 0.

From Lemma B.4.1, for a given ϵ > 0 we have

P

(∣∣∣∣∣
m∑
i=1

1

m

|⟨Ai,xx
∗ − yy∗⟩|2

d(x,y)2
− 1

∣∣∣∣∣ ≥ ϵ

)
≤ de−cmϵ.

According to Vershynin (2010), for any δ > 0, we have the following upper bound on
the size of the covering: |Nδ| ≤

(
12
δ

)n
. Therefore, for a given ϵ, δ > 0, by Lemma B.4.1

and the preceding union bound, we have that

P

(
sup

x,y∈Nδ

∣∣∣∣∣
m∑
i=1

1

m

|⟨Ai,xx
∗ − yy∗⟩|2

d(x,y)2
− 1

∣∣∣∣∣ > ϵ

)

≤ de−cmϵ

(
12

δ

)n

,
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where d, c are the same constants as in Lemma B.4.1. This implies that

P

(
sup

x,y∈Nδ

∣∣∣∣∣
m∑
i=1

1

m

|⟨Ai,xx
∗ − yy∗⟩|2

d(x,y)2
− 1

∣∣∣∣∣ ≤ ϵ

)

≥ 1− de−cmϵ

(
12

δ

)n

.

Now, observe that

sup
x,y∈Nδ

∣∣∣∣∣
m∑
i=1

1

m

|⟨Ai,xx
∗ − yy∗⟩|2

d(x,y)2
− 1

∣∣∣∣∣
≥ sup

x,y∈Nδ

m∑
i=1

1

m

|⟨Ai,xx
∗ − yy∗⟩|2

d(x,y)2
− 1.

Therefore,

P

(
sup

x,y∈Nδ

m∑
i=1

1

m

|⟨Ai,xx
∗ − yy∗⟩|2

d(x,y)2
− 1 ≤ ϵ

)

≥ 1− de−cmϵ

(
12

δ

)n

.

By applying the covering result of Lemma B.4.2 to each matrix Ai, averaging the
resulting relations over m, and using

sup
x,y∈Nδ

d(x,y) ≤ (1 + 2δ) sup
x,y∈Sn−1

d(x,y).

we obtain

sup
x,y∈Nδ

m∑
i=1

1

m

|⟨Ai,xx
∗ − yy∗⟩|2

d(x,y)2

≥ sup
x,y∈Sn−1

m∑
i=1

(1− 2δ)2

(1 + 2δ)2m

|⟨Ai,xx
∗ − yy∗⟩|2

d(x,y)2
.

Thus, we can conclude that

P

(
sup

x,y∈Sn−1

m∑
i=1

1

m

|⟨Ai,xx
∗ − yy∗⟩|2

d(x,y)2
≤ (1 + 2δ)2(1 + ϵ)

(1− 2δ)2

)

≥ 1− de−cmϵ

(
12

δ

)n

.
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Similarly, we can prove that

P

(
inf

x,y∈Sn−1

m∑
i=1

1

m

|⟨Ai,xx
∗ − yy∗⟩|2

d(x,y)2
≤ (1− 2δ)2(1− ϵ)

(1 + 2δ)2

)

≥ 1− de−cmϵ

(
12

δ

)n

.

Letting C be such that C > log 12d−log δξ
cϵ

and letting m ≥ Cn, we can see that the
following relation holds with probability at least 1− ξ: for all x,y ∈ Cn,

βd(x,y) ≥ ∥MA(x)−MA(y)∥2 ≥ αd(x,y),

where α, β are given by

α ≜
((1− 2δ)2(1− ϵ)

(1 + 2δ)2
, β ≜

((1 + 2δ)2(1 + ϵ)

(1− 2δ)2
.

Notice that we essentially have a choice of the values of δ and ϵ. The closer they are
to 0, the stronger the stability result. However, this also implies the larger m, the
number of measurements, needs to be.

We prove the following result for showing κ-phase-discriminating property, κ ≥ 0,
is satisfied for a wide variety of random matrices (further used in Theorem 3.6.7)

Lemma B.4.4. Let {Ad}nd=1 be a set of Hermitian Gaussian random matrices. Then,

P

(∣∣∣∣∣ 1m
m∑
d=1

(
⟨Ad,∆∆̄⊤⟩⟨Ad,xx̄

⊤⟩ − ⟨Ad,∆x̄⊤⟩⟨Ad,x∆̄
⊤⟩
)

+∥∆xT − x∆T∥2F
∣∣ ≤ t∥∆xT − x∆T∥2F

)
≥ 1− c0exp (−c1mD(t))

where,

D(t) := min

{
t2

K2
4

,
t

K4

}
Proof. Let A ∈ Cn×n be a complex Hermitian Gaussian random matrix, i.e.

1. ∀ i, aii ∼ N (0, σ2).

2. ∀ i, j, i ̸= j, aij ∼ N (0, σ
2

2
) + iN (0, σ

2

2
).

Define the random variable Y ,

Y =
1

m

m∑
d=1

⟨Ad,∆∆̄⊤⟩⟨Ad,xx̄
⊤⟩ − ⟨Ad,∆x̄⊤⟩⟨Ad,x∆̄

⊤⟩

=
1

m

m∑
d=1

(∑
ij

adij∆i∆̄j

)(∑
kl

adklxkx̄l

)

−

(∑
ij

adijxi∆̄j

)(∑
kl

adkl∆kx̄l

)
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For any Ad, Split the entire summation (i, j, k, l) ∈ [1, n]4 into the following 4 sets
such that:

1. A := {(i, j, k, l)|i = j = k = l}

2. B := {(i, j, k, l)|i = k, j = l} ∩ AC

3. C := {(i, j, k, l)|i = l, j = k} ∩ AC

4. D := {(i, j, k, l)} ∩ AC ∩BC ∩ CC

Calculating the expectation of the sum of the elements in each individual sets:

1. For set A,

E

[(∑
ij

aij∆i∆̄j

)(∑
kl

aklxkx̄l

)

−

(∑
ij

aijxi∆̄j

)(∑
kl

akl∆kx̄l

)]
= E

[
a2ii∆i∆̄ixix̄j − a2ii∆i∆̄ixix̄i

]
= E[0] = 0

2. For set B,

E

[(∑
ij

aij∆i∆̄j

)(∑
kl

aklxkx̄l

)

−

(∑
ij

aijxi∆̄j

)(∑
kl

akl∆kx̄l

)]
= E

[
a2ij∆i∆̄jxix̄j − a2ij∆i∆̄jxix̄j

]
= E[0] = 0

3. For set C, since the matrix A is hermitian aij = āji

E

[(∑
ij

aij∆i∆̄j

)(∑
kl

aklxkx̄l

)

−

(∑
ij

aijxi∆̄j

)(∑
kl

akl∆kx̄l

)]
=
[
|aij|2∆i∆̄jxjx̄i − |aij|2∆j∆̄jxix̄i

]
Notice that ∀i, j

= |aji|2∆j∆̄ixix̄j + |aij|2∆i∆̄jxjx̄i

− |aji|2∆i∆̄ixjx̄j − |aij|2∆j∆̄jxix̄i
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Since |aij|2 = |aji|2. Thus,

= |aji|2
[
∆j∆̄ixix̄j +∆i∆̄jxjx̄i

−∆i∆̄ixjx̄j −∆j∆̄jxix̄i

]
= |aji|2

[
∆j∆̄ixix̄j +∆i∆̄jxjx̄i

−|∆i|2|xj|2 − |∆j|2|xi|2
]

= |aji|2
[
∆j∆̄ixix̄j +∆i∆̄jxjx̄i

−|∆i|2|xj|2 − |∆j|2|xi|2
]

= −|aij|2| ∆ixj − xi∆j|2

Thus,

E

[(∑
ij

aij∆i∆̄j

)(∑
kl

aklxkx̄l

)

−

(∑
ij

aijxi∆̄j

)(∑
kl

akl∆kx̄l

)]
= −σ2∥∆xT − x∆T∥2F (B.14)

4. For set D, as all the elements (i, j, k, l) ∈ D make aij, akl independent of each
other, we have,

E
(∑

aijakl∆̄jx̄l (∆ixk −∆kxi)
)
= 0

Hence we can conclude,

E

[
1

m

m∑
d=1

(
⟨Ad,∆∆̄⊤⟩⟨Ad,xx̄

⊤⟩ − ⟨Ad,∆x̄⊤⟩⟨Ad,x∆̄
⊤⟩
)]

= −σ2∥∆xT − x∆T∥2F
We focus our attention on obtaining concentration bounds. Evaluating the be-

haviour on the elements in set D,

1

m

m∑
d=1

 ∑
(i,j,k,l)∈D

adija
d
kl∆̄jx̄l (∆ixk −∆kxi)


− E

 1

m

m∑
d=1

∑
(i,j,k,l)∈D

adija
d
kl∆̄jx̄l (∆ixk −∆kxi)


=

∑
(i,j,k,l)∈D

adija
d
kl∆̄jx̄l (∆ixk −∆kxi)
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We can see that the above is a centered subexponential random variable.
Take σ2 = 1. We then have the Bernstein type inequality Vershynin (2010) as,

P

(∣∣∣∣∣ 1m
m∑
d=1

(
⟨Ad,∆∆̄⊤⟩⟨Ad,xx̄

⊤⟩ − ⟨Ad,∆x̄⊤⟩⟨Ad,x∆̄
⊤⟩
)

+ ∥∆xT − x∆T∥2F
∣∣ ≤ t∥∆xT − x∆T∥2F

)
≥ 1− c0exp

(
−c1mmin

{
t2

K2
4

,
t

K4

})

B.5 Appendix : Non-convex Landscape for Gaussian Random A

B.5.1 Proof of Theorem 3.6.7

Theorem B.5.1. Let {Ai}mi=1 be a set of complex n× n Gaussian random matrices,
and let m > Cn for some constant C > 0. Let the scalars {ci}mi=1 characterizing the
objective function f of problem (P2) be generated by quadratic measurements of an
unknown vector z. Then, for any given ξ ∈ (0, 1), there exist positive constants β, γ,
and ζ such that the following statements hold with probability at least 1− ξ:

1) The function f is (β, ζ, γ)-strict saddle, and

2) Every local minimum w of f satisfies d(w, z) = 0

Proof. Notice that,

(∆Ax̄)2 + (∆̄⊤Ax)2

=
(
⟨A,x∆̄⊤ +∆x̄⊤⟩

)2 − 2(∆⊤Ax̄)(∆̄⊤Ax)

=
(
⟨A,xx̄⊤ − z(z̄)⊤ +∆∆̄⊤⟩

)2 − 2(⟨A,∆x̄⊤⟩)(⟨A,x∆̄⊤⟩)

Using (B.11), we can reorganize,[
∆
∆̄

]∗
∇2gi(x, x̄)

[
∆
∆̄

]
= ⟨Ai, 2xx̄

⊤ − z(z̄)⊤⟩⟨Ai, 2∆∆̄⊤⟩ − 2(⟨A,∆x̄⊤⟩)(⟨A,x∆̄⊤⟩)
+
(
⟨A,xx̄⊤ − z(z̄)⊤ +∆∆̄⊤⟩

)2
= 2

(
⟨Ai, 2xx̄

⊤ − z(z̄)⊤⟩⟨Ai, i,xx̄
⊤ − z(z̄)⊤⟩⟨Ai,∆∆̄⊤⟩

)
+ ⟨Ai,∆∆̄⊤⟩⟨Ai,xx̄

⊤ − z(z̄)⊤⟩+ ⟨Ai,∆∆̄⊤⟩⟨Ai,∆∆̄⊤⟩
+ ⟨Ai,xx̄

⊤ − z(z̄)⊤⟩⟨Ai,∆∆̄⊤ + xx̄⊤ − z(z̄)⊤⟩
− 2(⟨A,∆x̄⊤⟩)(⟨A,x∆̄⊤⟩)
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Adding and subtracting 2⟨Ai,xx̄
⊤ − z(z̄)⊤⟩⟨Ai,xx̄

⊤ − z(z̄)⊤⟩, reorganizing,[
∆
∆̄

]∗
∇2gi(x, x̄)

[
∆
∆̄

]
= 2⟨Ai,∆∆̄⊤⟩⟨Ai,xx̄

⊤⟩
+ 2

(
⟨Ai,xx̄

⊤ − z(z̄)⊤⟩⟨Ai,∆∆̄⊤ + xx̄⊤ − z(z̄)⊤⟩
)

− 2⟨Ai,xx̄
⊤ − z(z̄)⊤⟩⟨Ai,xx̄

⊤ − z(z̄)⊤⟩
+ ⟨Ai,∆∆̄⊤⟩⟨Ai,xx̄

⊤ − z(z̄)⊤⟩
+ ⟨Ai,∆∆̄⊤⟩⟨Ai,∆∆̄⊤⟩ − 2(⟨A,∆x̄⊤⟩)(⟨A,x∆̄⊤⟩)
+ ⟨Ai,xx̄

⊤ − z(z̄)⊤⟩⟨Ai,∆∆̄⊤ + xx̄⊤ − z(z̄)⊤⟩

Adding and subtracting ⟨Ai,xx̄
⊤ − z(z̄)⊤⟩⟨Ai,xx̄

⊤ − z(z̄)⊤⟩, reorganizing,[
∆
∆̄

]∗
∇2gi(x, x̄)

[
∆
∆̄

]
= 2⟨Ai,∆∆̄⊤⟩⟨Ai,xx̄

⊤⟩ − 2(⟨A,∆x̄⊤⟩)(⟨A,x∆̄⊤⟩)
− 3⟨Ai,xx̄

⊤ − z(z̄)⊤⟩⟨Ai,xx̄
⊤ − z(z̄)⊤⟩

+ ⟨Ai,∆∆̄⊤⟩⟨Ai,∆∆̄⊤⟩
+ 4⟨Ai,xx̄

⊤ − z(z̄)⊤⟩⟨Ai,∆∆̄⊤ + xx̄⊤ − z(z̄)⊤⟩

Using equation (B.12),[
∆
∆̄

]∗
∇2gi(x, x̄)

[
∆
∆̄

]
= 2⟨Ai,∆∆̄⊤⟩⟨Ai,xx̄

⊤⟩ − 2(⟨A,∆x̄⊤⟩)(⟨A,x∆̄⊤⟩)
− 3⟨Ai,xx̄

⊤ − z(z̄)⊤⟩⟨Ai,xx̄
⊤ − z(z̄)⊤⟩

+ ⟨Ai,∆∆̄⊤⟩⟨Ai,∆∆̄⊤⟩+ 4⟨∇gi(x, x̄),
[
∆
∆̄

]
⟩

Overall, we can conclude that,[
∆
∆̄

]∗
∇2g(x, x̄)

[
∆
∆̄

]
=

1

m

m∑
i=1

[
∆
∆̄

]∗
∇2gi(x, x̄)

[
∆
∆̄

]
=

2

m

m∑
i=1

⟨Ai,∆∆̄⊤⟩⟨Ai,xx̄
⊤⟩ − (⟨A,∆x̄⊤⟩)(⟨A,x∆̄⊤⟩)

− 3

m

m∑
i=1

⟨Ai,xx̄
⊤ − z(z̄)⊤⟩⟨Ai,xx̄

⊤ − z(z̄)⊤⟩

+
1

m

m∑
i=1

⟨Ai,∆∆̄⊤⟩⟨Ai,∆∆̄⊤⟩+ 4

m

m∑
i=1

⟨∇gi(x, x̄),
[
∆
∆̄

]
⟩
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Using Lemma B.4.1 and Lemma B.4.4, we can conclude that with probability greater
than 1− c1e

−c2mmin{D(t),E(ϵ)},[
∆
∆̄

]∗
∇2g(x, x̄)

[
∆
∆̄

]
≤ −(1− t)∥∆xT − x∆T∥2F + 4δ∥∆∥2 + β∥∆∆∗∥2F
− 3α∥xx∗ − z(z)∗∥2F
≤ −(1− t)∥∆xT − x∆T∥2F + 4δ∥∆∥2
+ 2β∥xx∗ − z(z)∗∥2F − 3α∥xx∗ − z(z)∗∥2F
≤ (2β − 3α) ∥xx∗ − z(z)∗∥2F + 4δ∥∆∥2
− (1− t)∥∆xT − x∆T∥2F (B.15)

where ∃c1, c2 > 0 which can be computed from Lemma B.4.1 and Lemma B.4.4.
For any ξ ∈ [0, 1], there can be multiple possibilities of the constants β, ζ and γ

satisfying Theorem 3.6.7.
For instance : Given ξ, we can take enough measurements m = O(n) such that

the mappingMA is (1− c, 1 + c)-stable, for some small c > 0 and t ≤ 1. Suppose the
current vector x is not close to x∗ such that ∥∆∥ ≥ C0δ, for sufficiently large C0 > 0,
then we have [

∆
∆̄

]∗
∇2g(x, x̄)

[
∆
∆̄

]
≤ (−1 + 5c)C2

0δ
2 + 4C0δ

2 ≤ 0

A particular set of (c, C0) which fit the above condition is c = 1
20
, C0 = 10, then[

∆
∆̄

]∗
∇2g(x, x̄)

[
∆
∆̄

]
≤ (−1 + 5c)C2

0δ
2 + 4C0δ

2 ≤ 0

Hence we can conclude that the function f(x) = g(x,x) satisfies at-least one of the
following is true,

• ∥∇g(x)∥ ≥ δ

• For the direction vector ∆,[
∆
∆̄

]∗
∇2g(x, x̄)

[
∆
∆̄

]
≤ (−1 + 5c)C2

0δ
2 + 4C0δ

2

• d(x, z) ≤ C0δ

Thus there exists constants β, ζ, γ > 0 such that the function f(x) is (β, ζ, γ) strict
saddle.

Following up on equation (B.28), the only possible way that the hessain∇2g(x,x) ⪰
0 is if ∥xx∗ − zz∗∥ = 0. Hence we can conclude that all local minimas, i.e. all w such
that ∇2g(w,w) ⪰ 0 has to satisfy ∥ww∗ − zz∗∥ = 0 and hence satisfies z ∼ w which
makes w the solution of the problem (P1).
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B.6 Appendix : Robustness Proofs

The following lemma will be used in later used to prove Theorem 3.7.1,

Lemma B.6.1. For any Hermitian matrix M , Gaussian noise ηi and complex Her-
mitian Gaussian matrices {Ai}mi=1, we can say that

P

(∣∣∣∣∣ 1m
m∑
i=1

ηi⟨Ai,M⟩

∣∣∣∣∣ ≥ ϵηση∥M∥F

)
≤ 2e

(
−cmmin

{
ϵ2η

K2
5
,
ϵη
K5

})
(B.16)

for some constants c,K5 > 0.

Proof. For all k ∈ [m], let Ak ∈ Cn×n be complex Hermitian Gaussian random matrix,
i.e.

1. ∀ i, aii ∼ N (0, σ2).

2. ∀ i, j, i ̸= j, aij ∼ N (0, σ
2

2
) + iN (0, σ

2

2
).

and ηk ∼ N (0, σ2
η) be Gaussian random variables. Define the random variable Y ,

Y =

∣∣∣∣∣ 1m
m∑
k=1

ηk⟨Ak, X⟩

∣∣∣∣∣ (B.17)

We first quantify the nature of ηk⟨Ak,M⟩

ηk⟨Ak,M⟩ = ηk
∑
i

aiimii + ηk
∑
i,j,i̸=j

aijmij

= ηk
∑
i

aiimii + ηk
∑
i,j,i>j

aijmij + ηk
∑
i,j,i>j

aijmij

=
∑
i

ηkaiimii + 2
∑
i,j,i̸=j

ηkRe(aijmij)

Hence we can say that,
E[ηk⟨Ak,M⟩] = 0 (B.18)

and,
E[(ηk⟨Ak,M⟩)2] = σ2

η∥M∥2F (B.19)

Note that ⟨Ak,M⟩ ∼ N (0, ∥M∥2F ) and ηk ∼ N (0, σ2
η) and hence we can conclude

that ηi⟨Ak,M⟩ is a centered subexponential random variable. Applying Bernstein
inequality, we have,

P

(∣∣∣∣∣ 1m
m∑
i=1

ηi⟨Ai,M⟩

∣∣∣∣∣ ≥ t

)
≤ 2e

(
−cmmin

{
t2

K2
5σ2

η∥M∥22
, t
K5ση∥M∥∞

})
(B.20)
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using a substitution ϵη =
t

ση∥M∥F
, we have,

P

(∣∣∣∣∣ 1m
m∑
i=1

ηi⟨Ai,M⟩

∣∣∣∣∣ ≥ ϵση∥M∥F

)
≤ 2e

(
−cmmin

{
ϵ2η

K2
5
,
ϵη
K5

})
(B.21)

Theorem B.6.2. Let {Ai}mi=1 be a set of complex n× n Gaussian random matrices,
and let m > Cn for some large constant C > 0. Let the scalars {ci}mi=1 characterizing
the objective function f of problem P1 be generated by quadratic measurements of
an unknown vector z. Let the Let x̂ ∈ Cn be such that ∥∇gη(x̂)∥ ≤ δ, where gη is
the ℓ2-loss function (Fη). Then with probability 1− c1e

−c2mϵ − 2e−c3mϵη the following
holds:

∥xx∗ − zz∗∥F ≤
4(δ + ϵηση)

1− 5ϵ
(B.22)

where ση ∈ R is the noise variance.

Proof. Following steps similar to that of Theorem 3.6.7, for the noisy case, we have
that,

gη(x,x) =
1

m

m∑
i=1

(⟨Aix,x⟩ − ci + ηi)
2

= g0(x,x) +
1

m

m∑
i=1

2ηi(⟨Aix,x⟩ − ci) +
1

m

m∑
i=1

η2i︸ ︷︷ ︸
N(x,x̄)

(B.23)

∇N(x, x̄) =
1

m

m∑
i=1

[
ηiAix
ηiAix̄

]
〈
∇N(x, x̄),

[
∆
∆̄

]〉
=

1

m

m∑
i=1

ηi⟨Ai,∆x̄T + x∆̄T ⟩ (B.24)

Thus we have, 〈
∇gη(x, x̄),

[
∆
∆̄

]〉
=

〈
∇g0(x, x̄),

[
∆
∆̄

]〉
+

1

m

m∑
i=1

ηi⟨Ai,∆x̄T + x∆̄T ⟩ (B.25)

∇2N(x, x̄) =
1

m

m∑
i=1

[
ηiAi 0
0 ηiAi

]
[
∆
∆̄

]∗
∇2N(x, x̄)

[
∆
∆̄

]
=

2

m

m∑
i=1

ηi⟨Ai,∆∆̄⟩ (B.26)
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[
∆
∆̄

]∗
∇2gη(x, x̄)

[
∆
∆̄

]
=

1

m

m∑
i=1

[
∆
∆̄

]∗
∇2gi(x, x̄)

[
∆
∆̄

]
+

2

m

m∑
i=1

ηi⟨Ai,∆∆̄⟩

=
2

m

m∑
i=1

⟨Ai,∆∆̄⊤⟩⟨Ai,xx̄
⊤⟩ − (⟨A,∆x̄⊤⟩)(⟨A,x∆̄⊤⟩)

− 3

m

m∑
i=1

⟨Ai,xx̄
⊤ − z(z̄)⊤⟩⟨Ai,xx̄

⊤ − z(z̄)⊤⟩

+
1

m

m∑
i=1

⟨Ai,∆∆̄⊤⟩⟨Ai,∆∆̄⊤⟩+ 4

m

m∑
i=1

⟨∇gi(x, x̄),
[
∆
∆̄

]
⟩

+
2

m

m∑
i=1

ηi⟨Ai,∆∆̄⟩

=
2

m

m∑
i=1

⟨Ai,∆∆̄⊤⟩⟨Ai,xx̄
⊤⟩ − (⟨A,∆x̄⊤⟩)(⟨A,x∆̄⊤⟩)

− 3

m

m∑
i=1

⟨Ai,xx̄
⊤ − z(z̄)⊤⟩⟨Ai,xx̄

⊤ − z(z̄)⊤⟩

+
1

m

m∑
i=1

⟨Ai,∆∆̄⊤⟩⟨Ai,∆∆̄⊤⟩+ 4⟨∇gη(x, x̄),
[
∆
∆̄

]
⟩

+
2

m

m∑
i=1

ηi⟨Ai,∆∆̄⟩ − 4

m

m∑
i=1

ηi⟨Ai,∆x̄T + x∆̄T ⟩

=
2

m

m∑
i=1

⟨Ai,∆∆̄⊤⟩⟨Ai,xx̄
⊤⟩ − (⟨A,∆x̄⊤⟩)(⟨A,x∆̄⊤⟩)

− 3

m

m∑
i=1

⟨Ai,xx̄
⊤ − z(z̄)⊤⟩⟨Ai,xx̄

⊤ − z(z̄)⊤⟩

+
1

m

m∑
i=1

⟨Ai,∆∆̄⊤⟩⟨Ai,∆∆̄⊤⟩+ 4⟨∇gη(x, x̄),
[
∆
∆̄

]
⟩

− 2

m

m∑
i=1

ηi⟨Ai,xx̄− zz̄⟩ − 2

m

m∑
i=1

ηi⟨Ai,∆x̄T + x∆̄T ⟩

(B.27)

Using Lemma B.4.1 and Lemma B.4.4, we can conclude that with probability greater
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than 1− c1e
−c2mmin{D(t),E(ϵ)},[

∆
∆̄

]∗
∇2g0(x, x̄)

[
∆
∆̄

]
≤ −(1− t)∥∆xT − x∆T∥2F + 4δ∥∆∥2 + β∥∆∆∗∥2F
− 3α∥xx∗ − z(z)∗∥2F
≤ −(1− t)∥∆xT − x∆T∥2F + 4δ∥∆∥2
+ 2β∥xx∗ − z(z)∗∥2F − 3α∥xx∗ − z(z)∗∥2F
≤ (2β − 3α) ∥xx∗ − z(z)∗∥2F + 4δ∥∆∥2
− (1− t)∥∆xT − x∆T∥2F (B.28)

where ∃c1, c2 > 0 which can be computed from Lemma ?? and Lemma B.4.4.
Further using bounds from Lemma B.6.1, we can conclude with probability 1 −
c1e

−c2mmin{D(t),E(ϵ)} − 2e−c3mϵη ,[
∆
∆̄

]∗
∇2gη(x, x̄)

[
∆
∆̄

]
≤ (2β − 3α) ∥xx∗ − z(z)∗∥2F + 4δ∥∆∥2 + t

+ 4ϵηση∥xx∗ − zz∗∥F

For any ξ ∈ [0, 1], there can be multiple possibilities of the constants β, ζ and γ
satisfying Theorem 3.6.7.

Given ξ, we can bound m = O(n) such that the mapping MA is (1 − c, 1 + c)-
stable, for some small c > 0 and if the current vector x is not close to x∗ such that
d(x, z) = C0δ, for sufficiently large C0 > 0, then we have[

∆
∆̄

]∗
∇2gη(x, x̄)

[
∆
∆̄

]
≤ (−1 + 5c)C2

0δ
2 + 4C0δ

2 + 4ϵησηC0δ (B.29)

If the above inequality is not satisfied then,

(−1 + 5c)C0δ + 4δ + 4ϵηση ≥ 0

C0 ≤
4(δ + ϵηση)

δ(1− 5c)
(B.30)

Hence we can bound the distance of the optima of (P1) – z and the solution of
the problem (Fη) – x̂ as,

∥xx∗ − zz∗∥F ≤
4(δ + ϵηση)

1− 5c
(B.31)
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C.1 Proof for Proposition 4.4.1

Let the undesirable events be EK(t) = {K(t) \ Sθ−ϵ ̸= ∅} and ER(t) =
{
R(t) \ S∁

θ+ϵ ̸= ∅
}
.

To prove Proposition 4.4.1, we want to show P
[(⋃

t≥1EK(t)
)⋃ (⋃

t≥1ER(t)
)]
≤ δ. By

Boole’s inequality, it is suffices to show that P
[⋃

t≥1EK(t)
]
≤ δ/2 and P

[⋃
t≥1ER(t)

]
≤

δ/2.
Recall that, by the choice of Ui,π(t, δ) in (4.6c),

P

[⋂
t≥1

{|µi − µ̂i| ≤ Ui,π(t, δ)}

]
≥ 1− δ

2|G|
, (C.1)

for any grid cell i ∈ G and search policy π (see Lemma 1 in (Jun et al., 2016) with

ω =
√

δ/(12|G|)).
For any t ≥ 1, K(t) \ Sθ−ϵ ̸= ∅ if and only if µ̂i,π(t) − Ui,π (t, δ) ≥ θ − ϵ > µi for

some i ∈ G. Consequently, K(t) \ Sθ−ϵ ̸= ∅ ⇒ |µ̂i,π(t)−µi| ≥ Ui,π (t, δ) for some i ∈ G.
By (C.1) and Boole’s inequality,

P

[⋃
t≥1

EK(t)

]
≤ P

[⋃
i∈G

⋃
t≥1

{|µ̂i,π(t)− µi| ≥ Ui,π (t, δ)}

]

≤
∑
i∈G

δ

2|G|
≤ δ

2
.

The proof for P
[⋃

t≥1ER(t)
]
≤ δ/2 follows similarly. ■

C.2 Proof Sketch for Theorem 4.5.2

Bounding Tπ (4.10): Recall that the number of sufficient number of samples
required for successful classification, with high confidence, of a grid cell i ∈ G can be
tightly upper-bounded by O(ϕi) (see (6) in (Jun et al., 2016) with ω =

√
δ/(2|G|)). If

we allowed multiple search agents to visit a grid cell simultaneously, then 1
d

∑
i∈G O(ϕi)

upper bounds Tπ, due to the independence assumption between the cells. However,
the agents are required to stay in distinct cells at all times. Consequently, some of
the search agents are rendered ineffective when less than d cells are left to be labelled.
(4.10) upper bounds Tπ by accounting for the worst-case inefficiency — the last d cells
is a set of “easy-to-classify” d− 1 cells and a “hardest-to-classify” cell.

Bounding L(π) (4.11): We split the time taken to classify all interesting cells by
Algorithm 3 into three parts:

i. Classifying interesting cells : The number of samples sufficient for classification
of interesting cell i is O(ϕi),

ii. Sampling uninteresting cells when biased coin toss yields heads : Here, Algo-
rithm 3 samples grid cells while maximizing J , see (4.6). The number of sufficient
samples of the uninteresting cell j after which, it will be sampled by only after
classifying all interesting cells upper-bounded by O(γj). Additionally, we add
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a margin of 4(1−α)|G|2
αδ

to account for the worst-case low-probability event of
revisiting cell j due to the switching to label-then-move.

iii. Sampling uninteresting cells when biased coin toss yields tails : Here, Algorithm 3
samples grid cells based only on the distance metric ℓ. In the worst case, we
may sample an uninteresting cell long enough to classify it, which is O(ϕi).

Combining these parts, we have

L(π) ≤
∑

O(ϕi)︸ ︷︷ ︸
interesting cells (i)

+
∑

min

{
O(ϕi),O(γi) +

4(1− α)|G|2

αδ

}
︸ ︷︷ ︸

uninteresting cells (ii) and (iii)

.

for a team with d = 1. Similar to Tπ, we obtain (4.11) by accounting for oversampling
due to inefficiency arising from the presence of d > 1 agents.

Bounding E(π) (4.12): The economic cost (4.5) consists of the movement cost
and the sampling cost. At every time step t, Algorithm 3 performs an α biased
coin-toss. For coin tosses corresponding to heads, Algorithm 3 moves to the grid cells
which maximizes the activation function (4.6). In this case, Algorithm 3 incurs a
movement cost of at most M ≜ maxa,a′ ℓ(a, a′). For coin tosses corresponding to tails,
Algorithm 3 searches for the nearest unlabelled cell in the neighbourhood. The total
cost incurred by Algorithm 3 during the entire run is no larger than the cost incurred
to visit all of the cells in some pre-defined sequence, which we know is O(|G| − 1).

Σ
1≤τ≤t

E [ℓ(aτ , aτ−1)] ≤ (1− α)O(|G| − 1) + αMt (C.2)

The sampling cost accrued at iteration t of Algorithm 3 is βtd. We complete the proof
by adding these bounds, and applying the bound in (4.10) on t. ■
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