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ABSTRACT

This dissertation studies the methods to enhance the performance of foldable robots

manufactured by laminated techniques. This class of robots are unique in their man-

ufacturing process, which involves cutting and staking up thin layers of different

materials with various stiffness. While inheriting the advantages of soft robots – low

weight, affordable manufacturing cost and a fast prototyping process – a wider range

of actuators is available to these mechanisms, while modeling their behavior requires

less computational cost. The fundamental question this dissertation strives to answer

is how to decode and leverage the effect of material stiffness in these robots. These

robots’ stiffness is relatively limited due to their slender design, specifically at larger

scales. While compliant robots may have inherent advantages such as being safer

to work around, this low rigidity makes modeling more complex. This complexity

is mostly contained in material deformation since the conventional actuators such

as servo motors can be easily leveraged in these robots. As a result, when intro-

duced to real-world environments, efficient modeling and control of these robots are

more achievable than conventional soft robots. Various approaches have been taken

to design, model, and control a variety of laminate robot platforms by investigat-

ing the effect of material deformation in prototypes while they interact with their

working environments. The results obtained show that data-driven approaches such

as experimental identification and machine learning techniques are more reliable in

modeling and control of these mechanisms. Also, machine learning techniques for

training robots in non-ideal experimental setups that encounter the uncertainties of

real-world environments can be leveraged to find effective gaits with high perfor-

mance. Our studies on the effect of stiffness of thin, curved sheets of materials has

evolved into introducing a new class of soft elements which we call Soft, Curved,

Reconfigurable, Anisotropic Mechanisms (SCRAMs). Like bio-mechanical systems,
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SCRAMs are capable of re-configuring the stiffness of curved surfaces to enhance their

performance and adaptability. Finally, the findings of this thesis show promising op-

portunities for foldable robots to become an alternative for conventional soft robots

since they still offer similar advantages in a fraction of computational expense.
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Chapter 1

INTRODUCTION

Soft robots have emerged as an alternative to rigid-bodied robots by leveraging

soft material properties to gain unique characteristics and accomplish tasks difficult

for rigid robots to perform. Some noticeable characteristics include lower weight,

lower manufacturing cost, and higher safety in interaction with human and delicate

objects. Their ability to change shape helps these robots perform tasks like assisting

in surgery or being worn on the human body as assistive devices.

Origami-inspired robots are a class of soft robots distinguished by their foldable

features and specific manufacturing techniques. These robots are affordable, light

weight, as well as easy and fast to manufacture. One of the most popular methods

of manufacturing these robots is through laminate techniques. This process involves

cutting individual layers of material, stacking, aligning and fusing individual layers

together into a composite, and then releasing the resulting hinged laminate with a

secondary cut (Fig. 1.1).

This thesis focuses on preparing foldable robots as platforms for performing tasks

in real-world environments. Alongside a discussion of the development of a number of

robots, the majority of this dissertation studies the effect of material deformation and

stiffness on the performance of these robots when they are subjected to the interaction

forces caused by their working environments. The goal of this thesis is to show the

potential for foldable robots as a promising alternative to soft robots that are built

from cast polymers as well as traditional rigid systems.
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Initial cut Lamination Final cut Released deviceSingle layer Stacked layers

Figure 1.1: Procedure of making a laminated device using heat press and laser cutter

as machinery.

1.1 Problem Definition

There have been significant advances in the field of soft robotics. There is, how-

ever, still a long road ahead for the field of soft robots before they get to the point

where their true potential can be realized in order to effectively replace conventional

rigid robots. Many unanswered challenges limit soft robots’ performance. Three

major challenges can be associated with their customary method of actuation, their

modeling complexity, and their relatively high compliance. Pneumatic actuation, the

most common actuation method for the conventional soft robots, often requires bulky

and heavy pneumatic hardware, limiting their capability to move towards untethered

mobile systems. Second, the nature of soft robots is also so complex that their mod-

eling, shape, material properties, and design become highly interrelated. This makes

closing the design loop for these robots challenging. Finally, the fully soft nature of

these robots provides safer mechanisms for interaction with humans and other del-

icate objects; this, however, limits the maximum forces these systems can exert on

external objects.

Foldable robots made with laminate techniques are able to address some of these

challenges. These robots can leverage more conventional actuators such as servos;

through careful material selection and scaling, they are rigid enough to be modeled

with rigid-bodied kinematics and dynamics; finally, their stiffness is easily tuned by

material selection.
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(a)

(b)

(c)

Figure 1.2: Challenges associated with Foldable robots. (a) Delamination. (b) Hinge

ripping. (c) Fiberglass beam deformation under load. The beam is 10 mm wide,

140 mm length and 0.762 mm thick.

While there are many benefits to foldable robots, there are some challenges that

need to be addressed to improve the functionality of these robots in real-world appli-

cations as well:

1. Stiffness: Similar to other soft robots, foldable robots tend to deform under

load, which can affect their functionality through their interactions with the

world. The deformation of these robots can be seen both in their hinges and

links. Since flexural hinges are often made from soft materials, they usually

permit rotation in unintended directions, e.g. twisting. As explained in chap-

ter 2, in [1], a supported hinge design can be used to reduce the hinge’s twist.

However, these hinges have a negative impact the life span of hinges when re-

peatedly deformed over large angles. Through this study, I have used the simple

rectangular hinge design and used thicker polyester sheets to reduce unintended

rotation. Using fiberglass or carbon fiber as the rigid layers can increase the

stiffness and reduce deformation. However, under high loads, thin sheets of any
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of the aforementioned materials are likely to experience unintended deforma-

tions (Fig. 1.2c).

2. Modeling complexity: To avoid deforming the robot’s links from the weight

of actuators, roboticists tend to use parallel mechanisms in the design of lami-

nated robots. Parallel mechanisms take advantage of multiple pathways to the

ground, often making them more rigid and precise than their serial counter-

parts. Moreover, parallel robots are usually capable of achieving higher speeds

because actuators can be proximally mounted on the a slower base chassis, re-

ducing loads on high-speed distal joints and links. However, in the dynamics

and kinematics modeling of these robots, parallel mechanisms are more complex

to model than robots.

3. Durability: Using affordable sheets of material can reduce the lifetime of

robotic systems. For example, a robot made from cardboard can be perma-

nently deformed and destroyed in minutes. Notable issues impacting lifetime

include: (i) Material yield and permanent deformation. (ii) Layer delamina-

tion (Fig. 1.2a). (iii) Torn or ripped hinges (Fig. 1.2b). As explained in chapter 2

these problems issues can be addressed by (i) Using higher-end, more durable

material like fiberglass as the rigid layer. (ii) Compressing critical points via

screws or rivets. (ii) Using multi-layer hinge designs that resist tearing by com-

bining the material properties of different materials in key layers.

Though the above techniques for addressing some of the core issues related to fold-

able and laminate robots improves their durability and makes them easier to model,

the effect of material deformation is still not negligible and should be considered in

the modeling and control of laminated robots, especially when loaded or interacting

with the world. This is discussed more in chapters 3 and 4.
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The majority of this thesis is dedicated to understanding foldable robots’ soft

nature and their deformation in order to enhance their performance in real-world

environments. The proper understanding of these robots can help us to design, model,

and control them by closing the loop between design and system behavior in real-world

experiments.

The problem with modeling soft robots has been tackled by many researchers

through different approaches. In [2], a recent review of soft robots by a collaboration

between Harvard University and Carnegie Mellon University, this issue was addressed

as one of the “current challenges” in soft robots by stating:

“In addition to reshaping mechanical compliance and functionality,

the use of soft materials also has profound implications on how robots

are modelled and controlled. In contrast with autonomous vehicles, hu-

manoid robots and other piecewise rigid systems that have finite degrees

of freedom, soft-matter machines and robots are continuous elastic bodies

that exhibit infinite degrees of freedom. This introduces new challenges in

sensing and proprioception, feedback and adaptive control, path planning

and robot intelligence that go beyond the scope of conventional algorithms

for robotic autonomy. In most cases, soft robots will be ‘unobservable’,

with incomplete information about their dynamical state and surface in-

teractions. Instead, sensor data will have to be combined with data-driven

learning algorithms and computational modelling based on physics engines

and finite-element techniques.”

This thesis focuses on extending the functionality of foldable robots while in-

teracting with their working environment by addressing material deformation using

data-driven modeling and control methods.
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1.2 Background

1.2.1 Foldable robots

Origami-inspired robots are affordable and light weight, as well as easy and fast

to manufacture. Given a competent design, these robots are ideal platforms for

experimentally evaluating different design objectives, modeling techniques, control,

training, swarm algorithms, and artificial intelligence.

Many foldable robots are made using laminated techniques to achieve different

functionalities and goals. Following are some state of the art robots that leverage the

advantages of laminated robots, i.e., scalability, low manufacturing cost, lightness,

and agility. MilliDelta is a 15 × 15 × 20 mm robot that weights 430 milligram and

is capable of moving a payload of 1.31 gr [3]. Using its piezoelectric actuators, Mil-

liDelta can follow a periodic trajectory at frequencies up to 75Hz (1.3a). A foldable

haptic device called FOLDAWAY-Touch is being commercially developed a foldable,

portable computer mouse (1.3b). While there is no paper on its commercial design,

the primary generations of its design are presented in [4, 5]. In the newer version, pre-

sented in [4], they have used a backdrivable MAXON DC as actuator and hall-effect

sensors for feedback. The mechanism is then attached to an HTC Vive VR interface

for haptic applications. In [6], an origami-inspired miniature robot is proposed for

teleoperated surgery (1.3d). The robot has three independent linear actuators and

is controlled using a proportional controller. In this study the authors illustrate how

using this mechanism in conjunction with a Phantom Omni haptic device to move an

operation tool increases the precision in following a desired 0.4 by 0.4 mm square by

68% compared with manual operation of the operation tool.

The Harvard Ambulatory MicroRobot (HAMR) is a cockroach-based quadrupedal

microrobot that has evolved over several design cycles (1.3c). The most recent itera-
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tion is able to walk on land, swim on the surface of water, sink, and then transition

back to land [7]. On the tips of its legs it uses an ElectroWetting Pad (EWP) to keep

itself either on the surface of the water or allow it to sink.

Figure 1.3d shows C-Turtle, a laminated robot inspired by sea turtles [9]. The

gait is obtained via machine learning, using a sample-efficient reinforcement learning

method in both an artificial indoor environment and a natural environment in the

Arizona desert.

RoboBee is a laminated, flying, microscale robot (1.3f). Many generations of this

robot have been designed; a recent one (RoboBee X-Wing), presented in [10], is a

0.5 gr untethered vehicle that uses small solar panels as a power supply. This robot

uses an alumina bridge piezoelectric actuator per two wings that can flap at 165 Hz.

In [12], buckling is used in an origami-inspired structure to produce dual-stiffness

joints by pre-stretching the flexible layer during fabrication to induce buckling in the

presence of high forces as a mechanical fuse. This characteristic is used in a quadrotor

to increase its rigidity and reduce vibration in its flights as well as helping it survive

crashes by activation of its embedded fuse (1.3h). The same concept is also used in

a gripper to hold an object without overloading it. An origami-inspired quadrotor

made by laminated techniques is presented in [11]. In its foldable design, the Foldable

QuadRotor (FQR) uses a fifth actuator to retrieve its arm during flights to be able

to operate in cluttered environments (1.3g). In wider spaces, it opens its arms to

increase stability in aggressive turning maneuvers.

Tribot is the name of a series of millirobots developed at EPFL that are tuned

for a variety of applications and functions (Fig. 1.3i). The most recent version is a

multi-locomotion robot inspired by the trap-jaw ant [13]. This robot is capable of

jumping to an average height of 140.6 mm – 2.5 times its height. It can distance-

jump 230 mm and perform a “flic-flac walking” maneuver. This robot uses two SMA
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Figure 1.3: State of the art foldable robots. (a) MilliDelta [3]. (b) FOLDAWAY-

Touch PC mouse[8]. (c) HAMR [7]. (d) Miniature manipulator for teleoperated

microsurgery [6]. (e) C-Turtle [9]. (f) RoboBee [10]. (g) FQR [11]. (h) Quad-

copter equipped with dual-stiffness origami arms [12]. (i) Tribot [13]. (j) Tribot

collaboration[13].

8



torsional actuators with attached micro-heaters and three SMA spring actuators. As

an extension of the functionality of Tribot, they have been used in a team collective

labor to move an object (Fig. 1.3j). For this, different types of agents including a

leader, two workers, a monitor, and a messenger robot are developed and used. Each

agent has a slightly different design and interface circuits installed on it.

1.2.2 Modeling and Control of Soft Robots

Laminated techniques, among other manufacturing techniques of robot, are easily

scalable. When modeling small foldable robots, material deformation can be reduced

by assuming stiff materials at all links. Hence, researchers have been to model the

kinematics and dynamics of MilliDelta, FOLDAWAT-Touch, and Tribot using rigid

robots modeling methodologies (Fig. 1.4.a-c). The assumption of link rigidity in

traditional robots simplifies kinematic expressions, typically localizing highly con-

strained motion at simple joints and ignoring effects such as backlash and material

deformation.

Enlarging the size of these robots or exposing them to high load deforms the

materials and prevents us from using rigid modeling assumptions. In contrast, soft

matter machines and robots are continuous elastic bodies that exhibit infinite degrees

of freedom. This introduces new challenges in sensing, feedback and adaptive control,

path planning and robot intelligence [2]. Several different control approaches are

proposed and validated by researchers to address this issue.

One of the most precise approaches is using FEA which comes with high calcula-

tion costs. In [15], model order reduction of FEM using snapshot proper orthogonal

decomposition is proposed to achieve a reduced-order model with lower calculation

effort (Fig. 1.4e).

Piecewise Constant Curvature (PCC) approaches are used with different modeling
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Figure 1.4: State of the art approaches in modeling soft robots. (a) MilliData limb structure and

modeling [3]. (b) FOLDAWAY-Touch dynamic modeling [5]. (c) Tribot Modeling [13]. (d) The

RobotinoXT by Festo Robotics [14]. (e) Real-time control of the tentacle robot using the reduced-

order simulation [15]. (f) PCC modeling using LQR based Gaussian [16]. (g) Soft robot interaction

with environment and its PCC modeling [17]. (h) Soft robot controlled in 3D and its PCC robot

modeling [18]. (i) Measuring bending of the soft arm and using Hall sensors [19]. (j) A single DOF

soft robot platform called grub [20]. (k) Soft manipulator controlled based on model obtained by

reinforcement learning [21]. (l) Cantilever modeling via DiffPD [22]. (m) Modeling octopus arms

as soft slender rods [23]. (n) Closed-loop control of the configuration of a soft continuum robotic

arms [24].
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functions to model deformation of soft robots. A linear time-varying Gaussian model

is proposed in [16] for dynamic modeling (Fig. 1.4f). This model alongside an LQR

based Gaussian controller and a Kullback–Leibler divergence policy is used to get

the robot’s end-effector to a point after some iterations while taking care of both dy-

namics control and path planning. A soft robotic arm driven by SMA coil (Fig. 1.4i)

is controlled using a PID controller; curvature is measured using Hall sensors under

the assumption of constant curvature of each segment [19]. Santina et al. dynami-

cally controlled a planar soft robotic arm while it was interacting with the environ-

ment (Fig. 1.4g) by following a PCC approach and modeling each segment by a rigid

RPPR limb [17]. The study is extended to 3D by modeling each segment with an

RRPRRRRPRR rigid limb in [18] (Fig. 1.4h). In both cases the masses, stiffnesses

and damping coefficients of each limb are experimentally identified. A variable length

multisection continuum robot is proposed and experimentally modeled and controlled

in [25, 26].

A combination of PCC and FEA model-reduction policy is proposed in [14]. Re-

sults obtained from their soft robot (Fig. 1.4d) show that the combined policy is more

precise than PCC and faster, but less accurate comparing with FEA.

Machine learning approaches are also used in the modeling and control of these

robots. In [20], the rotation of a one-degree-of-freedom pneumatically actuated

joint is controlled using a model predictive controller based on deep neural net-

works (Fig. 1.4j), while no interaction with the world is addressed. Reinforcement

Learning is used for dynamic control of a pneumatically actuated soft robotic ma-

nipulator [21] (Fig. 1.4k). For forward dynamic modeling, a class of dynamic recur-

rent neural networks called a nonlinear autoregressive network with exogenous inputs

(NARX) is constructed. This network is single-layer, composed of 35 neurons with

Tan-sigmoid and linear transfer functions in input and output, respectively.
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A fast simulator, named DiffPD, is proposed in [22] that that implements the finite

element method by voxelizing objects (Fig. 1.4l). This paper features fast, efficient

differentiable soft-body simulator, inspired from projective dynamics [27] that can

solve contact forces by analyzing a linear complementarity problem based on the

assumption that contacts occur on a small number of nodes.

A compliant mechanics environment for controlling soft robots is presented in [28]

to model the full advantage of body compliance via the Cosserat rod model. The

authors have recently developed a software package, namely, Elastica, as an open-

source simulation environment for soft, slender rods that can bend, twist, shear and

stretch such as octopus arms (Fig. 1.4m).

In [24], a novel model-based, inverse dynamic control is proposed for dynami-

cally controlling bending, torsion, shear, and extension deformation in soft continuum

robotic arms (Fig. 1.4n). This is done by implementing a decentralized controller, in

which the gain matrices can be defined in terms of the physical and material prop-

erties of distinct cross-sections of the robot arm, on the geometrically exact Cosserat

rod model. This structure facilitates its application on continuum robot arms com-

posed of independently controllable segments that have local sensing and actuation,

such as the arm presented in [29].

1.2.3 Directional & Variable Stiffness

Recently, a new topic in soft robotics that is getting more attention looks at the use

of variable stiffness mechanisms to increase the performance of soft robots. Although

the adaptability of soft robots addresses the limitations of many rigid systems, this

compliance can also limit functionality, control authority, or frequency response. For

example, while a soft gripper can handle delicate objects like an egg more safely

than a rigid griper, it lacks the ability to hold heavy objects. In [30], a gripper is

12
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introduced which, first, actuates tension cables to bend its fingers in order to grasp

an object. It then uses a pneumatically actuated layer-jamming mechanism to stiffen

the fingers so they can grasp objects they otherwise would be unable to (Fig. 1.5a).

Tuning stiffness, both actively and passively, is emerging more in robotic platforms

as a way to enhance these robots performance. In [12], curved beams are used in a

novel quadrotor (Fig. 1.5b) as mechanical fuses to reduce the robot’s body stiffness

in a collision and minimize damages. Baek et. al uses curved beams as a one-side

folding mechanism in a gliding robot inspired by the wings of a ladybird beetle [31].

The passive nonlinear stiffness of curved beams enables the wing to be folded into

a size that is one-eighth of its deployed area, yet, due to the behavior of the curved

materials, its wings are able to deploy in 466 ms (Fig. 1.5c). In [32], a variable

stiffness soft continuum robot arm is introduced that uses three tendons alongside its

origami structure to bend, expand and contract (Fig. 1.5d). It also leverages three

pre-pressurized air-tight chambers filled with pre glass beads to increase the stiffness

of the arm when compressed. She et al. has developed a tunable stiffness robotic

arm for safe human-robot interaction in [33]. This arm is able to actively tune its

links stiffness from stiff to compliant by changing the curvature of two parallel guided

beams embedded in the linkage of the arm (Fig. 1.5e).

In [34], variable stiffness through layer jamming of reconfigurable laminates is pre-

sented (Fig. 1.5f); among other applications, the authors have shown that the ability

to change stiffness on demand enhances the thrust generated by a laminated fishtail

when its swimming environment changes between open water to confined channels.

An underactuated limb design is proposed in [35] that incorporates hysteretic, pre-

curved joints to change their response during loading and unloading (1.5g). In [36], a

novel concept is introduced that shows pinching thin-walled tubular structures to in-

duce highly directional changes in their stiffness (Fig. 1.5h). Through both FEA and
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Figure 1.5: State of the art approaches towards use of directional and variable stiffness. (a) Variable

stiffness gripper [30]. (b) Quadcopter equipped with dual-stiffness origami arms.[12]. (c) Ladybird

beetle–inspired glider [31]. (d) Variable stiffness soft arm [32]. (e) Tunable stiffness arm [33].

(f) Origami-inspired layer jamming [34]. (g) Underactuated limb through curved beams [35]. (h-

i) Pinched tubes for directional variable stiffness [36]. (h) Concept of pinching thin-walled tubular

structures. (i) Changing direction of the flexible hinge.
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Figure 1.6: Summary of the paper’s chapters.

experimental tests, the efficacy of the concept is validated. We first study the rela-

tionship between the pinching force and tube deformation. Then, we provide insights

into how the combination of multiple pinching forces can be used to orient the major

axis of deformation and resulting flexure hinge (Fig. 1.5i). Finally, we experimentally

evaluate the suitability of the resulting hinge for use as a joint, i.e., its low stiffness

and high displacement under load. The final prototype is capable to generate and

recover flexure hinges at multiple orientations around the radial axis of thin-walled

tubes on demand.
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1.3 Methodology & Contributions

This thesis covers the development of different foldable mechanisms with various

objectives and working environments (Fig. 1.6). The common aspect shared between

all the robots included in this thesis is their need to interact with their working

environments. This often results in nonnegligible material deformations. This is

addressed, in this thesis, through a focus on modeling and control of these robots’

interactions with the world via machine learning techniques. Hence, I have been con-

sidering the effect of material deformation through all case studies presented herein.

This a unique characteristic of my work compared to other foldable robots mentioned

in the background that are design to be small in order to avoid material deformation

and in most cases, their interaction with the real-world has not been the addressed.

1. Increasing the lifespan of foldable robots (Chapter. 2)

• Focus: This study addresses some challenges associated with foldable

robots while focusing more on enhancing the lifespan of these robots so

they can be used in real world tests.

• Case Study Robot: A 2-DOF parallel mechanism at a relatively small

scale that preserves the robot’s rigidity.

• Novelty of Study: A 5-layer flexible hinge composite is introduced as an

affordable way to increase the lifespan of the foldable robots. By proposing

some ideas to address other challenges in foldable robots, i.e. layer ripping

and delamination, a 2-DOF spherical parallel mechanism is fabricated and

used to show the advantages of laminated techniques in developing fold-

able robots. As a case study, this robot is used as an affordable camera

stabilizer.
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2. Modeling laminated robot dynamics based on hinge characterization

and assumption of rigid links)1 (Chapter. 3)

• Focus: In this study, I have performed a thorough study on hinge charac-

terization for modeling the stiffness and damping coefficients of laminated

hinges made from polyester. This is a part of a bigger effort aimed to

provide a dynamic modeling engine for laminated robots.

• Case Study Robot: The most complicated robot used as a case study

in this robot is a 6-bar mechanism which is a spherical robot with three

rotational degrees of freedom.

• Novelty of Study: We have experimentally validated an extension of

Pynamics that can model a closed-loop (Parallel) mechanism. While we

assumed that the links are rigid, we modeled the stiffness and damping of

flexible Polyester hinges while addressing the effect of air damping on the

mechanism.

3. Compensation of Material Deformation in Soft Robots (Chapter. 4)

• Focus: I present a data-driven modeling approach for compensating for

material deformation in soft robots used in closed-loop control.

• Case Study Robot: A centimeter-sized 2-DOF Spherical Parallel Ma-

nipulator Fabricated via Laminate Processes.

• Novelty of Study: In this paper, we propose a workflow for compensation

of the material deformation effect on the kinematics of a soft robot by using

1This study is conducted with an equal contribution between me and Roozbeh Khodambashi. I

was responsible for running the tests and hinge characterization while he was in charge of extending

the dynamic engine (Pynamics) initially developed by Prof. Aukes
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a Deep Neural Network (DNN). In this workflow, we discuss how to tune

the DNN’s hyper parameters for best performance toward the material

deformation of the soft robots under loads.

• Novelty of Developed Robot: I have developed a centimeter-scale 2-

DOF Spherical Parallel. This mechanism is made by laminated techniques

which have resulted in affordable and easy manufacturing process.

4. Modeling and control of the thrust generation in still water by a

laminated sheet sinusoidal propulsion as robotic fish caudal fin (Chap-

ter. 5)

• Focus: This study focuses on the possibility of modeling the thrust of a

robotic fish’s caudal fin when it is fixed in a small tank and subjected to

reflected currents from tank walls. This study originates from a need to

have a robot interact with underwater objects and apply force to them.

Since the goal environment is a relatively small environment, the robotic

fish experiences turbulence from reflected water currents.

• Case Study Robot: I have developed a robotic fish that uses a flexible

caudal fin as the propulsion system. This fin is made by laminating layers

of polyester sheets together. After evaluating the effect of the fin’s shape

and thickness, the generated thrust is measured and controlled.

• Novelty of Study: In order to overcome the challenges caused by material

and environment uncertainties, I followed an experimental approach to

provide a data-driven model for the generated thrust. First, I have spanned

the gait’s parameter space to identify a feasible and controllable sub-space

that is resistant to uncertainty. Then, I modeled, identified and controlled
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the thrust generated by the caudal fin propulsion within that feasible sub-

space.

5. Training a 5-DOF robotic fish in the Presence of Uncertainties

Caused by Material Deformation and Working Environment (Chap-

ter. 6)

• Focus: In this study, we identify ways to search through a high-dimensional

space of a robot’s actuation parameters when there is uncertainty caused

by both material deformation and the working environment. This study is

motivated by extending the aforementioned fish design to add two pectoral

fins. This results in a robotic fish with 5 degrees of freedom and a gait

parameter space with a higher number of dimensions. This study switches

its approach from modeling to training. The goal of the proposed training

procedure is to identify a set of gait parameters that perform well against

a user-supplied performance objective while producing repeatable results

over many cycles in different environments.

• Case Study Robot: I have developed a fish-inspired robot, which com-

bines one caudal and two pectoral fins. The resulting five degrees of free-

dom may be described with a high-dimensional set of locomotion/gait pa-

rameters.

• Novelty of Study: I have developed strategies for identifying high-

performing sets of gait parameters with an online learning strategy (CMA-

ES). Our lab setup often differs from the intended goal environment in key

ways (turbulence, water speed, type of data-collection setup, i.e., force in-

stead of trajectory). This has also led to new strategies for identifying

gait parameter sets that have a high degree of correlation in performance
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between the lab and the intended operating environment. These efforts

have resulted in a design and optimization workflow for robots that works

well in niche environments, while permitting the majority of development,

data collection, and characterization in the lab.

• Novelty of Developed Robot: A novel fin design based on a 2-DOF

spherical mechanism is introduced. Its fabrication is facilitated by laminate

design concepts that minimize manufacturing costs typically associated

with spherical, parallel mechanisms.

6. Leveraging Variable Stiffness of Curvature-induced beams in Devel-

oping Soft Robots (Chapter. 7)

• Focus: Understanding soft material stiffness can be beneficial for design-

ing robots. In this study, a novel concept for using curvature to obtain

anisotropic buckling is presented. I demonstrate that tunable preferential

buckling during symmetric flapping results in positive net thrust by reduc-

ing the drag associated with the recovery stroke while keeping the drag

high in the power stroke. In this study, we first validate the efficacy of

curvature induced buckling for locomotion in different media. Then, we

develop a swimming robot that can switch between different swimming

gaits, e.g. rowing, flapping and undulation, by adding a mechanism to

actively adjust the buckling limits.

• Case Study Robot: The final prototype is a swimming vehicle that uses

curvature-induced buckling for thrust generation and can switch between

rowing, flapping, undulation, and turning swimming gaits.

• Novelty of Study: This study explores the concept of leveraging curved

beams and their preferential buckling in producing positive net thrust
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through symmetric input gaits. This study illustrates how using this con-

cept reduces the complexity of the system design and control for locomoting

through fluids such as air or water.

• Novelty of Developed Robot: The robot introduced in this study is

the first robot that uses curvature-induced buckling for cyclic thrust gener-

ation. The swimming robot made using this concept is capable of reaching

an average speed of 0.33 m/s using a symmetric swimming gait with two

fins. Furthermore, our results demonstrate that a single buckling fin can

be used to produce rotation. Also, by adding a mechanism to actively tune

the buckling limits of the curved beams, the swimming robot can switch

between different swimming gaits, e.g. rowing, flapping and undulation.

These studies have migrated toward data-driven modeling in order to remain

tractable unlike computationally expensive FEA-based approaches for modeling ma-

terial deformation and environment interaction, e.g. hydrodynamic in swimming

robots. However, few workflows exist that help researchers with experimentally ob-

taining the desired data-driven models. It is safe to say that when dealing with

black-box identification, researchers often report their chosen parameters and algo-

rithms without explaining the reason for their selections. For example, I have not

been able to find a paper proposing a procedure for selecting the number of hidden

layers in an deep neural network.

In the body of this dissertation, along with new ideas and design concepts, novel

workflows are proposed and used that can help other roboticists in similar research.

I believe one of my main contributions is tackling this issue is introducing different

workflows that can help researchers follow a procedure to perform their black-box

or gray-box identification. This includes training robots for working in real-world

21



environments while saving time and energy by designing and carrying out effective

experiments in a lab test setup.

22



Chapter 2

INCREASING THE LIFE SPAN OF FOLDABLE MANIPULATORS

This chapter addresses the advantages and challenges of laminated manufacturing

techniques, specifically mechanism durability. The goal is to evaluate how laminated

techniques may be used to replicate the performance of more traditionally manufac-

tured robotic manipulators. We propose a novel fabric-polyester hinge design with an

improved life-span. We additionally provide an overview of the design and construc-

tion workflow for a small laminated 2-DOF spherical parallel manipulator for use as

a camera stabilizer.

2.1 Introduction

Taking advantage of laminating techniques in the construction of robots can result

in considerable savings with regard to fabrication cost and time, but the challenges

caused by this technique must be addressed. This study aims to demonstrate the

feasibility of fabricating robotic manipulators via laminated techniques by tackling

the issues of durability, an artifact of the laminate fabrication methodology itself.

We propose a fabric-polyester hinge that increases the life span of laminated devices.

This hinge layer consists of a polyester layer laminated between two fabric layers.

Using this technique, a 2-DOF spherical parallel mechanism has been designed and

built. This mechanism is both affordable and durable, with an embedded IMU sensor.

While installing an IMU on mechanisms is fairly common, embedding the required

circuit via easy and affordable manufacturing processes and the demonstration of

using the embedded sensor can be beneficial to researchers.

Many construction methods exist for manipulators, but only a few groups inves-
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tigate the use of laminate techniques for making multiple degree-of-freedom robotic

manipulators, such as the delta robots presented in [37, 38]. These papers focus on

high-speed manipulators at the millimeter and centimeter scale, respectively. Lami-

nate fabrication techniques have been applied to a broad number of kinematic applica-

tions for locomotion, however. Planar four-bar mechanisms have been demonstrated

in flapping-wing applications [39], and 5-bar spherical linkages have been previously

used to drive 2DOF leg joints in micro-robotic walking applications [40]. A class of

mechanisms known as Sarrus linkages have been used in linear actuators [41] and

assembly scaffolds [42].

In general, the mechanisms fabricated with laminated techniques can be charac-

terized as low-mass, small-scale devices for which material deformation due to pay-

load is negligible or ignored, or devices that use exotic materials or less-accessible

processes to reinforce links and eliminate the issues that accompany compliant end-

effectors [10, 37]. Additionally, since this process is still used primarily within research

settings, few papers focus on design issues such as mechanism lifetime or durability

with a small number of exceptions [43, 44, 45, 46].

The case study for this project is a two degree-of-freedom(DOF) spherical parallel

manipulator [47]. Parallel mechanisms leverage multiple pathways to the ground to

achieve similar rigidity and precision to their serial counterparts, often with lighter

components. Parallel robots are also often able to achieve higher end-effector speeds

due to the fact that actuators can be proximally mounted on the fixed chassis, re-

ducing loads on distal joints. These benefits make parallel mechanisms a rich area

for research. Specific implementations include the Gough-Stewart platform [48, 49],

Delta robot [50], 3RRR Parallel Planar Robot [51, 52], and the 3-Degree-of-Freedom

(DOF) decoupled parallel robot [53, 54].

A number of studies have studied this mechanism’s workspace for the purpose of
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Figure 2.1: Increasing laminated hinge life span. (a) Layup of the proposed

fabric-polyester hinge. (b) Tensile test data of polyester and fabric-polyester hinge.

(c) Life span study on the hinges.

optimization[55, 56], understanding its singularities[57], and computing its forward

and inverse kinematics [47, 58] and dynamics. This mechanism has been used for

applications such as camera stabilization [59] and object tracking [60]; two such ma-

nipulators have also been used in tandem in an active vision system [61]. While none

of the research on this particular mechanism uses laminated fabrication techniques

for construction of the manipulator, they demonstrate the general usefulness of this

manipulator.

The chapter is organized as follows: Section 2.2 describes the laminated fabrication

technique and the challenges associated with it. In Section 2.3, we introduce solutions

for increasing laminated mechanisms’ stiffness and life span. A 2-DOF spherical

parallel manipulator is then introduced based on the above mechanism; its design
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and fabrication is then discussed in Section 2.4. The study concludes with some

remarks and suggestions for future work indicated by obtained results in Section 2.5.

2.2 Laminated Techniques and Their Challenges

A typical laminate layup consists of material layers which each perform separate

functions based on their material properties. This includes rigid materials, which

can be used to form rigid kinematic links, flexible materials, which can be used

used to create flexure joints at desired locations, and adhesive material, which is

used to selectively join neighboring material layers into a monolithic mechanism.

One commonly-used layer ordering is (rigid, adhesive, flexible, adhesive, rigid). The

symmetric order of these materials with the rigid material on the outside is thought to

reduce peeling and delamination between layers. The rigidity of the laminate can be

tuned by adjusting the thickness of the rigid layer, switching to a stiffer material, or

adjusting its planar offset from the layup’s medial axis. Additionally, other material

layers like copper can be added to the layup for conducting electricity.

A large number of materials including cardboard, acrylic, fiberglass, carbon fiber –

even aluminum or steel – can be used as a rigid layer, as long as they are compatible

with the available cutting techniques – water-jet, laser, etc – and bond well with

available adhesives. The material type and thickness of the rigid material provides a

vast design space in which one can balance rigidity, weight, cost, and durability.

The adhesive layer is responsible for gluing the rigid and flexible layers to each

other, and should be selected based on adhesive compatibility with neighboring ma-

terials. The flexure layer is used in order to provide a rotational joint in laminated

devices. Thus, it must be cuttable and robust against tearing and high forces, as well

as exhibit a long lifetime. Many polymers and thin metals may be used; in our study

we have selected polyester as an affordable, machinable, and flexible material.
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There are, however, drawbacks to using laminate techniques for manipulator con-

struction. One limitation is the finite range of flexure hinges, which are ultimately

limited to ±180◦ , and even less when considering the thickness of the laminate. While

using a ball bearing solves the problem in conventional mechanism designs, laminate

mechanisms are not able to continuously rotate about an axis, playing an important

roles in the design of laminate mechanisms. The length of the hinge region (‘L’ in

Fig. 2.2) can be increased to improve range of motion to reach the theoretical ±180◦

limit, but this sacrifices hinge stiffness. Shorter hinge regions result in stiffer hinges

and smaller ranges of motion.

Another consideration is the torsional stiffness of hinges. Long, narrow hinges can

easily twist along axes other than the intended joint axis. This condition is commonly

mitigated by widening hinges or using “castellated” designs [62].

Durability of the laminated material is another important consideration, and is

more often associated with low-cost materials such as cardboard and plastic. While

this can be addressed in rigid links by using higher-performance materials like fiber-

glass or carbon fiber, the durability of flexure hinges is more challenging. For this layer

we seek strong, flexible materials that go through desired deformations but do not

break easily [63]. The alternative is to use material like fabric, which trades off tor-

sional stability for lifetime. Delamination is often observed in laminate mechanisms

and can have a significant impact on device life span. This occurs when torsional

stresses or compressive forces exceed inter-layer pressure limits, causing laminate lay-

ers to separate or peel.
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2.3 Laminated Mechanism Stiffness & Durability

This section addresses two important issues currently limiting laminated robot

functionality, namely durability and stiffness.

2.3.1 Hinge Durability

As an affordable flexible material, we use polyester as the flexible layer in our

laminated mechanisms. Thin polyester hinges easily tear, especially in high-stress

situations. Hinge durability can be increased by using thicker material, but this adds

unwanted rotational stiffness and damping.

In this study a new hinge design is proposed to address the issues previously

discussed which impact lifetime and durability. This design consists of a polyester

sheet laminated between two layers of fabric using adhesive (Fig. 2.1a). Figure 2.1b

demonstrates the result of a tensile test performed on a fiber-polyester hinge and a

polyester hinge with the same design. The results confirm the higher fracture strength

of the fiber-polyester hinge. Moreover, the similar initial slop of the plots confirms

the consistency of stiffness between the two designs, meaning that the hinge stiffness

is mostly affected by the polyester hinge.

A lifespan test has been carried out to show how the fabric-polyester hinge can

endure more rotation before failing. Figure 2.1c shows the torque required to rotate

the hinge across a large number of rotations for both the fiber-polyester and polyester

hinges. Two different cases are studied in this test. In the first case, each rotation

consists of a motion between ±90◦. In the second case, the rotation is increased

to ±120◦ exposing the hinge to higher tension, as rigid parts collide with mounting

attachments during this motion. The results, seen in 2.1c show that, in the presence

of torsion, the polyester hinge quickly tears (2500 cycles), while the fabric-polyester
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Figure 2.2: FEA study on simple and Castellated hinge for an uneven dis-

tribution of load. (a) Under load deformation of Castellated hinge. (b) Stress

intensity through the flex layer for Castellated hinge. (c) Deformation of the simple

hinge under uneven load. (d) Flexible layer stress density for the simple hinge.

hinge endures more than 50,000 cycles before failure.

This fabric-polyester hinge introduces higher strength compared to a polyester

hinge. As a result, there is no need to increase polyester sheet thickness, which would

result in higher joint stiffness and damping. This independence between life span and

dynamic behavior is desirable, as each can thus be tuned separately.

2.3.2 Delamination

Although utilizing materials or adhesives with high peel strength is one solution

to reduce delamination, other strategies may be used to reduce its occurrence me-

chanically, via pressure applied to critical points. This is made possible by cutting

holes in the laminate near the ends of each hinge and using mechanical constraints

like rivets or other connectors to apply pressure to the layers. Though additional
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hardware can decrease the range of motion via interference, this can be mitigated by

adding corresponding clearance holes so that hardware does not interfere with joint

motion, as illustrated in Fig. 2.5a.

2.3.3 Stiffness compensation

In general, using thinner sheets of material will decrease system stiffness within

laminated mechanisms. While this can be mitigated several ways in rigid layers, in-

creasing the stiffness of hinges can negatively impact the dynamic behavior of mech-

anisms, e.g. requiring higher torques and bigger actuators to move the joints. One

of the biggest issues observed in these devices hinges are joints which twist along

undesired axes under torsion. While reducing hinge length can stiffen a hinge against

such torsional non-idealities, this decreases the joint’s range of motion. Previously, al-

ternative ‘castellated hinge’ designs have been proposed in [62]. This design reduces

unwanted twist by effectively reducing the length of the flexure joint, but exhibits

higher stress as well as a range of motion less than ± 180 degrees.

Figure 2.2 shows a Finite Element Analysis (FEA) for a simple and castellated

hinge, highlighting the difference in how these two hinges resist torsional loads due

to uneven force distributions on the distal end. The load is concentrated at the

bottom-right corner of the hinges in Figure 2.2 using the following equation:

F (x, y, z) = (x+ (5− y)) (2.1)

In this analysis the magnitude of the load (|F |) is adjusted between the two designs

in order to make hinge rotation equal. The results show that while twist is reduced

in the castellated hinge (Figs. 2.2a&c), the magnitude of the load is nearly 12 times

higher than the simple hinge. In addition, the castellated hinge has higher stress on
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its edges (Figs. 2.2b&d) which can damage the hinge over time and decrease its life

span.

2.4 Case Study of 2-DOF Spherical PM

2.4.1 Kinematic Synthesis

The system under study, first introduced as two degree-of-freedom spherical ori-

enting device in [64] consists of 5 rigid links connected by hinges, as shown in Fig. 2.3.

The axes of all hinges meet at a single point (Point O) forming a spherical linkage.
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The loop closure between the two distal, rotational links requires three constraint

equations, resulting in a two degree-of-freedom system. By co-locating the output

position of the output link’s (the end-effector) at the spherical mechanism’s origin,

the motion of the system can be considered effectively grounded, permitting the out-

put motion of the end-effector to be represented as pure rotation.

The transmission which relates the actuator’s motion to the end-effector’s rotation

may be computed using design parameters (αi) and the rotation between adjacent

body frames (θi), making the length scale of each link immaterial. Prior work by

Ouerfelli et al demonstrates mathematically that the workspace of the mechanism is

maximized if α2 = α3 = α4 = α5 = π/2 [55].

Based on these design parameters, the final design for the robot may be seen in

Fig. 2.3a. The mechanism’s actuators are aligned along x and y axes of the device’s

chassis (considered the world frame).

Although the angle corresponding to the grounded body (α1) does not affect the

workspace of the mechanism, it impacts its singular states. If α1 = 0, the mechanism

is singular across all inputs. Alternately, if α1 = π/2, theoretically, the mechanism has

minimum singularity within its workspace [55]. Based on that knowledge, αi = π/2

has been selected for all αi.

Though the mechanism is a 2-DOF mechanism, its end-effector experiences angu-

lar velocities in R3 as a function of its two actuated input velocities (even though one

of those 3 dimensions is always dependent). This is also reflected in the mechanism’s

inverse Jacobian matrix as well:
θ̇1

θ̇2

0

 =


sin θ3 0 − cos θ3

cos θ5 sin θ3
sin θ5

−sin θ4
sin θ5

cos θ5 cos θ3
sin θ5

− cos θ3 0 sin θ3



ωX

ωY

ωZ

 (2.2)

where θi are the hinge angles and ωk are components of the angular velocity of the
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end-effector.

We have considered the potential application of a pointing task, e.g. a laser

pointer, for the mechanism while formulating its kinematics (Fig. 2.3.b). Being a

rotational mechanism, the center of its end-effector only experiences rotation and no

translation. For formulating the mechanism kinematics, we consider a vector per-

pendicular to the plane of the end-effector link, which is co-linear with our “virtual”

laser beam vector ( ~N) shown in Fig. 2.3.b. Based on the global axes’ alignment with

servos, the inverse kinematics may be written as:

θ1 = tan−1(
NYNZ

N2
X +N2

Z

) (2.3)

θ2 = tan−1(
NX

NZ

) (2.4)

where θi are the actuator angles and Nk are the components of the unit vector per-

pendicular to the end-effector body. In the case of NZ = 0, the values of θi are θ1 = 0

and θ2 = π/2. The forward kinematics of the robot can then be formulated as:

NZ =

√
1

(t1 + t1t2)2 + t22 + 1
(2.5)

NX = t2NZ (2.6)

NY = (t1 + t1t2)NZ where, ti = tan(θi){i=1,2} (2.7)

By using the above set of equations, the workspace of the robot has been obtained

and may be seen in Fig. 2.3c.

2.4.2 Design

Figure 2.4 illustrates the design process in popupCAD. Based on this design tool,

after designing the mechanism’s main body, the hinges are placed corresponding to

the above angles for αi, along with any required attachment holes. The software then
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Figure 2.4: Graphical representation of the design process for 2-DOF spherical parallel

manipulators using popupCAD.

calculates the final device design, along with the initial and final cut files for each

layer.

The 2-DOF mechanism utilizes the fabric-polyester hinge proposed in Section 2.3.1.

An IMU is embedded on the mechanism’s end-effector for rotation feedback. A flexi-

ble circuit is used to route the electrical connection from the base to the end-effector,

so there are no wires affecting the mechanism’s performance. The final device con-

sists of a total of 11 layers, including two rigid fiberglass layers, two fabric layers, one

flexible polyester layer, one flexible circuit layer, and five adhesive layers. In order

to design the flexible circuit, the final device design is exported from popupCAD as

a vector-based DXF file and imported to DesignSpark PCB (As seen in Fig. 2.5c).

Using this software, a circuit is routed along the hinge pathway. The circuit is then

printed using a Xerox ColorQube 8580 Solid Ink Printer to deposit wax on copper-

clad polyimide. Then, the flexible circuit layer is wet-etched and laminated with the

rest of the device layers.
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2.4.3 Manufacturing

Figure 2.5a shows the final prototype with a camera attached to its end-effector.

This prototype has been built using 0.03-inch fiberglass sheets as a rigid layer and

0.005-inch polyester sheet as a flexible layer. A heat-activated acrylic adhesive from

Drytac1 is used to bond layers. The flexible circuit layer is copper-coated polyimide

from DuPont2. Two XM430 Dynamixel DC servos actuate the device. Two custom-

made 3D-printed Nylon horns attach and align the mechanism hinges to the servos,

as well as act as a safety coupling in the mechanism. The rest of the chassis is made

with acrylic.

1www.drytacstore.com
2https://www.dupont.com
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Figure 2.6: Different Applications Derived from the Proposed Mechanism.

2.4.4 Manipulation

The proposed mechanism has been used at several different size scales across dif-

ferent projects within our research. Figure 2.6 shows two exemplar applications.

First, this mechanism has been scaled down and used as pectoral fin in a robotic

fish (detailed in Chapter 6). The same fabric-polyester hinge with pressure-applying

hardware has been responsible for increasing the lifespan of the mechanism to over

9000 runs, each consisting of the robot swimming underwater for one minute (un-

dergoing many individual bending cycles); this demonstrates the hinge’s suitability

for underwater applications as well. In another study, the same mechanism has been

used at a larger scale to study the performance of compliant laminated mechanisms

under load (detailed in Chapter 4). This mechanism has sustained tens of hours of

tests over more than 24 months without delamination or tearing. To further demon-

strate the advantages of laminated techniques, this 2-DOF spherical mechanism has

been used to stabilize a camera mounted on its end effector. This is done based on

the orientation feedback from the embedded IMU (Adafruit BNO055). This demon-
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Figure 2.7: Camera Stabilization using the manufactured 2DOF spherical

PM. (a) Rotations in Yaw-axis. (b) .Rotations in Pitch-axis

stration is inspired by the study reported in [59], in which Safaryazdi et al. study

a number of control approaches for camera stabilization based on the same 2-DOF

parallel mechanism albeit manufactured using traditional machining techniques in

aluminium.

In order to use the mechanism for camera stabilization, a closed-loop controller is

applied, using a linearized kinematic model around Nx = Ny ' 0, Nz ' 1. Around

this point, Eqs.(2.5), (2.6), and (2.7) can be rewritten:

ti = tan(θi) ' θi{i=1,2} (2.8)

NZ ' 1 (2.9)

NX ' θ2NZ −→ NX

NZ

' θ2 (2.10)

NY ' (θ1 + θ1θ2)NZ ' θ1NZ −→ NY

NZ

' θ1 (2.11)

By considering small end-effector orientations about this point, Eqs. (2.10) and

(2.11) can be used to describe the linearized kinematic model as:
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ψ1

ψ2

 =

1 0

0 1


θ1
θ2


where, ψ1 ' tan(ψ1) =

NY

NZ

, ψ2 ' tan(ψ2) =
NX

NZ

(2.12)

In this configuration, the inverse and forward kinematics can be modeled as an

identity matrix and the the orientations of the end-effector in x and y-axes become

independent from each other. This simplifies the mechanism’s inverse and forward

kinematics significantly. In this project, we use a simple P-controller to keep the

end-effector horizontal. In order to evaluate the controller, another IMU is attached

to the mechanism’s base and the two signals recorded.

Figure 2.7 shows the orientation of the end-effector vs the mechanism frame when

the proposed controller is applied while the mechanism’s base is moved randomly by

a user3. It should be mentioned that the result is similar to the performance of the

rigid robot reported in [59] when a similar controller and sensor mounting is used.

2.5 Discussion

Laminate devices can often be manufactured faster and cheaper than conventional

robots. The construction of our mechanism took less than one and a half hours and

cost less than $30. Interestingly, reducing our mechanism’s size not only makes it

more rigid, but reduces overall cost. This contrasts with conventionally-fabricated

devices, where the cost increases due to the need for tighter tolerances and more

precise machining. This makes laminate techniques ideal for mass production of

mechanisms at small size scales.

A novel, 2DOF, spherical, parallel manipulator made via laminate techniques has

been introduced in this study, based on a class of similar devices manufactured using

3Shown in this video: https://youtu.be/IC7SgZzbM9w
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more traditional approaches. The advantages and disadvantages of using laminate

techniques have been discussed and several solutions have been proposed to address

the non-ideal performance of this device, including both fabrication and modeling

techniques. The study subsequently describes the particular design investigated in

this study, including a description of the angles used and the specific fabrication

choices made. This technique demonstrates steps towards using low cost, durable,

laminate, spherical, parallel mechanisms in place of high-precision but more expensive

devices. Future work will focus on manufacturing a scaled down prototype that

is small, durable, and lightweight to extend the application of next generation to

portable devices like gimbals, mobile robots and flying UAVs.
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Chapter 3

DYNAMIC MODELING VIA CHARACTERIZATION OF FOLDABLE HINGE

This chapter evaluates the possibility of describing laminated mechanisms’ dy-

namic behavior using rigid body dynamics. Laminate mechanisms are a reliable con-

cept in producing low-cost robots for educational and commercial purposes. These

mechanisms are produced using low cost manufacturing techniques which have im-

proved significantly during recent years and are more accessible to novices and hob-

byists. However, iterating through the design space to come up with the best design

for a robot is still a time consuming and rather expensive task and therefore, there

is still a need for model-based analysis before manufacturing. Until now, there has

been no integrated design and analysis software for designing laminate robots. This

chapter addresses some of the issues surrounding laminate analysis by introducing a

companion to an existing laminate design tool that automates the generation of dy-

namic equations and produces simulation results via rendered plots and videos. We

have validated the accuracy of the software by comparing the position, velocity and

acceleration of the simulated mechanisms with the measurements taken from physical

laminate prototypes using a motion capture system.

3.1 Introduction

Robotics is a difficult field for non-experts to enter, as traditional robots are expen-

sive to purchase and require a large amount of analytical skill and technical expertise

to design, build, and field successfully. Recently, advances in lower-cost fabrication

techniques have made easier for novices to prototype parts and mechanisms quickly

and easily using laminate techniques[40, 65]. While manufacturing knowledge has
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advanced due to new Computer-Aided Manufacturing (CAM) tools [66, 67], ana-

lyzing the motion and performance of such devices has lagged. This often involves

understanding the dynamics involved with operating a robot in an unstructured en-

vironment – an advanced technique unavailable to many.

This chapter aims at outlining a general method for automatically determining

the motion of laminate mechanisms with closed-loop kinematics while simultaneously

solving for valid initial conditions. This goal is addressed in several thrusts. In

Section 3.2 we describe the fundamentals of the simulation environment along with

some of specific modeling decisions made and challenges solved.

Section 3.3 introduces an experimental procedure for obtaining dynamic param-

eters for the hinges in a simple system and introduces methods of modeling new

hinges. Section 3.4 discusses our approach to confirming models with simulation. In

Section 3.5, we discuss simulation and experimental results on an extrapolated design

and conclude the chapter with thoughts on next steps and future work.

Laminate fabrication processes have made it possible for new generations of millimeter-

scale, lightweight, and low-cost robotic mechanisms to be prototyped with ease [40,

65]. These multi-material, multi-layer devices typically feature flexure hinges – com-

posed of Polyimide, Polyester, fabric, etc. – embedded in rigid laminate bodies,

which, when exposed at joints, make it possible to create precise mechanisms that

rely on material deformation to define the stiffness, damping, and thus, motion of the

system. In previous work we introduced PopupCAD [67, 66], a design environment

which automates the computations required to manufacture laminate devices. This

tool permits object-oriented design methodologies and considers the constraints of

laminate fabrication processing steps in order to produce manufacturable laminate

cut files. We have also discussed some of the challenges associated with simulation in

the past using PopupCAD to generate body and joint information [1], but not pro-
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Figure 3.1: A 6-bar laminate mechanism. The experimental setup shows the use of

OptiTack cameras to record the motion of this mechanism.

vided a general solution for kinematics involving loop constraints, a topology often

found in laminate systems.

The precision associated with fabrication and the assumption of pin-joint hinges

permits many of these structures to be approximated as traditional mechanisms; a

variety of work has been done for specific mechanisms to understand resulting kine-

matics of muti-bar closed-loop systems [68]. With these devices, however, material

selection plays a significant role in deflection of these devices, as material bending at

hinges can influence the stiffness and damping of the system as a whole [69]. Some

approaches have used structural engineering methods to understand system stiffness

and to solve the static force balances that these structures can accommodate given ex-

ternal loading [70, 71, 72], while others have looked at higher-order models for flexure

hinges [73]. These approaches are useful for understanding quasi-static deformation,

42



as well as the linearized system stiffness of a given configuration.

Due to inertia, high velocities, and intrinsic damping and stiffness present in the

joints, many of the devices being made must be considered dynamic. Kinematic

and stiffness-based solutions are not sufficient to understand device motion. While

deriving the equations of motion for laminates has been performed for specific de-

vices [74, 75], less has been done to use the properties of laminate systems in order

to understand and solve for the motion of devices in general. This is due to several

reasons. First, since they are manufactured in a flat state, laminate devices begin in

an inherently singular configuration and must be erected into a valid 3D shape on

one side or another of a singularity, as discussed in [75].

Due to these singularities, laminate mechanisms often have multiple potentially

valid configurations, which must be specified by the user or guessed by an automated

system. In addition, laminate mechanisms often form parallel, multi-bar mechanisms.

Such loop constraints are difficult to specify in general while maintaining valid and

consistent initial conditions across singularities.

3.2 Model Generation

We have addressed the issues mentioned in the previous section by introducing

a new suite of Python-based tools for simulating rigid-body dynamics in laminates.

This functionality is designed to work with several other tools we have previously

developed, specifically PopupCAD and Pynamics, a symbolic toolkit for generating

equations of motion. Pynamics is particularly useful for several reasons. It can de-

scribe vectors using symbolic variables, take time derivatives of vectors in multiple

reference frames, and can use Kane’s method to derive equations of motion sym-

bolically. This gives more insight about mechanism motion than numerical methods

because one can see the contribution of individual parameters to the evolution of each
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Figure 3.2: The schematic showing the steps for mathematically defining the closed-

loop constraints.

state variable.

To merge the capabilities of PopupCAD and Pynamics, we have made the follow-

ing additions. First, we have made it possible to read PopupCAD classes and extract

rigid body information, as well as detailed joint information, making it possible to

simulate a device drawn in PopupCAD. Second, we have added the capability to

detect and handle open and closed-loop mechanisms automatically, a necessity for

laminate devices. We have addressed strategies for determining valid initial condi-

tions. And finally, we have made it possible to render the motion of laminate bodies

directly to video or animate 3D motion within a Python-based GUI. Together, these

innovations make it possible to simulate a wide variety of laminate mechanisms.

There are four steps required to simulate a laminate mechanism: (i) importing

geometry data from PopupCAD, (ii) obtaining the dynamic model, (iii) adding kine-
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matic constraints, and (iv) integration and solving.

3.2.1 Importing from PopupCAD

Pynamics receives geometry data and material properties of laminate layers from

PopupCAD as a YAML file. Rigid bodies, hierarchical interconnections of bodies via

rotational joints, fixed (Newtonian) bodies and material properties are stored in this

file as Python-based classes after the YAML file is read by Pynamics. A hierarchical

tree represents the network of connected mechanisms in which rigid bodies are the

nodes and the joints connecting them are branches of the tree. Trees are good at

representing serial chains of bodies, but do not adequately capture the topology of

parallel mechanisms.

For such devices, we discuss adding closed-loop constraints in Section 3.2.3.

3.2.2 Obtaining the Dynamic Model

A reference frame is created for each body to represent its orientation in space

with respect to its parent. The orientation of each body is defined with all axes

initially aligned with the base frame. This frame is then rotated along a vector

defined by two joint coordinates between the bodies, with q defining the angular

displacement between the two. To clarify this, consider Fig. 3.2a which shows a 6-bar

laminate mechanism with each body numbered from 1 to 6. We use this mechanism

as a motivating example throughout the study due to its relative complexity, non-

symmetric angles, and closed-loop topology. Body 1 is defined in PopupCAD as the

fixed Newtonian reference frame. In this representation, body 1 is considered as the

parent and body 2 and 3 which are connected to it are considered as the children

of this parent. Body 1 is at the top of the hierarchy which is also called the first

generation. All bodies connected to body 1 are considered as the second generation.
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This hierarchy continues with one branch on the left which contains body 2 and 3,

and another branch on the right which contains body 5 and 6. Body 4 is the last body

in the hierarchy, which can be either connected to body 3 or 5 as shown in Fig. 3.2b.

We describe how this body is treated in the next section while considering kinematic

constraints.

3.2.3 Adding kinematic constraints and initial conditions

Kinematic constraints used to define the closed-loop mechanisms are introduced

using scalar, zero-length constraints obtained from two vectors.

While there are many possible techniques, referring to Fig. 3.2 c, we create a

dummy body 7 and attach it to body 3, assigning half of the mass and inertia of

body 4 to it. The mass and inertia of body 4 should also be divided by half. In this

way we have two rigid bodies attached to the ends of each serial chain that are meant

to represent the same single body.

We express the position of three points on body 4 and seven as

(
~V2 − ~V1

)
·
(
~V2 − ~V1

)
= 0, (3.1)

where ~V2 and ~V1 represent the distance from the origin to two similar points C3 and

P3 on body 4 and 7, respectively. This comes from the fact that the coordinates

of any point on body 4 measured from the fixed reference frame should match the

coordinates of the corresponding point on body 7 measured from the same reference

frame. A total of three equations representing three non-co-linear points are needed

to fully constrain the position and orientation of the bodies together. For multiple

loops, the process should be repeated for each loop of the mechanism. However, in

this study we have considered mechanisms with only one closed loop, and cannot

assume that our method will work without modification when extended to multi-loop
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kinematic chains. Next, we add the forces resulting from springs, dampers, gravity

and external torques acting on the joints, using parameters supplied by the YAML

file. Initial conditions are provided as a vector containing the relative angle between

each pair of connected bodies (q) and their relative angular velocity (q̇). Therefore, in

the case of the 6-bar mechanism the vector of initial conditions contains 12 elements.

In Sec. 3.2.4 we describe our method for finding a valid set of initial conditions.

3.2.4 Integration and solving

Since joints in laminate mechanisms are created via flexible material layers, lami-

nate mechanisms typically emerge from fabrication in a singular configuration. After

fabrication, an assembly step typically erects a flat laminate into a three-dimensional

shape. Resulting mechanisms are then typically constrained or operated in condi-

tions which prevent singularities from occurring. However, for simulation purposes, a

set of valid, non-singular initial conditions must be determined in order to integrate.

Using a traditional Lagrange formulation to constrain closed-loop mechanisms in the

presence of initial-value singularities is a problem, because the introduction of any

non-zero initial value in state variables produces a permanent error in position con-

straints. To reduce this error and to deal with singularities simultaneously, we use

Baumgarte’s method [76] which was developed further by Masarati [77].

Using constraint equations with Baumgarte’s method eliminates invalid initial

value guesses over successive simulation steps, with the α and β terms (introduced

in [76]) behaving like a second order system to minimize error over successive in-

tegrations. Constraint stabilizing is controlled by α and β-influenced terms, which

simultaneously eliminate error and constrain the closed-loop mechanism. α and β

were determined by trial and error for the 6-bar mechanism studied in this study. For

these parameters, 300 time steps are needed for the constraint error to approach zero
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within desired tolerances.

Simulation of the mechanism occurs in two steps. First, is an initialization step

during which the set of constraints are applied and the user provides an initial guess

of the initial values. This can be a very rough guess about the value of one of

the joint angles, as Baumgarte’s method will produce a valid configuration after

sufficient cycles. During the simulation, our algorithm solves for all the angles and

a valid configuration is reached eventually. Initial joint angles are used as the initial

conditions for the first simulation step. The mechanism is then simulated for 900 time

steps to make sure all the error has reached to zero. During this time, the mechanism

reaches a valid non-singular configuration under the influence of gravity, joint forces,

and initial-value constraints.

The final values of the joint angles from the first step are then fed into the sec-

ond simulation and used as valid initial conditions to determine the motion of the

mechanism. In this second simulation, Baumgarte’s method is not used to increase

simulation speed. This is possible because initial error has been eliminated, and

what little error gets subsequently introduced is negligible with respect to the valid

configuration.

3.3 Hinge Characterization

This section describes tracking the motion of a simple pendulum in order to map

design variables to stiffness and damping in a parametric hinge joint, for extending

simulations to new and more complex systems. Because stiffness and damping are

highly dependent on the geometry and material properties of joints, we obtained

experimental values for the complex interaction between bending materials operating

in real-world conditions where these devices are expected to be used. Doshi et. al [74]

retrieves joint parameters by using spring and damping coefficients using a standard
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second-order system, and applies these to the hand-coded dynamics of a given five-

bar mechanism in a vacuum. The methods used in this study work in air and extract

model parameters using the dynamic model of our system described in Section 3.3.4.

In addition, this study uses different material models in order to more closely match

experimental data.

3.3.1 Experimental setup

Fig. 3.1 shows the experimental setup for motion data capture. Motion of the

mechanism was recorded using two OptiTrack Prime 17W motion tracking cameras

at 360 fps rate. Stiffness and damping coefficients were extracted by fitting a model

to the recorded data. A variety of prototypes were made by varying the dimensions

of the joint. The thickness of the hinge material was kept constant for all prototypes.

We used damped natural oscillations of a simple pendulum to extract damping

and stiffness of a single hinge as its design is varied over several design parameters.

A Fourier Series (FS) was fitted to each oscillation output and analytic derivations

on the fitted FS were applied in order to obtain the angular velocity and angular
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acceleration of the pendulum. This method is preferred due to the amplification of

noise typically found in derivatives of digital position data.

The hinge layer used in this study was a uniform, rectangular flexible Polyester

sheet with the thickness of 0.127 mm. The most important notations used in the

characterization of the hinges in this study is shown in Table 3.1. Figure 3.3 illustrates

the model considered for the hinges as a single pendulum oscillating, where, IG, m, r,

are inertia about the center of mass, mass and distance between center of mass and

center of rotation, respectively.

Since the test was conducted in air, drag from the moving body added to the

damping of the system. In order to achieve a more precise model, both the material

damping bm and air ba damping was taken in account and the overall damping of the

hinges b was calculated as b = bm + ba.

3.3.2 Material Test

As the flexible material has the most important role in hinge characteristics, a

stress-strain curve was obtained experimentally for that material. The 0.127 mm-thick

flexible polyester used to create flexure hinges was tested according to ASTM D882-12

Table 3.1: Hinge characterization Parameters used in this study

Design Variables Notation Dependent Variables Notation

Hinge Width w Overall Damping b

Hinge Length l Stiffness k

Cross-sectional area a Air Damping ba

Material Damping bm
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standard for tensile properties of thin plastic sheeting [78]. Specimens were prepared

according to this standard and tightened between two smooth, hard-rubber jaws of the

tensile testing machine since serrated grippers created resulted in premature failure

of the specimen.

A typical stress-strain curve for the hinge material is shown in Figure 3.4. A line

indicating the linear region is shown in red. The toe compensation was made based on

the standard in order to remove the effects of take-up of slack and alignment or seating

of the specimen at the start of the movement of the jaws. The test was repeated for

11 specimens and the average Young’s modulus and yield stress obtained was 4383.27

MPa and 42.84 MPa respectively. Using the yield stress calculated from tensile tests,

and referring to the Eq. 3.2, we calculated the maximum allowable load Fmax that can

be applied to the cantilever beam before it goes under plastic deformation. Having

Fmax, we then calculated the maximum allowable deflection δmax and angle φmax using

Fmax = (σmax × b× t3)/(6L) (3.2)

δmax = (Fmax × x2 × l)/(2EI) (3.3)

φmax = (Fmax × x× l)/(EI). (3.4)

The maximum allowable angle of deflection in order to remain in the linear region of

the stress-strain curve is 1.96 degrees. The variation in joint angles in real laminate

mechanisms are much higher than this value. Therefore, the material used as the flex

layer undergoes nonlinear deformation which is considered as a source of error in the

analysis of the system.

3.3.3 Repeatability Test

As the material shows high nonlinearity in the range of use in our designs, we

were interested in understanding the repeatability of the physical system. Figure 3.5
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Figure 3.4: Flex layer material tensile test.

depicts the rotation of a laminate pendulum in three tests conducted minutes apart.

As shown in the figure, although the oscillations seem close, small differences can

be seen in both amplitude and wavelength. In order to provide better insights, the

experimentally-derived values of the k and b are shown in Table. 3.2. These values

were using the methods presented in Section 3.3.4. Based on this data, a considerable

noise may be expected in the physical system. To reduce this effect, data from 5 tests

were considered for each design.

3.3.4 Modeling Single Pendulum System

A single pendulum has been chosen in order to model the oscillation of a simple

hinge (Fig. 3.3), as mentioned previously. Moreover, a set of torsion springs and

dampers were considered to model the effect of k and b. Based on the following

model, the equation of motion of a simple hinge can be written as

(IG +mr2)θ̈ = −kθ − bθ̇ −mgsin(θ) (3.5)
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Figure 3.5: The repeatability test in behavior of a simple hinge.

Where the variable notations are consistent with fig. 3.3. Values of all parameters

in (3.5) except the stiffness and damping coefficients of the system are provided by

either experimental data (θ, θ̇ and θ̈) or are extracted from models in PopupCAD

(IG, m and r ). A least-squares identification method was used in order to obtain

the values of k and b. Studying the change in values of the latter criteria by design

parameters and finding simple models to explain them is the subject of what follows.

3.3.5 Identification of Damping Coefficient & Stiffness

Factors that cause damping and stiffness consist of the hinge layer material being

stretched and compressed in oscillation of the hinge. As a result, hinge width and

length have play a large role on the latter criteria. For damping, as well as material

damping (bm), drag experienced by the body increases the overall damping b of the

system, slowing the system and reducing oscillations faster than when in a vacuum.

As air damping can be affected by the cross-sectional area of moving links, it is an

important phenomenon to model.
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Figure 3.6: The effect of different cross-sectional area on damping coefficient.

Effect of Air-damping

The effect of air damping was studied by using seven designs where moving bodies

had constant hinge designs but differing cross-sectional area. The effect of changing

mass due to cross sectional area was accounted for by the m fed into the simulation

for each design. Figure 3.6 depicts the change in the damping coefficient when the

cross-sectional area of the moving body is changed. Based on the data, by decreasing

cross-sectional area, damping coefficient also decreases. The behavior the system can

Table 3.2: The repeatability test results in hinge characteristics.

Number of

Test

Stiffness

k

Damping

Coefficient b

1 0.067 2.791× 10−4

2 0.0701 2.974× 10−4

3 0.0688 2.894× 10−4
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Figure 3.7: Effect of hinge width on damping coefficient and stiffness of the hinge.

be described by following second-order model fitted to the experimental data

b = 2.34× a2 − 0.0042× a+ 1.8e− 5 (3.6)

Effect of Hinge Width

In order to study the effect of hinge width on the value of k and b, five specimens with

same body design (same cross-sectional area) were built and experimentally tested.

In order to minimize the effect of torsion across a wide range of hinge widths, smaller-

width hinges were designed with gaps in the middle and constant exterior dimensions

across all designs. Figure 3.7 depicts the effect of the hinge width on k and b. The

second order model for damping and stiffness is given by

b = 0.0166× w2 +−3.3197e− 4× w + 1.9812e− 5 (3.7)

k = 3.0857× w2 − 0.1361× w + 0.0003 (3.8)

Based on the obtained results, an increase in the width of the hinge will increase the

damping coefficient and stiffness of the hinge.
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Figure 3.8: Effect of hinge length on damping coefficient and stiffness of the hinge.

Effect of Hinge Length

The effect of hinge length on k and b was studied across five specimens where the total

hinge length was increased (Fig. 3.8) which resulted in second order models given by

b = 3.6381× l2 − 0.0297× l + 8.3506e− 05 (3.9)

k = 746.6667× l2 − 7.4590× l + 0.251 (3.10)

The obtained results show a decrease in the value of the damping coefficient and

stiffness as length increases.

Comprehensive Model

A comprehensive model was developed which takes into account all three variables

(l,w, and a), permitting one to estimate joint properties throughout a three-dimensional

design space. Figures 3.9a and 3.9b depict the predicted b and k values vs the exper-
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Figure 3.9: Comparison of the experimental and modeled hinge damping coeffi-

cient (a) and stiffness (b).

imental values obtained for all specimen.

b =− 0.8565× a2 + 0.0129× a+ 2.0822× l2 − 0.227

× l + 0.0408× w2 − 0.0023× w + 5.0855e− 5 (3.11)

k =762.5397× l2 − 7.5305× l − 1.4444× w2+

0.4298× w + 0.0073 (3.12)

The obtained model for b has 2.39e−6 (4.01%) as the Mean Absolute Error (MAE),

while k values obtained model has 2.59e−4 (1.39%) as MAE.

3.4 Model Verification

In order to evaluate the output of the Pynamics in comparison to experimental

data, a complex case-study was proposed. Models obtained from hinge characteriza-

tion were used on a six-bar linkage and simulated in Pynamics, as well as prototyped

and tested experimentally, then compared against each other. Experiments were con-

ducted in air, which, as previously seen, this could lead to high variability test-to-test.

However, it also permits the effect of air to be studied, bringing our hinge models
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closer. As discussed in Section 3.2, in order to verify the simulator, a 6-bar spherical

mechanism was considered as the case-study (Figs. 3.1 & 3.2).

In order to sample data from mechanism oscillation, the mechanism was posi-

tioned in a known initial configuration, released, and allowed to settle into a final

static configuration. While sampling experimental data from the single pendulum

was straightforward, the data provided by the cameras for this case study demands

additional data processing. Motion-tracking cameras require three markers to be

mounted to each rigid body. Thus, in order to get the information of position and

orientation all the bodies, 18 markers were used to determine the 6 rigid bodies of

the mechanism. Marker position and mass information was added to PopupCAD as

an additional 2D material layer in order to account for the added inertia.

The raw orientation data provided by the cameras were based on quaternions. In

other words, data received from the cameras and Motive SDK were represented as unit

quaternions for each rigid body. Since the joint axes for several of the bodies change

with respect to the base frame, standard quaternion operations were used to retrieve

the angle and axis of each joint over time and compared against the simulation [79].

This was done in order to produce consistent results across the simulation – which

reported state variables as the angles between adjacent bodies – and the experiment

– which reported the quaternions of each body with respect to the base frame.

The relative quaternion between two adjacent reference frames (qDi
) has the fol-

lowing relationship with quaternions of ith body (qi) and (i+ 1)th body (qi+1):

qDi
= qi+1 ∗ q−1i (3.13)

where, (∗) is quaternion multiplication [79]. As implemented in code, the obtained

angle of rotation using the formulation of [79] was always positive and did not

change sign when the relative frame displacement went negative; instead the axis of
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Figure 3.10: Pynamics output verification based on 6-bar mechanism. (a) Pynamics

performance regarding θ5. (b) Pynamics performance regarding θ6

rotation changed direction. Therefore, in order to achieve a consistent axis and angle

of rotation across all time, the direction of the axis was continually monitored so that

when the direction of the vector flipped, the rotation angle was negated too.

3.5 Results & Discussion

Figure 3.10 illustrates the comparison between simulated and experimentally-

recorded joint angles attached to body 4 of the mechanism in Figure 3.2. Despite

some error, the simulation was able to properly predict the dynamic behavior of the

end effector. In particular the amplitude and wavelength of oscillations were well pre-

dicted for θ5 and θ6. Table 3.3 compares all of the mechanism’s predicted equilibrium

angles against experimental data. Small differences between modeled and experimen-

tal equilibrium configurations can be seen in this table, as well as in the dynamic plots

in Figure 3.10. This is partly due to our experimental method – we used dynamic

data to estimate damping and stiffness rather than steady-state force/displacement

balances. In addition, material creep, non-uniform material thickness, viscoelastic

behavior, and operating in the non-linear part of the stress/strain curve are other
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Table 3.3: The equilibrium position of Pynamics output and Experimental results in

6-bar mechanism

Joint Pynamics (rad) Experimental data (rad)

θ1 0.280 0.398

θ2 0.056 0.113

θ3 0.431 0.502

θ4 -0.470 -0.737

θ5 -0.157 -0.161

θ6 -0.193 -0.166

significant reasons why this deviation may be present.

In this study, we have developed a suite of tools which permits the dynamic simu-

lation of laminate mechanisms by solving several challenges common across laminate

devices. The resulting code integrates well with existing tools, now making it possible

for a novice user to easily and quickly generate manufacturing files that are ready to

be sent to machining tools with assurance that a design will work. This can help elim-

inate time consuming and expensive prototyping trials which are otherwise needed to

validate designs without the proper analysis. While we have verified our simulations

by comparing them to experimental results obtained from a simple pendulum and

a spherical 6-bar mechanism, a variety of other open and closed loop designs can

been simulated as seen in the accompanying video. This verifies that the automatic

generation of closed loop mechanism dynamics is feasible and accurate across a wide

variety of designs that are extracted from sketched mechanisms in PopupCAD.

We have characterized the hinges that are an essential part of laminate mechanisms
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and extracted the stiffness and damping parameters which are needed for our dynamic

simulation environment. Our characterization method is simple and repeatable and

therefore can be used to characterize other flexible materials used to manufacture

the hinges. We have taken the effect of air damping in our model since many of

the laminate mechanisms are operated in air and this makes our simulation results

closer to real working conditions of these mechanisms. The hinge parameters can be

extrapolated to any new hinge design with different length, width and cross-sectional

area.

Our simulation environment automates the task of generating symbolic equations

of motion, integrating and solving those equations, and generating numerical and

visual output. We have considered laminate mechanisms consisting of serial chains

and one closed loop. Future work will include mechanisms with more than one closed

loop, topological optimization of kinematics for faster simulation, considering contact

between mechanisms and the ground, as well as making it possible to integrate closed-

loop controllers into the simulation.

While the use of Baumgarte’s method to eliminate initial-value errors was effective,

it requires manual selection of α and β terms. We hope to migrate to techniques which

do not require manual tuning in order to eliminate parameter selection in the future.

Material tests showed that we were using flexure material outside of its linear

regime. Further testing is required to determine if the stresses involved would lead to

premature failure of these hinges. Future mechanisms may resort to fabrics or thinner

materials to minimize stresses in flexure hinges.

With those future improvements, we see this tool being used to assist novice

robot designers by optimizing suggested kinematics based on stated performance goals

which are then confirmed through simulation. Ultimately, we hope this tool helps

to connect design and analysis for novices to make it possible for them to design,

61



simulate, and prototype complex robots for tasks in unstructured environments.

62



Chapter 4

COMPENSATION OF MATERIAL DEFORMATION USING ADAPTIVE

CONTROLLER (CASE STUDY OF 2-DOF SPHERICAL PARALLEL

MECHANISM)

In this chapter, we address how to deal with the challenges of working with large

scale foldable manipulators using a foldable two-degree freedom spherical parallel

robot manufactured with laminated techniques as a motivating example. The slen-

der links typically used within foldable, origami-inspired, and laminate mechanism

designs are highly susceptible to deformation under external loading, especially at

centimeter scales. At millimeter scales and smaller, laminate devices may often be

considered rigid due to dimensional scaling laws, but at larger scales foldable mech-

anisms enter the territory of soft robots. We show how material deformation under

load affects the performance of the robot moving throughout its workspace. We use a

supervised deep neural network to model and compensate this deformation; for that,

we introduce a workflow to experimentally tune the hyper-parameters and train the

deep neural network. Then, we propose using transfer learning between two deep

neural network for a closed loop control that uses on-line training to adapt to new

deformations. Finally, we experimentally validate its ability to compensate for ma-

terial deformation when different loads are applied to the robot’s end-effector as well

as highlighting the efficiency of this workflow in modeling inverse kinematics. Using

this procedure, we successfully obtain a closed-loop controller that keeps mean abso-

lute path tracking error under 7 percent across the desired path’s corresponding Euler
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Figure 4.1: Poor efficacy of a laminated 2-DOF parallel mechanism caused by its

end-effector deflection.

angles.

4.1 Introduction

Laminate fabrication techniques provide an affordable and rapid alternative to

traditional rigid robot prototyping, and have been applied in a variety of micro- and

millimeter-scale robotic mechanisms. However, the use of long, slender beams within

laminate systems can produce significant amounts of error in end effectors, even when

stiffer materials are employed. To address this, parallel mechanisms have often been

used in laminate designs to stiffen the devices and permit actuators to be mounted
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proximally – lowering end effector load. Despite the improvements in stiffness, in the

case of higher loads and larger dimensional scales, traditional kinematic formulations

that neglect link flexibility will be insufficient for describing system motion.

The same phenomenon is observed in the field of soft robotics, where computa-

tional solutions to the problem of controlling the end effector location under load are

based upon subdividing the material into finite number of small elements, which can

often lead to a reduction in performance caused by higher computational cost. This

has been solved by creating reduced-order Finite Element Analysis (FEA) models

which have a limited number of cases been used within controllers. Still however, this

is an expert tool in which the order of model reduction affects the precision and relies

on domain expertise in order to successfully implement and optimize them on each

new design [80, 81, 82, 83].

In contrast with the approaches used to solve soft robotic control problems, the

goal of this study is to investigate alternative strategies that simultaneously allow us

to represent and solve for the complex inverse kinematics of parallel mechanisms and

the position error due to defamation under load for moderately-compliant laminates.

This is possible because the motion of laminate robots is still primarily dictated by

the geometric relationships of flexure hinges rather than the deformation of stiffer

links, making traditional, rigid-link models a good starting point for representing

these mechanisms.

In this study, we present a data-driven modeling and control approach for com-

pensating for material deformation and flexibility in large-scale laminate robots under

load. By proposing a workflow, we investigate the proper structure for putting a con-

troller together using Deep Neural Networks (DNNs), as well as the impact of different

hyper-parameters on the accuracy and precision of our results. We, then, close the

control loop by adding a second DNN in the feedback loop and using online training
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and transfer learning between two DNNs with the same optimal hyper-parameters.

This enables the controller to adapt to new deformation under different loading condi-

tions. Using a 2-DOF parallel mechanism we show how the mechanism performance is

negatively impacted under external load in a potential application of a pointing task,

e.g. a laser pointer (Fig. 4.1); we then propose a workflow to obtain a closed-loop

controller to increase closed-loop system performance.

Soft robots offer the potential to extend the benefits of robotics to applications

that have not previously been approachable with rigid robots [84]. However, further

progress n the field of soft robots will also increasingly depend on advancements in

feedback control, machine intelligence, and computational modeling since the con-

ventional methods in control are not applicable to soft robots with infinite number of

degrees-of-freedom [2]. A number of different control approaches have been proposed

and validated. One of the most precise approaches is using FEA. In [15], model order

reduction of FEM using snapshot proper orthogonal decomposition is proposed in

order to achieve a reduced-order model with lower calculation effort. Piecewise Con-

stant Curvature (PCC) approaches are vastly used in numerous studies to model the

configuration of soft robots. A linear time-varying Gaussian model is proposed in [16]

for dynamic modeling. This model alongside an LQR based Gaussian controller and

a Kullback-Leibler divergence policy is used to command the robot’s end-effector to a

desired point after several iterations while taking care of both dynamics control and

path planning. A soft robotic arm driven by a SMA coil is controlled in [19] using

PID controller when the curvature is measured using Hall sensors under assumption

of constant curvature of each segment. Santina et al. dynamically controlled a pla-

nar soft robotic arm while it is interacting with the environment by choosing a PCC

approach and modeling each segment by a rigid limb [17]. The study is extended to

3D by modeling each segment with an rigid limb in [18]. In both cases the masses,
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stiffnesses and damping coefficients of each limbs must be experimentally identified.

A variable length multi-section continuum method is proposed and experimentally

validated in [25, 26] A combination of PCC and FEA model-reduction policy is pro-

posed in [14]. Obtained results show that the combined policy is more precise than

PCC and faster, but less accurate comparing with FEA. Our strategy is to propose a

data-driven approach that has lower computation cost and can achieve higher control

frequency while no being effected by larger deformation under loads. Moreover, since

laminated robots can be used in conjunction with common actuation strategies such

as servos, we can avoid the complex dynamics massociated with modeling pneumatic

systems.

Parallel mechanisms are an attractive approach to designing laminate foldable

systems. Parallel mechanisms take advantage of multiple pathways to the ground,

often making them more rigid and precise than their serial counterparts. Moreover,

parallel robots are usually capable of achieving higher speeds due to the fact that

actuators can be proximally mounted on the fixed chassis, reducing loads on distal

joints. These benefits make parallel mechanisms a rich area for research. Specific

implementations include the Gough-Stewart platform [48, 49], 3RRR Parallel Planar

Robot [51, 52], and the 2-DOF spherical parallel manipulator [47], which is the case

study for this research. Many studies are conducted on this mechanism’s workspace

optimization [55, 56], singularities[57], and forward and inverse kinematics [47, 58]

and dynamics. This mechanism has also been the basis for camera stabilization [59]

and object tracking [60] applications.While none of the research on this particular

mechanism includes soft robots, they are proof of the general usefulness of this ma-

nipulator.

While there are many construction methods for manipulators, few studies use lam-

inating techniques for making high degree-of-freedom robotic manipulators. Some
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recent exceptions include the delta robots presented in [37, 38]. These studies fo-

cus on high-speed manipulators at the millimeter and centimeter scales, respectively.

Laminate fabrication techniques have already been applied to a broad number of

kinematic applications, as well. Planar four-bar mechanisms have been demonstrated

in flapping-wing applications [39], 5-bar spherical linkages have been previously used

to drive 2DOF leg joints in micro-robotic walking applications [40], and linear mo-

tion has been enforced using Sarrus linkages in linear actuators [41] and assembly

scaffolds [42].

Neural Networks (NN) have been used to solve a variety of complex problems

across a number of fields. Many attempts have been made to apply neural networks

to control problems, such as the control of complex, nonlinear plants such as un-

derwater vehicles [85], ships [86], and robotic manipulators [87, 88, 89, 90]. Given

the complexity of these nonlinear systems, traditional linear models are often inade-

quate for system identification and modeling. Neural networks have the capability to

characterize those nonlinear relationships directly through the data during the learn-

ing process. The results from those attempts have demonstrated the validity of the

NN-based adaptive control.

While neural networks have been studied in depth for analyzing both forward

kinematic and inverse kinematic problems of rigid robots [91, 92, 93], to the knowledge

of authors, NN-based closed-loop control has not yet been introduced for analyzing

and compensating the material deformation in foldable or soft robots.

4.2 Workflow

The workflow introduced in this study focuses on compensating for error caused

by material deformation in foldable robots using DNN. In this workflow, as seen

in Fig. 4.2, we also include insights for tuning DNN hyper-parameters to enhance
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Figure 4.2: Diagram of the Proposed Workflow

compensation for material deformation when the system is under load. We propose

using the “retraining estimation error” and “retraining time” as the criteria for tuning

DNN hyper-parameters such as the “number of hidden layers”, “activation function”,

and “optimization solver”. In the proposed workflow, we propose sampling two sets

of data from the foldable robot’s inputs and outputs. The first set is a large, compre-

hensive set of data of the undeformed robot while it is moving through a large portion

of its workspace. The second set of data is sampled from the deformed robot. This set

is sampled in order to be used in the evaluation of the learning algorithm’s ability to

adapt to the material deformation in transfer learning; thus, it can be smaller in size

compared to the first set of data. Each set of data is then divided into two subsets of

training and test data. The training data is for training the DNN, and the test data

is used to evaluate the trained model’s performance.

Among the hyper-parameters of a DNN, our current workflow focuses on select-

ing the number of hidden layers, activation function, and optimization solver. While

the workflow can be extended for other hyper-parameters such as learning rate (α),

these three hyper-parameters are selected to reduce the study’s complexity and ease

its flow. In order to select the best DNN hyper-parameters for modeling the robot’s

behavior, the three-dimensional space of these hyper-parameters are spanned in or-
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der to evaluate the DNN performance regarding the criteria of estimation error and

retraining time.

For each set of hyper-parameters, the DNN is first trained based on the initial set

of undeformed motion data. Then, the pre-trained weights are used as to retrain the

DNN with the second set of data sampled from the deformed robot. In this workflow,

the DNN is retrained several 20 times and the overall retraining time and estimation

error of the final DNN are recorded as the DNN retraining time and estimation error,

respectively. By repeating the retraining numerous times, we increase the chance of

finding the set of DNN hyper-parameters that are most resilient to overfitting. By

following these steps, we obtain a DNN-based model that provides the best estimation

and is able to retrain and adapt to material deformation in the shortest time while

avoiding overfitting.

In order to achieve a high-performance controller, the DNN retraining history –

the number of historical samples used for retraining – must also be tuned in order

to increase the adaptability of the controller minimize while avoiding overfitting. A

larger retraining history increases the adaption time when a new material deforma-

tion occurs but also increases the retraining time and estimation error for robots

with complex or non-linear behavior. Smaller retraining histories are insufficient to

learn the effect of material deformation, and results in overfitted models incapable

of controlling the robot through its whole workspace. Hence, the final step of the

proposed workflow is dedicated to experimentally evaluate the performance of the

selected DNN in controlling the deformed robot across different retraining history

length. We propose considering the “estimation error” and “overfitting issue” as the

criteria for tuning the DNN retraining history parameter.

It should be mentioned that the above workflow can be used to effectively model

the error between the analytic model of the undeformed foldable robot and the de-
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formed robot or the overall behavior of the foldable robot. In this study, we have

experimentally shown that the proposed workflow is able to provide a controller for a

foldable robot by estimating either the material deformation error and the non-linear

inverse kinematics.

4.3 DNN hyper-parameters

Many neural networks (Fig. 4.3a) utilize the back propagation algorithm for train-

ing. The ability to use non-linear activation functions in DNN makes it different from

a linear perceptron. Training a NN consist of series of forward and back propaga-

tions. The forward propagation estimates the output of NN. With back propagation,
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input data is repetitively fed back into the neural network and the error is established

by comparing the desired output with the input. This error is then fed back to the

neural network to adjust the weights and bias (W T , and b) so that the error can be

reduced and the desired output can be reached. One important hyper parameter of

DNN is its neurons activation functions. In this study, the following functions have

been studied as the Neural network layers’ activation function:

Identity: f(x) = x (4.1)

Logistic sigmoid: f(x) =
1

1 + exp−x
(4.2)

Hyperbolic tan: f(x) = tanh(x) (4.3)

Rectified linear unit function: f(x) = max(0, x) (4.4)

Other important hyper-parameters include the number of hidden layers and the

algorithms selected for optimizing weight. In this study, two different algorithms

have been evaluated: (i) the quasi-Newton algorithm of Limited-memory Broyden-

Fletcher-Goldfarb-Shanno (LBFGS) [94], and (ii) Adam: A method for stochastic

optimization [95].

In order to maintain the chapter’s flow and reduce complexity, we decided to search

only within the three-dimensional space of the above parameters for an optimal set of

hyper-parameters. We subsequently fixed the learning rate (α) to a small value and

considered the number of neurons in all hidden layers consistent with the number of

neurons of the input layer (Fig. 4.3a).

4.4 2DOF Spherical Parallel Mechanism

In this study, a 2DOF spherical Parallel Mechanism has been selected as the

case study due to its highly non-linear but easily formulated inverse and forward

kinematics. This mechanism has already been introduced as two degree-of-freedom
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spherical orienting device in [64, 61], and based on kinematic synthesis analysed by

Ouerfelli et al. that maximizes the workspace of the mechanism [55].

The device has been constructed using a laminate fabrication process, similar

to [96, 42]. The final prototype has been built using 0.03-inch fiberglass sheets as

rigid layer and 0.005-inch polyester sheet as a flexible layer. A heat-activated acrylic

adhesive from Drytac1 has been used to bond layers. Figure 4.3c depicts the final

prototype. Two XM430 Dynamixel DC servos are used as actuators. Two custom-

made Nylon 3D-printed horns are responsible for attaching and aligning mechanism

hinges to servos. The servo horns act as a safety coupling in the mechanism. The

chassis has been built from acrylic and 3D printed parts.

4.4.1 Inverse Kinematics

Considering the manipulation described in Fig. 4.1 and based on global axes’

alignment with servos, the inverse kinematics can be written as:

θa1 = tan−1(
NYNZ

N2
X +N2

Z

) (4.5)

θa2 = tan−1(
NX

NZ

) (4.6)

where θai are the analytic actuator angles and Nk are the components of the unit

vector perpendicular to the end-effector body. In the case of NZ = 0, the values of

theta are as follows:

θa1 = 0, θa2 = π/2 (4.7)

1www.drytacstore.com
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4.4.2 Forward Kinematics & WorkSpace

Accordingly, the forward kinematics of the robot can be formulated as:

NZ =

√
1

(t1 + t1t2)2 + t22 + 1
(4.8)

NX = t2NZ (4.9)

NY = (t1 + t1t2)NZ where, ti = tan(θai){i=1,2} (4.10)

By using the above set of equations, the workspace of the robot has been obtained,

and a spiral path has been tuned to be inside the workspace of the robot (Fig. 4.3b).

The spiral is used to fully traverse the workspace; it is obtained by projecting the

normal vector of the end-effector on a sphere with 1 m radius. This spiral has been

used through this study as the desired path for tracking. In order to be able to

continuously repeat the test, the spiral has been defined to go out and come back

into the same point on the workspace sphere.

4.5 Tuning DNN hyper-parameters

As mentioned in the workflow, the first step is to define the input and output of the

system. The first goal of our case study is to model the effect of material deformation

on the robot’s inverse kinematics. The input and output of the model for learning the

deformation error have been defined as the quaternion of the end-effector rotation (q)

and the servos angles’ compensation values (θ̃1 and θ̃2). These values are obtained

by subtracting the values calculated by the analytic inverse kinematics defined in

Eqs. (4.5)-(4.7) (θa1 and θa2) from the robot servos angles (θ1 and θ2).

In commanding the robot, the DNN estimates the servos’ desired compensation

values (θ̃d1 and θ̃d2) for the desired orientation quaternion (qd). These values are added

to the desired analytically-obtained servo angles (θda1 and θda2) to obtain the servos
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angles that are used to command the robot: (θd1, θd2)T = (θda1 , θ
d
a2

)T + (θ̃d1, θ̃d2)T . This

is shown in Fig. 4.4a.

In the next step, two sets of data from the unloaded (undeformed) and loaded

(deformed) system have been sampled in order to tune the DNN hyper-parameters.

We consider LBFGS and Adam as the algorithms for weight optimization, and the

activation functions of NN as shown in Eqs. (4.1)-(4.4) have been studied for DNN

layers.

In order to have a comprehensive study on the effect of number of hidden layers,

we consider 154 numbers from a vast spectrum for the number of hidden layers, from

2 to 3000. The layer numbers have been defined as follows:

Number of Layers2:{
{1 : 1 : 100}, {100 : 10 : 150}, {200 : 20 : 500},

{500 : 50 : 1000}, {1000 : 100 : 3000}
} (4.11)

2Numbers are shown using the format: {start:step:end}
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Figure 4.5a shows the DNN tuning for deformation error. The results do not

show a simple, predictable relationship with the number of layers. The overall trend

shows that in most cases, training time increases by the number of layers. The

Adam algorithm is not capable of finding the global optimum weights for any of the

activation functions and gets stuck in a local optimum. While the analytic model

is highly non-linear, the identity activation function, which is linear, has a better

chance in modeling the system in comparison with the non-linear functions of tangent

hyperbolic and logistic sigmoid. Based on the obtained results, the best DNN has

three hidden layers, while it is enhanced by LBFGS and identity as optimization

solver and activation function, respectively.

4.6 Control

4.6.1 Pre-trained Model

Figure 4.3d depicts the open loop commanding of the mechanism’s actuators based

on using the analytic inverse kinematics model presented in (4.5)-(4.7) when there is

no load on the robot and the hinges and links are only deformed by their weight. As

seen in the plot, the deformation prevented the robot to follow the defined spiral path.

The obtained result shows the robot fails to track the Euler angles corresponding to

the spiral and it has MAE of 6.370 deg across all three Euler angles.

The pre-trained DNN obtained in the previous section can be used to compensate

for error in the unloaded robot. As shown in Fig. 4.5b, the spiral path is followed with

higher precision, and the MAE of Euler angles is 1.425 deg. However, this pre-trained

DNN is incapable of effective compensation when the system’s behavior changes, e.g.,

when a load has been added to the end-effector. Hence, when a 100 g load is added

to the end-effector, the MAE for tracking Euler angles increases to 4.201 deg.
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in the control. (d) Path tracking under fixed load in 3D. (e) Path tracking under

fixed load in top view. (f) Path tracking under fixed load in Euler angles. (g) Path

tracking under variable load in 3D. (h) Path tracking under variable load in top view.

(i) Path tracking under variable load in Euler angles.

4.6.2 Control via Transfer Learning

A DNN-based closed-loop controller is proposed to continuously compensate for

material deformation while the robot tracks a path under different loading conditions.

The obtained results from pre-trained model shows that using the DNN for controlling

the robot under changed loading conditions is not effective. However, the results also
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prove that the DNN can adapt to the new deformations if it is retrained and updated.

Our next step is to close the feedback loop to include DNN retraining. Utilizing

this architecture enables the control system to increase tracking precision when dif-

ferent loads are applied to the end-effector. The diagram of the proposed closed-loop

control system is shown in Fig. 4.4a.

In order to use DNN in a closed-loop control system, it should be continuously

updated by b the most current data sampled from the robot. Since retraining within

the main control loop can reduce the controller’s frequency and negatively impact the

controller’s performance, we propose a separate process that retrains a second DNN

based on the most current set of data. This second DNN, which has the same hyper-

parameters as the main DNN, is initialized from the same pre-trained model from

the previous section. The task of the second DNN is to continuously retrain using

current data and to provide the main DNN with the up-to-date knowledge of system

behavior (W ′, b′ in Fig. 4.4b). In this study, we have used Python’s multiprocessing

package.The data flow diagram is shown in Fig. 4.4c. In our system, we also have two

different parallel processes for getting feedback from tracking cameras and sending

commands to the robot’s servos, allowing each process to have its own refresh rate.

We have synchronized the process in code while making sure that real-time data is

sent to the main control loop from other processes. In our experiments, the closed

loop control process has an average frequency of 160 hz.

The final step of the workflow is to validate the robustness of the controller while

tuning its final parameter (DNN retraining history). We have covered a vast range

of retraining history in this study, from unlimited to 300 data points, in order to

experimentally find the one with the best performance. It should be mentioned that

based on the control loop frequency and definition of the desired spiral path, the

robot completes its path once every 30 seconds, during which the controller samples
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and processes close to 4800 data points.

In this study, we initially provide both controller’s DNNs with the knowledge of

pre-trained DNN obtained in the earlier training step (section. 4.6.1) that considered

material deformation (loading). The controller’s performance has been evaluated

under different load conditions for each retraining history. We start with the unloaded

robot. Then, we add a 100 g load to the robot’s end-effector. Eventually, an 80 g load

is also used consisting of small moving masses in a larger container attached to the

robot’s end-effector.

Considering that the initial model is derived from the deformed robot, in all three

load conditions, we evaluate the controller’s ability to continuously compensate for

material deformation.

Figure 4.5c shows the MAE of each controller when tracking a complete spiral

path under different load conditions. For better illustration, we only show the errors

for the retraining histories that have an MAE under 0.12 m. In order to address the

issue of overfitting, we have let the controller follow the path three times for each

load condition. Based on the evaluation criteria of estimation error and overfitting,

we search for the cases that have the lowest MAE, in which the MAE does not

demonstrate any noticeable increment during the three trials. The results show that

the retraining history has a significant impact on the performance of the system, such

that in some cases, e.g. unlimited retraining history, the controller has high error

in some cases, but lower error in others. Evaluation of the defined criteria based on

the obtained data reveals that the best retraining history for this case study is 1000

data points. While the 900 data point case often exhibits lower estimation error,

the data shows that it overfits the model in some cases (as explained in Sec 4.2).

Figures 4.5(d,e), and (g,h) illustrate the desired spiral path and the path the robot

takes for different cases of fixed and variable load, respectively. The Euler angles for
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Figure 4.6: DNN training by inverse kinematics. (a) DNN tuning for inverse

kinematics. (b) Trajectory tracking by Pre-trained DNN. (c) Tuning the retraining

history in control. (d) Path tracking under fixed load in 3D. (e) Path tracking under

fixed load in top view. (f) Path tracking under fixed load in Euler angles. (g) Path

tracking under variable load in 3D. (h) Path tracking under variable load in top view.

(i) Path tracking under variable load in Euler angles.

the same paths and load cases are shown in Figs. 4.5f and i, respectively.

4.7 Model-free Controller

We have also considered using a DNN to simply model the full system including

kinematics and deformation, rather than using it to model the error as in the previous

section. In our case study, the DNN has been used to learn the inverse kinematics of
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the 2-DOF spherical parallel mechanism in the presence of material deformation.

Following the workflow for this case, the input of the DNN has been defined as

the rotation of the mechanism in quaternion notation (q), and the output has been

defined as actuator angles (θ1 and θ2). Then, two sets of data for the undeformed

and deformed robot have been sampled, and the same hyper-parameters of activation

functions ((4.1)-(4.4)) and optimization algorithms (Adam and LBFGS) have been

evaluated in DNN tuning. Figure 4.6a shows the DNN tuning for inverse kinematics.

Based on the obtained results, the best DNN has two hidden layers, while using

LBFGS solver and the identity activation function.

By using the DNN to identify the inverse kinematics of the system, the MAE

for the system’s output has decreased to 1.341 deg (Figs. 4.6b). However, the pre-

trained DNN, does not respond to a new deformation; when a 100 g load is added to

the end-effector, the tracking MAE for the Euler angles increases to 3.950 deg. As a

result, similar to the previous case, we switch to the closed-loop control mode based

on transfer learning between the main DNN and a second DNN with the same hyper-

parameters. The control diagram is shown as Fig. 4.4b. In controlling the robot,

the input of the DNN is the desired orientation quaternion (qd) and its output is the

desired servo command angles ((θd1, θd2)T ).

Similar to the previous case, the controller’s performance has been evaluated under

different loading conditions including 0 g (unloaded), a fixed 100 g, and a variable

80 g loads. Figure 4.6c shows the MAE of the controller’s performance in tracking a

complete spiral path for different loading conditions for the retraining histories that

have MAE under 0.12 m. Obtained data reveals that the best retraining history for

this case study is 500 data points. The desired spiral path and the path the robot

takes for different cases of fixed and variable load are illustrated in Figs. 4.6(d,e), and

(g,h), respectively. Figures 4.6f and i, show the Euler angles for the same paths and
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Figure 4.7: (a) Effects of retraining history. (b) Path tracking errors under the optimal

scenario.

load cases.

4.8 Discussion

The goal of this study is to address the destructive effect of material deformation

on foldable robots. We believe that this lack of rigidity often limits the functionality of

soft robots as manipulators. Our literature review of these robots confirms this claim

– researchers often avoid using large-scale foldable robot as manipulators despite a

cheap and fast manufacturing process. In this study, we aim to propose a workflow

that can be used to compensate for this deformation across variety of foldable robots.

We selected a parallel robot as a case study since one of the most appealing charac-

teristics of this kind of robot is its precision. A 2-DOF spherical parallel robot has

been considered in our case study due to its non-linear yet understandable forward

and inverse kinematics.

Through this study, we have illustrated that analytic models commonly used for

rigid robots are insufficient for controlling large-scale foldable robots (Fig. 4.3d).

Hence, we have considered identifying a data-driven approach to describe a system’s

behavior using DNN. We have introduced a workflow to tune and train the DNN

with a focus on compensating for material deformation. We have shown the effect
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of different activation functions, number of hidden layers, and optimization solvers

on the estimation error and training time of a DNN, while aiming for a set of hyper-

parameters that allows a DNN model to be used in a closed-loop controller. We

believe that the optimum parameter set for the DNN is case dependent due to the

fact that modeling using a neural network is a black box identification, and there is no

analytic formulation to guarantee that a specific set of hyper-parameters would work

the best for any case study (we have not anticipated that the linear identity function

is the best activation function to model the highly non-linear inverse kinematics of

our robot). For example, it is reasonable to assume a robot with more degrees of

freedom requires a deeper DNN to model its behavior. However, we experimentally

verified that the proposed workflow enables roboticists to find the optimum parame-

ter set for their specific foldable robot. Following the proposed workflow, the optimal

number of hidden layers required to learn the deformation and the inverse kinematic

the 2-DOF spherical PM are 3 and 2, respectively. The finding that a shallow DNN

can be used to describe this system demonstrates the adaptability of the controller

by reducing retraining time. This is a testimony of the important role that tuning

hyper-parameters plays in DNNs, whereas selecting a different actuation function or

optimizing algorithm may require a much deeper DNN to model the system behavior.

The same argument is applicable for other hyper-parameters such as the number

of neurons on each hidden layer and learning rate. In this study, focus on a selected set

of hyper-parameters, these hyper-parameters were hand-tuned. For our case study,

this allowed us to obtain a shallow, well-performing DNN that can effectively adapt

to new loading conditions; if that was not the case, one might include the latter two

parameters and expand the search for optimal hyper-parameters to a five-dimensional

space.

In this chapter, we have also discussed the effect of retraining history on the
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control’s ability to adapt to system changes. We have suggested an evaluation of

two metrics for estimation error and the issue of overfitting across different loads in

order to select the best retraining history. In our case study, the DNN model was built

using the linear identity activation function (Eq. 4.1), even though the analytic inverse

kinematics model is highly non-linear. We believe that the selected DNN continuously

performs a local model fitting of the non-linear model and retraining history adjusts

the local curve length. Figure 4.7a illustrates a two-degree demonstration of the

effect of the retraining history on the local modeling of the non-linear robot’s model.

We believe that a low retraining history produces numerous local models that fit

the non-linear curve more precisely. However, changing between these models can

produce chatter. Conversely, larger retraining history is smoother but less precise

path tracking.

In order to obtain a more general, model-free control algorithm, we have demon-

strated the efficiency of the proposed closed-loop controller for modeling the overall

inverse kinematics of the foldable robot under load. We have experimentally validated

that following the workflow enables us to tune the DNN for this case as well. In fact,

this DNN estimator has a better, more consistent performance compared to the alter-

native of only learning material deformation. In learning only model error, we have

seen a 0.1 m/s lag between the desired and experimental Euler angles. We believe

that this is due to the higher calculation costs associated with analytical model cal-

culations, as well as a small time difference between calculating the analytic inverse

kinematic and estimating the deformation error using DNN. The Learning IK case,

does not have this problem and there is no noticeable time lag seen in the data.

Figure 4.7b highlights the path tracking MAE for the unlimited and best retraining

histories of the learning IK and learning error cases. The value of the MAE is obtained

using a two-second moving window. The results show that in both cases, using an
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unlimited retraining history limits the ability of the controller to adapt swiftly to the

deformation of the load. Eventually, the best result has been obtained by having

a shorter retraining history and using the DNN to model inverse kinematics of the

foldable robot. This controller is able to compensate for load-induced deformation

in two seconds, which is much faster than other test cases. Based on this study, we

encourage researchers to use the proposed workflow to identify competitive, model-

free solutions, especially in cases of high open-loop error due to material deformation.

We have demonstrated that using the proposed workflow and utilizing a DNN

closed loop controller can give foldable robots higher precision when interacting with

loads. This workflow can be used to train the DNN for learning material deformation

error or the overall deformed robot’s behavior. However, using a neural network

to model the system produces lag in order for the model to be retrained, based on

historical data. Hence, although the model is able to compensate for deformation

caused by static or slowly changing loads, it cannot compensate for error due to

dynamic loading with high changing rates. Another limitation of this method is that

large deformation can change the workspace of the deformed robot so significantly

that the desired path is no longer within the workspace of the deformed robot. This

physical limitation cannot be compensated for using any feedback control.

Improving the accuracy of foldable robots can improve their functionality and

can even speed up their popularity in the industry. There are many potential future

applications of the proposed closed-loop controller. We aim to extend the workflow to

include system dynamics and compensate for deformations caused by dynamic loads.
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Chapter 5

IDENTIFICATION & CONTROL IN THE PRESENCE OF UNCERTAINTIES

CAUSED BY MATERIAL DEFORMATION AND WORKING ENVIRONMENT:

A CASE STUDY OF FISH-INSPIRED ROBOT

This chapter evaluates the possibility of leveraging a laminated composite as a

low-cost caudal fin in a 1-DOF robotic fish. After altering the fin’s stiffness and

shape, we focus on finding suitable control input gaits that enable us to control the

thrust generation.

Many different robots have been designed and built to work under water. In many

cases, researchers have chosen to use bio-inspired platforms. In most cases, the main

goal of fish inspired robots has been set to autonomously swim and maneuver in an

environment that is much larger than the fish’s size. In this study, the identification

and control of a low-cost fish-inspired robot is studied with the goal of building a

mechanism to not only swim in water but to do so in a highly constricted space. The

robotic fish under study uses the tail propulsion from its tail as the main source of

forward thrust.

5.1 Introduction

Autonomous Underwater Vehicles (AUVs) are widely studied for operating be-

low the surface of the water. Underwater propulsion is one of the main components

of AUVs and underwater robots. This type of propulsion is a hard problem to un-

derstand analytically due to the highly nonlinear and turbulent nature of the water

currents around an object. These turbulent flows result in the loss of energy and there-

fore energy efficient propulsion systems are of special interest for many researchers.
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Evolution provides a variety of successful underwater locomotion examples. Dif-

ferent fish species have developed a variety of mechanisms for underwater propulsion

that are energy efficient; many species use their fins to maneuver through the water.

Therefore, it is not surprising that fish interests biomechanics researchers for their ef-

ficiency and their maneuverability [97]. A fish can make a half-turn in 1/10 its length

without losing speed, whereas a submarine needs 10 times its length, while slowing

down by half to accomplish the same maneuver. Research on robotic fish is mainly fo-

cused on dynamic modeling [98, 99, 100, 101] and control [102, 103, 104, 105, 106, 107].

An extensive review and classification of different fish species and marine robots in-

spired by them is given in [108]. Several other researchers have studied the effect of

a certain parameter on the performance of a robot. For example, [109] has addressed

the effect of artificial caudal fins on the fish robot’s performance. Marchese et al &

Zhong et al have used soft materials plus soft robotic fabrication techniques to manu-

facture a robot fish [110, 111]. In [112], Liu et al study the movement of a carangiform

fish and then a robotic fish is controlled based on the obtained results. Turning per-

formance of a robotic fish inspired by a sea bream is studied in [97]. A parametric

study of a fish robot performance is carried on in [113]. This study used a 6-meter

long water tunnel with flow control over the test tank to provide a known current

for robotic fish being studied. A tail consisting of one active joint and two passive

joints as well as a flexible caudal fin were studied in this environment. Similar to the

previous research, in most cases, conventional robots are unable to replicate specific

features of fish locomotion, such as realizing smooth and continuously flexible hulls

similar to fish bodies [114], though this issue can be solved using recently-developed

laminate manufacturing techniques [115, 116]. Throughout all these studies, the au-

thors have identified an opportunity to address fish-inspired locomotion in the tail

using laminate techniques, which have the capability of being able to be rapidly pro-
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Figure 5.1: Maneuvering strategy and effect of tail movement on generated force

totyped and tested. Using laminate techniques, it is possible to easily add the desired

number of passive joints in desired positions, as well as using different materials and

thicknesses to achieve desired stiffness.

The main contribution of this study is to investigate the locomotion of a fish-

inspired robot swimming in a tight workspace and interacting with environment,

while using forward propulsion in a high-flow channel to apply force to an object.

This work is motivated by the need for a small, low-power robotic platform which

can navigate autonomously in small canals for cleaning, maintenance, and inspection

tasks. The focus of this study is to use a tail fin manufactured via laminate fabrication

techniques (known as a caudal fin in fish morphology) for locomotion. Laminate fab-

rication techniques permits iterating rapidly through a complex design space to tune

the stiffness and damping properties of soft flexure hinges between a variable number

of rigid segments, in order to quickly fabricate and validate an optimal fin design.

Laminate fabrication methods are also low-cost, with the structure and tail compo-

nents ($5) costing a fraction of the selected actuator ($55). Even though the laminate

platform is novel, the focus of this study is to facilitate a deeper understanding of the

control issues at play in small environments and narrow passages.

The study is organized as follows: Section 2 will describe maneuvering strategies

as well as test setup construction. In Section 3, design and manufacturing of the

robotic fish hardware is discussed. A model of the generated force by robotic fish

propulsion has been developed which is presented in section 4. In Section 5, different
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Table 5.1: List of propulsion parameters

Symbol Definition

a Propulsion Amplitude

b Offset in asymmetric propulsion

f Propulsion frequency

t Propulsion time

θ Angle of servo actuator in propulsion

controllers are designed based on the identified model of the robotic fish. The study

concludes with some remarks and suggestions for future work indicated by obtained

results.

5.2 Maneuvering Strategies & Experimental Setup

In nature, swimming modes of fish can be divided into two main categories, namely

caudal fin locomotion and pectoral fin locomotion [117]. In this study, propulsion

caused by caudal fin is considered as the main focus of our locomotion strategy.

Figure 5.1 shows the locomotion strategy proposed in this study. The fin actuator is

commanded to follow the following angle:

θ(t) = b+ a sin(2πft) (5.1)

Description of the propulsion parameters are described in Table 5.1 The design goal

is to enable the fish to interact with its environment, including vegetation, which

may be present in shallow, narrow waterways of the southwestern United States. The

interaction can involve pushing an object or cutting a specimen from a plant. The

authors believe that this working environment, which contains stationary propulsion
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Figure 5.2: Test setup for identification & control

in a narrow canal, is challenging due to reflected waves coming back from canal walls,

which can impact sensing navigation by imparting disturbances on the robot caused

either by the world or the robot itself.

A test setup has been designed for evaluating the performance of underwater,

robotic fish designs by monitoring the thrust generated from undulatory swimming.

The design of the test setup is based on the overall strategy for controlling the robot

and its working environment. Figure 5.2 shows the experimental setup. The robotic

fish is attached to an force-torque sensor (ROBOTIQ FT300) using an aluminum bar.

The torque applied by the robotic fish on the sensor through the attachment bar is

measured and converted to force by dividing it by the length of the attachment bar

(distance of the application point of the force to the origins of the sensor), since the

force measurement alone is small relative to the range of the sensor. A 0.3048 m L ×

0.1524 m W × 0.254 m H water tank is used to model a small canal work environment.

The robot is attached to a UR5 robotic arm which can move the fish in the water

with constant speed to simulate water current.
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Figure 5.3: Forward and lateral force generated by symmetric propulsion.

An Arduino is responsible for controlling the servomotor. Force and torque data

is transferred to the computer through the Modbus protocol. A Python script is

responsible for sending motor commands to the Arduino and reading data from the

force and torque sensor.

Figure 5.3 shows 10 seconds of raw forward and side-force data for a symmetric

undulatory motion with amplitude of 60 deg, in order to provide the reader with

insight on the forces generated via fin propulsion. In this study, the forces generated

by the fin are split into two main elements corresponding to the fish’s forward and

lateral directions. According to this figure, the generated forces are periodic in nature,

as was expected due to the undulatory motion of the tail. It can be observed that

although the lateral force is changing, the average force produced over a cycle is

close to zero due to the symmetric propulsion of the fins. The average forward force

is positive although there are periodic variations observed in it. As a result, force-

torque data is averaged over a window of specified number of cycles. In this method,

the average amount of forward and lateral forces generated by the tail are stored for

subsequent use.
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5.3 Design & Prototyping

In designing the caudal fin, the results of the parametric design study conducted

in [113] were considered, specifically the aspect ratio of the end fin. Initially, a

laminated design was proposed with one actuated joint and five passive joints to

provide the undulatory movement of the fin in the water. The prototype based on

this design was built with acrylic (Fig. 5.4a). Initial testing revealed that the thrust

generated by the fin was not as high as hoped. The authors believe that the main

reason was due to the fact that the tail was heavy and also thick. As a result, for

further prototypes, the whole fin was built from sheets of polyester laminated together

in different numbers to provide a variety of stiffnesses for evaluation. Individual sheets

were laminated together and then cut in a CO2 laser.

The main components of the robotic fish locomotor are the tail and the actuator

which are shown in Fig. 5.4a. A waterproof servomotor was selected based on the

torque and speed required to provide thrust via the tail. The motor holder and the

body of the fish are made using 3D printed parts. A floating support was made using

foam to help the fish to float in water (Fig. 5.4b).

Table 5.2 shows the average amount of force generated in all directions for different

fin materials and designs. The result shows an increase in generated force with stiffer

material while confirming the assertion made in [113] about producing more force

with Larger back fin (Fig. 5.4b). Moreover, the fins were installed and the robot’s

ability to swim was tested based on observation. One key observation was that as

fin stiffness went up, rotation in the tail led to more rotation in the main body of

the fish, rendering higher tail forces less useful at generating forward thrust. Thus, a

final material thickness of 1.016 mm was used for subsequent fin designs.
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Figure 5.4: Prototypes made to evaluate generating force (a) and swim ability (b).

5.4 Identification & Model Extraction

The goal of this section is to discuss the identification of the magnitude and

direction of thrust which can be generated via changing control signals in the robotic

fish platform. To this end, providing a model that relates the input and output of

the system is studied. According to [113], flapping amplitude and frequency were the

two control parameters found most effective at generating forward motion and thrust.

Based on our design, placing the servo at the base of the tail, this permits us to select

the servo’s angle as an input variable. The input to the system is selected to be the

amplitude and range of the undulatory motion of the servomotor. Moreover, angular

offset from the symmetric plane has the most effect on direction of the generated

force (Fig 5.1). As mentioned before, the output of the system is the force generated

by the tail propulsion, which is measured by the F/T sensor.
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Table 5.2: Different design & material effect.

Material &

width (mm)
Fin design

Average generated

thrust (N)

Ability to

swim

6.35 Acrylic Small 0.1983 Yes

0.254 polyester Small 0.2361 Yes

0.254 polyester Large 0.2647 Yes

0.508 polyester Small 0.2944 Yes

0.508 polyester Large 0.3154 Yes

1.016 polyester Large 0.551 Yes

1.524 polyester Large 1.157 No

In order to identify the system, the 3 dimensional space of a, b and f is spanned

(Eq. 5.1). To this end, for a known set of a, b and f , the servomotor is actuated for five

cycles and the average forward force and side force are measured. The experiments

were performed for −20o < b < 20o, 0 < a < ±60 − abs(b) and 0 < f < 82/a. The

limitations on the values of offset, frequency and range are due to limitations in motor

maximum speed and the space limitations of the water tank used for experiments.

This results in total of 2292 tests. The average force for each test case is presented

in Fig. ?? and Fig. ?? with the values of offset b, range a and frequency f plotted for

reference. As illustrated in small zoomed plot in figures, for each test (x axis data),

the servo propulsion parameters are shown(right y axis) as well as the average value

of force generated in forward and lateral directions (left y-axis).

Based on obtained results, it was found that for the majority of propulsion regimes,

the provided force in the forward direction is negative. This means that due to special

working conditions, in these regimes the propulsion will result in backward movement.
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Figure 5.5: Force generated by different fin propulsion in forward (a) and lateral (b)

directions. It should be mentioned that xaxis of plots are not time, but is the number

of test.

This can affect the fish’s interaction with its environment. In other words, if the fish

is used to push an object in a narrow canal with still water, certain command signals

will result in the robot failing to apply positive normal forces to desired objects.

From a controls perspective, the system is uncontrollable across much of the three-

dimensional control space. As a result, in order to control the robot, a proper subspace

with a controllable working regime should be selected and identified. As the goal is

to interact with the environment, it is convenient to select a working regime in which

the forces which are generated are as high as possible. The authors believe that one

reason for negative generated forces lies in the reflected waves coming back from tank

walls.

The maximum forward force is generated with f = 1.4Hz, a = 60◦ and b = 0◦.

Searching through the results obtained from spanning the control space, the subspace

with fixed propulsion frequency of 1.4Hz is suitable, while the propulsion amplitude is

approximately more than 20◦. With the frequency fixed, a second set of experiments
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Figure 5.6: Force generated by symmetric sinusoidal amplitude fin propulsion in

forward (a) and lateral (b) directions.

was performed to study the dynamic behavior of the output force as a result of other

input parameters change. To this end, b was set to 0 and the range was changed

according to a half-wave sinusoidal function according to the following equation:

a = 20 + abs(40 sin(2 ∗ pi× 0.005t)) (5.2)

The results are presented in Figure 5.6(a) and Figure 5.6(b) for forward and side

forces respectively.

The obtained results show a promising, controllable subspace that includes dif-

ferent propulsion regime which are capable of producing different values of force. It

should be mentioned that the results show that the lateral force and as a result the

angle of produced force is typically zero for symmetric propulsion.

To further understand the relationship between propulsion parameters and gener-

ated force, with frequency set at 1.4 Hz, the propulsion range was changed according a

half-wave sinusoidal function, while, simultaneously, its offset was changed according
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Figure 5.7: Force generated a half-wave sinusoidal range and a full-wave sinusoidal

offset input in forward (a) and lateral (b) directions.

to a full-wave sinusoidal function:

θ = b+ a sin(2π × 1.4t)

b = 20sin(2 ∗ pi× 0.002t)

a = 20 + abs((40− b) ∗ sin(2 ∗ pi× 0.004t))

(5.3)

It should be mentioned that the frequency of change in amplitude and offset (0.002Hz

and 0.004Hz, respectively) were selected differently in order to help with distinguish-

ing their effects. The results are presented in Fig. 5.7a and Fig. 5.7b, showing that

the amount of forward force is highly correlated by propulsion range, while the lateral

force is mainly effected by the offset of asymmetric propulsion.

In order to model the effect of propulsion parameters on forward and lateral

forces, a model was fit to the experimental data using a least-squares approximation

plotted in Fig. 5.7a and Fig. 5.7b. In matrix form, this can be represented as the

following[118]:

Y = X â ⇒ â = (XTX)
−1
XTY (5.4)
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Table 5.3: Choosing X basket

Elements FF MAE SF MAE

{a, b} 7.89% 4.19%

+{ȧ, ḃ} 7.89% 4.19%

+{ä, b̈} 7.89% 4.19%

+{a2b2} 7.05% 3.98%

+{a3b3} 4.53% 3.83%

+{a4b4} 4.52% 3.76%

{aȧȧ2bḃḃ2} 7.89% 4.19%

In order to determine what should be in the basket of the fitted model, dif-

ferent combinations were used (Table 5.3). With considering mean absolute error

(MAE) values, it can be concluded that a model with third-order terms provides the

best MAE, however, the condition number of (XTX)matrix containing input basket

showed that the resulting matrix is close to a singularity and the data are not reliable.

As the addition of second order does not improve the model significantly, the best

model for the system is considered to be the first order model of {a, b}.

The obtained model for forward force along with the original data is plotted in

Fig. 5.7a with a and b both changing, while the obtained model for side force along

with the original data is plotted in Fig. 5.7b with a and b both changing.

The identification results can be summarized by saying that in fixed propul-

sion frequency of 1.4Hz and propulsion amplitude larger than 20◦, the system has

a proper behavior with a set of decoupled, linear input-output relations of propulsion

amplitude-Force amplitude & propulsion offset-force angle. These results support the

principle of a tail-driven robot to control thrust and direction forces.
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Figure 5.8: Step response identification on generated force amplitude (a) & angle (b)

as a function of propulsion amplitude & offset, respectively

5.5 Controller Design

While the previous identification results provide a model for the average forces

generated by fin propulsion, a dynamic model is also required for control procedures.

Hence, the system response to a step input was obtained. For this purpose, the force

is represented as magnitude and direction values instead of forward and side force.

Regarding force magnitude, propulsion amplitude was set to 40◦ from stationary and

the resulting force magnitude was recorded. In the case of step response identification

of force angle, while propulsion amplitude is fixed, the offset was changed from 0 to

−20◦ and the resulting force angle was recorded. Figures 5.8a and 5.8b show the step

response tests for the force magnitude and angle respectively.

Based on the obtained results, a first-order transfer function with time delay is

fitted to a step response in force magnitude:

TFForward force =
0.00912e−0.28S

0.34S + 1
(5.5)

Similarly, the same transfer function is fitted on the force direction:

TFLateral force =
−0.866e−0.12S

0.13S + 1
(5.6)
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Figure 5.9: Block diagram of the closed-loop controllers proposed in controlling force

generated by fin propulsion: feedback controller (a) and feedforward-feedback con-

troller (b).

These transfer functions are used in the system block in the block diagram of Fig. 5.9a

alongside the system model for tuning control unit.

Evaluation of the results obtained for the lateral force amplitude (Fig. 5.7a) and

force angle (Fig. 5.7b) show that in the studied working environment, the caudal fin

propulsion is not able to provide consistently high forces for sharp turns in a narrow

canal. This results was also confirmed by a mobile prototype swimming test1. As

a result, the focus of controlling algorithms is the magnitude of force generated by

propulsion.

As mentioned before, the identification and control strategy used in this study is

based on the amount and direction of generated force in a full cycle of fin propulsion.

As a result, the data received from feedback unit at any time should be averaged

over a whole cycle. Hence, a slave parallel process is defined in Python that works

alongside of the main Python process and is responsible for determining the average

magnitude and direction of the force generated within a single propulsion cycle.

In order to provide a proper controller, the parameters of different PID controllers

were tuned using the MATLAB Simulink PID tuning tool in order to be used in control

1It should be mentioned that applying controllers robust to uncertainties, such as sliding mode

controller, was not applicable due to high noise in feedback force
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Figure 5.10: PID controller performance: P controller (a) and PI controller (b).

system and then, due to modeling error, tuned more exclusively by experimental tests.

A P controller was implemented in the first step. Figure 5.10a shows the generated

force when the input reference force is a half wave sine signal. As can be seen, the P

controller is not able to track the reference input force and have a considerable error

for different gains.

To improve the performance, an integrator was added to the controller. However,

the experimental results which are shown in Figure 5.10b show that the system is

not able to track the input reference force signal in the first cycle. However, after

one cycle, the input tracking is able to follow the reference input force. It should be

mentioned that due to high noise in force feedback, the addition of a derivative term

to the PID controller had a negative effect in controller performance.

Further improvements were subsequently achieved by adding a feed forward unit

which is shown in Fig. 5.9b. To this end, the model obtained from least square

identification is used in the feedforward unit. As illustrated in Fig. 5.11a, when the

feedforward unit is added to the system, even a simple P controller is able to provide

acceptable performance in tracking desired force. However, it can be seen that during

more of the cycle, generated force stays slightly smaller than the desired force. In the
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Figure 5.11: Feedforward-feedback controller performance: (a) P controller in feed-

back. (b) PI controller in feedback.

Table 5.4: PID parameters values for different controllers reported in the study.

Controller P value I value D value

P 100,109,120 0 0

PI 80 0.12 0

FF-P 10.9 0 0

FF-PI 9 0.05 0

controller with both feedforward and PI units, not only is the generated force able

to follow the reference input from the first cycle, but its trend matches the desired

force more precisely (Fig. 5.11b). The PID parameters for controllers with the highest

performances are summarized in table 5.4. Results show a noticeable decrement in

the magnitude of PID parameters when the feedforward unit is added, which shows

the positive contribution of this unit.
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5.6 Conclusion & Future work

There are many mechanisms for underwater propulsion. Bio-inspired methods are

often more energy efficient, which can be an important consideration in underwater

autonomous vehicles. Based on this assumption, a fish inspired robot was designed

and built to work in a narrow and shallow workspace such as a small canal.

Our main goal in this research was to find the best control strategy for the navi-

gation of the fish in the canal. For this purpose, a test set up was designed and used

for data acquisition and control. Since there are many uncertainties with underwater

robotic fish working in narrow canals due to turbulence and hydrodynamic effects,

building an accurate analytic model of the system is highly complicated. The meth-

ods introduced in this study have been used to identify the relationships between the

amplitude and frequency of the tail propulsion and magnitude and direction of the

forces generated.

Experimental results show that the model obtained for the generated thrust was

linear with a good approximation when the propulsion magnitude varies linearly

within the controllable regime. We can conclude that the caudal fin of the current

generation of robot is not capable of producing enough consistent lateral force for

sharp turns in narrow working environments.

Several linear controllers were tested to find out the best solution for generating

directed thrust. The data shows that the PI controller with a feed forward unit is

the best strategy to track the reference input force with acceptable accuracy. The

obtained results demonstrate that by applying the feedforward feedback controller, it

is possible to produce desired amounts of forward force by caudal fin propulsion even

in narrow environments.

Biological studies have shown that the pectoral fins are also useful for generat-
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ing thrust and are even used as main locomotion for low speed movement in fishes.

This addition will permit our team to study simultaneous pectoral and caudal fin

propulsion. This study is the focus of the next chapter.

104



Chapter 6

TRAINING IN THE PRESENCE OF UNCERTAINTIES CAUSED BY

MATERIAL DEFORMATION AND WORKING ENVIRONMENT: A CASE

STUDY OF FISH-INSPIRED ROBOT FOR EXTREME

ENVIRONMENTS (FIRE)

In this chapter, laminated techniques are leveraged to build a robotic fish with

caudal and pectoral fins. Use of these techniques in manufacturing this mechanism

results in a lighter, more affordable solution to underwater locomotion. On the other

hand, this study provides the opportunity to deal with cases where laminated mech-

anisms directly interacte with their environment, and where the mechanism’s move-

ment contributes to produce locomotion through complex hydrodynamic scenarios.

Fish as a species are evolved to maneuver in variable environments with high

efficiency and agility; our strategy supports that goal and contrasts with prior work

in that we focus on the interplay between complex fin subsystems as well as non-ideal

testing environments in which the effects of turbulence, water flow, and interactions

with the environment are present.

We present a novel robotic fish with a pair of two degree-of-freedom pectoral fins

and a flexible caudal fin that can be used to maneuver in tight environments and

in turbulence. This is made possible by several innovations, including (i) a novel

fin design based on a 2-DOF, origami-inspired spherical mechanism; (ii) kinematic

modeling of the mechanism’s motion and workspace; (iii) a fish-inspired robot design

that combines one caudal and two pectoral fins; (iv) strategies for identifying high-

performing gaits with an online learning strategy (CMA-ES); and (v) strategies for

finding gait parameter sets with a high-degree of correlation between lab and the
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intended operating environment.

This study has resulted in a robotic fish that can reach a swimming speed of 0.385

m/s (0.71 body length per second) in forward swimming using its caudal fin, and a

near zero turning radius using its pectoral fins.

The highest-performing gaits learned by this design and evolution strategy have

been validated in both the laboratory and realistic outdoor settings; the consistently

high-performing gaits have then been selected for use.

6.1 Introduction

Fish-inspired robots’ maneuverability is concerned with the issues of “accelera-

tion and steering characteristics” [119]. While this class of robots offers a novel and

interesting mode of locomotion with certain advantages, these platforms can be in-

fluenced by a variety of water-based effects, which are difficult to account for in their

design and modeling. In this study we describe a robot intended to navigate through

a canal system and clear underwater vegetation. This goal is motivated by a recent

collaboration with a water utility located in the Phoenix metropolitan area. In or-

der to accomplish these tasks, our robot must be able to work in tight environments

and perform tasks that require the platform to exert forces on the world. Due to

the size constraints of this underwater environment and the remote nature of the

work to be done, we have envisioned small, fish-inspired robots that can leverage the

high-efficiency locomotion strategies of fin-based swimming to ultimately solve these

challenges in teams. Moreover, we envision the robot to be able to swim close to

canal surfaces and perform well even in the presence of surface waves and reflected

vortices.

To address the above goals, we have designed and trained a Fish-Inspired Robot

for Extreme environments (FIRE). The wide, flat shape of its body is based on the
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suckermouth catfish due to this species’ ability to swim close to surfaces. We have

selected a flexible caudal fin as the primary thrust generation mechanism. In order

for the robot to work in tight environments, we have increased its maneuverability by

using two bio-inspired pectoral fins with two degrees of freedom (DOF) that, when

combined with caudal fin, can be used to create complex patterns of propulsion in

six dimensions.

To make this possible, we have used laminate manufacturing techniques to fabri-

cate both caudal and pectoral fins. This has enabled us to easily change the stiffness

of the caudal fin and create a mechanism more compact than would have otherwise

been possible. In addition, it has allowed us to rapidly iterate through a variety of

mechanism design parameters during the prototyping process as well as to reduce the

fabrication cost significantly.

Inspired by nature, an evolution strategy (CMA-ES) is used to search through the

gait parameter space for different objectives to help the robotic fish swim in three

dimensions. A novel experimental setup is designed for evaluating FIRE’s perfor-

mance regarding different gaits in both still and with-current water. Our work in

this study contrasts with prior robotic fish that are often designed and tested in ideal

environments with few disturbance forces caused by the environment. Many robots

in prior literature are designed to mimic and study specific fish morphologies; some

focus their study on simplified representations of fish fins with few degrees of freedom,

or focus on one specific and complex subsystem.

Having evolved over millions of years, fish and other aquatic animals are endowed

with the ability to swim with high efficiency, speed, and agility [120, 121]. Research

has focused on robotic fish both in their ability to mimic fish morphology [122, 123,

124] as well as for particular applications such as underwater search and rescue, as well

as monitoring fish species [125, 126]. Soft fabrication techniques have been employed
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successfully due to fishes’ exceptionally large fraction of soft body [127, 128, 129, 126,

130, 131, 7]. Caudal and pectoral fins have been identified as the primary generators

of thrust in biological fishes [132]. This had led designers to focus their designs on

robots which use these two fin types as their primary source of locomotion.

Caudal fin propulsion is often the primary source of thrust production in robotic

fish that are inspired by osteichthyes, or bony fish. Various forms of rigid [122, 133],

multi-body [134, 125] and soft [128, 126] caudal fins (or tails) have been studied in

order to emulate this propulsion system. Recent studies show that the soft caudal

fins produce more effective vortices compared to rigid fins while being significantly

simpler than multi-bodies ones [126].

Many mechanisms have been built to emulate the role of pectoral fins of fish

in locomotion [135]. Pectoral fins can provide various motions of flapping, rowing,

and cupping [136, 132]. Due to the objective of pectoral fins in different fishes, the

complexity of these fins varies in different species as well [135]. Pectoral fins have been

used in flapping mechanisms for propulsion in rays [137]. This attracted researches to

emulate rays’ pectoral fins in various studies [129, 138, 135, 139, 140, 141]. Pectoral

fins of bluegill sunfish can exhibit much more complex motions including rowing and

cupping [136]. Due to high complexity of this pectoral fin, the exact imitation of

these motions requires complex, high degree-of-freedom mechanisms [132]. In many

studies, pectoral fins have been used alongside caudal fins for gliding, diving and

depth control [126, 124, 121, 142, 122, 143].

According to [120], artificial intelligence is integrated in underwater vehicle control

with two objectives (i) learning fishlike swimming and (ii) motion optimization. Two

methods of bionic learning control and Iterative Learning Control (ILC) have been

mainly employed in learning fishlike swimming. The objective in bionic control is to

combine the advantages of both trajectory approximation and neural-based control in
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order to generate different swimming patterns [144, 145, 146]. ILC is mainly used to

achieve real-time control of robotic fish due to the simplicity of the algorithms with

model-free properties [147]. Motion optimization is used widely throughout robotics

to improve locomotion performance. This method is used toward improving the

performance of robotic fish in terms of speed, efficiency and maneuvering control [120].

Different algorithms have been used by roboticists for motion optimization. For

example, a combination of dynamic model and Particle Swarm Optimization is used

in [148]. Zhou et al used Genetic Algorithm (GA) for optimizing maneuver parameters

of undulatory swimming of a fish robot [149]. The maximum swimming speed of

a robotic fish was obtained by applying a combination of GA and Hill Climbing

Algorithm [150].

Evolution Strategy (ES) algorithms are optimization techniques considered as

practical alternatives to gradient-based methods which suffer from converging to lo-

cal optimal solutions [151]. The Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) is a type of ES algorithms, known as a stochastic method for numerical

optimization of nonlinear and non-convex optimization problems [152]. Using the

CMA-ES in practical experiments has many advantages in comparison with other

metaheuristic and search-based algorithms. On the other hand, the main disad-

vantage of the CMA-ES is its computational complexity which originates from the

covariance matrix self-adaptation and decomposition in this algorithm [153]. In a re-

cent, similar study conducted in [154], the CMA-ES algorithm has been employed to

optimize the controller for travel speed control of a Knifefish-inspired soft robot. The

authors of that paper selected CMA-ES algorithm due to its short evaluation time

compared to other evolutionary strategies. Using the CMA-ES algorithm to improve

convergence rates can have practical benefits in robotic systems as well, including

increasing the service life of motors, bearings, and gears, which can be overloaded
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during training.

In this study, we introduce (i) a novel fin design based on a 2-DOF spherical

mechanism facilitated by laminate design concepts that minimizes manufacturing

costs typically associated with spherical, parallel mechanisms. (ii) Kinematic models

that allow us to understand the workspace and input-output transforms of this new

pectoral fin mechanism. (iii) A design for a fish-inspired robot, which combines one

caudal and two pectoral fins. The resulting five degrees of freedom may be described

with a high-dimensional set of locomotion/gait parameters. To address this issue,

we have also (iv) come up with strategies for identifying high-performaing sets of

these gait parameters with an online learning strategy (CMA-ES). Our oratory-based

expeirmental testing setup often differs from the intended goal environment in key

ways (turbulence, water speed, type of data-collection setup, i.e., force instead of

trajectory). This has also led us to (v) develop strategies for finding gait parameter

sets that have a high-degree of correlation in performance between the lab and the

intended operating environment. These efforts have resulted in a design and opti-

mization workflow for robots that works well in niche environments, while permitting

the majority of development, data collection, and characterization in the lab.

6.2 Fish-inspired Robot for Extreme Environments.

We have developed and trained a robotic fish capable of swimming in extreme

environments (Fig. 6.1a). The robotic fish propels itself by using its pectoral and

caudal fins. Due to the ease of manufacturing, we are using a 3D printed PLA body,

but our fins and joints’ transmissions are built by laminated techniques and may be

considered soft.

FIRE is designed to be used in the maintenance of water canals with a width of as

low as 3 feet. These canals have high currents and turbulence. In order to train the
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Figure 6.1: FIRE, the souckermouth catfish-inspired robot. (a): System

overview (photo of suckermouth cat fish is derived from[155]). (b): 2-DOF spherical

mechanism exploited in FIRE’s pectoral fins which is built using laminated tech-

niques. (c): Extracted frames of a pectoral fin’s propulsion for turning (result of

training in pectoral fin’s attachment selection). (d): Schematics of the pectoral fin’s

2-DOF spherical mechanism, its workspace (blue dots), and end-effector path in pre-

vious motion (red dots).

robotic fish to maneuver in this environment, a training workflow has been proposed.

6.2.1 Design and Manufacturing of Robotic Fish

FIRE is inspired by the suckermouth catfish due to its similar functionality with

our fish robot goal task. These bottom-dwelling creatures, with their wide, flat bodies,

are evolved to live and swim along surfaces and feed, while avoiding higher currents
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above them. We have mimicked this flat body plan in designing FIRE.

We have embedded three types of fins evocative of a catfish’s pectoral, caudal

and dorsal fins. While two sets of pectoral fins are laterally placed in the center of

the robotic fish, its caudal fin is placed at its posterior (Fig. 6.1a). A passive dorsal

fin is located on the top of the robotic fish to resist body rotation due to caudal fin

motion. The pectoral fins are designed so their neutral position mimics the shape of

the sucker-mouth catfish fins in a passive state. In designing the robotic fish body, we

have reserved space for electronics, a swim bladder for buoyancy, and a sensor suite.

At this stage, the bladder is inflated prior to deployment in order to set the fish in a

neutrally-buoyant state.

6.2.2 Pectoral Fin: 2-DOF Mechanism

We have designed and constructed a 2-DOF spherical parallel mechanism (also

known as a 5-bar mechanism) to move the pectoral fins (Fig. 6.1b). The advantage

of using this parallel mechanism is that the actuators are mounted within the body

as opposed to a serial mechanism design; this reduces the torque requirements of

our servos while simultaneously permitting a more compact, lower-drag design. This

spherical mechanism has been scaled down via laminate fabrication techniques, whose

benefits are discussed below. The mechanism is designed to be flat in its neutral state

and uses a symmetric design in which the angles between all joins are 72 degrees. This

flat, symmetric design permits a more compact design (as opposed to its most popular

implementation of this mechanism [55]) as well as enabling us to attach and evaluate

a two-body fin.

The two degree-of-freedom mechanism used in FIRE uses laminate techniques for

creating a spherical five-bar linkage. Laminate devices are typically manufactured by

an iterative process whereby a number of different flat materials are individually cut
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and laminated together to create a traditional kinematic mechanism connected by

flexure joints. This process has a number of benefits. A number of design variations

may be rapidly produced, permitting design variations to be analyzed quickly; second,

the low-cost of materials means that such devices can be reproduced quickly and at

lower costs than traditional linkages, making this device design compatible with our

goal to deploy a low-cost “school” of robotic fish for maintaining water canals.

6.3 Training the Robotic Fish

6.3.1 Training Workflow

Figure 6.2a highlights a workflow we have used to balance the competing needs

of testing in a repeatable environment while learning how our device will operate

in more realistic settings. This is informed by the current state and limitations of

learning algorithms and the time and resources needed to learn motion patterns for

complex, high-dimensional systems. The objective of the proposed workflow is to find

fin-based gaits that enable the robotic fish to maneuver in various user-specified ways

consistently across different environments. This objective is inspired by newborn

animals. In animals such as fish and sea turtle hatchlings, which can swim to find

food or hide from predators immediately at birth. These animals can move using

optimal locomotion patterns without receiving any parental care or training.

An experimental setup has been designed as a non-ideal, extreme environment in

which the robot may be mounted. A variety of gaits may be tested on the fish by

varying a number of key gait parameters and then measuring the forces produced

over a number of cycles (for more details refer to material and methods section).

We have adopted a force-torque generation evaluation as the criteria for robotic fish

performance, a commonly-used technique for evaluating fish robots’ performance [156,
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Figure 6.2: FIRE’s training workflow. (a): Workflow proposed for training FIRE.

(b): The experimental setup. (c): Experimental implementation of on-line CMA-ES

algorithm. (d):The untethered FIRE.

132].

FIRE’s actuators have been commanded to follow sinusoidal patterns. This makes

it possible to create motion with a small number of parameters, simplifying the train-

ing process.
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The servos’ commanding signals are defined as:

Right pectoral fin: θ1 = β1 + α1 sin(2πf1t)

θ2 = β2 + α2 sin(2πf2t+ φ1),

Left pectoral fin: θ3 = β3 + α3 sin(2πf3t)

θ4 = β4 + α4 sin(2πf4t+ φ2),

Caudal fin: θ5 = β5 + α5 sin(2πf5t),

(6.1)

where θi is actuators’ angles and βi, αi, ,fi , and φi are the sinusoidal signals’ angular

offset, amplitude, frequency and phase shift, respectively. There are 17 parameters

to control the maneuver of the robotic fish fins.

We have searched the parameter space to find optimal gaits for individual swim-

ming criteria. While the whole space may be searched for a low-dimensional space,

we utilize CMA-ES as a way to find ideal parameters in a high-dimensional space for

which finding global optimal solutions is nearly impossible.

The goal of the workflow is to find a set of gait parameters that perform well

against a user-supplied performance objective and repeatable over many cycles in

different situations. Though we prefer to perform testing in the lab, the fish must

be able to perform a variety of specialized maneuvers, including turning, diving, and

swimming upstream, in a canal where turbulence and current are present. The per-

formance of any selected gait must, therefore, have a high correlation in performance

between laboratory experiments and the real-world across many different locomo-

tion goals. Hence, our workflow evaluates more than one top-performing gait for a

given maneuver using the untethered FIRE (Fig. 6.2d). The gait with consistently

high-performing swimming across lab/outdoor environments is then selected for each

swimming criteria.
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6.3.2 Experimental Setup

We have designed an experimental setup that samples the thrust generated by

the robotic fish. An ATI mini-40 force-torque sensor has been installed to the distal

end of a UR5 robotic arm, which is used to create motion paths. An aluminum

extension rigidly connects to the dorsal side of the fish, transmitting torques and

forces generated by the robot and its motion through the water back to the load cell.

The UR5 itself is mounted next to a fish tank that is 4 feet long, 2 feet wide, and 2

feet deep, and is capable of moving on a straight path with constant speed. This can

be used to create a variety of conditions in the water such as simulating an opposing

current (Fig. 6.2b).

The size of the tank, the dimensions of the robot, and the speed of the commanded

motion paths leads to the generation of nonuniform vortices in the water, which adds

noise to the system but helps train the robotic fish for non-ideal conditions. Since

these vortices can randomly affect thrust generation, tests are typically repeated for

each set of parameters to minimize this effect. The sampling times for each test has

been calculated based on the propulsion frequency (period), the range of the UR5’s

path, and velocity of the UR5’s end-effector. By varying the sampling frequency we

can maximize the number of gait cycles within the limited range of a single test. The

speed of the UR5 is also limited to 0.1 m/s during fin-based locomotion trials and

0.6 m/s when the fins are not actuated.

6.3.3 Convergence Adaption Matrix Evolution Strategy

The CMA-ES algorithm is known as a powerful optimization algorithm which

outperforms other conventional evolutionary heuristic search methods, e.g. Genetic

Algorithm (GA) and Particle Swarm Optimization (PSO), specifically for not only
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non-convex and ill-conditioned problems but for noisy objective functions [157]. More-

over, it provides a robust and fast search mechanism which makes this algorithm

practical for real-world applications [158]. In the CMA-ES algorithm, the next search

points in the available search space are obtained by a normal distribution, which

is itself determined by the covariance matrix, mean, and standard deviation. The

objective function can be represented by its contour lines. This algorithm modifies

the covariance matrix so that the normal distribution is fit to the contour lines [159].

Consequently, this strategy increases the likelihood of finding optimal solutions.

In our experimental tests, we have implemented the CMA-ES algorithm to find

optimal values for actuators’ gaits, i.e., βi, αi, fi, and φ (Fig.6.2c). These param-

eters control the search behavior of the algorithm including the parameters listed

in Table 6.1. We have tuned the parameters empirically based on experiments and

observations so that the CME-AS would find optimal solutions in acceptable time

and accuracy ranges. At each iteration, the suggested solutions by the CMA-ES al-

gorithm can appear out of the feasible range of variables restricted by the mechanical

constraints and limitations of the servo motors. Hence, we have defined a penalty

function in order to exclude non-feasible solutions. The penalty function gradually

confines the large search space to the feasible solution space of the problem. Conse-

Table 6.1: The tuned parameters for the CMA-ES algorithm.

Parameters Value Parameters Value

Population size 60 Number of effective solutions 16.57

Number of variables 6 Initial step size 0.67

Maximum iteration 1000 Step size dampening 2.66

Number of parents 30 Learning rate 0.36
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quently, the number of suggested non-feasible solutions decreases as the number of

iterations increases.

6.3.4 Selection of Pectoral Fin Attachment

The proposed mechanism for the pectoral fin is a 2-DOF spherical mechanism

capable of creating rotation about two axes simultaneously within a finite circular

workspace. The fin’s attachment to the mechanism to the 5-bar mechanism is im-

portant because it impacts the fin’s range of motion within that workspace. Hence,

three different attachments for the spherical mechanism have been designed, built,

and tested. In addition, a two-bodied fin design has been investigated. CMA-ES

has been used to train each fin design for maximizing turning torque, and the best

fin design has been selected based on the result obtained. Figure S1 illustrates the

different fin designs, as well as the results of CMA-ES training for maximizing the

turning torque generated by pectoral fins’ propulsion.
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6.4 Results

FIRE can achieve swimming speeds of 0.385 m/s (0.71 body length per second)–

using its caudal fin and can perform pure rotation by utilizing its pectoral fins. The

turning speed in this rotation is 15.68 deg/s.

6.4.1 Turning

Being driven by the goal of maneuverability in tight spaces, a priority for FIRE is

to minimize its turning radius. Using its pectoral fins, FIRE can perform a 360-degree

turn with a near zero radius. Figure 6.1b illustrates the pectoral fin’s mechanism. The

mechanism’s workspace and a sample time-lapse of its motion are shown in Figs. 6.1c

and d, respectively. We have concluded in the previous section that the robotic fish

cannot perform sharp turns by thrust produced by the caudal fin.

To train the robotic fish for sharp turns, we have carried out a study to maximize

the amount of turning torque generated by the pectoral fin’s propulsion. Turning

performance has also been used as the selection criterion for selecting the fins’ optimal

attachment (for more details refer to material and methods section).

FIRE achieves its best turning performance using both pectoral fins in conjunction

with each other. We considered two different cases in our search for the best gait’s

parameters. In the case of simulating still water, the UR5 is stationary; however, in

the second case, it is commanded to move along a straight path at 0.1 m/s to simulate

current. In both cases, the test is repeated three times for each set of parameters.

FIRE’s pectoral fins are parameterized in such a way that their motion is syn-

chronized, but along an opposite path, meaning that when one is moving clockwise,

the other one is moving counterclockwise. This is achieved by introducing following
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relationships:

α1 = −α3, α2 = −α4, β1 = −β3,

β2 = −β4, f1 = f2 = f3 = f4, φ1 = φ2

(6.2)

We believe this helps the fins’ motions magnify generated torque rather than

canceling them out. This assumption also reduces the gait parameter space by half,

to seven from fourteen.

Figures 6.4a and b show the turning torques generated in the CMA-ES search

for the best gaits in still and moving water, respectively. Based on the peak gen-

erated torques and repeatability (marked by red star in Figs. 6.4a and b), 8 unique

gaits have been selected for testing in real-world environments by the untethered fish

and the best motion gait is selected based on its performance in different environ-

ments (marked by green star in Fig. 6.4a). Figure 6.4c illustrates the torque generated

through time by the selected gait. Using this motion pattern, FIRE can perform a

360-degree turn with a near zero radius and the average speed of 30.25 deg/s in our two

foot wide experimental setup (Fig. 6.4d), despite the presence of turbulence caused

by waves reflected by the tank wall. It should be mentioned that the caudal fin is

detached to permit FIRE to turn in the tank without hitting walls. Figure 6.4e shows

the performance of the same gait in a pool. While the turning speed is reduced to

15.68 deg/sec, the gait motion can reliably turn in the environment, even when it

is subjected to turbulence (Movie S1). The authors believe that the slower turning

performance of FIRE can be mostly attributed to addition of the caudal and dorsal

fins on the untethered robot.

For turning with a larger radius, FIRE can utilize its pectoral fins in conjunction

with its caudal fin. While the robot can use the gait selected above in combination

with its caudal fin for larger-radius turning, we propose and study a more energy-
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Figure 6.4: FIRE’s turn training. (a): Value of goal function for CMA-ES training

trials when UR5 is fixed (simulating still water). (b): Value of goal function for CMA-

ES training trials when UR5 is moving with 0.1 m/s speed (simulating water with

current). (c): Turning torque generated in time for selected gait. (d): Extracted

frames of FIRE turning in the 2-feet wide tank. (e): Extracted frames of FIRE

turning in the pool.
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efficient approach to accomplish this goal. In this approach, the robot’s pectoral fins

are commanded to move to different fixed configurations, producing different drag

forces. This asymmetric drag on the robot’s body enables FIRE to turn gradually,

while saving power by avoiding continuous actuation of the pectoral fin servos. As

the objective is to find the configuration that maximizes turning torque at various

speeds, individual tests are repeated three times per parameter set, once at 0.1, 0.2,

and 0.3 m/s each. The cost function has been defined as the summation of average

turning torque generated across all three speeds. The selected configuration and the

training procedure is shown in Figure S2.

6.4.2 Swimming Forward

A series of studies have been run to improve FIRE’s forward thrust generation

and swimming speed by finding the best gaits for both caudal and pectoral fins. The

next sections discuss several approaches for maximizing swimming speed, including

minimizing body drag, optimizing the caudal fin gait, and learning whether the pec-

toral fins can contribute to thrust generation as well as for turning.

Since we have adopted a force-torque generation evaluation as the criteria for robotic

fish performance, each study measures the amount of forces applied to the body of

the fish at different speeds using our experimental setup. This measurement enables

us to understand the swimming performance of the robotic fish when moving freely.

Body drag is measured by commanding the robotic arm to travel the tank length

at a number of fixed speeds and at each speed, the average drag force on the body

is sampled (Fig.6.6a). It should be mentioned that in this test, all fins are in their

neutral configuration (αi = βi = 0).
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Body Drag Minimization

The pectoral fin configuration affects the amount of drag exerted on the robotic fish.

Our training algorithm has succeeded to reduce the sum of drag to 60 percent across

different speeds by finding the optimum configuration of pectoral fins. The obtained

results show that the summation of drag value across all speeds has been reduced

from 2.5 N in neutral state to 1.5 N in minimum-drag state (Fig. 6.6b). In order to

minimize body drag, we can use the training algorithm to minimize drag by finding
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Figure 6.6: FIRE’s swimming forward training. (a): Value of drag exerted on
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trials in minimizing the drag exerted on FIRE’s body. (c): Spanning gait’s parameter

space for caudal fin thrust generation when the UR5 is moving with 0.1 m/s speed
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FIRE in its minimum drag configuration. (e): FIRE swimming forward in minimum

drag configuration.

fixed servo positions that put both fins in an orientation that minimizes drag. The

objective is to find the configuration that produces minimum drag across various

speeds that the caudal fin can realistically achieve.

Individual tests are repeated three times per parameter set, once at 0.1, 0.3, and

0.6 m/s each. The cost function has been defined as the summation of average drag

exerted on the robotic fish in all mentioned speeds. Figure. 6.6 shows FIRE in its

minimum drag configuration.
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Forward Thrust Generation with the Caudal Fin

FIRE can swim forward with the maximum speed of 0.385 m/s by relying solely on

its caudal fin (Movie S1 and 6.6e). This mechanism consists of a servo motor moving

a flexible, fin-shaped plastic sheet back and forth to produce thrust. Experimental

results show that the tail performs best when α5 = 60 deg and f5 = 1.4 Hz. Similar

to the result reported in [160] the thrust produced by the caudal fin is controllable

when f5 = 1.4 Hz. The results also confirm our prior study [160] that the caudal

fin is ineffective for maneuvering in tight spaces. Hence, the caudal fin’s motion is

therefore set to be symmetric (β5 = 0). The three-dimensional space of function

parameters (α5, β5, andf5) has been spanned by measuring the average of sampled

thrust produced by the caudal fin across one cycle. This process has been explained

in [160] for still water, but this study expands that search by considering the effect of

water’s opposing currents by simulating water current by commanding the UR5 arm

to move at 0.1 m/s. Two different cases of pectoral fin orientations have also been

considered throughout the caudal fin study. These cases are neutral and minimum-

drag orientations of the pectoral fins. Figure 6.6c illustrates the value of thrust

produced by caudal fin based on the gait’s amplitude (orange) and frequency (pink)

when FIRE pectoral fins are in neutral (blue) and minimum-drag (red) configurations.

The maximum thrust produced by the caudal fin increases by almost 15 percent

when the pectoral fins have been moved from their neutral to the minimum-drag

configuration.

After fitting the drag and thrust generation plots, we can estimate that the caudal

fin can achieve a forward velocity of of 0.16 and 0.18 m/s when the pectoral fins are

in their neutral and minimum-drag configurations, respectively. Considering that the

robotic fish has attachments that increase drag during laboratory experiments, the
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swimming speed achievable by the untethered robotic fish is expected to be more

than the value that has been estimated by matching the body drag and the caudal

fin’s thrust generation.

Forward Thrust Generation with Caudal and Pectoral Fins

The purpose of this next study is to improve forward thrust by utilizing the pectoral

fins’ propulsion. The obtained results show that in our current design and config-

uration, the pectoral fins are not capable of improving the thrust produced by the

caudal fin. These results are compatible with Lauder et al. observations of pectoral

fins’ propulsion being used in low speed swimming [132]. We have considered different

cases for this objective. In the initial case, we have performed an unconstrained full

search. This has resulted in a gait search in the 16-dimensional parameters space (two

for symmetric caudal fin propulsion and two sets of seven variables for each pectoral

fin). In this test, the for each set of parameters the test is repeated two times and the

UR5 moving speed is 0.1 m/s. The obtained results show that the training algorithm

has not converged after one hundred iterations (Fig. S3A). Considering that on aver-

age, each iteration takes a hundred minutes, the study has not been carried out for

more iterations. Instead, some simplifications have been applied to help the train-

ing algorithm to converge. The caudal fin has been set to produce maximum forward

thrust and the pectoral fins have been commanded in a way that they have symmetric

propulsions (Fig. S3B). This is achieved by introducing following relationships:

α1 = α3, α2 = α4,

β1 = −β3, β2 = −β4,

f1 = f2 = f3 = f4,

φ1 = φ2

(6.3)
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Figure 6.7: Forward thrust generation by pectoral fins. (a): Unconstrained

full search (16-dimensional space). (b): Pectoral fins’ symmetric propulsion when

the caudal fin is actuated by its best motion gait. (c): Pectoral fins’ symmetric

propulsion when the caudal fin is not actuated

For each set of parameters,the test is repeated three times while the UR5 moving

speed is set to 0.1 m/s. The obtained results show that all tested gaits have values

less than the thrust achievable by the caudal fin alone. Finally, another case has

also been studied to evaluate the ability of the thrust generation of swimming with

the pectoral fins with the caudal fin disabled. The highest performing gait is only

capable of overcoming FIRE’s body drag when the UR5 is commanded to move the

fish at 0.1 m/s speed (Fig. S3C). This result shows that the symmetric pectoral fins’

propulsion can produce only limited forward thrust in certain circumstances; the

maximum speed achievable is around 0.1 m/s.

6.5 Discussion

In this study, we have introduced a robotic fish that can utilize complex gait

patterns via two 2-DOF pectoral fins and one caudal fin to swim in extreme envi-

ronments. This is accomplished with a new two degree-of-freedom pectoral fin mech-

anism, whose parallel architecture permits all actuators to be integrated within the

body of the fish, maintaining a more bio-inspired and lightweight fin design as well as
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a more streamlined body. We have carried out a comprehensive series of gait selection

studies across all five degrees of freedom via a novel experimental setup design that

uses a robotic arm to simulate water current. The six-dimensional set of forces and

torques generated by the fins’ motion has been used as the criteria for evaluating

locomotion performance across a number of different goals. By parameterizing actu-

ator motion as a set of sinusoidal functions, a thorough search has been performed

using an on-line evolution strategy to find the best sets of propulsion parameters for

different maneuvering objectives.

In addition to the platform design and gait selection, we have trained FIRE for

use in extreme environments. To do so, we have trained the fish in a non-ideal lab

setup and then we have followed up the training by evaluating the top-performing

gaits in different real-world environment. Finally, we have selected the final gait

that shows high repeatability in its performance. We believe that this method has

advantages over performing the whole training in the real-world environment, because

it avoids extra complexity of automating repeatible tests in real-world environments.

In contrast to previous fish-inspired robotic platforms, the approach proposed in this

study can be used to train robotic fish for extreme environments in a compact and

efficient lab setup. Also, this method avoids the extra cost and labor lies within

production of an out-door experimental setup. Performing an in-lab training alone

cannot guarantee a good performance regarding real-world tests, however, these are

the reasons behind the proposed training workflow that pairs the advantages of using

machine learning in an non-ideal lab setup, and the real-world validation to find gaits

that work well in a variety of environments that feature disturbances, currents, and

reflected waves.

While this training approach has been effective, some challenges should be ad-

dressed. First, due to uncertainties caused by the non-ideal testing environment,
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data is not always repeatable. To address this we have repeated the tests more than

one time for each set of gait parameters. To improve repeatability we must let the

water settle between subsequent trials to minimize the effect of vortices produced by

previous trials. Both of these factors increase the total run time and result in rela-

tively long training tests that can take a day for parameter sets with a low number of

dimensions (in the range of one to three) and a week for parameter sets with a high

number of dimensions (in the range of seven to ten). Another consideration is that

the training failed to converge within an acceptable time for cases that have param-

eter sets with more than ten variables. This has been addressed in current work by

introducing constraining relations between gait parameters to reduce the size of pa-

rameters’ space. Currently, these relationships are manually established; future work

should use experimental design techniques in conjunction with machine learning to

automate this process.

Although pursuing data-driven approaches in the presence of disturbances is chal-

lenging, this study shows that modern training algorithms such as CMA-ES are ca-

pable of finding sub-optimal gait parameters for robots in non-ideal environments,

as long as they are used in combination with external validation such as that pro-

vided by our workflow as well as focusing constraints that are crafted to limit the

dimensionality of the search.

Knowing the advantages and limitations of this training workflow has provided us

with the opportunity to explore a variety of different body shapes and scales as well as

different fin mechanisms and attachment strategies. Being validated by the obtained

results for different cases of this study, this approach shows high repeatability in final

results. These advantages are achieved by combining the evolution strategy training

with our unique experimental setup. In contrast with prior work, using the robotic

arm instead of a water tunnel in our force-measurement approach not only helps the
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robotic fish to train in a noisy environment but also helps keep the experimental setup

compact enough to fit in a typical laboratory setting.
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Chapter 7

LEVERAGING VARIABLE STIFFNESS OF CURVATURE-INDUCED BEAMS

IN DEVELOPING SOFT ROBOTS

This chapter explores a technique to leverage curved surfaces for producing prefer-

ential buckling that can be used to create forward thrust in flapping-wing devices and

simplify the complexity of swimming devices like those mentioned in prior chapters.

We present a novel concept for using anisotropically buckling beams in robot locomo-

tion, facilitated via an analytical and finite-element-based analyses. We demonstrate

that with symmetric flapping inputs from a motor, buckling beams can be used to

generate forward thrust, power, and work while reducing the drag associated with

the recovery phase of the flapping gait. Our analysis includes experimental data that

measures the forces produced by wings flapping in air and water. The results show

a clear difference in the work produced between buckling and non-buckling curved

beams and shows that the average force and work produced by buckling wings over a

number of cycles with symmetric flapping is nonzero. This has been demonstrated on

a new, two-fin swimming robot that, through the use of this phenomenon, is capable

of reaching an average speed of 0.1 m/s. This work makes it possible for simple motor

inputs to produce complex swimming gaits through careful consideration during the

mechanical design phase for swimming robots.

7.1 Introduction

This study explores the role curved surfaces and local buckling can play in the

generation of asymmetric locomotion forces for swimming and flapping robots. More

specifically, we study how curved slender beams buckle preferentially in one direction
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under symmetric motor inputs, utilizing this phenomenon to design flapping fins and

wings that produce forward thrust and net positive work. We further seek, through a

knowledge-based exploration of the design and gait parameters key to understanding

this effect, how to exploit the phenomenon of one-sided buckling to create complex

flapping patterns that create positive average work across multiple gait cycles in

physical prototypes that demonstrate and validate this effect.

Figure 7.1 illustrates the overall concept of the proposed wing mechanism. In

this design, a wing (or fin) is attached to an electric servo via a compliant, curved

beam that buckles at two different points along the positive and negative portion

of its force/displacement curve, corresponding to opposite and equal sense bending.

Fig. 7.1(a) shows that controlling the amount of force exerted on the end of the beam

in positive and negative directions can avoid buckling in both directions, permit

buckling in one direction, or buckle the beam in both directions.

When actuated in a fluid such as air or water, it is our intent to show that

the dynamics of powered, symmetric flapping results in one of three general cyclic

flapping patterns for the system in question. The first regime is typified of slow

flapping below the buckling limit in either direction, where drag and inertial forces

remain low (Fig. 7.1(d)). In this case, the curved beam acts like a simple bending

beam; little asymmetric behavior is observed in its flapping path or in the average

thrust generated over a cycle (Fig. 7.1(e)). In the second regime – the primary

focus of this study – the flapping velocity is sufficient to buckle the beam in the

equal-sense bending direction but not in the opposite direction. This results in the

beam undergoing large deflections about the buckling point during roughly half of

its flapping cycle, which permits the larger surface area of the wing to travel nearly

parallel with the direction of motion, rather than perpendicular. This different angle

of attack results in reduced drag forces on the wing during the recovery segment of
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Figure 7.1: Conceptual illustration of the proposed technique. (a) Different regimes of

a wing with curved beam. (b) Motion of wing in one-side buckling regime. (c) Torque

exerted by the wing on a fixed frame with respect to time and joint angle for one-side

buckling regime. (d) Motion of wing in no-buckling regime. (e) Torque exerted by

the wing on a fixed frame with respect to time and joint angle for no-buckling regime.

the stroke (Fig. 7.1(b)). As the cycle re-enters the power stroke, drag causes the wing

to open back up in the other direction and remain perpendicular to the direction

of motion. This difference in overall drag experienced by the wing in power and

recovery phases generates non-zero average work over a single flapping cycle, even

with a symmetric input from the motor (Fig. 7.1(c)). In the third regime, the beam

buckles in both directions due to high torques exerted by the motor that increase the

drag and inertial forces experienced at the tip of the beam past the buckling limit

in both directions. While also a potentially useful regime, we have observed that, in

some cases, buckling in the opposite sense resulted in plastic deformation and rapid

failure of the beams. Thus, we have limited our current exploration to the first two

regimes in this study.

Many structures in nature utilize flexibility and curvature to enhance locomo-

tion capabilities. In some cases, observations of active curvature or cupping in
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fish [161, 162], three-dimensional curvature in batoids [163], and flexible flapping of

insect wings [164] has been identified as a strategy proposed for optimizing locomotion

efficiency throughout a stroke. Walker et al. suggest that the emergence of rowing vs

flapping behavior in biological locomotion is a function of viscosity-dominated forces

at low Reynolds numbers [165].

Buckling is also used in the natural world for animal locomotion and other tasks.

Camber, deformation, and the “umbrella effect” has been studied in the desert lo-

cust [166, 167, 168]; like an umbrella buckling in a gust of wind, hindwing camber

has been observed to rapidly invert between up-stroke and down-stroke. Young et

al. finds that power economy increases 15% when considering the effect of camber in

flapping models [168]. Both [166, 167] identify the buckling of venous structures as

the prinicpal mechanism which permits this inversion. Buckling has also been identi-

fied as the principal mechanism for successful locomotion in bacterial flagella, [169],

arthropod joints [170], and Venus flytraps [171, 172, 173], and is used by ladybird

beetles as a mechanism to fold and store wings inside their shell [174].

A basic introduction to buckling is typically found in introductory mechanics of

materials texts in engineering. Buckling is typically considered a source of catas-

trophic failure in structures, and models for buckling [175] are introduced in order

to avoid it [176, 177]. However, buckling has several characteristics that make it po-

tentially useful in mechanisms and robotics. First, it does not always imply material

yield; rather, small geometric perturbations lead to drastic reductions in load-carrying

capacity irrespective of the stress in the material. In general, buckling occurs when

a material exhibits a nonlinear and often rapid drop-off in force due to small changes

in shape. Once a buckling condition is met, the material deforms quickly, resulting in

a new force/displacement curve with a much smaller stiffness coefficient. Sometimes

the stiffness coefficient can become negative, leading the device to rapidly reconfigure
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to a new stable state; this condition is referred to as a “snap-through instability” in

the literature [178, 179]. In the design process, buckling is typically associated with

failure and avoided. In some cases – as in a tape spring or tape measure – this con-

dition is exploited. When extended with the curved surface opposing gravity, a tape

spring can support its own weight on the order of several feet. When flipped over,

however, it collapses rather quickly. In addition, a tape spring is able to be rolled

into a small volume without fatigue or failure. Clearly, the material properties, design

geometries, and selected camber all play an important role in this device’s operation.

A variety of prior work investigates buckling and snap-through instabilities with

regard to its use as a mechanical device. Work by Koh et al. demonstrates a flea-

inspired torque reversal mechanism in which energy stored in a spring is released via

a small perturbation in the kinematics of a mechanism [180]. In other work a venus

flytrap-inspired mechanism utilizes reversible buckling to facilitate rapid inversion

between concave and convex states in a SMA-actuated device [181]. In [182], a self-

deployed gliding wing is made using characteristics of a curved origami facet. The

use of curved facets permits the wing to deploy at its ballistic apex, resulting in

an increased gliding range. Jung et al. have also proposed a gripper inspired by

a caterpillar’s proleg that uses flexural buckling for adaptive gripping on rugged,

uneven surfaces [183]. In [12], an origami-inspired structure is used to produce dual-

stiffness joints by pre-stretching and sandwiching a flexible material in a multi-layer

structure during fabrication to induce buckling in the presence of high forces, forming

a mechanical fuse. Jiang et al. propose a mechanism to reconfigure the stiffness of

tubular structures, using pinching to induce highly directional changes in stiffness [36].

In contrast to prior work, which utilizes complex, origami-inspired mechanisms or

uses anisotropy for single-use deployment applications, our work seeks to leverage the

simplicity of curved slender beams as passive, nonlinear elements in the active gen-

135



(c) (d)

buckling joint

rigid joint limit

flexible joint

(b)(a) motorized joints

Fin

motorized joint

Figure 7.2: Comparison between different methods to achieve net thrust

in rowing. (a) Variable speed actuation (b) multiple motorized joints. (c) Passive

flexible joint in combination with a hard stop. (d) A compliant joint fin enhancing

curved beam.

eration of thrust, power, and work via cyclic flapping. Our approach augments prior

work in tape spring theory, using FEA to understand and control design parameters

such as beam length, curvature, and width to influence the thrust and work generated

via symmetric gait patterns. We are motivated by the simplicity of the structures we

employ, and our approaches differ from prior analytical methods in that we demon-

strate how the nonlinear stiffness produced by such elements is sufficient to describe

the dynamic and hysteretic nature of flapping systems in fluid.

Underwater creatures exhibit several fascinating swimming behaviors; among them

are feathering, rowing and flapping motions that occur in at least three different phyla.

Rowing as a locomotion strategy is characterized by reciprocating motions directed

in parallel with the direction of travel, while flapping is typified by motions exerted

perpendicular to the direction of travel [184]. Feathering is an alternative to row-

ing that leverages pitching [185], making this motion more complex to model and
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fabricate compared with the planar motions of rowing. Among animals that use a

rowing strategy, such as the beach flea [186], backswimmer [187], and copepod [188],

fish have been studied more extensively [185, 132]; more robotic platforms leveraging

rowing inspired by fish can be found in literature as well. Fish oscillate their paired

pectoral fins to generate thrust in their “labriform” swimming mode, and number of

approaches are used by roboticists to mimic this style of swimming. In some cases,

a faster power stroke and slower recovery stroke produces nonzero net thrust or mo-

ment [189, 190] at the cost of potentially increased control complexity and prolonged

recovery strokes (Fig. 7.2a). Another approach uses a multi-actuation system to re-

configure for recovery [191, 192] (Fig. 7.2b). This approach introduces the trajectory

hysterisis needed but can suffer from higher complexity as well as a heavier and less

efficient system. Soft robotic approaches have more recently been used to demonstrate

the use of flexible hinges as well. For example, flexible joints or fins are used alongside

rigid joint limits to produce positive net thrust and moment (Fig. 7.2c) [193, 194, 195].

The deformation of flexible joints during recovery repositions the fin to reduce drag,

while rigid joint limits prevent bending during the power stroke, keeping the fin sys-

tem better-positioned to push against the surrounding fluid. This approach, while

effective at reducing control complexity, is not actively reconfigurable.

In contrast to prior solutions, passive rowing is achieved in this study by taking

advantage of the nature of flexible curved beams to preferentially buckle within a

rowing cycle (Fig. 7.2d). The fin system design highlighted here produces net thrust

and moment through symmetric sinusoidal actuation of a single actuator, resulting

in a simple and energy efficient approach. Moreover, the unique characteristics of

slender curved beams provides us with the opportunity to tune the system’s dynamic

behavior (Fig. 7.12) by altering its stiffness. As demonstrated below, by changing

the effective length of a curved beam, we can inhibit buckling unidirectionally or bi-
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directionally, enabling us to switch between a rowing gait with a net forward thrust

(when actuated as a pair) and a flapping gait, generating lateral thrust. When a

pair of such fins are used together, a number of other swimming modalities may be

observed as well. This tunability, which is made possible through internal reconfigu-

ration of the buckling beam, splits the use of actuators according to their purpose –

power and reconfiguration, permitting us to use machine-learning approaches to find

optimal gaits for different swimming modalities in a decoupled fashion, where tuning

actuators are first determined, with a subsequent, independent optimization of the

power actuator signal.

Our contributions may be summarized as follows. (i) Applying the concept of

buckling tape springs for locomotion via flapping in fluids. (ii) Selecting an appro-

priate analytical framework to understand the effect of buckling in curved beams for

use in generating thrust. (iii) utilizing finite-element methods to further study the

relationships between design parameters like curvature, length, and width on beam

stiffness and buckling limits. (iv) Validated of these relationships in simulation and

experimentally, by demonstrating positive nonzero average forces, power, and work

(in contrast to regime I introduced above). (v) Introducing a novel robotic platform

that leverages this phenomenon to swim in water. (vi) Introducing the concept of

using length change to reconfigure the stiffness profile of a curved beam. (vii) Use

of this mechanism to switch between rowing and flapping gaits in a mobile robot;

(viii) Presenting a new dynamic model that simulates robot swimming by integrating

the nonlinear stiffness of curved flexible beam joints; (ix) The use of that model, in

addition to an experimental platform, in the optimization of the robot’s design as

well as its actuation signal by using an evolutionary approach (CMA-ES). (x) Exper-

imental validation of the forces and trajectories estimated during optimization on a

prototype of the proposed platform.
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The rest of the chapter is organized as follows. In section 7.1.1, we demonstrate

the role of curved beam preferential buckling in locomotion using a robot locomoting

through a series of equally-distant pegs. In Section 7.2, we describe a flapping wing

design in which the buckling characteristics of curved beams can be studied and tuned.

We then study the curved beam by discussing the theoretical underpinnings of our

idea in Section 7.2.1; we subsequently introduce a FEA-based model which permits

us to study curved beam design parameters (Section 7.2.2). Section 7.3 introduces

a dynamic model of our proposed system that validates this phenomenon in water;

Section 7.4 describes experimental validation of the concept in air (Section 7.4.1), in

water (Section 7.4.2), and in a robot locomoting through a series of equally-distant

pegs (Section 7.1.1). In section 7.5 The dynamic model is extended to estimate

swimming distance across different designs and actuation signals with an optimization

pipeline using CMA-ES. After prototyping the selected design from the prior step,

we conduct an experimental search for the actuation signals across rowing, flapping,

and undulatory gaits. Finally, based on the obtained results, a swimming robot is

fabricated, and its swimming is studied and the chapter concludes in section 7.9 with

concluding remarks and a discussion of our planned future work.

7.1.1 Role of Curved Beam Buckling in Locomotion

We aim to show the importance of the curved beam preferential buckling in pro-

ducing positive net work and helping a robot advance along a series of equally-spaced

pegs (Fig. 7.3), even when a symmetric input is commanded to the actuators. More-

over, this case study highlights the versatility of the concept out of a fluid environ-

ment.

Figure 7.4 illustrates the locomotion of the peg toy robot across different stiffnesses

of the curved beam when the servos are actuated via the same symmetric input.
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Figure 7.3: The peg toy robot manufactured to show the concept of using curved

beam for out-of-fluid locomotion.

Using a thick sheet of material causes the beam to act as a rigid link due to its

increased stiffness. In the pegs, the robot moves back and forth between two pegs,

since no buckling occurs in either direction (Fig. 7.4a-c). A thin sheet of material

exhibits low stiffness, even in curved configurations, acting like a soft hinge that

easily bends in either direction. Using thinner material, the robot fails to push itself

in either direction due to the compliance of the beam and as a result it does not

locomote (Fig. 7.4d-f). Figure 7.4g-i shows the locomotion of the robot when the

beam thickness is tuned and the curved beam buckles only in equal sense. In this

case, when the arms move forward, the curved beams bend like a soft hinge and help

the robot’s pusher to pass the pegs, as in the recovery stroke of a swimming gait.

When the robot’s arms move back, however, the beam acts rigid and, by prohibiting
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Figure 7.4: Locomotion of the robot for different stiffness of the curved

beams. (a-c) Low stiffness (thickness = 3 mil). (d-f) High rigidity (thickness =

10 mil). (g-i) Tuned stiffness for directional bending (thickness = 5 mil).

bending, pushes the robot forward, as in a fish’s power stroke. 1

7.2 Analysis of Curved Beam in Anisotropic Buckling Wings

This section details the basic components of anisotropic buckling wings. Subse-

quently, the section focuses on modeling and characterization of curved beams embed-

1The results are illustrated in this video: (https://youtu.be/NE8FUFzxGv8).
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Figure 7.5: The side view of our flapping wing designs, with design and experimental

variables labeled.

ded in these wings. In order to split the problem between aerodynamic and buckling

domains, a family of relatively simple wing designs composed of a long thin beam

connected to a circular flat plate has been considered. This wing is attached to a

joint (defined by the heavy dashed line in Fig. 7.5) that may be powered by a motor

or transmission. The role of the circular plate is to produce thrust and drag and

apply resultant forces and torques through the curved beam to the body of a mobile

robot. We assume symmetric propulsion throughout the study, though different gait

strategies could be selected and studied. This permits us to study the impact buckling

and deflection has on thrust and force production as a function of wing configuration

throughout its gait cycle.

We model buckling under the assumption of end-loading conditions consisting of

point loads and moments from aerodynamic forces in the distal portion of the wing.

The wing seen in Fig. 7.5 comprises several sections: a rigid plastic section of length

l0 (gray), a section of length (x1− l0) (in cyan), a second interstitial section of length

(l = x2 − x1) (red), and a third section of length (l1 − x2) (cyan), which is connected
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Figure 7.6: The nonlinear behavior of a curved beam derived (a) from theory [196] and

(b) from experimental data for a steel and plastic specimen with the same geometry.

Both results show a considerable decrease in stiffness after buckling occurrence both

in opposite and equal-sense bending.

to a circular plate of diameter d. The curved beam with thickness t is curved along its

length via two curved plastic sliding attachments located at x1 and x2. These sliders

induce a camber to the beam which can be represented as a radius of curvature r. The

cyan and red sections of the wing are made of a single sheet of t-mm-thick polyester,

while the gray portion is a sufficiently rigid 3D-printed plastic.

For the purposes of our design and analysis, we assume that the position of slider

1 and 2 are such that the red portion of the beam is the weakest and buckles first in

the presence of flapping forces. Though camber of the wing may be observed along

the beam, the circular plate does not exhibit significant curvature due to increased

material stiffness.
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7.2.1 Theoretical Model for Curved Beam Buckling

Two different formulations are most often used to describe the buckling phe-

nomenon of curved beams in the literature, namely the buckling of spherical shells [197,

198] and the behavior of folded tape-springs [199, 196, 200, 201, 202].

In order to understand this phenomenon based on the buckling of spherical shells,

Kebadze et al. explain that in opposite-sense bending, pre-stressed, curved material

first passes through a flattened state via moments exerted on the shell’s edge (Mx and

My) [198]. Stress (σy) is the direct result the of curvature change in the y-direction,

while (σx) is caused by Poisson’s ratio. Considering that the material remains in its

elastic range during this deformation, the stress distribution through the thickness

stays linear and stress distribution can be determined.

This model finds critical buckling stress as a function of curvatures of the two

stable phases, i.e., initial longitude curvature and final phase curvature. In our study,

the system has no second stable phase. As a result, the value for final phase curvature

is unknown and the value for critical buckling moment cannot be obtained based on

this system of equations.

The behavior of a tape spring is formulated by Wuest in [201], in which moment-

curvature relationships for a tape spring subject to equal and opposite end moments

are obtained (Fig. 7.6(a)). As described by Soykasap, end moments can be obtained

by integrating of moments about the transverse axis for the whole cross-section of the

tape spring by considering the beam as a slightly distorted axi-symmetric cylindrical

shell [199]. In this formulation,

M =

∫ s/2

−s/2
(Ml −Nlw)dy = sD×(

kl +
ν

r
− ν(

1

r
+ νkl)F1 +

1

kl
(
1

r
+ νkl)

2F2

)
,

(7.1)

where Ml and Nl are the bending moment per unit length and the axial force per
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unit, respectively. w represents out-of-plan deflection, the y-axis corresponds to the

longitudinal direction, and kl is longitudinal curvature. s and D are the width of the

tape spring and bending stiffness, respectively and can be determined by the following

equations:

s = 2r sin(
θ

2
) (7.2)

D =
Et3

12(1− ν2)
, (7.3)

where E, ν and t are Young’s modulus, Poisson’s ratio and tape spring thickness,

respectively. r and θ are the initial transverse radius and curvature angle of tape

spring, respectively. F1 and F2 in Eq. 7.1 are calculated as follows:

F1 =
2

λ

coshλ− cosλ

sinhλ+ sinλ
(7.4)

F2 =
F1

4
− sinhλ sinλ

(sinhλ+ sinλ)2
(7.5)

where λ =
4
√

3(1− ν2)s√
t
kl

(7.6)

The critical buckling moment (Mmax
+ ), can be calculated by finding the maximum

end moment in Eq. 7.1. The “steady moments” M∗
+ and M∗

− referenced in [199] can

be calculated by considering that the curved region is approximately cylindrical:

M∗
+ = (1 + ν)Dθ (7.7)

M∗
− = −(1 + ν)Dθ (7.8)

Although M∗
− and Mmax

− are considered different values by [196], they are considered

equivalent in other studies, which changes the equal-sense bending curve in Fig.7.6(a)

to a simpler horizontal line starting from M∗
− = Mmax

− [199]. Additionally, we note

that this formulation is limited to the linear regime of the material’s stress/strain

curve.
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Figure 7.7: Finite element analysis on the curved slender beam. Side view of

the deformation of a thin beam of dimensions 25.4 mm by 25.4 mm and θ = 180◦ at

its critical load in (a) equal-sense and (b) opposite-sense bending. Only half of the

symmetric beam is simulated and displayed. FEA results demonstrate the buckling

limits as a function of various design parameters in opposite and equal-sense bending,

which relate to the differences in load-carrying capability in either direction. (c) The

effect of curvature angle (θ). (d) The effect of width (rθ). (e) The effect of length (l).

In order to evaluate the theoretical model and provide better understanding of the

curved beam, two specimens of a steel measuring tape and a curved polyester beam

are considered. Both specimens have the same length (l). The polyester specimen

is pre-curved so as to have the same radius of curvature (r) as the steel specimen.

For each specimen, the curved beam is attached at one end to a fixed plate, while a

known force is applied to the other end. A force sensor mounted to the output of a

linear actuator pushes on the beam via a small, 3D printed contact point. The linear

actuator moves back and forth through a 50 mm range in 10µm increments; applied

forces are sampled at each step.
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Figure 7.6(b) depicts the result for both specimens in two cases of equal and

opposite-sense bending. Both polyester and steel specimens exhibit the buckling

behavior predicted in the theoretical model. This may be seen in the sudden drop

in the resultant moment at high deflection. The buckling moments in opposite-sense

bending (Mmax
− ) are much higher than the equal-sense buckling moment (Mmax

+ ) for

both specimens. However, there are some notable differences between the theoretical

model and experimental data. In both specimens, the deflection of the specimens in

Fig. 7.6(b) does not follow the same path after buckling when forces are removed. This

difference is more noticeable in the steel specimen compared to the polyester specimen.

In the steel specimen, the values for M∗
+ and Mmax

+ are different (as predicted in [196]),

but in the polyester specimen, they have the same value (as predicted in [199]). The

sudden change in the experimental torque/displacement data is believed to be due to

out-of plane deformation, pusher slip, and friction. Moreover, in the case of opposite-

sense bending, the path during loading and unloading of the polyester specimen is

closer to the theoretical model predicted in [196, 199] than the steel specimen. We

attribute this to plastic deformation that was observed in the steel specimen. While

the theoretical model assumes that the buckling beam does not leave the elastic

region, our experiments show otherwise. This can be due to the fact that, like the

drag force on the wing, the pusher produces a combination of force and moment on the

edge of the curved beam instead of a pure moment. This force-moment combination

produces a nonuniform stress distribution on the shell and, in some cases, deforms

the plate after buckling in ways not predicted by [196, 199]. This deformation results

in permanent damage to the beams if the moment exceeds (Mmax
− ). As a result, a

safe region must be defined for the moment produced by the wing to ensure that the

beam never undergoes opposite-sense buckling.
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7.2.2 FEA Study on Curved Beam Buckling

In order to customize the buckling behavior of curved beams, various design pa-

rameters can be adjusted, including the radius of curvature (r), beam width (rθ),

beam length (l), and other material properties. Finite Element Analysis (FEA) may

be used to better understand and tune the relationship between these parameters and

the desired buckling conditions. Unlike the analytical formulation, which is based

upon uniform geometry and specific loading assumptions, FEA methods permit us to

explore a wider range of geometries with more nuanced loading combinations as our

use of this technique moves towards design optimization.

We thus study behavior of a slender curved beam, varying the curvature (θ),

length (l), and width (rθ) of the beam as primary design parameters and monitor the

change in buckling factor of safety in linear, eigenvalue-based approach. To simplify

the analysis we model half the beam and apply a symmetric constraint for the other

half; we use a curvature-based mesh setting with a maximum element size of 0.4 mm

and a 0.02 mm tolerance. The proximal edge of the beam is fixed while a load is

applied to the distal end. The load is a combination on nominal force and moment

(1 N and 1 Nm).

First, we demonstrate how adjusting the camber (or longitudinal curvature) of a

beam can be used to alter the beam’s stiffness and critical load to produce asymmetric

flapping cycles and nonzero thrust. The curvature, θ, is defined in Fig. 7.5 so that

θ = 0 corresponds to a flat plate and θ = 180 produces a half-cylinder. Using the

results of an FEA study performed using SolidWorks simulation, seen in Figs. 7.7(a,b),

the deflection of a curved beam (of dimensions l = 25.4 mm by rθ = 25.4 mm by

t = 1 mm) loaded in equal and opposite sense differs noticeably.

A further study, shown in Fig. 7.7(c), shows the evolution of the differences in
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Figure 7.8: Dynamic Modeling of a Wing Flapping in Water. (a) Model for

the wing system. (b) Comparison between the average values of wing lift and drag

between flat plate model (Eqs. (7.9) and (7.10)) and CFD analysis. (c) The velocity

magnitude of the water flow in CFD analysis for α = 120◦. (d) Motion of the wing

flapping at 0.4 Hz experiencing buckling during the recovery phase. Torque exerted

by the wing on the fixed frame with respect to time (e) and motor position (f).

critical load for equal and opposite-sense bending as the curvature of a beam is varied

between 30◦ and 180◦. The width (rθ) and length (l) of the undeformed half-beam is

set to 25 mm in this study, and the resulting critical loads are obtained when loads

are applied in the equal and opposite orientation using a linear eigenvalue-based

analysis. The results in Fig. 7.7 show the magnitude of the buckling factor of safety

in equal-sense (blue) and opposite-sense (red) loading cases. While exceeding the

opposite-sense buckling limit leads to plastic deformation and should be avoided (as

discussed in the previous section), exceeding the equal-sense buckling force reduces

drag in the up-stroke portion of the swimming gait and increases the average thrust

produced in swimming gaits without leading to beam failure. The black arrows in
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Fig. 7.7 show the magnitude of the difference between critical load in either direction,

corresponding to the safe working range for using drag forces to create asymmetric

flapping gaits without material failure in the beam.

To further understand the relationship of beam width on buckling point, the

curvature (θ) and length (l) of the undeformed beam are fixed at 180◦ and 25.4 mm,

respectively, while the width of the beam is varied from 6.4 mm to 76.2 mm. The

beam’s, radius of curvature (r), volume, and mass change as a function of width.

Figure 7.7(d) shows the result of this study, where the factor of safety corresponding

to both equal and opposite-sense buckling increases as the width of the beam grows.

The results also show that the difference in magnitude between equal and opposite-

sense buckling limits (black arrows) grows with width.

In order to better understand how beam length (l) impacts buckling, we vary

the length of the beam from 6.4 mm to 76.2 mm while keeping the curvature (θ) and

width (rθ) of the undeformed half-beam fixed at 180◦ and 25.4 mm, respectively.

The beam’s volume and mass change as a function of length (l) while the radius of

curvature (r) is held constant. Loading conditions are varied as a function of l in this

since the loading conditions on the buckling portion of the system are defined by the

moment and force combination generated by the forces exerted at the distal end of

the beam.

The result of this study shows that the buckling limit decreases for both equal

and opposite-sense buckling as the length grows (Fig. 7.7(e)). However, the difference

between the magnitude of positive and negative buckling limits initially grows and

then stays somewhat constant for l > 25.4 mm.

Based on these results, we have selected a curved beam with θ = 180◦ for the rest

of the study. The beam length (l), width (rθ), and thickness (t) remain free design

variables that can be tuned in order to maximize the effects of one-sided buckling for
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use in conjunction with the drag and inertial forces acting on the fin across fluids of

different viscosity. Future work will require a more systematic search for the optimal

design through all parameters to find designs which improve performance for criteria

such as speed, efficiency, or power.

7.3 Dynamic Modeling of Buckling Wing Propulsion

This section describes the dynamic modeling of the system by considering dynamic

elements such as wing drag, curved beam stiffness, and rigid body dynamics.

We have modeled the dynamic behavior of a wing system based on these relation-

ships. In this study, a wing system (shown in Fig. 7.8(a)) is connected to the ground

at the base of the input joint and the moments exerted on the environment about the

rotational axis are recorded similar to our experimental setup in Section 7.4.2. The

system is represented by two rigid links with point masses located at their centers of

mass, connected by a pin joint and torsional spring, with stiffness coefficient of K,

connected in parallel. The nonlinear stiffness of the spring is represented by three

linear regimes; the slopes of each of these regimes have been adjusted to best fit ex-

perimental data collected from our prototype introduced in Section 7.4.2 using the

methods discussed in Section 7.2.1.The length (d1 and d2) and mass (m1 and m2) of

each link match the measured values of the in-water prototype from Section 7.4.2.

Using a flat plate model, the forces on a wing due to a fluid are estimated by the

equations derived from [203]:

FwD
= ρu2A sin2 α (7.9)

FwL
= ρu2A cosα sinα, (7.10)

where ρ, u, A, and α are the density of fluid, the relative velocity of the plate, the

area of the plate, and the angle-of-attack of the wing, respectively. FwD
and FwL
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Figure 7.9: Experimental Setup for Measuring Air Drag Applied to the Wing.

correspond to the drag and lift elements of the aerodynamics forces on the plate.

This model estimates the total force on a flat plate as:

Fw = ρu2A sinα, (7.11)

where α is 0 when parallel to the flow and 90◦ when perpendicular (in 2D) [203]. This

force is perpendicular to the wing and acts as the aerodynamic load on the curved

beam (Fig. 7.1a).

Using Eq. (7.11), we can use the velocity of the plate (u) to control the amount

of drag force exerted on it, which, in conjunction with the load limits determined by

the mechanics of the curved buckling beam (Eqs. (7.1),(7.7),(7.8) and Fig. 7.6(a)),

determines whether and under what conditions buckling occurs.

The flat plate model best describes the fluid dynamics of a system when the

Reynolds number is low and the system is in the laminar regime. The Reynolds

number of a flapping wing in fluid is formulated as follows [204, 205]:

Re =
ūc̄

ν
, (7.12)
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where ū, c̄ and ν are the mean translational velocity of the wing tip, the wing mean

chord and the kinematic viscosity of the fluid, respectively. For the given flapping

system, ū = 2ΦfR, where Φ and f are flapping peak-to-peak angular amplitude and

frequency and R is moment arm to the center of pressure of the wing. For this wing

flapping in water, the Reynolds number varies from 1800 to 7200 when the flapping

frequencies varies from 0.1 to 0.4 Hz, indicating that the flow regime changes from

laminar to turbulent at higher flapping frequencies.

We then compare the flat plate model using a Computational Fluid Dynamic (CFD)

analysis on the system wing. In this study, carried out in ANSYS (Fig. 7.8(c)), we

have measured the average lift and drag exerted on the wing by uniform water flow

with different flowrates as the angle-of-attack varies from 0 to 180◦. Figure 7.8(b)

shows the CFD analysis results for the flow of 0.1 m/s versus the flat plate model

estimation. These plots show the high correlation between the flat plate model and

CFD results for the latter speed for which the system is in laminar regime. At the

maximum studied flapping frequency, the mean transnational velocity of the wing

reaches 0.41 m/s for which, in the worst case, the maximum error between flat plate

model and CFD results is less than 15%.

When a sinusoidal torque input is applied to the base joint, the dynamic model

demonstrates that the wing system transitions between a non-buckling flapping regime

to a one-sided buckling regime (as shown in Fig. 7.1(a)) when the flapping frequency

is increased. Figures 7.8(e,f) plot the torque produced across different input frequen-

cies as a function of time and base joint angle. From these data we can see that

the wing system transitions from the non-buckling regime to one-sided buckling at

around 0.3 Hz. While the maximum positive torque increases with frequency in the

power stroke, the torque in the recovery section remains low. The amount of work

performed on the environment, in Fig. 7.8(f), also grows with the emergence of buck-
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ling. Figure 7.8(d) shows the motion of the modeled wing through a full flapping

cycle at 0.4 Hz, behavior which is similar to the in-water flapping behavior shown in

Fig. 7.11(b,c).

7.4 Experimental Validation

The goal of this section is to experimentally verify the effect of curvature on

buckling force for a curved beam, as well as to demonstrate its potential for creating

thrust and motion. We have considered two case studies (air and water) to validate

our proposed methodology in order to underscore the generality of this concept, using

the design principles from the previous section as a design guide.

7.4.1 Case Study I: Wing Flapping in Air

In this case study, the air drag exerted on a wing utilizing curved beam buckling is

experimentally measured. Our experimental setup is shown in Fig. 7.9. A DC servo

is attached to a flapping wing via a 3D printed mount, permitting rapid swapping of

different wing designs. Forces and torques generated by flapping are measured with

a six-axis ATI Mini40 force/torque sensor mounted to the motor and ground. The

servo’s position input signal is a triangular wave with a fixed amplitude of 66◦; the

frequency is varied in order to change the aerodynamic interactions experienced by

the wing.

Variable Length (One Beam)

Two different cases of symmetric flapping are studied to demonstrate the effect of

anistropic buckling. In the first case, the sliders are brought closer together; this

shortens the exposed beam length (l) and prevents buckling in both directions of

flapping and results in similar angle of attack and drag in both up-stroke and down-
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Figure 7.10: The effect of asymmetric buckling on a wing flapping in air:

(left plots) Torque vs. time, measured over several flapping cycles, (middle plots)

position vs. torque; (right plots) velocity vs. torque (a,b,c) One beam with variable

effective buckling length that produces no buckling and buckling, respectively. (d,e,f)

One beam connected to the wing flapping at 1.38, 2.06, and 2.28 Hz. (g,h,i) Two

beams connected to the wing, flapping at 2.06, 2.28, and 2.48 Hz.

stroke (orange line in Figs. 7.10(a,b,c). In the second case, curved, reinforcing sliders

are arranged so that the gap between them is large enough to permit buckling in the

equal-sense direction to occur during sinusoidal flapping. This longer buckling region

allows the curved beam to buckle under drag forces in equal-sense bending, but is

not sufficient to induce buckling in the opposite sense (blue line in Figs. 7.10(a,b,c)).
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The start and end points of buckling are illustrated in Figs. 7.10(a,b) using red circles

and blue squares, respectively. Non buckling and one-sided buckling regions for a full

cycle are also shown using light gray and gray boxes.

Figures 7.10(b,c) show the moment generated by the wing during symmetric flap-

ping as a function of the wing’s angle and speed, respectively. The shape of the non-

buckling curved beam’s work loop is qualitatively symmetric (about torque τ = 0),

indicating that the average work – the area of the work loop in the positive τ domain

minus the area of the work loop in the negative τ domain – over several flapping cy-

cles provided by a non-buckling beam (orange) is near zero. In contrast, the buckling

beam (in blue) shows an asymmetric path (about torque τ = 0), capable of producing

nonzero work in the forward direction. This asymmetry is also noticeable in vertical

portion of the blue line in Fig. 7.10(c), shown by vertical double arrows lines, where

the positive angular velocity is much smaller compared to the negative side. The

above changes in power and work plots show the effectiveness of anisotropic buckling

during symmetric flapping in generating non-zero thrust, power, and work.

The results demonstrate that the curved beam produces work in symmetric flap-

ping when it is permitted to buckle. The average torque generated over one flapping

cycle increases from 0.009 Nm to 0.165 Nm in the presence of unidirectional buck-

ling (Table 7.1). Though the wing-beam system is not optimized for energy efficiency,

the mechanical energy efficiency increases from 1.86% to 29.5%. This is calculated

by evaluating the ratio of useful work done over the total work done across a full

flapping cycle.

Variable Frequency (One beam)

We next look at the effect of drag on buckling by increasing the frequency of the trian-

gular input signal for the same curved beam. Plots in Fig. 7.10 show the torque gen-
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erated via a symmetric flapping gait with respect to time (a,d,g), servo angle (b,e,h),

and angular velocity (c,f,i). In Figs. 7.10(d-i), the results for the three flapping rates

of 1.38, 2.06, and 2.28 Hz are depicted in blue, red and orange colors, respectively.

In these figures we see that the torque generated by each successive increase in flap-

ping speed increases the magnitude of torques experienced in the positive y domain

without similar magnitude increases in the negative y domain. This results in work

performed on the environment, which can be seen as a clockwise work loop in both

the torque vs. servo angle and torque vs. angular velocity plots in Figs. 7.10(e,f).

At 1.38 Hz, the beam experiences no buckling, however the faster two cases (2.06 and

2.28 Hz) result in one-sided buckling. The average torque, amount of work done on

the environment, and mechanical efficiency are reported in Table 7.1. The data reveal

that the buckling duration of a full flapping cycle increases from 25% to 42% in one-

sided buckling cases between 2.06 and 2.28 Hz. We note that though the hysteretic

gaits obtained here via anisotropic buckling during flapping resembles gaits generated

by other techniques such as the split cycle method in [206], the effect in our case is a

result of designed system dynamics rather than asymmetric motor inputs.

Variable Frequency (Two Beams)

To address the non-negligible torsional effects visible in the wing during flapping, we

stiffened our system in torsion by attaching two beams – 40 mm apart from each other,

in parallel – to the wing, as depicted in Fig. 7.5. This reduced the noticeable effects of

torsion on long thin beams (as noted by [207]) and produced slightly different torques

throughout flapping cycles at different speeds. Figures 7.10(g-i) show the results of

this test at 2.06 (blue), 2.28 (red), and 2.48 (orange) Hz, respectively. The results

show similar trends and behavior with the previous one-beam case, but because the

system is stiffer (due to two beams in parallel), it takes higher velocities (and higher
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Table 7.1: Torque and work generated during flapping in air.

Experiment
Frequency

(Hz)

Average

Torque (Nm)

Work

(J)

Mechanical

Efficiency
Buckling

Variable 2.28 -0.012 -0.009 1.86% No

Length 2.28 0.131 0.165 29.50% One side

1 Beam

1.38 -0.005 -0.005 2.98% No

2.06 0.149 0.154 26.73% One side

2.28 0.131 0.165 29.50% One side

2 Beams

2.06 0.004 0.013 2.29% No

2.28 0.031 0.019 2.56% One side

2.48 0.077 0.095 10.30% One side

drag) to initiate buckling. This can be seen in the of 2.06 Hz case, which experiences

no buckling in contrast to the single-beam trial. The data sampled in the two-beam

case are smoother, with less high-frequency noise; this can be attributed both to

a reduction in torsional effects as well as the impact of the altered stiffness on the

resonant frequencies of the system.

7.4.2 Case study II: Flapping in Water

This concept has also been demonstrated in water, using a RC servo to produce

symmetric flapping while measuring the torques produced by the fluidic interactions.

Figure 7.11(b) shows frames extracted from a single flapping cycle of a wing with a

pre-curved buckling beam. Frames 1-4 represent the recovery stroke of our sinusoidal

control signal; frames 5-8 constitute the power stroke. Hysteresis is clearly visible
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Table 7.2: Generated torques in simulation and experimental

Frequency
Simulation Experiment

Buckling
τmin (Nm) τmax (Nm) τmin (Nm) τmax (Nm)

0.1 -0.04 0.04 -0.04 0.04 No

0.2 -0.14 0.14 -0.14 0.15 No

0.3 -0.23 0.3 -0.13 0.32 One side

0.4 -0.24 0.46 -0.12 0.44 One side

between these strokes, indicating that the dynamic interactions between inertia, drag,

and buckling play a role in deforming the beam anisotropically.

In this experiment we use a sinusoidal input signal with constant amplitude and

variable frequency to study the impact of flapping speed on buckling and torque.

Figure 7.11(c) shows the torque generated for 0.1, 0.2, 0.3, and 0.4 Hz frequencies

over several cycles. The results clearly demonstrate the effect of anisotropic beam

buckling. The maximum positive torque increases from 0.05 Nm to 0.43 Nm between

0.1 Hz and 0.4 Hz while the negative torque generated during a flapping cycle is lim-

ited across all experiments to no less than -0.12 Nm. Table 7.2 shows the comparison

between the generated torques in this experiment and values estimated by the dy-

namic model (Sec. 7.3). The results of the two-beam design are subsequently shown in

Fig. 7.5. Though illustrative of the tradeoffs between torsional stiffness and buckling,

the results show that increased mechanism stiffness increases the torque that can be

supported by the beam in recovery (Fig. 7.11(d)), undesirable from the perspective

of gait efficiency. This design requires optimization against other design parameters

to simultaneously reduce the effect of torsion and increase efficiency.

Using these results, a water-based robotic platform has been developed that lever-
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Figure 7.11: The effect of asymmetric buckling on a wing flapping in water:

(a) This robotic prototype uses buckling to swim through water. (b) Frames extracted

from the propulsion test demonstrate buckling in the recovery stroke and no buckling

in the power stroke. (c-e) The effect of various flapping rates on the torque produced

on a fixed frame for (c) a one-beam wing, (d) a two-beam wing, and (e) the thrust

produced in the x-axis by two one-beam wings.

ages buckling during flapping. As illustrated in Fig. 7.11(a), the robot uses curved

beams to connect to two rigid fins made from 0.76 mm fiberglass sheet. The buckling

portions of the links are made from a laminated composite of fabric, adhesive and

0.18 mm-thick polyester, which is used to reinforce the material during buckling.

Based on the properties of the curved beam, if the combination of force and

moment experienced at the fin is between the equal and opposite-sense buckling

values discussed earlier, the curved beam will buckle unidirectionally, resulting in a

different angle of attack, which impacts the lift and drag forces acting on the fin

by the fluid. As a result, drag on the robot will be different in power stroke and
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recovery stroke, creating a thrust differential over a gait cycle which makes the robot

swim forward. The magnitude of forces and moments caused by fin propulsion can

be adjusted by controlling the amplitude and speed of the servo movements, size of

the fin, length of the beam (l), and radius of curvature (r).

The left and right fin servos follow a sinusoidal control signal of the form

yi = Ai sin(2πfit+ ai) + bi (7.13)

where Ai represents an adjustable amplitude, fi represents the frequency, ai represents

a phase offset, and bi represents an amplitude offset from the neutral point, which is

nominally set to bi = 0 throughout these trials. This symmetric motion about our

transverse and bilaterally-symmetric robot guarantees that any forward locomotion

can be attributed to the changes in drag caused by the buckling curved beam attached

to the fin. Figure 7.11(e) shows the forward thrust generated by symmetrical flapping

of the two wings for 0.1, 0.2, 0.3, and 0.4 Hz frequencies.

In water trials, the swimming robot was able to swim with an average speed of

0.1 m/s when y0 = y1. The robot was able to rotate by using only one limb at a

time. This is important because a non-buckling fin acts more like a fish caudal fin

and causes the robot to move laterally; because of buckling, the fin produces nonzero

average torque, resulting in the robot turning.

7.5 Tuning Curved Beam Stiffness for Selectable Swimming Gaits

After validating the efficacy of the proposed fin design in producing positive net

thrust and locomotion between pegs, in air and in water, the following sections are

dedicated to in-depth study on using this concept for enhancing swimming.

As illustrated in Fig. 7.12, rowing is a swimming motion employed by a number of

animals via tuned passive biomechanics and active gait strategies. This gait generates
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positive net thrust (or moment) by having a higher drag profile in the power stroke

compared with the recovery stroke, which is obtained via faster actuation speed or

higher effective area. We first cover the advantages of our method in generating

positive net thrust and moment compared to other state-of-art methods in producing

rowing. We have extended the dynamic model introduced in the previous part of

this chapter to model the swimming behavior of the robot. A design optimization

has been carried out, using the CMA-ES, to find the design and gait parameters that

maximize the robot’s forward swimming speed using rowing. Additionally, we show

that these curved beams can be actively tuned to alter their behavior on demand

for use in swimming applications, and can be used in an underwater robot to switch

between rowing and flapping gaits. Finally, a series of experimental gait searches

have subsequently been conducted on the resulting optimal design, again using CMA-

ES with the goal of finding the optimal gait pattern across a number of swimming

strategies such as paddling, flapping, and undulation. By actively altering the curved

beam’s buckling limits, an untethered robot has been developed that maneuvers in

water across each of these swimming strategies. The findings suggest that tuning

the preferential buckling limits of curved beams can be an effective and potentially

advantageous approach for producing directional thrust and moments.

7.5.1 Design & Fabrication

This section details curved beams and their nature to buckle preferentially, for use

in creating rowing and flapping gaits. A flat, slender, compliant beam shows little

resistance towards bending; however, by inducing curvature in it (Fig. 7.12a), the

resulting curved beam resists bending in the direction opposing its camber (known

as opposite sense bending) more than when the beam is bent in the direction of the

beam’s camber (equal sense bending). The influence of curvature results in different
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Figure 7.12: Utilizing curved beams in rowing and flapping swimming strate-

gies. (a) Curving mechanism. (b) The nonlinear behavior of curved beams. (c) short

beam. (d) long beam. (e) flapping gait. (f) Rowing gait. (g) Lateral swimming

using one fin flapping gait, and undulation. (h) Forward swimming and turning using

rowing gait.

buckling limits in equal and opposite sense bending as well. Furthermore, this phe-

nomenon is also controllable by considering the effective length of the beam (green

and yellow lines in Fig. 7.12b). When the beam’s effective length is shorter, both the

stiffness and buckling behavior behave more symmetrically, while at the same time,

beam stiffness increases.

In this study, we use this controllable, asymmetric buckling behavior to enhance

swimming in an underwater robot. We show that by careful consideration during

mechanical design, the preferential buckling of curved beams can be used to passively

produce a rowing gait even with simple, symmetric inputs. On the other hand, the

beam can also be reconfigured to produce flapping gaits. As shown by the green plot

in Fig. 7.12b, in the rowing gait regime, the fluid’s dynamic load on the distal end

of a properly-sized beam (Fig. 7.12d) overcomes its critical buckling limit in equal

sense bending, resulting in the beam undergoing a large deflection during recovery
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stroke (blue in Fig. 7.12f). Buckling permits the fin to travel nearly parallel with the

direction of motion, rather than perpendicular to it, altering the angle of attack to

reduce drag on the fin during the recovery stroke. In the power stroke, however, the

fluid’s dynamic load on a properly-dimensioned curved beam does not exceed the criti-

cal buckling limit in the opposite sense; the beam consequently remains perpendicular

to the direction of motion, maintaining higher drag forces on the distally-mounted

fin (red in Fig. 7.12f). Cycles of alternating power and recovery strokes result in a

rowing gait that can be used to produce a positive net thrust in the forward direction.

In the flapping regime, by shortening and stiffening the curved beam (Fig. 7.12c), the

critical buckling limits of the beam – in both equal and opposite sense bending – are

larger than the fluid’s dynamic load (yellow plot in Fig. 7.12b), resulting in a flapping

gait that primarily produces lateral thrust (Fig. 7.12e).

One of the common formulations to describe the buckling phenomenon of curved

beams in literature is the behavior of folded tape-springs [199, 196, 200, 201, 202].

The behavior of a tape spring is formulated by Wuest in [201], in which moment-

curvature relationships for a tape spring subject to equal and opposite end moments

are obtained. Soykasap states that end moments can be obtained by integrating

moments about the transverse axis for the whole cross-section of the tape spring

by considering the beam as a slightly distorted axi-symmetric cylindrical shell and

provides formulations to calculate the critical buckling moments in opposite and equal

sense bending.

In [199], Soykasap’s formulation also assumes that materials are operating in their

linear regime and that the loading on the distal end of curved beams is a pure mo-

ment. In our case, both material properties of the polyester beam and its loading

condition caused by fluid dynamics do not satisfy the assumptions. In [208], we have

previously shown that a beam’s curvature influences and can be used to increase the
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Figure 7.13: Experimental data showing the changing nonlinear behavior of curved

beams with a short and long effective length. The positive x-axis represents opposite-

sense bending, while the negative x-axis represents equal-sense bending.

difference between opposite and equal sense critical loads using Finite Element Anal-

ysis (FEA). We have also shown with FEA in [208] that the opposite and equal-sense

critical buckling loads are much closer in value in shorter beams. This has been ver-

ified experimentally, by measuring the torque/rotation behavior and identifying the

critical loads for the long and short beams corresponding to the device depicted in

Fig. 7.12(c, d).

Figure 7.13 shows the nonlinear behavior of two specimens with the same cur-

vature (180◦) and width (25.4 mm), and with effective lengths of 31.75 and 3.6 mm.

In this test, for each specimen, the curved beam is attached at one end to a fixed

plate while a known force is applied to the other end. A force sensor mounted to

the output of a linear actuator pushes on the beam via a small, 3D printed contact

point. The linear actuator moves back and forth through a 50 mm range in 10µm

increments while forces and torques are logged. Since the curved beams are mod-

eled as a flexible hinge, the sampled data is displayed by their equivalent torque and

deformation angles in Fig. 7.13. These profiles are used within subsequent models

and prototypes in the rest of this study. These data also show that by reducing the
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beam length, the critical buckling limit in equal sense bending increases from 0.1 to

0.65 Nm; the limit for opposite sense buckling, however, only increases from 0.76 to

1.02 Nm. Thus, for fluid-dynamic loads between 0.1 to 0.65 Nm, altering the effective

length changes the buckling condition from unidirectional to bi-directional, resulting

in the gait switching from rowing to flapping.

A slider mechanism has been implemented to alter the effective length of the

beam, as illustrated in Fig. 7.16b. The mechanism consists of a rigid slider with a

curved slot; when pulled, it prevents deflection by maintaining the beam’s curvature,

decreasing the length of the portion of the beam available to buckle. The slider’s

neutral configuration is set by a compression spring as the beam’s natural length,

which permits one-sided buckling – and thus rowing – at lower forces. To activate

flapping, a single actuator pulls both fins’ sliders forward via a tendon and pulley

system, preventing buckling when the beams are loaded. The curved beam’s stiffness

in this configuration is both higher and more symmetric (in the equal and opposite

sense), as seen in the red dashed line in Fig. 7.13).

7.6 Dynamic Modeling

In order to optimize the design of the device for rowing, we next describe the

dynamics of the system by considering the contribution of the wing’s drag, the curved

beam’s stiffness (in the long configuration), and the inertial effects of each body.

The proposed robot uses two fins attached to the main robot’s body at a distance of

d0 (shown in Fig. 7.14a). Each fin is represented by two rigid links (d1,m1 and d2,m2)

with point masses located at their centers of mass, connected by a pin joint and

torsional spring, with stiffness coefficient of K, connected in parallel. The nonlinear

stiffness of the spring is represented by three linear regimes; the slopes of each of these

regimes have been adjusted to best fit experimental data collected from our specimen
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in its long effective length configuration (blue in Fig. 7.13).

Using Eq. (7.11), we can use the velocity of the plate (u) to control the amount

of drag force exerted on it, which, in conjunction with the load limits determined

by the mechanics of the curved buckling beam, determines whether and under what

conditions buckling occurs. In section 7.3, we showed that, in the worst case, the

maximum error between flat plate model and CFD results is less than 15%. Due to

the simplicity of the flat plate model, we use it in our simulation to reduce computa-

tion time and keep the optimization process tractable. Our simulation is performed

with a Python-based dynamics package called Pynamics. This library derives the

Equation of Motion (EOM) using Kane’s method [209]2 which are then integrated

using the scipy.integrate.odeint() function to determine the system’s state over time.

The performance of the model is evaluated by comparing the moments generated by

one fin against data collected experimentally. By defining two forces connecting the

robot to the ground (kG and bG in Fig. 7.14a), the forces and moments exerted on

the environment about the rotational axis when one fin is actuated may be measured

in simulation.

When a sinusoidal input torque is applied to the base joint of a fin, the dy-

namic model demonstrates that the wing system transitions between a non-buckling

flapping regime to a one-sided buckling regime when the input frequency increases.

Figure 7.14b plots the torque across different input frequencies as a function of time.

From these data, we can see that the wing system transitions from the non-buckling

regime to one-sided buckling at around 0.3 Hz, where the maximum positive torque

increases with frequency in the power stroke, but the maximum negative torque in

the recovery section remains low. Figure 7.14c shows the moments exerted on a force

sensor attached to the robot’s main body when similar inputs are commanded to

2https://github.com/idealabasu/code_pynamics.git.
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Figure 7.14: Dynamic modeling of the robot swimming in water with long

effective length. (a) Model for the swimming robot. Torque exerted by the wing on

the frame, when the robot is fixed, from simulation (b) and experiment (c). (d) Sim-

ulation of robot swimming freely without any constraints.

the robot using our experimental setup explained in (Section 7.8). Table 7.2 data

also shows an acceptable correlation between the generated torques in this experi-

ment and the values estimated by the dynamic model. Based on this performance,

we simulate the robot swimming by removing the forces holding the robot’s main

body (kG = bG = 0). We also consider a drag force acting on the main body for

more realistic simulation. Figure 7.14d shows a time sequence of the robot’s motion

when both fins are actuated with a symmetric input gait and robot swims forward;

the recovery and power strokes are illustrated in blue and red, respectively.

7.7 Design Optimization

Using the dynamic model introduced above, we next seek the design that maxi-

mizes forward swimming speed for symmetric rowing gaits. In our optimization, we

consider the lengths of the fin’s links and the distance between the robot’s drive mo-
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tors as design parameters (d1, d2, d3 and d0 in Fig. 7.14). The mass of each link is

based on measurements of physical prototypes.

Any optimization focusing solely on design parameters would be incomplete; ac-

tuator inputs are thus optimized simultaneously. The torques at motorized joints

track desired angular trajectories (θ1&θ2 in Fig 7.14a) via kG and bG as mentioned

previously. Input signals are supplied as a pair of sinusoidal functions,

θ1 = β1 + α1 sin(2πf1t)

θ2 = β2 + α2 sin(2πf2t+ φ),

(7.14)

where θi is actuator i’s angle, and βi, αi, ,fi , and φi are the sinusoidal signals’

angular offset, amplitude, frequency and phase shift, respectively. In order to have

synchronized rowing gaits for the purposes of forward rowing, these parameters are

set to α1 = −α2, β1 = −β2, f1 = f2, and φ = 0. Based on the design and input

gaits parameters introduced above, there are seven parameters affecting the robot’s

swimming speed. We have selected a numerical optimization approach using an evo-

lution strategy for finding the optimal parameters; while the whole parameter space

may be searched for lower-dimensional problems, we utilize CMA-ES as a way to find

ideal parameters within this seven-dimensional space, as finding a globally-optimal

solution would be neither be feasible nor desirable.

In our optimization process, we define the cost function as negative of the swim-

ming range that robot achieves in 10 seconds. We also introduce the following assump-

tions and constraints to simplify the optimization process and obtain more realistic

results:

Assumptions (i) Water drag is applied to the main body and fins (FB and FW

in Fig. 7.14), but not to the links. (ii) Drag is applied to the center of each geometry.

(iii) Fins and main body have rectangular cross-sections with 80 and 50 mm widths,
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Table 7.3: Parameter range in design and input optimization.

Parameter Range Parameter Range

d0 (mm) 40 - 160 d1 (mm) 30 - 160

d2 (mm) 30 - 160 d3 (mm) 30 - 160

α (deg) 0 - 90 β (deg) -90 - 90

f (Hz) 0.1 - 1.2 φ (deg) 0 - 359

respectively. (iv) The robot body’s mass, mostly driven by the mass of servos and

electronics, is assumed to be constant.

Constraints (i) Variables remain within the ranges defined by Table 7.3. (ii) The

total length of the robot is under 560 mm (to fit our water tank). (iii) Actuation speed

and power must remain within the servo’s nominal speed and power range. (iv) Loads

on the curved beam must remain below opposite sense critical load throughout the

trial. (v) Design and gait parameters must not collide during actuation.

We have defined a penalty function in order to exclude non-feasible solutions, in

which a large positive value proportional to the number of violated constraints is

returned. The penalty function gradually restricts the large search space to converge

within the feasible solution space of the problem. For feasible solutions, the dynamic

simulation runs and the cost function returned.

Figure 7.15a shows the cost function value as well as the evolution of the de-

sign throughout the CMA-ES optimization process for the parameter sets that ex-

hibit a noticeable reduction in the cost value. The results converged after 25 iter-

ations, revealing that designs with a smaller distance between the fins (d0) as well

as smaller second link length (d2) are preferential for maximizing swimming speed.
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Figure 7.15: Design optimization using the dynamic model. (a) The value of

optimization cost function and the evolution of the robot design. Feasible parameter

sets in the optimization process: (b) Fin system design parameters and (c) input

gaits.

Figures 7.15(b,c) show cost function values for feasible parameter sets. The optimal

design parameters (in mm) are d0 = 40 d1 = 112.1, d2 = 30.2, and d3 = 114.2.

We have designed a prototype using the above design parameters (Fig. 7.16b).

The lengths of the rigid parts are calculated assuming that the curved beam bends at

the midpoint. This assumption is made based on the observation of the curved beam

bending underwater. Two Hitec D646WP waterproof servos actuate the input joints;

the rigid links are 3D printed from Onyx3; the fin is cut from 0.76 mm fiberglass

sheets4.

3markforged.com
4acpcomposites.com
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7.8 Experimental Gait Optimization

This section describes our approach to experimentally search for optimal gaits

for various swimming maneuvers using the final prototype, which was based on the

optimal results from the prior simulation. The experimental search is essential for

closing the gap between simulation and real-world trials due to model estimation

errors caused by the flat plate model, as well as the approach used for modeling servo

control. To evaluate the performance of each gait, we have prepared an experimental

setup (Fig 7.16a) capable of sampling either the thrust and moment generated by

the fins, or the swimming distance and speed. A linear carriage running on a rail

is installed on the top of a 4 × 2 × 2 ft3 tank (l × w × h). The robot’s position is

measured using an OptiTrack motion tracking system. An ATI mini-40 force-torque

sensor is attached to the carriage; its distal attachment connects to the robot via a an

aluminum extension arm that holds the robot underwater. An optimization process

is then performed using CMA-ES to find the optimal parameters of each desired gait

by determining optimal parameters for control rule (7.14).

Rowing Gaits In this optimization process, the robot swims 5 seconds with the

buckling beam in its long configuration (Fig. 7.15c); the distance traveled in that

time is then measured. A servo and pulley resets the carriage to its initial position

at the end of each trial. In order to protect the curved beams from damage due

to gaits that exceed a safe operating range, a joint limit is temporarily attached

during the optimization process, and optimal gaits are then re-tested once they are

determined to be safe. Figure 7.16d shows the swimming distance for the feasible

parameter sets in the optimization process. The swimming distance of the best gait is

illustrated in Fig. 7.16e. The data show a discontinuous pattern motion. We believe

this is caused by high friction and stiction within the linear slider; the generated
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Figure 7.16: Results of the experimental gait optimization for (c-f) forward

swimming, (g-i) lateral swimming, and (g,j-k) undulation. (a) Experimental

setup. (b) Robot’s prototype. Sliding mechanism configuration for (c) Long and (g)

short effective lengths. (e) Position vs. time for forward swimming. (f,i,k) Thrust

forces generated by each gait.

thrust measurements may be seen in Fig. 7.16f. Nevertheless, the data also shows the

efficacy of the one-sided buckling of the curved hinge when used in conjunction with

optimized input gaits to generate net thrust; the forces generated during recovery

stroke are limited to -1 N, while the power stroke achieves 7.5 N thrust at its peak.

Flapping Gaits By reducing the effective length of the curved beam (Fig. 7.16g),

its stiffness increases in both the opposite and equal-sense directions, changing the

buckling beam’s behavior, seen in Fig7.13, to be both stiffer and more symmetric.

Using this phenomenon, lateral thrusts may be generated by flapping one limb (α2 =

β2 = f2 = 0) with a sinusoidal input while maintaining a neutral offset in the
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Figure 7.17: Untethered robot swimming. (a) Swimming forward using rowing

gaits of both fins. (b) Swimming laterally using one fin flapping actuation. (c)

Swimming using undulating gait. (d) Turning by rowing gaits of one fin.

other (β1 = 0). A new set of optimal gait parameters was obtained by search-

ing through the resulting two-dimensional space of gait parameters, but the lateral

thrust found by this approach was unable to overcome rail stiction. We therefore

adopted a thrust-based metric (rather than a distance metric) similar to [132]. Fig-

ures 7.16(h,i) illustrate the average thrust generated by each gait throughout the

optimization as well as the thrust generated by the optimal gait, respectively. The

result shows that a flapping gait with relatively large input amplitude (α = 87◦) and

low frequency (f = 0.3 Hz) is optimal.

By commanding both limbs to perform asynchronous, flapping gaits (φ 6= 0◦),

the robot swimming mode changes to undulation, similar to snakes, eels, and Pur-

cell’s three-link swimmer [210, 211, 212]. We have experimentally searched the three-

dimensional space of input parameters related to undulation in order to obtain the

highest lateral thrust undulating gait that exceeds the lateral single-limb maximum

swimming speed found above. The resulting net thrust generated by each set of

gait parameters throughout the optimization is shown in Fig. 7.16j; the optimal gait
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generated thrust is shown in Fig. 7.16k.

To address the problem of stiction which we found in the experimental setup, a

free-swimming prototype has been constructed by mounting the swimming mechanism

to a floating platform that ensures the fins stay underwater, while keeping power

electronics above the water. Using the optimal gaits obtained from the experimental

search, the untethered robot’s performance has been evaluated (Fig 7.17).

Using the optimal rowing gait, the robot achieves a forward swimming speed

of about 0.32 m/s (Fig 7.17a); the swimming distance per rowing cycle is around

0.6 m. The robot is also able to turn when only one limb is commanded by the

same optimal gait. The turning speed is 25.7 deg/s (Fig 7.17d). When flapping, the

untethered robot achieves a lateral swimming speed of 0.17 m/s when only one limb

is actuated (Fig 7.17b). When undulating, the robot achieves a swimming speed of

0.16 m/s (Fig 7.17c). It was observed that, while the thrust data is better for an

undulating strategy, the swimming speed of the untethered robot was lower than

others, which we attribute to the higher drag of the floating platform when rotating.

Future work will consider this additional loss of energy in modeling and optimization.

7.9 Discussion

This chapter studies the use of buckling curved beams for use in flapping-wing

mobile robots moving through fluids. The theory behind this phenomenon is studied

analytically, while finite element analysis permits us to look beyond the limited con-

ditions anticipated by prior work and investigate a wide range of buckling shapes and

load conditions. The proposed propulsion method has been experimentally validated

by measuring the force and work generated by a wing flapping in air and water, in

the presence and absence of buckling. Hysteresis due to buckling is clearly visible,

and the average force produced via symmetric flapping is positive in the direction of
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forward motion. Next, we study how altering the stiffness and buckling limits of slen-

der curved beams enhances swimming maneuverability by providing the opportunity

to switch between different swimming gaits. By introducing a dynamic model that

simulates the swimming of a robot using this concept, we have performed a design

optimization to increase swimming speed. We have also conducted an experimental

search through selected gait parameters for swimming strategies that result in a robot

that is capable of swimming both forward and laterally as well as turning. The unique

characteristics of our fin system, obtained through the use flexible curved beams, not

only simplifies the role actuation plays in locomotion, but also helps decouple the role

of the actuators between the generation of work and reconfiguration.

In terms of impact, we believe this work will inform the future design and optimiza-

tion of simple flapping swimmers and flyers. Understanding the nonlinear behavior of

buckling curved beams and how geometry influences critical buckling loads permits

these systems to be tuned along a spectrum of performance requirements for use in

air or water. Knowledge of how hinge geometry affects such response will also lead

to simpler, more mechanism-oriented design approaches, and will permit designers to

identify coupled wing/beam designs as well as tuned swimming gaits that are opti-

mal across competing criteria like efficiency, power, and speed. We also believe our

approach of tuning stiffness and buckling limits, in conjunction with simple actua-

tion strategies, will eventually permit lower-power and more affordable robots to be

tuned for specialist jobs in niche environments, while still permitting a wide range of

locomotion strategies.

Future work will focus on improving models to include three-dimensional simu-

lation for better understanding the full state of underwater robot dynamics, as well

as implementing depth change. This will enable us to consider multiple swimming

strategies simultaneously in optimizing the robot’s body and fin morphology We also
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plan to continue optimizing the design of curved beam devices for more efficient loco-

motion by investigating variable stiffness designs as well as multi-material fabrication

strategies. Future work will expand this concept further to include terrestrial loco-

motion and amphibious environments.

177



Chapter 8

CONCLUSION

Moving from rigid robots to robots built from soft materials opens new possibilities

for robotic platforms to perform unique tasks safer and more efficiently. There are,

however, some challenges limiting conventional soft robots’ performance; among them,

three important ones are still unanswered. First, the big bulky and heavy air pressure

systems required for pneumatically actuated soft robots limits their mobility and their

capability to become stand-alone and untethered. Second, soft robots’ modeling,

shape, material properties, and design are interrelated and complex that make closing

the design loop of these robots challenging for roboticists. Finally, in many cases, a

fully soft mechanism provides a safer working environment for human interaction,

however, it limits the amount of force it can exert on external objects.

Foldable robots made with laminated techniques can be good alternatives to con-

ventional soft robots since they can leverage regular actuators such as servos. These

robot’s stiffness is easily tuned by material selection and scaling sizes.

This thesis shows how considering the compliance of soft robots, specifically fold-

able robots manufactured using laminated techniques, and their deformation enhances

their performance in real-world environments. We believe that through careful mod-

eling and control, these robots can be considered as alternatives to both expensive

rigid robots manufactured from metals with high precision and conventional soft

robots manufactured by molding and curing silicon-based materials. The manufac-

turing time and cost of these robots are a fraction of the conventional rigid robot’s

metal machinery. In comparison with conventional soft robots that use pneumatic

and tendon-based actuation, the ability to use servo motors in foldable robots reduces
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the complexity associated with modeling and control of these robots.

By increasing the life span and selecting correct modeling and control methods,

laminated robots presented in this thesis can be leveraged to perform unique tasks

similar to other robots manufactured by conventional methods; while being lighter,

easily scalable, more affordable, and faster to manufacture.

The majority of this thesis is dedicated to proposing methods to model and con-

trol these robots in their interactions with their surroundings. We have presented

different data-driven and machine learning approaches to deal with and in fact lever-

age the deformation of these robots. The proposed methods represent alternatives to

the FEA-based and exact geometry modeling approaches such as PCC and Cosserat

models, that are computationally expensive, especially in the presence of external

force interactions.

The proposed approaches in this thesis are also unique because they are based

on experimental setups that account for uncertainties that commonly exist in real-

world environments. In other words, in designing experiments and assembling the

experimental setups, we have avoided ideal environments with perfect repeatability.

We believe that the high repeatability associated with ideal test environments can

negatively impact the robot’s performance and its capability to perform tasks in the

real-world. On the other hand, running tests in the real world can be challenging and

difficult to set up and maintain. In this thesis, we showed that non-ideal experimen-

tal setups with uncertainties embedded in them are good compromise, especially if

they are utilized in conjunction with machine learning techniques. Another distinct

characteristic of the proposed methods in this thesis is the use of online optimization.

While interacting with the working environment, soft robots tend to experience more

deformation. The modeling of soft robots in this case is complicated and computa-

tionally expensive, if plausible at all. Online optimization is also useful in the absence
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of models that adequately capture system behavior. We leverage automation in de-

signing and running experiments, so the online processes may be carried out without

the need for human involvement.

8.1 Impact & Future Work

This thesis proposes some solutions to the big challenges associated with foldable

robots manufactured by laminated techniques. The use of soft materials in this man-

ufacturing approach imparts a large technical challenge in the design, modeling, and

control of high-performing robots made from less-formalized materials.

I believe the methods proposed for training robots to be used in the real-world

via machine learning techniques can be used as a roadmap by other experts in the

field of robotics. The achievements of this thesis on the Soft, Curved, Reconfigurable,

Anisotropic Mechanisms (SCRAMs) that exhibit local reconfigurability will amelio-

rate the control and actuation difficulties in current soft robot systems in near future,

resulting in robots with much higher efficiency and adaptability.

Another important impact of this thesis is presenting a series of technical sugges-

tions that improve the durability of foldable robots even when affordable materials

are used to keep the robot’s cost low. The ability to develop durable, low-cost robots

that are fast to prototype is critical to lowering the barrier to entry for using af-

fordable and accessible robots outside the community of roboticists. These unique

characteristics make these robots a perfect asset to be used in education and help

to introduce students to the field much sooner. Solutions to fundamental problems

in modeling, control, and design of these robots make them more accessible in new

domains like farming and undersea exploration.

This thesis contributes to the field of compliant foldable robots by providing

some answers to the grand challenges associated with these robots. This field within
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robotics is a rich area filled with unlimited opportunities. I would like to conclude

this thesis by proposing some suggestions for future work:

Design & manufacturing: While manufacturing foldable robots using lami-

nated techniques is fast, there is still room to improve and ease the design process.

PopupCAD, the software used in this thesis, helps with designing these robots in 2D

and automatically produces cut files efficiently with minimum effort from the user.

However, the initial design step of converting a 3D design to a series of 2D ones is

still mostly done by the user; a software solution to this step would make the design

process more accessible to average people.

Evolving to smart, adaptable robots: Robots are often designed and manu-

factured for a specific task in a pre-defined environment. This limits their performance

and should be addressed so the robots can adapt to real-world working environments

with different types of uncertainties. As a starting point, we demonstrated how recon-

figurability helps to enhance a swimming robot’s maneuverability. We also showed

the potential of using machine learning for finding gaits suitable for different scenarios

in real-world environments. However, future work should address the current limit-

ing factors of machine learning techniques, such as the vulnerability of optimization

algorithms to repeatability of systems. The obtained results show that this issue in-

creases the time required for training robots. In general, the common assumption of

high repeatability during optimization should be revised. There remains a need for

algorithms that consider system repeatability as a factor in finding optimal results.

Another step in training the next generation of robots is to enhance their function-

ality through continuous online training in the field, so the robot constantly updates

its knowledge from the environment to refine its design, adapt its decision making

or behavior, and switch between gaits as needed. An amphibious robot is a good

example; leveraging the methods explained in this thesis, optimal gaits can be found
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to enhance the robots’ locomotion in water and on land. However, an effective transi-

tion between these two gaits needs extensive study that requires extra sensing, online

training, and control so the robot learns how to adapt to new environments.

Extension to other fields: Introducing these robots to experts of other fields

opens the door to new opportunities and challenges. The low manufacturing time

and cost associated with origami-inspired and SCRAM devices makes these robots

perfect platform for swarm applications. Each robot may be limited in power and

performance, but a swarm of these robots are capable of performing more complex

tasks. While the latter advantages are mentioned for many foldable platforms, few

studies cover implementations of these robots in swarm robotics.

Environment friendly: We can propose solutions to real-life problems leverag-

ing the unique characteristics of these robots. For example, using a swarm of these

robots in large numbers reduces the impact of one robot and enables the system to

complete tasks even if some robot agents fail. While these minimize human involve-

ment, it increases concerns about how the remains of the failed robots would affect

the environment. Moving towards organic, environment-friendly materials, sensors

and actuators is a necessity for these robots’ proper introduction to the real world.

I envision a herd of mobile foldable robots to collaborate and perform various

tasks in the real world. Future generations of these robots should be capable of

adapting themselves to locomote in different environments, such as water, granular

environments, and smooth land, or even jump and glide to pass an obstacle. Ideally,

these robots would be made from environment-friendly materials, so in case of failure,

they would not be harmful to the environment.

As manipulators, I envision these robots to be used as reliable, human-safe, and

affordable alternatives to the rigid robots currently used in industry. These robots can

use embedded sensing and actuation to increase their precision and, by performing
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a constant evaluation of their performance, they will provide scientists with useful

data to iterate the robot’s design and improve over multiple design cycles using data

from the field. Wouldn’t it be fun if manufacturing robots finish up the week by

manufacturing an improved generation of themselves to be used the next week?
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