
SDN based Layered Backhaul Optimization and Hardware Acceleration

by

Prateek Shantharama

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved Januvary 2022 by the
Graduate Supervisory Committee:

Martin Reisslein, Chair
Yanchao Zhang

Michael McGarry
Akhilesh Thyagaturu

ARIZONA STATE UNIVERSITY

May 2022

ABSTRACT

Existing radio access networks (RANs) allow only for very limited sharing of the

communication and computation resources among wireless operators and heterogeneous

wireless technologies. The introduced LayBack architecture facilitates communication

and computation resource sharing among different wireless operators and technologies.

LayBack organizes the RAN communication and multiaccess edge computing (MEC)

resources into layers, including a devices layer, a radio node (enhanced Node B and

access point) layer, and a gateway layer. The layback optimization study addresses

the problem of how a central SDN orchestrator can flexibly share the total backhaul

capacity of the various wireless operators among their gateways and radio nodes

(e.g., LTE enhanced Node Bs or Wi-Fi access points). In order to facilitate flexible

network service virtualization and migration, network functions (NFs) are increasingly

executed by software modules as so-called “softwarized NFs” on General-Purpose

Computing (GPC) platforms and infrastructures. GPC platforms are not specifically

designed to efficiently execute NFs with their typically intense Input/Output (I/O)

demands. Recently, numerous hardware-based accelerations have been developed to

augment GPC platforms and infrastructures, e.g., the central processing unit (CPU)

and memory, to efficiently execute NFs. The computing capabilities of client devices

are continuously increasing; at the same time, demands for ultra-low latency (ULL)

services are increasing. These ULL services can be provided by migrating some

micro-service container computations from the cloud and multi-access edge computing

(MEC) to the client devices.

i

DEDICATION

To my Pappa & Mummy

For thier advice, thier patince and their Faith

beacuse they always understood

ii

ACKNOWLEDGMENTS

I would first like to thank my supervisor, Prof. Martin Reisslein, whose expertise

was invaluable in formulating the research questions and methodology. Your insightful

feedback pushed me to sharpen my thinking and brought my work to a higher level.

Second, I would like to thank my committee members, Prof. Yanchao Zhang and Prof.

Michael P McGarry for all your support, feedback, and guidance throughout my PhD.

I would also like to give special thanks to adjunct faculty ”The Expert” Dr. Akhilesh

Thyagaturu for his continuous support and understanding when undertaking my

research.

To my lab-mates Ahmed Nasrallah, Venkat and Ziyad, thank you for your wonderful

patience, continual support and warm humor.

I am forever indebted to my family members Suma, Tharakeshwar, Sunil, Pavana,

Shoba, Shivanna, Swetha, Dr. Harshith, my grandparents Hanumanthappa and

Rathna, my late grandparents Dasappa and Puttamma and my little brothers Pranith

and Pratham for giving me the opportunities and experiences that have made me who

I am. They selflessly encouraged me to explore new directions in life and seek my own

destiny. This journey would not have been possible if not for them, and I dedicate

this milestone to them.

To Vinya, Kottur, Krishna, UD, Amogh, Ashra, Sameeksha, Karan and Vivek: thank

you for the pep-talks, cups of tea, hugs, sound advice, encouragement and kicks-up-

the-backside. All administered with impeccable judgment and timing.

I would also like to give special thanks to Mr.Mohan Kumar who was always a silent

shadow through out my PhD Degree.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xii

PREFACE . xlii

CHAPTER

1 LAYERED BACKHAUL . 1

1.1 Introduction . 1

1.1.1 Contributions . 1

1.2 Related Work . 4

1.2.1 RAN Chain (RANC): Fronthaul and Backhaul Architectures 4

1.2.2 MEC for RAN Function Splits . 5

1.3 Proposed LayBack Network Architecture . 7

1.3.1 The Layers of the LayBack Architecture 8

1.4 SDN Based Management of Distributed Computing for a Network

Service . 11

1.4.1 Management Framework Planes and Interfaces 12

1.4.2 Orchestration Layer Processing . 16

1.4.3 Control/Management Plane Processing . 19

1.4.4 Data/Compute Plane Processing: Service Delivery 20

1.5 LayBack Use Case: Novel Fluid RAN Function Split with Resource

Sharing across Operators . 21

1.5.1 Background on Existing RANs . 21

1.5.2 Proposed Concept of Fluid Function Blocks 22

1.5.3 Proposed LayBack Implementation of Fluid Function Split . . 23

1.5.4 System Model . 24

iv

CHAPTER Page

1.6 Fluid RAN Function Split Evaluation . 28

1.6.1 Approximate Analysis . 28

1.6.2 Simulation Setup . 29

1.6.3 Evaluation Results . 30

1.7 Conclusions . 39

2 LAYERED BACKHAUL OPTIMIZATION . 41

2.1 Introduction . 41

2.1.1 Motivation . 41

2.1.2 Contributions . 43

2.2 Background and Related Work. 44

2.2.1 SDN-Based Backhaul Architectures . 44

2.2.2 Network Optimization . 45

2.2.3 Wireless Backhaul Network Optimization 47

2.3 Overview of Layered Backhaul (LayBack) Network Architecture 49

2.3.1 Layers in LayBack . 49

2.3.2 Management in LayBack . 50

2.4 Layered SDN-Based Optimization Framework . 51

2.4.1 Overview . 51

2.4.2 Model Definitions . 52

2.4.3 Centralized Queue Length Minimization 53

2.4.4 Operator Resource Constraints . 54

2.4.5 Iterative Solution via Gradient Descent . 56

2.4.6 Stochastic Optimization and Temporal Decomposition 62

2.5 Numerical Evaluation Results . 64

v

CHAPTER Page

2.5.1 Evaluation Setup . 64

2.5.2 Results . 67

2.6 Conclusions . 81

3 HARDWARE ACCELERATION . 84

3.1 Introduction . 84

3.1.1 Trend to Run Softwarized Network Functions on General-

Purpose Computing (GPC) Platforms . 84

3.1.2 Need for NF Hardware Acceleration on GPC Platform 88

3.1.3 Contributions and Organization of this Survey 89

3.1.4 Related Surveys . 91

3.2 Background on NF Implementation . 97

3.2.1 Dedicated Hardware Based NF Implementation 99

3.2.2 Bare-Metal (BM) NF Implementation . 101

3.2.3 Application and Kernel Based NF Implementation 102

3.2.4 Virtual Machine (VM) Based NF Implementation 104

3.2.5 Container based NF Implementation . 105

3.2.6 Acceleration Strategies for NF Implementation 107

3.3 Enabling Technologies for Hardware-Accelerated Platforms and

Infrastructures for NF Implementation . 110

3.3.1 Central Processing Unit (CPU) . 111

3.3.2 Interconnects . 123

3.3.3 Memory . 134

3.3.4 Custom Accelerators . 141

3.3.5 Dedicated Accelerators . 148

vi

CHAPTER Page

3.3.6 Infrastructure . 156

3.3.7 Summary and Discussion . 160

3.4 Research Studies on Hardware-Accelerated Platforms and Infras-

tructures for NF Implementation . 161

3.4.1 Computing Architecture . 162

3.4.2 Interconnects . 177

3.4.3 Memory . 190

3.4.4 Accelerators . 196

3.4.5 Infrastructure . 207

3.4.6 Summary and Discussion of Research Studies 209

3.5 Open Challenges and Future Research Directions 211

3.5.1 Overarching Grand Challenges . 212

3.5.2 CPU and Computing Architecture . 214

3.5.3 Interconnects . 217

3.5.4 Memory . 218

3.5.5 Accelerators . 219

3.5.6 Infrastructure . 221

3.5.7 NF Acceleration Beyond Platforms and Infrastructures 223

3.6 Conclusions . 226

3.7 Introduction . 228

3.7.1 Motivation . 228

3.8 Enabling Technologies . 232

3.8.1 Abstraction Layer . 232

3.8.2 Memory Access . 237

vii

CHAPTER Page

3.8.3 Accelerator Offload Designs . 241

3.9 Overall Summary and Discussions on Operating Systems and Hy-

pervisor . 275

3.9.1 OPEN CHALLENGES AND FUTURE RESEARCH DI-

RECTIONS . 278

4 HARDWARE ACCELERATION FOR RESOURCE CONSTRAINED

PLATFORMS . 315

4.1 Introduction . 315

4.1.1 Motivation and Background . 315

4.1.2 Use-Case Examples . 317

4.1.3 Related Work . 318

4.1.4 Contributions . 321

4.2 System Model . 323

4.2.1 Cloud and Client Nodes . 323

4.2.2 Container Migration . 324

4.2.3 Acceleration of Container Engine (CE) . 325

4.2.4 Compression/Decompression Acceleration. 326

4.2.5 Container Engine Modifications . 330

4.2.6 Execution Algorithm . 330

4.3 Evaluations over Local Network Interface . 330

4.3.1 Experimental Setup . 330

4.3.2 Results . 334

4.4 Evaluations over External Network Interface . 338

4.4.1 Experimental Setup . 338

viii

CHAPTER Page

4.4.2 Bandwidth and Latency Evaluations . 340

4.5 Conclusions . 352

REFERENCES . 354

ix

LIST OF TABLES

Table Page

1.1 Summary of Main Notations and Parameter Settings For Numerical

Evaluations in Section 1.6. 40

2.1 Summary of Model Notations. 53

3.1 Cpu Instruction Set Acceleration (Cpu-isacc) Extensions: Aes-ni, Drng,

and Avx-512. Cpu-isacc Optimizes Hardware Implementations of Soft-

ware Functions, Such as Random Number Generation, Cryptographic

Algorithms, and Machine Learning, in Terms Of Power and Performance.113

3.2 Summary of Pcie Lane Rates Compared Across Technology Generations

from Gen 1.1 Through Gen 5: The Raw Bitrate Is In Giga Transfers per

Second, and the Total Bandwidth in Giga Byte Per Second Is given for

16 Parallel Lanes in Both Directions For Application Payload (Without

the Pcie Transaction, Link Layer, And Physical Layer Overheads). 129

3.3 Summary of Double Data Rates (Ddr) Synchronous Data Random Ac-

cess Memory (Sdram) Rates. The Buffer Size Indicates The Multiplying

Factor to the Single Data Rate Sdram Prefetch Buffer Size. The Chip

Density Corresponds to the Total Number Of Memory-cells per Unit

Chip Area, Whereby Each Memory Cell Can Hold A Bit. The Ddr

Rates Are in Mega Transfers per Second (Mt/S). For Ddr4 and Ddr5,

the Access to Dram Can Be Performed in the Group Of Memory Cells

Which Are Logically Referred to as Memory Banks. That Is, a Single

Read/Write Transaction to Dram Can Access the Entire Data Present

in a Memory Bank. 136

3.4 Summary of Data Stream Accelerator (Dsa) Opcodes. 152

x

Table Page

3.5 Cache Technologies Directly Impact the Memory Access Times Which

Are Critical for Latency-sensitive Networking Applications As Well

as for Delivering Ultra Low Latencies (Ull) as Outlined in The 5g

Standards. The State-of-art Enhancements to Cache Technologies Are

Compared in the Table, Whereby Larger Cache Sizes and Larger Cache

Access Ways, Improve the Capabilities of the Processor To Support

Low Latency Workloads. The L1 Instruction (L1i) Cache Allows the

Instructions That Correspond to Nf Application Tasks To Be Fetched,

Cached, and Executed Locally on the Core, While the L1 Data (L1d)

Cache Supports the Corresponding Data Caching. 164

4.1 Test Setup Parameters. 332

4.2 Comparisons of Sw and Qat Hardware Acceleration Compression Ratios:

Total Container Size = Base Container Layer (Fedora 26) + Data Layer

(Random Dictionary Words); Compression Ratio = Compressed Size /

Total Container Size. 338

4.3 Power Consump.: Push (Comp.), 200 MB. 343

4.4 Power Consump.: Pull (Decomp.), 200 MB. 343

4.5 Power Consump.: Push (Comp.), 1 GB. 343

4.6 Power Consump.: Pull (Decomp.), 1 GB. 343

4.7 Impact of Link Latency on Completion Time, 200 MB. 344

4.8 Impact of Link Latency on Core Utilization, 200 MB. 344

4.9 Impact of Link Latency on Completion Time, 1 GB. 344

4.10 Impact of Link Latency on Core Utilization, 1 GB. 344

xi

LIST OF FIGURES

Figure Page

1.1 Illustration of Proposed Layback Architecture: Layback Flexibly Inter-

faces with Heterogeneous Radio Access Network (Ran) Technologies

Through a Network of Gateways and Sdn Switches. At the “coordina-

tion Point” Just Behind (to the Right) of The Respective Gateways,

Layback Accesses and Controls the Heterogeneous Rans Through the

Sdn Switching Layer. The Sdn Switching Layer Consistently Decouples

the Ran Fronthaul from the Backhaul. The Unifying Sdn Orchestrator

Integrates the Legacy Backhaul, Existing Architectures, and Future

Sdn Architectures. The Sdn Orchestrator Is The Central Authority

That Controls Every Part of the Architecture, Including Fronthaul

and Backhaul. Multi-access Edge Computing (Mec) Nodes May Be

Distributed Throughout The Radio Node, Gateway, Sdn Switching,

and Sdn Backhaul Layers. 3

1.2 Management Framework for Sdn Based Distributed Computing: The Or-

chestration Plane Coordinates the Overall Service Provisioning Through

Instantiating Control/Management Vms on The Control/Management

Plane. The Management Plane in Turn Controls The Data/Compute

Plane. 12

xii

Figure Page

1.3 Flow Chart for Sdn Based Management: Upon Receiving A User Re-

quest, the Sdn Orchestrator Coordinates with the Mapping Element

(Me) in the Orchestration Plane. The Sdn Orchestrator Decomposes

the Problem and Provisions the Network Connectivity Among the Man-

agement Nodes in the Sdn Control/Management Plane To Enable the

Control and Management of the Requested Service. The Management

Nodes Then in Turn Provision the Data/Compute Plane Nodes and

Their Interconnections in the Data/Compute Plane for The Service

Delivery. Overall, the Sdn Orchestrator Is Responsible For Provision-

ing the Management Functions in Order to Achieve The End-to-end

Delivery of Network Services. 13

1.4 Illustration of Proposed Fluid Ran Which Dynamically And Flexibly

Distributes Ran Compute Function Blocks Across Multiple Mec Nodes.

The Function Blocks Are Chained to Operate in Cohesion To Achieve

Common Function Goal, I.E., Provide the Ran Service. The Mec Node

Layers l = 0, 1, 2, . . . , L Are Assumed to Exist Across The Radio Node

Layer, the Fronthaul Network, and the Gateway Layer In The Overall

Layback Architecture. 21

xiii

Figure Page

1.5 Performance of a CRAN with Flexible Fluid Assignment Of b = 4

Ran Function Block Computations to l = 4 Mec Nodes (Fluid Ran,

Abbreviated as Fluran in Plot, Enabled by the Sdn Management Frame-

work in Layback Architecture), Static Ngfi Based Assignment of Ran

Function fb Computation to Mec Node b (Stangfi), and Fluid Ngfi

Based Assignment of Complete Set of b Ran Function Computations to

a Mec Node out of the l Mec Nodes (Flungfi) for Uniform Data Call

Arrivals to Each Cran. 32

1.6 Performance of System of n Parallel Crans with Resource Sharing

among the n Crans (Enabled by Layback Coordination Point Just Be-

hind Ran Gateways to Consistently Decouple Fronthaul From Backhaul

and to Allow for Sdn Control of Fronthaul and Backhaul) Vs. With-

out Resource Sharing (Representing Conventional Architectures With

Coupled Fronthaul and Backhaul That Make Sharing Prohibitively

Complex, See Section 1.2.1) for Uniform Data Call Arrivals to Each Cran. 33

1.7 Performance of System of n Parallel Crans With Resource Sharing

among the n Crans (Enabled by Layback) Vs. Without Resource Shar-

ing (Conventional Architectures with Prohibitive Sharing Complexity)

for Non-uniform Arrivals of Medium Rate Data Calls According to Zipf

Distribution to δ Crans. 36

xiv

Figure Page

2.1 Illustration of Layback Architecture and Multi-timescale Optimization

Decomposition in Context of Cellular Networks: Layback Partitions the

Wireless Backhaul Infrastructure into Radio Node Layer, Gateway layer,

Sdn switching Layer, And core Network Layer. The Entire Network Is

Controlled by the Central Unifying Sdn Orchestrator. This case Study

Decomposes the Optimization of The Sharing of the Backhaul Bitrate of

Multiple Operator Core Networks Into Fast-timescale Sub-problems at

the Radio Nodes And Progressively Slower Timescale Sub-problems at

the Gateways And Operator Core Networks; Whereby All Sub-problems

Are Coordinated Through a Root Problem at the Sdn Orchestrator. . . . 50

2.2 Optimization Solved Via the Sequence of Projected Gradient Descent

Updates. 57

xv

Figure Page

2.3 Illustration of the Dynamics of the Multi-timescale Optimization Frame-

work Within Context of Layback Infrastructure: The Optimal Policy

to Minimize End-to-end Delay Is Decoupled Into Multiple Layers of

Sub-problems, With faster Timescales at the Lower Layback Layers

The Enbs n, N ∈ Ng, At a Gw g Pass Their Queue Occupancies Each

Enb-gw Round-trip Time Rtt τ gn to Gw g. Based on the Received

Vector of Queue Occupancies Q, Gw g Evaluates The Allocations Zg to

Its enbs with Algorithm 1. Similarly, The Sdn Orchestrator Evaluates

the Allocations X to The Operators with Algorithms 2 And 3; While

Each operator o Evaluates the Allocations Yo to Its Gws with Algo-

rithms 4 And 5. (In order to Reduce Clutter, The Enb-to-gw Rtt τ gn Has

Been Normalized to One In the Illustration, I.E., k1 in the Illustration

Corresponds to k1τ
g
n in Actual Time). 60

xvi

Figure Page

2.4 Upstream Traffic Demands and Corresponding Backhaul Bitrate Al-

locations to Operators as Well as Aggregated Queue Length of Enbs

Associated With a given Operator When Peak Demand Periods of the

Two Operators Overlap or Are Separated (Fixed parameter: Mean

Drift-plus-penalty Parameter v = 1000): For Overlapping Peak De-

mands (a,B), Both the Sdn-based Optimization and the Benchmark

Without Sdn Allocate to Each Operator Its Maximum Capacity of

zo = 10 mbps to Serve The Peak Demands; There Is No Sharing among

Operators. For separated Peak Demands (C,D), The sdn Orchestra-

tor Dynamically Shares The Total Aggregated Backhaul Capacity of

z = 20 mbps among the Two Operators, Reducing enb Queue Lengths

Compared to the Benchmark Without Sdn-based Resource Sharing. . . . 68

2.5 Upstream Backhaul Bitrate Allocations and Enb Queue Lengths When

Demand Peaks for Operators 1 and 2 Are Spaced Apart: Increasing

The “flexibility Parameter” v, See equation (2.7), Increases the Sharing

of Backhaul Capacity 2.4. 72

2.6 Queue Length in Kb at an Enb Averaged over Time and over The Enbs

at a given Operator o as A Function of Separation of o = 1 and o = 2

Data Bursts in S; Figures 2.4 And 2.5 Consider a Burst Separation of

40 s. 74

2.7 Mean and Cdf of Enb Queue Length in Kb for o = 2 Operators With

Random Traffic Burst as a Function of Steady-state Probability pon of

Burst State. 77

xvii

Figure Page

2.8 Cumulative Distribution Function (Cdf) of Enb Queue Length For

Independent Enb Traffic Bursts with Various Load Levels for Long

(10 s) Bursts and Medium Load for Short (.5 s) Bursts; Fixed parameters:

o = 20 Operators, Each with Two Gateways (Each with Five Enbs). . . . 79

3.1 Illustration of Gpc Platform Hardware to Process Network Functions

(Nfs). An Nf Can Be Implemented as a Bare Metal Nf, Application Nf

(Not Shown), Virtual Nf (Vnf), or Container Nf (Cnf). 98

3.2 Classification Taxonomy of Enabling Technologies For Hardware-accelerated

Platforms and Infrastructure for Processing Softwarized Nfs: The Main

Platform Related Categories Are Hardware Accelerations for the Cpu,

Interconnects, and Memory, as Well As Custom and Dedicated Hard-

ware Accelerators That Are Embedded on The Platform; The Infras-

tructure Hardware Accelerations Focus on Network Interface Cards and

Bridging. 111

3.3 Components Inside Processor Chips Are Generally Functionally Sepa-

rated into Core (I.E., Cpus) and Uncore Elements. Uncore Elements Are

Non-core Components, Such as Clock, Memory Controllers, Integrated

Accelerators, Interrupt Controllers, And Interconnects. 117

3.4 Processor States Are Broadly Classified as Cpu States (c-states) Which

Indicate the Overall Cpu State; Additionally, When the Cpu Is Active

(I.E., In c0), Then Core-specific Power States (p-states) Indicate the

Operational Frequencies of The Cores That Are Actively Executing

Instructions. 120

xviii

Figure Page

3.5 Overview of Arm® Nervosa N1 Architecture Pellegrini et al. (2020):

(A) Illustration Of Arm Cpu Functional Blocks along with Cpu In-

terconnect, Memory Management Unit (Mmu), Power Management,

and Security Components In Relation to Third-party Memory and I/O

Components. Nervosa N1 Can Be Extended to Server-scale Deploy-

ments with Specifications Of Server Base System Architecture (Sbsa),

Server Base Boot Requirements (Sbbr), and Advanced Microcontroller

Bus Architecture (Amba) ARM Holdings (2019). Arm Neoverse N1

Cpu Sits on the Arm Soc Backplane (Uncore) along with Coherent

Mesh Network (Cmn) And Power Control Kit. Memory and I/O Are

Third-party Modules That Interface with Arm Designs Through Inter-

faces (Green and Blue Blocks Are from Arm, While Brown and Gray

Color Blocks Are Third-party Blocks). 280

3.6 Overview of Amd® Zen Core and Infinity Core-to-core Fabric AMD

(2019). The Infinity Fabric Defines a Scalable Data Fabric (Sdf) as On-

die Core-to-core Interconnect. The Sdf Extends the Connectivity from

On-die (On-chip) to Chip-to-chip (I.E., Socket-to-socket) Connectivity

Though the Coherent Amd Socket Extender (Cake), Resulting in An

Infinity Fabric Inter-socket (Ifis). An Sdf Extension To Connect with

Multiple I/O Devices Is Enabled Through an I/O Master Slave Com-

ponent. Similarly, Cache-coherent Master (Ccm) On The Sdf Directly

Connects the Cores (On-die) That Are Associated With the L3 Caches

Coherently, While the Unified Memory Controller (Umc) Extends the

Connectivity to the Dram. 281

xix

Figure Page

3.7 Intel® Xeon® Cpu Overview Intel (2019a): The Intel® Xeon Cpu

in a Single-socket Package Consisting of Single Die with 22 Cores

and 2 Memory Controllers (Mcs) on Either Side of the Die Extending

to Ddr Interfaces. The Cores Are Arranged in a Rectangular Grid

Supported by a 2d Mesh Interconnect That Connects All Cores Within

a Single Socket. Each Core Component Is Interconnected With Uncore

Components, Such as Cache and Homing Agent (Cha) to Apply Cache

Policies, Snooping Filter (Sf) to Detect Cached Addresses At Multiple

Caches to Maintain Coherency, and Last Level Cache (Llc) To Store

Data Values. 282

3.8 Overview of Network on Chip (Noc) Kumar et al. (2002) Where Each

Compute Element (Ce) Connects to a Router: The Noc Comprises

a Fabric of Interconnects That Provides On-chip Communication to

Compute and Memory Elements Which Are Connected To Routers.

The Noc Provides Homogeneous Connection Services as Opposed To

Heterogeneous Interconnects Based on Different Technologies, Such As

Ddr and Pcie for On-chip Components. The Noc Fabric Is Extensible

and Can Be Easily Scaled as the Number of Compute Elements Increases.283

xx

Figure Page

3.9 Overview of Advanced Extensible Interface (Axi) ARM Holdings (2019):

The Axi Provides an On-chip Fabric For Communication Between

Components. The Axi Operates in a Master And Slave Model, the

Slave Nodes Read and Write Data Between Components As Directed

by Master Nodes. The Axi Also Provide Cache Coherency With the

Axi-coherency Extension (Ace) Specification ARM Holdings (2019) to

Keep the Device Cache Coherent With Cpu Cores. 283

3.10 Overview of Skylake Scalable Performance (Sp) Meng et al. (2018);

Tam et al. (2018) With Intel® Ultra Path Interconnect (Upi): The

Upi Is a Point-to-point Processor Interconnect That Enables Socket-to-

socket (I.E., Package-to-package) Communication. Thus, with the Upi,

a Single Platform Can Employ Multiple Cpu Sockets: (A) 2 Socket

Platform Inter-connected by 2 Or 3 Upi Links per Cpu Socket, (B) 4

Socket Platform Interconnected by 2 or 3 Upi Links per Cpu Socket,

and (C) 8 Socket Platform Interconnected by 3 Upi Links per Cpu Socket.284

3.11 Overview of Amd® Infinity Fabric Beck et al. (2018); Lepak et al. (2017);

AMDl (2020); Teich (2017)For On-chip and Chip-to-chip Interconnects

An Accelerator Chip: (A) Shows the Overview of Interconnects Between

Cpu and Gpu Through the Scalable Control Fabric (Scf), (B) Shows The

Interconnects from Core-to-core Within a Die for Relative Comparison,

and (C) Shows the Overall Fabric Extensions at The Socket, Package,

and Die Levels. 285

xxi

Figure Page

3.12 Overview of Peripheral Component Interconnect Express (Pcie) McGin-

nis (2017) Interface Which Is an Extension To Pci Technology: Pci

Operated as a Parallel Bus with Limited Throughput Due to Signal

Synchronization among the Parallel Buses. The Pcie Implements a

Serial Communication per Bus Without Any Synchronization among

Parallel Buses, Resulting in Higher Throughput. The Pcie Is a Universal

Standard for Core-to-i/O Device Communications. The Pcie Protocol

Defines a Point-to-point Link with Transactions to System Memory

Reads and Writes by The I/O Devices, Which Are Referred to as “end

Points” And Controlled by the Root Port (Rp). The Rp Resides at the

Processor As an Uncore Component (See Fig. 3.3). The Pcie Switches

Extend a Primary Pcie Bus to Multiple Buses for Connecting Multiple

Devices and Route Messages Between Source And Destination. A Pcie

Bridge Extends the Bus from Pcie to Pci so As To Accommodate Legacy

Pci I/O Devices. 286

xxii

Figure Page

3.13 Overview of Compute Express Link (Cxl) CXL Consortium (2019)

Interconnect (Which Uses the Pcie as Its Interface): The Cxl Provides a

Protocol Specification over the Pcie Physical Layer To Support Memory

Extensions, Caching, and Data Transactions from I/O Devices, While

Concurrently Supporting the Pcie Protocol. I/O Devices Can Use

Either the Pcie Protocol or the Cxl. The Cxl Transactions Include

Cxl.Io Which Provides The Instructions for Traditional Pcie I/O

Transactions, I.E., Memory Mapped I/O (Mmio), Cxl.Cache Which

Provides The Instructions for Cache Coherency and Management, And

Cxl.Mem Provides the Instructions for Memory Read and Write Between

I/O Device Memory and System Memory. 287

xxiii

Figure Page

3.14 Overview of Coherent Interconnects for Hardware Accelerators Sup-

porting Cache Coherency Across Common Switching Fabric: (A) Cache

Coherent Interconnect for Accelerators (Ccix)® CCIX® Consortium In-

corp. (2020) Defines a Protocol To Automatically Synchronizes Caches

Between Cpu and I/O Devices. (B) And (C) Gen-z Gen (2020) De-

fines a Common Interface and Protocol Supporting Coherency for

Various Topologies Ranging From On-chip And Chip-to-chip to Long-

haul Platform-to-platforms. The Media/Memory Controller Is Moved

From the Cpu Complex to the Media Module Such That Gen-z Can

Independently Support Memory Transfers Across Gen-z Switches and

the Gen-z Fabric. (D) Open Coherent Accelerator Processor Interface

(Opencapi) Stuecheli et al. (2018) Homogeneously Connects Devices

to a Host Platform With a Common Protocol To Support Coherency

With Memory, Host Interrupts, and Exchange Messages Across Devices.288

3.15 Overview of Intel® Optane Dc Persistent Memory Configured as 2 Level

Memory (2lm) Where the Dram Is Used As Cache to Store Only the

Most Frequently Accessed Data and Nvdimm Is Used as an Alternative

to the Dram with the Byte-addressable Persistent Memory (B-apm)

Technique. 289

xxiv

Figure Page

3.16 Hardware Accelerator Devices Can Be Realized on Silicon In Different

Placements: i) On-core, Whereby the Accelerator Device Is Placed Right

next to a Cpu Core; ii) On-cpu-die, Whereby The Accelerator Device Is

Placed Around the Cpu Mesh Interconnects; iii) On-package, Whereby

the Accelerator Device Is Placed Right On-package and External to

Cpu-die; iv) On-memory, Whereby The Accelerator Function Is Placed

on the Memory Module; v) On-i/O Device, Whereby the Accelerator

Device Is Placed on an External (To Cpu) I/O Device via a Physical

Interconnect. 290

3.17 Overview of Typical Graphics Processing Unit (Gpu) Architecture: (A)

Illustration of Arithmetic Logic Units (Alus) Specific to Each Core

in a Cpu as Compared to a Gpu; A Gpu Has A High Density of

Cores with Alus with Relatively Simple Capabilities as Opposed to

the More Capable Alus in the Relatively Few Cpu Cores, and (B)

Overview of Memory Subsystem of Fermi Architecture with a Single

Unified Memory Request Path for Loads And Stores, One L1 Cache per

Sm Multiprocessor, and a Unified L2 Cache. (C) Overview of Fermi

Streaming Microprocessor (Fsm) Which Implements the Ieee 754–2008

Floating-point Standard, With a Fused Multiply-add (Fma) Instruction

for Single and Double Precision Arithmetic. (D) Overview of Cuda

Architecture That Enables Nvidia Gpus to Execute C, C++, and Other

Programs. Threads Are Organized in Thread Blocks, Which in Turn

Are Organized into Grids NVidia Fermi (2009). 291

xxv

Figure Page

3.18 (A) Overview of Fpga Architecture: Configurable Logic Blocks (Clbs)

Are Interconnected in a Two-dimensional Programmable Routing Grid,

with I/O Blocks at the Grid Periphery. (B) Illustration of a Traditional

Island-style (Mesh Based) Fpga Architecture with Clbs; The Clbs Are

“islands in a Sea of Routing Interconnects”. The Horizontal and Vertical

Routing Tracks Are Interconnected Through Switch Boxes (Sb) and

Connection Boxes (Cb) Connect Logic Blocks in the Programmable

Routing Network, Which Connects to I/O Blocks. (C) Illustration

of Hierarchical Fpga (Hfpga) with Recursively Grouped Clusters of

Logic Blocks, Whereby Sboxes Ensure Routability Depending on The

Topologies Farooq et al. (2012). 292

3.19 Block Diagram of Nitrox Cryptography and Compression Accelera-

tor Marvell (2020): 64 giga Cipher Cores Offer High Throughput Due

to Parallel Processing, Coupled with Dedicated Compression Engines.

The Nitrox Hardware Accelerator Is External To The Cpu and Interfaces

with the Cpu via a Pcie Interconnect. 292

xxvi

Figure Page

3.20 Illustration of High-level Blocks Within The Intel® Dsa Device at

a Conceptual Level. In Dsa, The Receiving of Downstream Work

Requests from Clients and Upstream Work Requests, Such as Read,

Write and Address Translation Operations, Are Accessed with the Help

of I/O Fabric Interfaces. The Inclusion Of Configuration Registers and

Work Queues (Wq) Helps in Holding Of Descriptors by Software, While

Arbiters Implement Qos and Fairness Policies. Batch Descriptors Are

Processed Through the Batch Processing Unit by Reading the Array of

Descriptors from the Memory And the Work Descriptor Is Composed

of Multiple Stages to Read Memory, Perform Data Operations, and

Write Data OutputIntel Corp. (2019a). 293

3.21 Illustration of High-bandwidth Memory (Hbm) with Low Power Con-

sumption and Ultra-wide Bus Width. Several Hbm Dram Dies Are

Vertically Stacked (to Shorten the Propagation Distance) And Intercon-

nected by “through-silicon Vias (Tsv)”, While “microbumps” Connect

Multiple Dram Chips Macri (2015) The Vertically Stacked Hbms Are

Plugged into an Interposer, I.E., An Ultra-fast Interconnect, Which

Connects to a Cpu Or Gpu Macri (2015). 294

xxvii

Figure Page

3.22 Overview of Linux Server with Non-transparent Bridges (Ntbs) Regula

(2004): The Memory Regions of Servers a And b Can Be Inter-mapped

Across Platforms to Appear as Their Own Physically Addressed Memory

Regions. An Ntb Physically Interconnects Platforms in 1 : 1 Fashion

Through a Pcie Physical Interface. In Contrast to the Traditional

Pcie Root Port (Rp) And Switch (Sw) Based I/O Device Connectivity,

the Ntb from One Platform Connects Non-transparently to the Ntb

Interface On Another Platform, Which Means That Either Side of

the Ntb Appears As End-point to Each Other, Supporting Memory

Read and Write Operations, Without Having Transparency on Either

Side. In Contrast, a Normal Pcie Switch Functions Essentially as A

Non-non-transparent-bridge, I.E., As a Transparent Bridge, By Giving

Transparent Views (to Cpu) of I/O Devices, Pcie Root Port, And

Switches. On the Other Hand, the Ntb Hides What Is Connected

Beyond the Ntb, a Remote Node Only Sees the Ntb, and the Services

Offered by the Ntb, Such as Reading and Writing to System Memory

(Dram) or Disk (Ssd Pcie Endpoint) Without Exposure of the Device

Itself. 295

3.23 Classification Taxonomy of Research Studies On Hardware-accelerated

Platforms and Infrastructures for Processing Softwarized Nfs. 296

xxviii

Figure Page

3.24 (A) Overview of Zen Micro ArchitectureClark (2016); AMD (2020):

The Zen Micro Architecture Has 3 Modules: i) Front End Module,

ii) Integer And Floating-point Modules, and iii) Memory Subsystem

Module. Each Core Performs Instruction Fetching, Decoding (De-

codes 4 Instructions/Cycle into the Micro-op Queue), and Generating

Micro-operation (Micro-ops) in the Front End Module. Each Core Is

Independent with Its Own Floating-point and Integer Units. The Zen

Micro Architecture Has Split Pipeline Design at the Micro-op Queue

Which Runs Separately to the Integer and Floating Point Units, Which

Have Separate Schedulers, Queues, and Execution Units. The Integer

Unit Has Multiple Individual Schedulers Which Splits The Micro-ops

and Feeds Them to the Various Alu Units. The Floating-point Unit

Has a Single Scheduler That Handles All The Micro-ops. In the Mem-

ory Subsystem Module, the Data from The Address Generation Units

(Agus) Is Fed into the Execution Units Via the Load and Store Queue.

(B) the Zen Architecture Has A Single Pipeline Cache Hierarchy for

Each Core Which Reduces The Overall Memory Access Latency. 297

3.25 An Overview of the Risc Based Packet Manipulation Processor (Pmp) Pontarelli

et al. (2019) Which Implements a Programmable Packet Header Match-

ing Table Based on Atomic Operations. The Table Can Be Dynamically

Updated by Multiple Processes Running on the Cpu Without Impacting

the Matching Operations. 298

xxix

Figure Page

3.26 Taiga Computing Architecture with Reconfigurable Design Using Fpga Matthews

and Shannon (2017). The Compute Logic Units, Such As Alu, Branch

Unit (Br), Multiply (Mul), and Division (Div), Are Implemented with

Independent Circuitry, I.E, with Instruction Level Parallelism (Ilp).

Block Ram (Bram) and Branch Prediction (Br Pred) Assist in the Ilp

Opcode Fetch. The Numbers on Top of the Logic Units Are Processing

Latencies in Terms Clock Cycles, and below Are The Throughputs in

Number of Instructions per Clock Cycle. The + Indicates That Num-

bers Shown Are Minimum Latency and Throughput Values, Whereas /

Indicates Dual Instruction Flow Paths For Execution. 298

3.27 Illustration of Heterogeneous Scheduling Between Cpu and Fpga Where

Different Tasks Are Commonly Scheduled Relative to Number Of Clock

Cycles Abdallah et al. (2019): Solutions 1 and 2 Are Possible Scheduling

Paths for Tasks (T1–t7) among Cpus and Fpga Homogeneously. The

Optimization Algorithm Evaluates All Possible Paths and Estimates

the Best Path in Terms of Lowest Overall Processing Latency and Power.299

3.28 Overview of Dynamic Task Scheduling Framework Nie et al. (2019)

for Cpu-gpu Heterogeneous Architecture: Tasks Are Partitioned into

Parallel (Gpu) Execution Tasks and Single-threaded (Cpu) Execution

Tasks and Are Then Scheduled as Gpu and Cpu Slave Processes. The

Streams Organize The Tasks Such That the Inter-scheduling Intervals

of Tasks Are Minimized. 299

xxx

Figure Page

3.29 HyCUBE Karunaratne et al. (2017) Is an Extension To Coarse-grained

Reconfigurable Arrays (Cgras) to Support Multi-hop (Distant) Single

Clock Cycle Routing Between Functional Units (Fu): (A) Illustration

of 4× 4 Cgra Interconnected by 2d Mesh, (B) Fu Placement on Rout-

ing Fabric with Bidirectional Link Support. (C) Logical Overview of

Routing Fabric Between the Fus In Hycube, Where Each Fu Node

Can Communicate with Every Other Node Within 1 Clock Cycle. (D)

Illustration of Routing Fabric Internals Showing Interconnect Links

(E.G., L20, L02), and Their Interfaces to Fus. The Direct Paths from

Top Fus to Bottom Fus Are Register Paths, and the Paths Between

Link Interconnects And Fus Are “to” and “from” Interfaces to Link

and Fus. 300

3.30 (A) Overview of Mesh-of-trees (Mot) Based Interconnect Over 3d Multi-

core Cluster with L2 Cache Stacking Facilitated By Tsvs. Each Simple

Core in the Multi-core Cluster Contains Its Own L1 Instruction Cache

and Data Cache (Dc). Multiple Sram Banks That Are Connected

with the 3d Mot Interconnect Through a Tsv Bus Form a Multi-bank

Stacked L2 Cache. The Miss Bus Handles Instruction Misses in a round

Robin Manner. (B) Geometric View Of 3d Multi-core Cluster Which

Balances the Memory Access Latency From Each Core by Placing the

Mot Interconnect in the Center Of The Cores Kang et al. (2016b). 301

xxxi

Figure Page

3.31 An Example of a 3d Package of a 12 (2× 2× 3)-core Chip Multiproces-

sor (Cmp) with a Regular 3d Power Grid: A 4-thread Application Is

Running in the Four Bottom Layer Cores and a New 1-thread Applica-

tion Is to Be Mapped. Suppose a High Power Delivery Network (Pdn)

Degradation (High Resistance of Pdn Pillars Due to High Currents

That Supported Prior Workloads), but Also a Low Circuit-threshold

Voltage Degradation (I.E., Little Circuit Slowdown Due to Little Bias

Temperature Instability Circuit Aging) Exists in the Red (Right Front)

Region of the Middle Layer; Whereas the Green Region Has A Low

Pdn Degradation, but High Voltage Degradation. The Artemis Aging-

aware Runtime Application Mapping Framework for 3d Noc-based Chip

Multiprocessors Raparti et al. (2017) Considers Both Pdn And Voltage

Degradations. 302

3.32 Illustration of Wireless Noc Hywin Gade and Deb (2016): (A) The Cpu

Subsystem with Cpu Cores (along with Their Respective L1 Caches) Is

Connected to a Bus Interface; The L2 Cache Is Shared Between All Cpu

Cores. (B) the Gpu Subsystem with Shared L2 Cache At the Center

Connects Multiple Execution Units in a Star Topology; All Shared L2

Caches Are Connected Through a Mesh Topology. The Wi Gateway

at the Center Initiates the Communication Between The Blocks. (C)

and (D) the Required Program Data Are Stored in The Shared Cache

Subsystem and Main Memory Subsystem. 303

xxxii

Figure Page

3.33 Overview of Configurable Spatial Accelerator (Csa) For Supporting

Cpus with Large Data Graph Computations as Required For Nf Ap-

plications Related to Deep Learning, Data Analytics, And Database

Management Intel Corporation (2020b): Highly Energy-efficient Data-

flow Processing Elements (for Integer and Fused Multiply-add (Fma)

Operations) with Independent Buffers Are Interconnected By Multiple

Layers of Switches. 304

3.34 Evolution of Gpu-rdma Techniques Daoud et al. (2016): (A) Tradi-

tional Method of Gpu Accessing Rdma with Assistance from Cpu, (B)

Gpu Accesses Rdma Directly from Nic, but Cpu Still Performs The

Connection Management for the Gpu, and (C) Gpu Interacts with Nic

Independent of Cpu, Thereby Reducing the Cpu Load for Gpu Rdma

Purposes. 304

3.35 Unisec Implements a Unified Programming Interface To Configure

and Utilize the Security Functions Implemented On Smartnics Yan

et al. (2019). Smartnics Implement Hardware Security Functions (Hsf)

Which Are Exposed to Applications by Virtual Security Functions (Vsf)

Through a Unisec Security Function (Sf) Library. 305

xxxiii

Figure Page

3.36 (A) Overview of Traditional Host-centric Approach: Cpu Runs the

Software That Implements Network-server Function (For Interacting

with Remote Client Nodes) to Process the Requests From A Remote

Node (over the Network). Cpu Also Runs the Network I/O, Which

Implements the Network Stack Processing; (B) Overview Of Lynx

Architecture Tork et al. (2020): Smartnic Implements The Network-

server (Remote Requests Processing), Network-i/O (Network Stack

Processing), and Accelerator I/O Service (Accelerator Scheduling) Such

That the Cpu Resources Are Freed From Network-server, Network I/O,

and Accelerator I/O Services. 305

3.37 Software Components in the Softwarized Network Component. 306

3.38 Classification Taxonomy of Survey of Research Studies on Os and

Hypervisors . 306

3.39 Packet Data Traversal Through Memory of Nic Device, Kernel And

User Space of System Memory, and Accelerator Device in Tradition

Application Processing by the Os. 307

3.40 Logical Distributed Switch (Lds) Spans Across Multiple Compute Nodes,

Where Vms Across Multiple Compute Node Belonging to Same Network

Are Able to Communicate over a Logical Switch Transparently. Each

Compute Node Has the Context of Lds Which Integrates with Lds

Component on Other Compute Nodes to Extend as a Distributed Switch.307

3.41 Kata Containers Achieves the Benefits of Both Virtual Machine (Vm)

and Containers by Extending the Vm Level Isolation to Containers. . . . 308

xxxiv

Figure Page

3.42 Non-uniform Memory Access (Numa) Memory Access Types: i) Local

Memory Access Which Corresponds to Memory Access On The Same

Socket of Cpu, and ii) Remote Access Which Corresponds To Memory

Access on a Different Socket of Cpu. 308

3.43 Shared Virtual Memory Enabled Vm to Share User Space Memory

Location with an I/O Device Based on Iommu Feature. [Bottom up]

Iommu Performs the First Level Translation from Physical Memory To

Guest-physical (Host-virtual) at the Vmm Level, and Viommu Performs

The Second Level Translation from Guest-physical to Guest-virtual.

Process Address Space Identifiers (Pasid) Are Used to Isolate The Share

Virtual Memory Between Different Vms. 309

3.44 Overview of Local Advanced Programmable Interrupt Controller (Aipc)

and I/O-aipc: Local Apic Is Core Specific and Enables Local Interrupt

Pints(Lint0 And Lint1). Inter-process Interrupts (Ipi) Use System Bus

to Forward An Incoming Interrupt or to Generate New Interrupt Tar-

geted to Another Local Apic for Applications, Such as High Resolution

Timer, Performance Monitoring Counters, and Thermal Sensors. I/O

Apic Extends the Interrupts to External I/O Devices. 310

xxxv

Figure Page

3.45 Interrupt Delivery Methods to Guest Os Running on A Vmm Cor-

poration and Mulnix (2020): (A) in Traditional Methods, External

Interrupts Are Captured by Advanced Programmable Interrupt Con-

troller Virtualized (Apicv) on the Hypervisor and Send A Software

Interrupt to the Guest Os. (B) Cpu Implements Apicv Hardware Which

Is Assigned to Guest Os, External Interrupts Captured By Vmm Are

Delivered to Apicv of the Guest Os. (C) External Interrupts Are Di-

rectly Captured by Guest Os Without Any Software Intervention (of

Vmm) in the Form of Message Writes to A Memory Region Resulting

in Posted Interrupts. 310

3.46 Single Root I/O Virtualization (Sriov) And Scalable I/O Virtualization

(Siov) Overview Intel Corp. (2018). Sriov Provides Fixed Resource

Splitting for Virtualizing Hardware Functions, Whereas Siov Provides

a More General And Flexible Resource Splitting Ways for Virtualizing

Of Hardware Resources. 311

3.47 Siov Hardware Virtualization Enables Resource Slicing That Is, i)

Scalable with Respect to the Number of Virtual Functions, ii) Flexi-

ble in Terms Allocating Virtualized Resources To Different Software

Entities Such as Processes, Threads, Applications, and Vms, iii) Over-

provisioning with Respect To Resource Sharing and Re-use, and iv)

Compatibility with Respect To Live-migration of Services and Vm Intel

Corp. (2018). 311

3.48 Classification Research Studies for Os and Hypervisor Architectures

and Concepts Towards Nf Applications . 312

xxxvi

Figure Page

3.49 Proteus Architecture Where Privileged Code Is Executed in the Su-

pervisor Mode Layer While the Problem Mode Handles Vm Related

Communication Such as I/O Device Drivers, Etc. Gilles et al. (2013) . . 312

3.50 Hybrid Virtualization Architecture: (A) Adding Hardware Assisted

Paging (Hap) Support to a Paravirtualized Linux Vm, and (B) Showing

the Hardware Assisted Virtualization Modifications to Import Paravir-

tualization Components Nakajima et al. (2011). 313

3.51 Sr-iov Combined with Dpdk Allowing High Throughput For Virtual Nf

Applications Kourtis et al. (2015). 313

3.52 Interaction Between I/O, Processor, and Hypervisor Virtualization

System. 314

3.53 Optimization Illustration That Shows the Procedure of Optimizing Nei

to Measures the Cost of Vnf Placement on Numa Based Virtualized

Systems for Packet Processing Workloads Sieber et al. (2017). 314

4.1 Illustration of Cloud-to-edge and Cloud/Edge-to-client Service Migra-

tions. Containers Can Implement the Micro-services, And Multiple

Micro-services Can Be Interconnected to Form a Fully Functional

Service. Micro-services Are Typically Moved From Cloud-to-edge or

Cloud/Edge-to-client so as to Achieve the Required Service Response

Times. 315

xxxvii

Figure Page

4.2 Container Migration Through a Container Engine (Ce) Registry: Con-

tainer Images Are Pushed from a Node to a Registry, and Pulled From

the Registry by Another Node. The Pushing of a Container Image

To the Registry Involves Saving the Running Container Context as A

New Container Image, Compressing the Image, and Then Uploading

The Image to the Registry. Pulling a Container from the Registry

Involves Downloading the Image from the Registry and Running It on

A Container to Resume the Service. 321

4.3 Overhead Illustration of Memory Transaction for Hardware Acceleration

of Decompression for Docker Pull Operation Using Qat. The Data from

Https Session Is Decompressed by Qzip Application Using Qat Driver

and Delivers Uncompressed Data To Docker Container Engine (Ce) for

Container Image Instantiation. 327

4.4 Test Setup Overview: Docker Engine Is Modified to Use Intel Quick

Assist Technology (Qat) Hardware Accelerator for Compression and

Decompression Tasks During Push and Pull of Container Images to the

Docker Registry. 332

xxxviii

Figure Page

4.5 (A) and (D) Completion Time of Docker Registry Push (Compression)

and Pull (Decompression) as a Function of Container Size with Software

(Sw) Implementation and with Hardware (Qat) Acceleration (B) and (E)

Cpu Core Utilization [Percent] of Docker Registry Push (Compression)

and Pull (Decompression) as a Function Of Container Size for Software

(Sw) Implementation and for Hardware (Qat) Acceleration. (C) and

(F) Memory Bandwidth Consumption From Cpu Core and Io Devices

(Qat, Network Interface) for Docker Registry Push (Compression) and

Pull (Decompression) as a Function Of Container Size for Software (Sw)

Implementation and for Hardware (Qat) Acceleration. Lower Values

Are Better for Both Completion Times and Cpu Utilizations. The

Memory Access Rate Is an Observable Characteristic Due to Changes

in the Completion times and Cpu Utilizations, I.E., Both Higher and

Lower Memory Access Rate Values Are Neither Better nor Worse. 335

4.6 Test Setup Overview for Network Interface Based Evaluation: i) Reg-

istry Implementation Is Moved from the Local Host (Resource-constrained

Client a) to an External Node (Client b With Abundant Resources) via

a Network Interface (Ethernet Lan), ii) The Hierarchical Token Bucket

(Htb) of Linux Is Used to Throttle The Network Bandwidths for 10,

50, 80, and 200 mbps, While The Default Link Bandwidth Is 1 gbps,

and iii) the Queuing Discipline (Qdisc) of Linux Is Used to Control

the End-to-end Latencies to 50, 100 ms in Either Direction of the Link

(I.E., 50 ms Is Equal to 100 ms of round Trip Time [Rt]). 338

xxxix

Figure Page

4.7 Container Migration Performance Comparison as a Function Of Net-

work Bandwidth (Mbps) for Container Data Layer Sizes 200 Mb And 1

Gb with Software (Sw) Implementation and with Qat Hardware Ac-

celeration. (A) Completion Time [Seconds] of Docker Registry Push

(Compression); (B) Completion Time [Seconds] of Docker Registry Pull

(Decompression); (C) Cpu Utilization [Percent] of Docker Registry Push

(Compression); (D) Cpu Utilization [Percent] of Docker Registry Pull

(Decompression); Lower Values Are Better for Both Completion Times

And Cpu Utilizations. The Memory Access Rate Is an Observable

Characteristic Due to Changes in the Completion times and Cpu Uti-

lizations, I.E., Both Higher and Lower Memory Access Rate Values Are

Neither Better nor Worse. 341

4.8 Container Migration Performance Comparison as a Function Of Net-

work Bandwidth (Mbps) for Container Data Layer Sizes 200 Mb And 1

Gb with Software (Sw) Implementation and with Qat Hardware Accel-

eration. (E) and (G) Memory Access by Cpu and Qat (And Network

Interface) of Docker Registry Push (Compression), For 200 mb and

1 gb, Respectively; And (F) and (H) Memory Access By Cpu and

Qat (and Network Interface) of Docker Registry Pull (Decompression).

Lower Values Are Better for Both Completion Times And Cpu Utiliza-

tions. The Memory Access Rate Is an Observable Characteristic Due

to Changes in the Completion times and Cpu Utilizations, I.E., Both

Higher and Lower Memory Access Rate Values Are Neither Better nor

Worse. 342

xl

Figure Page

4.9 Summary of Hardware Acceleration (Qat) Gains as a Function Of

Network Bandwidth: (A) for 200 mb, and (B) 1 gb Container Data

Layer Sizes. Hardware Acceleration Results in Negative Performance

Gains for Low Network Speeds, < 80 mbps. Larger and Positive Values

Are Better for Acceleration Gains. 343

xli

PREFACE

Chapter 2 of this thesis has been published as Wang, Mu, et al. ”A multi-layer

multi-timescale network utility maximization framework for the SDN-based LayBack

architecture enabling wireless backhaul resource sharing.” Electronics 8.9 (2019): 937.

I was responsible for the data collection and analysis. Mu Wang, Nurullah Karakoc,

Lorenzo Ferrari, Akhilesh S. Thyagaturu, Martin Reisslein & Anna Scaglione assisted

with the data collection and contributed to manuscript edits, supervisory authors and

was involved with concept formation and manuscript composition.

Chapter 4 of this thesis has been published as Shantharama, Prateek, et al. ”Hardware

acceleration for container migration on resource-constrained platforms.” IEEE Access

8 (2020): 175070-175085. I, Prof.Martin & Akhilesh Thyagaturu was responsible for

the data collection and analysis as well as the manuscript composition. Anil Yatavelli,

Poornima Lalwaney, Georgii Tkachuk & Edward J Pullin assisted with the data

collection and contributed to manuscript edits, supervisory authors and was involved

with concept formation and manuscript composition.

xlii

Chapter 1

LAYERED BACKHAUL

1.1 Introduction

Wireless access networks have emerged as a critical bottleneck in Internet access.

One of the root causes of the access bottleneck is that each wireless service provider

(operator) and each wireless technology (such as LTE or WiFi) operates typically

in an operator/technology-specific “silo”. That is, each operator/technology has its

own radio access network (RAN) chain consisting of the RAN Pateromichelakis et al.

(2017) and the corresponding backhaul network Jaber et al. (2016). For brevity, we

refer to the entire RAN chain as RANC. While there have been some efforts in wireless

standards Liu et al. (2016b) and in academic research to share network resources across

wireless technologies, the solutions available to date provide very limited flexibility

(see Section 1.2.1). Thus, there is only very limited statistical multiplexing (sharing)

of network resources among wireless operators and technologies Niu et al. (2016). The

status quo is, to a large degree, due to the lack of a convenient effective signaling

infrastructure across the wireless access networks. To provide this missing signaling

infrastructure, in this paper we propose a novel SDN-based architecture: the Layered

Backhaul (LayBack) architecture. Our contributions are summarized next.

1.1.1 Contributions

The Layered Backhaul (LayBack) architecture, which is illustrated in Fig. 1.1,

addresses the wireless access bottleneck by judiciously employing the existing RAN

and multi-access edge computing (MEC) Fan et al. (2018) resources under a unifying

1

Software Defined Networking (SDN) orchestrator Huang et al. (2018a); Narmanlioglu

et al. (2018). We strategically place the SDN orchestrator at the network backhaul

behind the gateways of the different wireless access technologies. The centralized SDN

orchestrator manages the use of MEC resources distributed across the network to

provide network services, such as the RAN services.

We make three main contributions.

1. We introduce the novel LayBack architecture which comprehensively integrates

the wireless fronthaul and backhaul of heterogeneous wireless technologies and

operators in Section 1.3. LayBack places the coordination point between the

heterogeneous wireless technologies and operators behind the gateways of the

respective technologies and operators. Thus, from this coordination point, an

SDN switching network can flexibly interconnect the respective gateways with a

unifying SDN orchestrator and the backhaul (core) networks, see Fig. 1.1.

2. We introduce an SDN based management framework for coordinating distributed

MEC resources to support network services in Section 1.4. The SDN based

management is executed at a unifying SDN orchestrator. The unifying SDN

orchestrator performs the inter-layer management and coordination within the

LayBack architecture so as to readily utilize the distributed communication and

computing resources across heterogeneous technologies and operators.

3. We illustrate the usage of the LayBack architecture and management framework

through a quantitative case study on resource sharing in a RAN with multiple

operators or technologies in Sections 1.5 and 1.6. The case study considers fluid

RAN function splits, where RAN function block computations are dynamically

assigned to MEC nodes. The evaluation results indicate that for non-uniform

call arrivals, the resource sharing enabled by LayBack can increase the revenue

2

Macro
femto

Flexible

integrated RAN

deployment

eNBs

WiFi

APs

RRHs

5G envisioned

user

applications

Health

Wireless

Generic

Controller

Internet

SDN APPs

Flowvisor/

Hypervisor

SDN-

Switches

CRAN

(BBUs)
Generic Prog.

Gateway

 CPRI, OBSAI

Wi-Fi

Gateways

(e.g., CMTS)

Small cell

Gateways

Ethernet

(e.g., DOCSIS,

EPON etc.)

Ethernet

E.g.,

OpenFlow

Network of SDN switches, where

some are capable of supporting

edge computing such as fog/MEC

nodes.

Multimedia

Caching

Legacy EPC

Legacy 3G/2G
(e.g., GGSN, SGSN,

RNC etc.)

Unifying SDN Orchestrator

Devices Layer
Gateway

Layer

SDN

Switching Layer

SDN Backhaul

Layer (Core)

Compute

& Storage

Radio Node

Layer

Generic (e.g., MPLS)

Generic (e.g., MPLS)

Fronthaul

Backhaul

C
o

o
rd

in
a
ti

o
n

 P
o

in
t

Figure 1.1: Illustration of Proposed Layback Architecture: Layback Flexibly Interfaces

with Heterogeneous Radio Access Network (Ran) Technologies Through a Network of

Gateways and Sdn Switches. At the “coordination Point” Just Behind (to the Right)

of The Respective Gateways, Layback Accesses and Controls the Heterogeneous Rans

Through the Sdn Switching Layer. The Sdn Switching Layer Consistently Decouples

the Ran Fronthaul from the Backhaul. The Unifying Sdn Orchestrator Integrates the

Legacy Backhaul, Existing Architectures, and Future Sdn Architectures. The Sdn

Orchestrator Is The Central Authority That Controls Every Part of the Architecture,

Including Fronthaul and Backhaul. Multi-access Edge Computing (Mec) Nodes May

Be Distributed Throughout The Radio Node, Gateway, Sdn Switching, and Sdn

Backhaul Layers.

from completed calls by more than 25%. We have presented another case study

that utilizes LayBack for the optimization of communication resource allocations

across different operators, gateways, and radio nodes in Ferrari et al. (2018a).

3

1.2 Related Work

1.2.1 RAN Chain (RANC): Fronthaul and Backhaul Architectures

In contrast to clean-slate SDN-based RAN architectures, such as Ameigeiras et al.

(2015), LayBack flexibly accommodates existing as well as new technologies and

deployments. The European project 5G Xhaul has studied a wide range of RANC

aspects, including 5G network requirements Bartelt et al. (2017) and the benefits of

SDN control Gutiérrez et al. (2016); Oliva et al. (2015). The 5G Xhaul project also

investigated aspects of specific frontend radio technologies, such as MIMO Chaudhary

et al. (2017) and mmWave Huerfano et al. (2017), and optical network technologies

for the backhaul Tzanakaki et al. (2017). Moreover, the slicing (virtualization) of the

network has been studied Costanzo et al. (2018). Similarly, the European Crosshaul

project has considered the RANC combining radio fronthaul and the backhaul Cavaliere

et al. (2017); Costa-Perez et al. (2017a). The Crosshaul project has investigated

aspects of the SDN control González et al. (2016), as well as the mmWave Ogawa

et al. (2017) and MIMO Huang et al. (2018b) transmissions. In addition, the slicing

of the network Li et al. (2017) and wired (including optical) transport have been

considered Alimi et al. (2018). These transport aspects are currently further examined

in the European Metrohaul project Casellas et al. (2018). Similarly, other research

groups have examined slicing in RANCs Richart et al. (2016a), as well as the transport

solutions for fronthaul Chanclou et al. (2018) and backhaul Thyagaturu et al. (2016a).

LayBack complements the 5G Xhaul and Crosshaul architectures as well as other

recently proposed SDN-based RANC architectures, such as CROWD Auroux et al.

(2015), iJOIN Wang et al. (2015a), and U-WN Zhang et al. (2014), as well as similar

architectures Droste et al. (2016); Qadir et al. (2014), in that LayBack consistently

decouples the wireless radio access (fronthaul) technologies, such as LTE or WiFi, and

4

corresponding gateways from the backhaul access network.

The recently proposed SDN-based architectures generally retain some dependencies

or direct interconnections between the fronthaul and the backhaul and thus have limited

flexibility to accommodate heterogeneous wireless access technologies and to allow the

fronthaul to evolve independently. In contrast, LayBack achieves these flexibilities

by moving the management “coordination point” between different wireless access

technologies behind the gateways of the respective technologies, as illustrated in Fig. 2.1

and elaborated in Section 1.3. In brief, LayBack coordinates heterogeneous fronthauls

and their respective gateways through central coordination behind the gateways

through an SDN switching network that connects to a unifying SDN orchestrator (see

Section 1.4). The positioning of the coordination point and the SDN switching layer

just behind the respective gateways gives the LayBack SDN orchestrator direct access

to the fronthauls and allows for flexible switching between heterogeneous fronthauls

and backhauls.

The proposed LayBack architecture is also different from recent SDN tiered control

architectures, e.g., three-tiered architectures Elgendi et al. (2016), as well as prior

research on SDN-based architectures, such as Oliva et al. (2015); Tzanakaki et al.

(2017), through the tight integration of the distributed MEC with the provisioning of

network access service.

1.2.2 MEC for RAN Function Splits

A computing infrastructure that is installed in close proximity to the wireless users

and radio nodes is referred to as multi-access edge computing or mobile-edge computing

(MEC) Wang et al. (2017c). The MEC mechanism by Wang et al. Wang et al. (2017a)

jointly performs user-computation offloading and radio node physical resource block

(PRB) allocation (as a mechanism to manage wireless interference). Similar MEC

5

mechanisms that jointly optimize user computations and wireless resources have been

examined in Luong et al. (2018).

Building on this prior work, we assume that computing nodes are distributed across

the network. The emerging challenge is to coordinate and manage the distributed

computing and network services for increasing numbers of nodesAkhilesh Thyagaturu

(2021). Advanced management mechanisms are necessary, such as distributed agent-

based edge computing Bumgardner et al. (2016) and computational resource man-

agement Mao et al. (2017). To the best of our knowledge, the existing fog and MEC

resource management studies have been limited to the offloading of user application

computations and computations for specific individual function blocks (steps) involved

in wireless physical layer transmissions e.g., interference management. Complementary

to the existing mechanisms, we propose a uniform framework to comprehensively

manage the computations for the full range of steps involved in providing RAN service.

The function split in RANs between the radio nodes, also referred to as remote

radio heads (RRHs) or remote radio units, and the base band units (BBUs) has been

investigated in several recent studies, including Checko et al. (2015); Chih-Lin (2017);

Garcia-Saavedra et al. (2018); Thyagaturu et al. (2018a). Our fluid RAN function split

in Sections 1.5 and 1.6 fundamentally differs from prior work in that we generalize

the RAN computations to be performed via flexible function chaining Leivadeas et al.

(2017) on distributed MEC nodes. The RAN computations are coordinated on demand

through SDN control. A traditional cloud RAN (CRAN) provides the computing in

a centralized manner. On the other hand, the emerging Next Generation Fronthaul

Interface (NGFI) sagroups (1914); Chih-Lin et al. (2018a) architecture allows for

the static assignment of the RAN computation tasks to two specific MEC nodes,

namely a Digital Unit (DU) and a Central Unit (CU), and to complete the remaining

computations at the BBU. In contrast, our SDN controlled fluid RAN approach flexibly

6

assigns RAN computations tasks to an arbitrary number of MEC nodes.

1.3 Proposed LayBack Network Architecture

LayBack is enabled by recent advances in software defined networking (SDN) Ramirez-

Perez and Ramos (2016). LayBack breaks down the boundaries separating different

wireless technologies by providing a unifying SDN-based signalling infrastructure. As

shown in Fig. 2.1, by bringing all wireless access technologies (and corresponding

operators that are willing to share their available resources and dynamic reconfig-

uration policies) under the umbrella of a unifying SDN orchestrator (top right of

Fig. 2.1), LayBack achieves (i) the benefits of the individual wireless technologies,

and (ii) the benefits that can be reaped through the coexistence and cooperation of

multiple wireless technologies and operators.

LayBack complements and augments the potential of the popular Cloud RAN

(CRAN) abstraction, because the backhaul is the point of convergence of Internet

traffic and therefore is the ideal point to orchestrate the cooperative management of

different wireless Internet technologies.

In traditional network infrastructures, network functions are tightly coupled with

the network elements, such as the gateways, and the network elements are therefore

commonly referred to as “communication nodes”. In contrast in emerging MEC based

infrastructures, network functions are implemented as virtualized entities on generic

computing resources; hence the network elements are often referred to as “computing

nodes”. The LayBack architecture homogeneously considers both existing traditional

and newly emerging network infrastructure deployments; thus we refer to the network

elements generally as “nodes”. The computing capabilities in the communication

nodes in existing infrastructures can be enabled by augmenting the communication

nodes with MEC nodes.

7

1.3.1 The Layers of the LayBack Architecture

We proceed to describe the key components and functionalities of the proposed

LayBack architecture in more detail. We note that MEC nodes permeate all layers

from the radio node layer to the SDN backhaul layer in Fig. 2.1.

Wireless End Devices Layer

Mobile wireless end devices are heterogeneous and have a wide range of requirements.

Providing reasonable quality-oriented services to every device is a key challenge of

wireless network design. Future devices that are part of the so called Internet of

Things (IoT)Balasubramanian et al. (2021a); Guck et al. (2016), will likely be highly

application-specific, such as health monitoring biosensors Rodrigues et al. (2018).

Visions for 5G wireless systemsHoeschele et al. (2021) foresee that a user can request

network services and applications independently of the wireless technology, i.e., physical

aspects of the network connectivity, wireless protocols, and physical infrastructures

of the core networks. As no single wireless technology can serve all purposes, we

believe that it will be vital to provide a unifying network architecture and management

framework so as to flexibly and efficiently provide wireless services.

Radio Nodes Layer

Radio nodes, such as the evolved NodeB (eNB) in LTE or an access point (AP) in

WiFi, provide RAN services to the end devices. Aside from LTE and WiFi, there

exists a wide range of wireless access technologies (and protocols), including Wi-MAX,

Zig-Bee, Bluetooth, and near field communication (NFC) Kim et al. (2017). These

wireless technologies have unique advantages and serve unique purposes; therefore, a

fluidly flexible radio node that seamlessly supports a diverse range of wireless protocols

8

is desired Sundaresan et al. (2016).

RANs are not only heterogeneous in the wireless access technologies, RAN oper-

ational and deployment aspects are also highly operator specific. RAN technology

advancements in the area of CRAN Checko et al. (2015) have pushed the limits of

scalability and flexibility through leveraging SDN and NFV concepts Leivadeas et al.

(2017). As a result of the wide range of network applications, which may be specific to

operators and network architectures, the operation of the radio nodes layer is highly

complex. Through our proposed LayBack architecture we can bring transparency to

the network, easing the transitions among multiple heterogeneous RANs.

Gateway Layer

The gateway layer encompasses the network entities between the radio node layer

and the SDN switching layer in Fig. 2.1. A CRAN consists of a BBU gateway that

collectively processes the basebands of several RRHs, which in turn may simultane-

ously support multiple wireless technologies. Radio nodes operating in a non-CRAN

environment, such as non-CRAN macro cell eNBs, process the baseband locally and

connect directly to the core (backhaul layer) network gateways via the SDN switching

layer. Similarly, WiFi APs at residential sites typically connect to a cable or DSL

modem, eventually connecting to a cable modem transmission system (CMTS) or

customer premise equipment (CPE) gateway. Interactions between the gateways can

be enabled by extending the gateway functions to support SDN actions, under the

control of a unifying SDN orchestrator.

SDN Switching Layer

SDN switches are capable of a wide range of functions, such as forwarding a packet to

any port, duplicating a packet on multiple ports, modifying the content inside a packet,

9

or dropping the packet Huang et al. (2018a); Narmanlioglu et al. (2018). The LayBack

architecture homogeneously accommodates different technologies embedded in the

networking switching elements. For example, a group of users who are connected to

different operators, such as WiFi and LTE, can request a common content delivery

service. In such a scenario, by supporting caching, the switching network elements

can enable the content caching mechanism Zhao et al. (2016) serving uniformly all the

users, irrespective of their wireless connectivity (i.e., LTE or WiFi) and gateway layers.

The LayBack SDN switching layer directly connects to the gateways of the respective

RAN technologies and operators and thus effectively provides a “coordination point”

to control all RANs. At the same time, the SDN switching layer decouples the RANs

(fronthaul) from the backhaul.

SDN Backhaul (Core) Network Layer

The backhaul (core) network layer comprises technology-specific network elements,

such as the Evolved Packet Core (EPC) which supports the connectivity of LTE

eNBs. Similarly, for 2G/3G legacy cellular architectures, the core network includes

networking elements, such as a Gateway GPRS Support Node (GGSN) and a Radio

Network Controller (RNC). We define a generic programmable gateway and the SDN

controller to represent all the SDN-based core network architectures, such as iJOIN and

xHAUL Tzanakaki et al. (2017). The generic SDN controller abstracts the underlying

design of the data plane and control plane specific to the architecture. The unifying

SDN orchestrator extends the SDN functions to the core network elements that are

not native to SDN, such as EPC and SGSN, so as to dynamically reconfigure the core

network. Communication between multiple core network elements can implement the

multi-operator network sharing mechanisms as well as user mobility, e.g., handover,

across multiple technologies.

10

Unifying SDN Orchestrator

The unifying SDN orchestrator plays an important role in creating a common platform

for all the heterogeneous network technologies and operators (which can be viewed

as heterogeneous network domains) across all the layers in the LayBack architecture.

Although we view the SDN orchestrator as a single entity, actual orchestrator de-

ployments can consist of multiple SDN controllers that are hierarchically organized

to form a single virtual orchestrator. The unifying SDN orchestrator maintains the

current topology information of the entire network and tracks the network capabilities

by exchanging messages with the network elements. Network elements can either

be physical entities or virtual entities obtained through NFV or network service

chaining Leivadeas et al. (2017).

The unifying SDN orchestrator has access to all the LayBack layers to flexibly

reconfigure the network. Through the central SDN orchestrator control, existing and

future architectures can be flexibly integrated to achieve seamless resource sharing

and mobility of users (devices) across multiple technologies. Networks maintained

by different operators need to communicate their requirements and reconfiguration

capabilities to the SDN orchestrator. An operator may choose not to advertise its

capabilities or can selectively share capabilities based on real-time statistics, such as

resource availability.

1.4 SDN Based Management of Distributed Computing for a Network Service

This section introduces a management framework and the management processes

to fulfill the computing requirements in a decentralized manner by dynamically

reconfiguring the network based on SDN. In traditional cloud computing based

networking, the computing requirements for a given user’s network service are addressed

11

User
MEC Node

(1, n)
MEC Node

(2, n)
C

MEC Layer 1

MEC Node
(3, n)

MEC Node

(L, n)

MEC Layer 2 MEC Layer 3 MEC Layer L

Mobility
Mgt. Func.

Admission
Control

Mgt. Func.

Compute
Resource

Mgt. Func.

Hypervisor
Mgt. Func.

Resource
Sharing

Mgt. Func.

C

C

SDN Control/
Management

Plane
M M M M

Management nodes
are interconnected

by Interface M

SDN
Orchestrator

Northbound Interface

Southbound Interface

C

C

C

Mapping
Element (ME)M

Service 1

Service 2 Service 3

Orchestration
Plane

Computing nodes
are interconnected

by Interface C

Data/Compute
Plane

Figure 1.2: Management Framework for Sdn Based Distributed Computing: The Or-

chestration Plane Coordinates the Overall Service Provisioning Through Instantiating

Control/Management Vms on The Control/Management Plane. The Management

Plane in Turn Controls The Data/Compute Plane.

in a centralized manner. Our approach not only decentralizes the computing, but also

collectively delivers the distributed computing as an aggregated network service to

the users.

1.4.1 Management Framework Planes and Interfaces

We introduce the management framework planes and interfaces illustrated in

Fig. 1.2 for managing the provisioning of services with the LayBack architecture.

In particular, we introduce from bottom to top, the data/compute plane, the con-

trol/management plane, and the orchestration plane. These planes interface with

the conventional southbound and northbound interfaces of SDN. We introduce

12

Identify management/control plane and data/compute plane
requirements through problem decomposition

Orchestration Plane

Invoke Mapping Element (ME) to determine candidate set of
communication/computing nodes

Configure and instantiate data/compute plane nodes
and interconnect VMs with C interfaces

Management of service function

SDN Control/Management Plane

Compute allocation and data path reconfiguration

Service function realization and
service delivery

Data/Compute Plane

SDN orchestrator optimizes problem mapping subject to availability of
node resources (candidate set), service support, and latency requirements

Instantiate management plane nodes (VMs) and interconnect them
with M interfaces

Receive user request for network service

Figure 1.3: Flow Chart for Sdn Based Management: Upon Receiving A User Request,

the Sdn Orchestrator Coordinates with the Mapping Element (Me) in the Orches-

tration Plane. The Sdn Orchestrator Decomposes the Problem and Provisions the

Network Connectivity Among the Management Nodes in the Sdn Control/Management

Plane To Enable the Control and Management of the Requested Service. The Man-

agement Nodes Then in Turn Provision the Data/Compute Plane Nodes and Their

Interconnections in the Data/Compute Plane for The Service Delivery. Overall, the

Sdn Orchestrator Is Responsible For Provisioning the Management Functions in Order

to Achieve The End-to-end Delivery of Network Services.

a management (M) interface for the interactions of the orchestration and con-

trol/management plane entities as well as a compute (C) interface for the interactions

of the data/compute plane entities.

13

Data/Compute Plane

The data/compute plane consists of all the SDN controlled communication and

computing nodes that can be reconfigured by a logical control plane. A computing

node can belong to any of the LayBack architecture layers (see Fig. 2.1), i.e., the

RAN, gateway, switching, and core network layers.

Control/Management Plane

The control/management plane is a logical entity that is instantiated by the SDN

orchestrator. More specifically, the control plane is a collection of all the management

functions corresponding to the network services hosted in the data/compute plane.

Essentially, the control/management plane is implemented as VMs on the MEC nodes,

whereby the SDN orchestrator instantiates the management nodes, such as the SDN

controller specific to a network service requested by the user. Once the control plane

is provisioned, the control/management nodes (VMs) are responsible for the run-time

management of the network services.

SDN Orchestration Plane

The SDN orchestration plane consisting of the SDN orchestrator and the mapping

element (ME, introduced in Section 1.4.2) is the logically centralized high level

decision entity. In particular, the network grid is typically heterogeneous, comprising

of several domains, such as, different operator and technology domains. In LayBack,

the SDN orchestrator unifies these heterogeneous domains by centralizing the control

decisions. The SDN orchestrator instantiates, implements, monitors, and tears down

the management nodes (VMs) for the network services at the requests of users.

For inter-operator management, an operator can hide the deployment charac-

teristics, selectively expose the deployment characteristics, or present a abstracted

14

(virtualized) infrastructure to the centrally managed orchestrator. The SDN orchestra-

tor then acts as the coordination point for the interaction of different network services,

such as the multi-operator network sharing.

Interfaces

The interactions between the various planes of the management framework and the

entities within a given plane occur across pre-defined interfaces. To reduce the

overhead and to ensure consistency with the general SDN management framework,

conventional SDN interfaces are used for the interactions between the planes of

the LayBack management framework. In particular, the interactions between the

control/management plane and the data/compute plane can be supported by a

conventional southbound interface, such as OpenFlow. Similarly, the interactions

between the orchestration plane and the control/management plane can be supported

by a conventional northbound interface, such as the representational state transfer

(REST).

We introduce the management M interface for the interactions between the indi-

vidual entities in the orchestration and control/management planes. Furthermore, we

introduce the compute C interface for the interactions between the compute nodes in

the data/compute plane. The M and C interfaces are general interface constructs

that flexibly allow particular protocol interfaces to be incorporated within the general

M and C interface constructs. For instance, the X2 interface (for eNB to eNB con-

nections in LTE) or the N interface (for interconnections of network functions in the

5G backhaul) can be incorporated within the general M interface as needed to fulfill

user requests. On the hand, the S1-U interface (between eNB and S-GW in the LTE

backhaul) can be incorporated into the C interface in the data/compute plane.

15

1.4.2 Orchestration Layer Processing

Adapting SDN principles Huang et al. (2018a); Narmanlioglu et al. (2018), we

centralize the decision making involved in the service provisioning at the SDN orches-

trator. In particular, the orchestration plane coordinates the service provisioning by

executing the steps illustrated in Fig. 1.3 for each service request.

User Request for Network Service

We define a network service as a user desired network application that enables the

user to interact with a remote client (cloud service) or other end-users. For instance,

a network service in the 5G context could include enhanced Mobile BroadBand

(eMBB), Ultra Reliable and Low Latency (URLL) communications, or a massive

mobile Internet of Things (IoT). In addition to specific applications, such as eMBB,

URLL, and IoT, LayBack can also support the entire 5G framework as a network

service. Thus, LayBack may provide specific network applications, such as the eMBB,

URLL, and IoT, as a network service either within the framework of 5G connectivity

or as independent services.

Generally, we refer to the node desiring to offload a communication or computation

task arising from a service request partially or entirely to the network grid as a “user”.

We note that the “users” are not only the end devices, but could also include the

communication and computing nodes themselves, such as, radio nodes. A user sends

the request corresponding to a network service to the network grid. The network

grid forwards the request to the logically centralized SDN orchestrator. Criticality

aspects of the service, such as latency and reliability requirements, are either reported

or estimated based on the request type.

16

Problem Decomposition from Original Problem to Sub-Problems

For the purpose of management, we collectively refer to a network service or a

network application as the “original problem”, or simply as the “problem”. Problem

decomposition refers to the transformation of complex original problems into simpler

constituent sub-problems preserving the problem integrity. Problem decomposition

requires the consideration of the localization properties of the problem as well as the

problem structure.

Many network service applications involve only a finite localized set of nodes,

i.e., have specific localization properties. For instance, only the co-located radio

nodes are responsible for interference coordination. Similarly, the sharing of uplink

transmissions over a limited backhaul link requires the coordination of all connected

users. Accordingly, for the efficient provisioning of communication and computing

resources for different applications, the SDN orchestrator should consider the different

sets of nodes that are co-located within a prescribed region when provisioning network

services.

Depending on the problem structure, the solution of the original problem may

require coordination among the sub-problems. Such coordination can be provided

by a root-problem. A root-problem is a special sub-problem that is executed on a

locally centralized entity that has connectivity to all the end users involved in the

original problem (i.e., network application or service). In addition, the root-problem

has connectivity to all other computing entities that solve sub-problems or are involved

in the decision making processes. The root-problem and the individual sub-problems

mutually exchange information for solving the original problem.

17

Mapping Element: Determining Candidate Communication/Computing

Nodes Set

An important factor to consider during the problem decomposition is the availability

status of the communication and computing resources. Computing entities that are

part of the networking grid can simultaneously execute multiple sub-problems, in

addition to their respective network functions, such as switching and forwarding.

Therefore, a computing entity experiences dynamic loading based on the user requests

and the current state of the network. The candidate set evaluation of the nodes needs

to consider the availability of the nodes, the support for computations, the dynamic

loading, the vicinity to the user, and the support for required networking services. As

this involves a complex evaluation process, we propose a dedicated network Mapping

Element (ME) to evaluate the candidate set of nodes for a given service request.

The ME maintains and regularly updates the current states of the network nodes In

particular, each node that supports communication/computing services periodically

reports its utilization statistics to the ME. The ME considers the latest utilization

statistics for evaluating the candidate set of nodes for a user request.

Optimize Problem Mapping

The SDN orchestrator employs the candidate set provided by the ME to optimize

the mapping of the sub-problems (obtained from the problem decomposition) to the

communication/computing nodes. More specifically, the SDN orchestrator optimizes

the problem mapping subject to the node resource availability (i.e., the candidate set

from the ME), the service support at the various candidate nodes, and the latency

requirements.

As part of the optimization of the mapping to communication/compute nodes, the

18

SDN orchestrator optimizes the mapping of communication services with prescribed

quality of service (QoS) or quality of experience (QoE) requirements to the available

access network technologies. In this communication optimization, the SDN orchestrator

considers the characteristics of the different access network technologies, e.g., the

different radio propagation characteristics. The specific optimization mechanisms to

employ within the LayBack management framework are beyond the scope of this article

and are an important direction for future research. For an initial study on optimizing

communication resource allocations in the LayBack context, we refer to Ferrari et al.

(2018a); Karakoç et al. (2020, 2022); Balasubramanian et al. (2021b).

Instantiate Control/Management Plane Nodes

As a final step in its support of service provisioning, the SDN orchestrator instantiates

the control/management plane nodes as VMs and interconnects the instantiated VMs

with M interfaces through reconfigurable SDN switching. Alternatively, the SDN

orchestrator assigns the control/management functions to existing VMs that support

the required functions and have sufficient available capacity.

1.4.3 Control/Management Plane Processing

Instantiate Data/Compute Plane Configuration

The control/management VMs (that were instantiated by the SDN orchestrator, see

Section 1.4.2) configure the data/compute plane to instantiate and to interconnect

the communication/compute nodes. More specifically, analogously to forwarding

rules in an SDN switch, computing rules can be installed on the computing nodes.

Each computing node is configured to process the requests if a rule pertaining to the

request exists on the computing node, else the requests can be ignored, denied, or

forwarded to the SDN orchestrator. Computing rules can be assigned with expiry

19

timeout based on the idle status of the nodes. For the typical VM based computing

services, the control/managment VMs control the instantiation, migration, and tear

down of data/compute plane VMs.

Moreover, the control/management VMs configure the network grid to establish

the communication paths that interconnect the data/compute plane VMs. In addition,

auxiliary network control functions, such as redundancy provisioning for reliability

and load balancing, are conducted by the control/management VMs.

Maintain Service Functions

Once the data/compute plane service has been instantiated, the control/managment

plane maintains the service. As part of the service maintenance, the control/management

plane monitors and ensures the end-to-end QoS, and preserves the service integrity in

case of disruptions or network changes through recovery operations.

1.4.4 Data/Compute Plane Processing: Service Delivery

Overall, the end-to-end service is provided through the coordinated allocation of

the sub-problem communication/computation tasks to the data/compute plane nodes;

whereby the data/compute plane nodes are configured by the control/management

VMs. The data/compute plane nodes intercommunicate through the data paths

configured via C interfaces by the control/management VMs. The coordinated sub-

problem communication/computation actions of the data/compute plane nodes provide

the overall networking services to the users.

20

Devices
MEC Node

Layer 1
MEC Node

Layer 2
MEC Node

Layer L
Internet

Fluid RAN Function Split

RRH+
MEC Node

Layer 0

SDN
Switching

SDN
Backhaul

Figure 1.4: Illustration of Proposed Fluid Ran Which Dynamically And Flexibly

Distributes Ran Compute Function Blocks Across Multiple Mec Nodes. The Function

Blocks Are Chained to Operate in Cohesion To Achieve Common Function Goal, I.E.,

Provide the Ran Service. The Mec Node Layers l = 0, 1, 2, . . . , L Are Assumed to

Exist Across The Radio Node Layer, the Fronthaul Network, and the Gateway Layer

In The Overall Layback Architecture.

1.5 LayBack Use Case: Novel Fluid RAN Function Split with Resource Sharing

across Operators

The purpose of this section and the subsequent Section 1.6 is to illustrate the

use of the LayBack architecture and management framework for an exemplary use

case. The exemplary use case is the provisioning of a network service through the

management of distributed MEC nodes; specifically, the provisioning of a RAN service.

We illustrate how the computing tasks for the RAN service can be distributed over

MEC nodes and multiple operators. The distribution of the RAN service computing

tasks is enabled through the management framework introduced in Section 1.4, which

operates within the LayBack architecture introduced in Section 1.3.

1.5.1 Background on Existing RANs

In a CRAN, an RRH is the radio frequency (RF) processing entity which is

typically implemented as a part of the RF transmission antennas of cellular radio

21

access technologies. On the other hand, the BBU performs the baseband processing.

A fronthaul network interconnects the RRHs and BBUs. BBUs are softwarized entities

that are typically implemented as VMs on general purpose computing entities, such as

micro and macro data centers. SDN and NFV technologies can compose virtualized

BBU functions through the chaining of virtualized network service functions Medhat

et al. (2017). To date, network virtualization and service chaining have been mainly

applied only to the BBU functions in CRANs and to the backhaul (from BBUs toward

the Internet). In contrast, we pursue network virtualization and service chaining for

the RRH functions and the fronthaul (from RRH to BBU). We examine the spreading

of the RRH functions across multiple layers of the LayBack architecture, while flexibly

chaining function blocks together to compose efficient fronthaul links. Thus, we

effectively study the extension of the benefits of VMs, NFV, and function chaining to

the fronthaul.

The recently introduced generalized Next Generation Fronthaul Interface (NGFI,

IEEE P1914.1) sagroups (1914); Chih-Lin et al. (2018a) architecture allows for the

static functional split assignments of RAN computation tasks to the RRH and BBU

as well as two intermediate nodes, namely a Digital Unit (DU) and a Central Unit

(CU). Based on the LayBack architecture and SDN based centralized management

of computing for a network service, we propose a fluid RAN function split. The

fluid RAN function split dynamically and flexibly assigns RAN computation tasks to

arbitrary MEC nodes.

1.5.2 Proposed Concept of Fluid Function Blocks

Each function block in the NGFI fronthaul and CRAN architecture is essentially a

computing entity, that transforms the incoming data to a form that is suitable for

processing in the subsequent computing entity. Each computing entity may belong

22

to a part of the radio protocol layer operations, such as PHY or MAC of LTE. In

the proposed fluid function split, the CRAN function problem is partitioned into

multiple sub-problems (function blocks), without a prescribed arbitrary limitation

of the number of function blocks. The function blocks can be dynamically created

and assigned to the computing entities, which are interconnected through Ethernet or

time sensitive networking (TSN) based networks. This process not only provides a

high degree of flexibility, but also facilitates new schemes for infrastructure resource

utilization. NGFI limits the fronthaul function blocks to be statically split (assigned)

to only two computing entities, namely the DU and the CU, in addition to the RRH

and BBU. In contrast, our proposed LayBack architecture provides a unique platform

for the centralized management of distributed computing so as to extend the existing

fixed fronthaul and backhaul architecture to a distributed computing framework. That

is, the function blocks can be flexibly assigned to distributed MEC nodes without an

arbitrary limitation on the number of utilized MEC nodes.

The fluid RAN function block assignment can be implemented through software

entities, i.e., VMs, on generic computing entities. The generalized computing entities

are MEC nodes distributed throughout the radio node, gateway, SDN switching layers

in the LayBack architecture in Fig. ??. Existing advanced VM management methods

for inter and intra data center networks Bari et al. (2013) can be applied for the VM

duplication, setup, tear down, and migration to other nodes.

1.5.3 Proposed LayBack Implementation of Fluid Function Split

The fundamental principle of the LayBack architecture is to unify the wide variety

of heterogeneous infrastructures that exist due to different operators and technolo-

gies. LayBack categorizes these heterogeneous infrastructures in terms of layers, and

interconnects them through a configurable network, i.e., the SDN switching layer,

23

see Fig. ??. In the LayBack architecture, the RRH is located at the radio node

layer, which requests services through the fluid function split paradigm. A given

RRH may require different fronthaul services due to changing RRH characteristics,

such as varying numbers of connected users, varying bandwidth demands, or varying

power requirements. For each change in the RRH characteristics, there may be a

corresponding change in the interconnecting fronthaul link requirements, and the

function block implementations to complete the RAN processing.

We employ the centralized management of distributing computing, as introduced

in Section 1.4, to meet the computing requirements for the RAN functions. More

specifically, the LayBack SDN unifying orchestrator implements the SDN based

management framework illustrated in Fig. 1.2 to assign the function blocks to MEC

nodes and to configure the fronthaul network to maximize the overall utilization while

seamlessly maintaining continuous service.

1.5.4 System Model

RAN Network

As summarized in Table 1.1, we denote N for the number of parallel CRAN systems,

e.g., the number of service providers that operate a CRAN in a given area. For

simplicity, we assume that each of the N parallel CRAN systems has L+ 1 layers of

MEC nodes. We denote Zl,n for the computation capacity at the MEC node in layer

l, 0 ≤ l ≤ L, of CRAN n, 1 ≤ n ≤ N . We model the communication capacity of the

reconfigurable SDN network interconnecting the MEC nodes as follows. The MEC

nodes within a given layer l are interconnected with a shared intra-layer communication

capacity Cl [bit/s]. The successive MEC layers l and l + 1 are interconnected by a

shared inter-layer communication capacity Cl;l+1 [bit/s].

24

Data Call

We define r as the payload data bitrate [in bit/s] of a given data call (stream) and let

τ denote the expected (mean) call duration [in seconds]. That is, r corresponds to

the user payload data rate, which we consider to be effectively the bitrate at the IP

datagram level. We consider low, medium, and high user payload data rates denoted

by rlow, rmed, and rhigh. We consider independent data call generation according to a

Poisson process with prescribed rate λ [data calls/s] for each of the N CRAN systems,

i.e., the total call arrival rate to the N parallel CRANs is Nλ.

Function Blocks

We define the function F to represent the complete set of of fronthaul and baseband

computations for a given data call in a CRAN system. Analogous to the series

expansion of any bounded function, such as the Fourier and Taylor series expansion,

the CRAN function F can be represented in terms of function blocks as F =
∑B

b=0 fb,

where B + 1 is the total number of function blocks for a given CRAN system.

In our model, a given data call (stream) has to complete the function blocks (com-

putation tasks) fb, b = 0, 1, 2, . . . , B, with corresponding computation requirements

(demands, loads) βb, b = 1, 2, . . . , B. The function block f0 computation has to be

performed at layer l = 0. All other function block computations fb, b = 1, 2, . . . , B,

can be flexibly (fluidly) performed at any of the layers l = 1, 2, . . . , L.

Note that in our model, a conventional fully distributed RAN performs the function

blocks fb, b = 1, 2, . . . , B, for a call in a given RAN in layer l = 1 of the RAN. That

is, the computation load
∑B

b=1 βb is placed on layer l = 1 of the RAN. In contrast, in

the classical CRAN scenario, the function blocks fb, b = 1, 2, . . . , B are performed in

layer l = L, i.e., at the BBU, placing computation load
∑B

b=1 βb on the BBU.

25

We denote ρb for the data bitrate emanating from function block fb processing.

Specifically, after function block f0, the data bitrate is the fixed I/Q time domain data

rate ρ0 = RI/Q time. Each successive function block reduces the data bitrate towards

the (IP packet level) payload data rate ρB = r.

Service Policy

Following the optimization results for a substantial MEC load in Garcia-Saavedra

et al. (2018), we consider an elementary greedy service policy that strives to perform

the function block computations for a given call generated for CRAN m within the

own CRAN m at the lowest possible layer, i.e., as close as possible to the radio nodes.

The investigation of other service policies is an important direction for future research.

We consider layer l = 0 as a “special” layer that conducts only the essential

function block f0 that results in the time-domain I/Q stream. We do not load

layer l = 0 with any additional computations. Instead, we greedily try to place all

remaining function blocks fb, b = 1, 2, . . . , B on node (l = 1,m). If node (l = 1,m)

cannot accommodate this full remaining computation load
∑B

b=1 βb, then the SDN

orchestrator tries to place the maximum integral number of function blocks on the

node. That is, functions fb, b = 1, 2, . . . , µ, are placed on node (l = 1,m) with

µ = {max0≤b≤B b subject to
∑b

a=1 βa ≤ Zavail.
l=1,m}, where Zavail.

l=1,m denotes the currently

available computing capacity at node (l = 1,m).

If not all (µ < B) or none (µ = 0) of the function block computation loads βb, b =

1, 2, . . . , B, can be accommodated on node (l = 1,m), then the SDN orchestrator tries

to move the remaining function block computations [that could not be placed on node

(l = 1,m)] to the next higher layer, i.e., layer l = 2, of the same operator m, i.e., to

node (l = 2,m). Again, the SDN orchestrator tries to place the maximum integral

number of the remaining function blocks on node (l = 2,m).

26

If node (l = 2,m) cannot accommodate all remaining function block computations,

then the SDN orchestrator tries to offload the remaining function blocks to the “parallel”

neighbors, i.e., to the other nodes n 6= m, 1 ≤ n ≤ N , within layer l = 1.

If there are still some remaining function blocks, then the SDN orchestrator tries

to place these remaining computations on the next “higher” layer l = 3 within the own

CRAN m, i.e., on node (l = 3,m). Then, if there are still some remaining function

blocks, the SDN orchestrator tries the other nodes n 6= m, 1 ≤ n ≤ N , in layer l = 2,

and so on. That is, the SDN orchestrator always tries first one layer up higher in the

own CRAN and if this fails, then tries the other nodes one layer back. This process

continues until all nodes have been checked. Note that on the last search iteration,

the SDN orchestrator cannot try to offload to layer L+ 1 (as this layer does not exist);

instead, after attempting to place the remaining function blocks on the other CRAN

nodes n 6= m, 1 ≤ n ≤ N , in layer L− 1, the SDN orchestrator immediately proceeds

to the other CRAN nodes n 6= m, 1 ≤ n ≤ N , in layer L. If some (one or more) of

the functions blocks for a data call cannot be accommodated, then the call is blocked.

Throughout, the transfer of a function block from a node (k,m) to a node (l, n)

requires that the data bitrate rate emanating for the call from node (k,m) can be

accommodated within the currently available communication capacity out of the total

intra-layer communication capacity Ck if the nodes are in the same layer (k = l) or the

total inter-layer communication capacity Ck;l if the nodes are in different layers k 6= l.

We also note that we only consider the transfer (offloading) of complete function blocks,

i.e., we do not consider the splitting of a given function block fb into sub-blocks.

Performance Metrics

We evaluate the call blocking probability O for the low, medium, and high data rate

calls. We evaluate the total mean revenue rate R defined as the long run average rate

27

of completed calls weighed by the call payload data bitrate r. Moreover, we evaluate

the MEC node utilization, i.e., the long-run average load level of each MEC node; in

order to avoid clutter, we report the average (across the parallel N nodes in a layer)

of these long-run average MEC loads for each layer l = 1, 2, 3, 4. We also evaluate

the communication capacity utilization, i.e., the long run average bitrate transported

across each of the intra-layer and inter-layer networks.

1.6 Fluid RAN Function Split Evaluation

1.6.1 Approximate Analysis

MEC node (l, n) can be viewed as a stochastic knapsack Ross (1995) of capacity

Zl,n. A function block fb that is computed on node (l, n) occupies computing capacity

βb for the duration of the call. Similarly, the intra- and inter-layer communication

capacities can be viewed as stochastic knapsacks. A detailed stochastic knapsack

model with the different call data rates would become quite tedious. The main goal of

our approximate analysis is to give insight into the sharing of the CRAN resources

across the N parallel CRANs. Generally, by the scaling characteristics of stochastic

knapsacks Ross (1995), one large system can support substantially more calls than a

set of separate smaller systems (with the same overall capacity).

In order to derive a simple intuitive model that still captures the essential sharing

dynamics, we focus on the computing aspect. We consider an approximate system

model with compute capacity Z in each MEC node and one “average” call type with

data bitrate r̄ and corresponding average compute load β̄b for function block b. In

order to process an “average” call, the total computing demand β̄tot =
∑B

b=1 β̄b has

to be provided by the CRAN system. With one call type, the total CRAN compute

capacity can be viewed as a classical trunking system that is characterized by the

28

Erlang B loss formula. For a classical trunking system with a call handling capacity of

Γ calls and offered load E (call arrival rate times average call holding time in Erlangs),

the blocking probability is

O(E, Γ) =
EΓ/Γ!∑Γ
γ=0 E

γ/γ!
. (1.1)

In our context, a given data call requires the processing of B function blocks in

the CRAN system, i.e., places a compute load β̄tot on the CRAN system. The call

handling capacity of one conventional CRAN system is thus Γ = LZ/β̄tot. Data calls

are generated at a rate of λ call/s for a given CRAN system, whereby a given call lasts

on average τ seconds. Thus, the offered load for a CRAN system is E = λτ . Hence,

one of the stochastically identical and independent conventional CRAN systems has

approximately the blocking probability O(λτ, LZ/β̄tot).

Our system with resource sharing across the N parallel CRAN systems has a total

call handling capacity of Γ = NLZ/β̄tot and a total offered load of E = Nλτ . Thus, the

blocking probability is approximately O(Nλτ, NLZ/β̄tot). By the classical trunking

efficiency characteristics Smith and Whitt (1981), the system with resource sharing has

substantially lower blocking probability, and correspondingly higher call completion

rate. Accordingly, resource sharing increases the revenue rate R = Nλ(1−O)r̄.

1.6.2 Simulation Setup

We consider N = 3 parallel CRANs, each with L + 1 = 5 MEC node layers.

We initially set all node computing capacities to Zl,n = 200 [arbitrary computing

units]. We set all communication capacities to Cl = Ck;l = 1000 Gbps. For each given

generated call, we independently randomly select a lifetime according to an exponential

distribution with mean τ = 2 [s], and we uniformly randomly select a payload data

bitrate r from a set of three prescribed rates, i.e., r ∈ {rlow = 5 Mbps, rmed =

29

30 Mbps, rhigh = 100 Mbps}. We set the corresponding function block computing

demands in the last function block b = B = 4 to βlow
4 = 1, βmed

4 = 2, and βhigh
4 = 4.

The compute loads and bitrates are typically highest for the function blocks near

the radio node and decrease towards the BBU Garcia-Saavedra et al. (2018); Yeoh

et al. (2016). We assume that each function block reduces the bitrate to a third of

the bitrate entering the function block, i.e., we set ρ0 = RI/Q time = 81r, ρ1 = 27r,

ρ2 = 9r, ρ3 = 3r, and ρB = ρ4 = r. We assume that the computing demands of the

function blocks are halved for each successive function block, e.g., for a low rate call,

β1 = 8, β2 = 4, β3 = 2, and β4 = 1.

Since function block 0 is often implemented with extensive specialized hardware

support, we focus on function blocks b = 1 through b = B = 4 in our evaluations.

Specifically, we assume that layer l = 0 in each CRAN m has always enough resources

to accommodate the function block 0 processing of all calls arriving to CRAN m and

that bitrate ρ0 = 81r is required to offload function block b = 1 from node (l = 1,m)

to another MEC node.

We evaluate statistical confidence intervals with the batch means method. We run

the simulation for a given scenario until the 95% confidence intervals for all performance

metrics are less than 5% of the corresponding sample means. The confidence intervals

are not plotted to avoid visual clutter.

1.6.3 Evaluation Results

Fluid RAN Function Split

This section examines the fluid assignment of the RAN function blocks to MEC

nodes. We compare our fluid RAN approach introduced in Section 1.5 with the

state-of-the-art NGFI (IEEE P1914.1) based approaches, which statically assign the

30

RAN function blocks to RRH, DU node, CU node, and BBU Checko et al. (2015);

Chih-Lin (2017); Garcia-Saavedra et al. (2018); Mharsi et al. (2018); Thyagaturu

et al. (2018a); sagroups (1914); Chih-Lin et al. (2018a). Specifically, in our evaluation

context, we consider the static assignment of function block fb, b = 1, 2, . . . , B, to

the MEC node (b,m) of the considered CRAN m. That is, the static NGFI approach

features a fine-granular splitting of the B computation tasks among B MEC node

layers; however, this fine-granular assignment is statically fixed. As an additional

fluid RAN evaluation benchmark we consider a fluid NGFI which we define as follows.

The function block f0 is conducted in the DU node attached to the RRH, while the

remaining function blocks fb, b = 1, 2, . . . , B = 4, with aggregate computation demand∑B
b=1 βb have to be completed at one flexibly assigned MEC node. We consider the

placement of this aggregate computation load according to the greedy service policy

on any of the MEC nodes (l,m), l = 1, 2, . . . , L, of the considered CRAN m. The

assigned MEC node takes on the role of the CU for the considered call, resembling

the PHY split scenario in Garcia-Saavedra et al. (2018). We conduct the fluid RAN

benchmark comparisons in the context of a CRAN system without resource sharing

among parallel CRANs in order to bring out the performance trade-offs of the fluid

(flexible) assignment of the RAN function blocks (computing tasks) to the MEC nodes

within a given CRAN as enabled by the LayBack SDN based management framework.

We observe from Fig. 1.5(a) that StaNGFI has substantially higher blocking

probability than FluNGFI, which in turn has slightly higher blocking probability than

FluRAN. The static function block assignment with StaNGFI overloads the MEC

nodes in layer l = 1 already for low call arrival rates with the high computation load β1

of function block f1. The flexible FluNGFI assignment of the complete (aggregate) set

of function blocks with load
∑B

b=1 βb to any of the MEC nodes l = 1, 2, 3, or 4 avoids

the overloading of the layer l = 1 MEC nodes. However, the complete set of function

31

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12

Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

O
 [

%
]

Mean Call Arrival Rate Nλ [calls/s]

FluRAN high
FluRAN med
FluRAN low

FluNGFI high
FluNGFI med
FluNGFI low

StaNGFI high
StaNGFI med
StaNGFI low

 0

 200

 400

 600

 800

 1000

 1 2 3 4 5 6 7 8 9 10

R
ev

en
ue

 R
at

e
R
 [

M
bp

s/
s]

Mean Call Arrival Rate Nλ [calls/s]

FluRAN high
FluRAN med
FluRAN low

FluNGFI high
FluNGFI med
FluNGFI low

StaNGFI high
StaNGFI med
StaNGFI low

(a) Call Blocking Probability O (b) Revenue Rate R

Figure 1.5: Performance of a CRAN with Flexible Fluid Assignment Of b = 4 Ran

Function Block Computations to l = 4 Mec Nodes (Fluid Ran, Abbreviated as Fluran

in Plot, Enabled by the Sdn Management Framework in Layback Architecture), Static

Ngfi Based Assignment of Ran Function fb Computation to Mec Node b (Stangfi),

and Fluid Ngfi Based Assignment of Complete Set of b Ran Function Computations

to a Mec Node out of the l Mec Nodes (Flungfi) for Uniform Data Call Arrivals to

Each Cran.

blocks requires an available capacity of at least
∑B

b=1 βb at a MEC node, whereas the

FluRAN approach requires only at least β1 available computing capacity at a MEC

node and then enough available capacity to accommodate the other function blocks

with the smaller computation loads β2, β3, and β4 at the subsequent (higher indexed)

MEC nodes.

We observe from Fig. 1.5(b) that for the practically relevant blocking probability

ranges, e.g., below 5%, the revenue rates for FluRAN and FluNGFI are essentially

equivalent; however, the revenue rates for StaNGFI are significantly lower. These

results underscore that the flexible assignment of RAN function blocks to the MEC

nodes is important for extracting high revenues from a CRAN system. On the other

hand, the granularity of the function block assignment (individual function blocks

32

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40 45

Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

O
 [

%
]

Mean Call Arrival Rate Nλ [calls/s]

sharing, high
sharing, med
sharing, low
sharing, ana.

no sharing, high
no sharing, med
no sharing, low
no sharing, ana.

 0

 200

 400

 600

 800

 1000

 5 10 15 20 25 30 35 40 45

R
ev

en
ue

 R
at

e
R
 [

M
bp

s/
s]

Mean Call Arrival Rate Nλ [calls/s]

sharing, high
sharing, med
sharing, low

sharing, ana.
no sharing, high
no sharing, med
no sharing, low

no sharing, ana.

(a) Call Blocking Probability O (b) Revenue Rate R

Figure 1.6: Performance of System of n Parallel Crans with Resource Sharing among

the n Crans (Enabled by Layback Coordination Point Just Behind Ran Gateways

to Consistently Decouple Fronthaul From Backhaul and to Allow for Sdn Control of

Fronthaul and Backhaul) Vs. Without Resource Sharing (Representing Conventional

Architectures With Coupled Fronthaul and Backhaul That Make Sharing Prohibitively

Complex, See Section 1.2.1) for Uniform Data Call Arrivals to Each Cran.

with fluid RAN approach vs. aggregate of function blocks with FluNGFI) has only a

relatively minor impact.

RAN Sharing for Uniform Call Load

This section evaluates the resource sharing among CRAN systems, which LayBack

enables through the positioning of the coordination point just behind the gateways of

the respective RAN systems, see Fig. 2.1. This unique positioning of the coordination

point in the LayBack architecture consistently decouples the fronthaul from the

backhaul and allows for the flexible SDN control of the fronthaul and backhaul and

the flexible coordination and cooperation between the different CRAN systems. In

contrast, the RAN architectures in the existing literature reviewed in Section 1.2.1

generally retain some dependencies and direct interactions between fronthaul and

33

backhaul. In these existing architectures, the fronthaul and backhaul are effectively

coupled and a coordination among different RAN systems would only be possible

through a coordination point behind the core networks, e.g., to the right of the

legacy EPC in Fig. 2.1. Such a coordination point behind the core network layer

would make the coordination prohibitively complex and far removed from the RAN

fronthaul, i.e., would allow only for indirect control of the RAN fronthaul. Thus,

fronthaul RAN sharing is generally not practical in the existing architectures. We

compare a fluid RAN “no sharing” scenario representing the existing architectures

(as reviewed in Section 1.2.1) with a fluid RAN “sharing” scenario representing the

LayBack architecture (whereby the sharing is among the CRANs).

In particular, we first consider a uniform call generation scenario where each of

the N CRAN systems receives the same call request rate λ. The fluid RAN approach

shares the resources across the N CRAN systems. In contrast, the set of N parallel

“no sharing” CRAN systems do not share resources, i.e., each of the “no sharing”

CRANs processes calls only within its own system. The “no sharing” CRAN system

offloads function blocks according to the fluid RAN approach but only to its own

MEC nodes. That is, the “no sharing” CRAN system places function blocks greedily

on the own MEC nodes as close to the radio node as possible; there is no offloading to

MEC nodes in parallel CRANs.

We observe from Figs. 1.6(a) and (b) that resource sharing among parallel CRAN

systems reduces the blocking probability while increasing the revenue rate. These

performance gains are due to the sharing (statistical multiplexing) of resources across

a larger system with our service policy. As noted in Section 1.6.1, our sharing service

policy essentially lumps the N parallel CRANs into one large aggregate CRAN system

with a total computing capacity of NLZ; whereas, the conventional approach has

N separate CRAN systems, each with a computing capacity of LZ. The one large

34

CRAN system obtained through the sharing can support more calls than a set of

separate smaller systems (with equivalent overall capacity) due to the more flexible

resource utilization in one large system compared to the separate small systems Smith

and Whitt (1981).

Specifically, we observe from Fig. 1.6(a) that for the considered uniform call load

scenario, the blocking probability reduction with sharing is relatively modest, typically

on the order of 5% in the critical call arrival rate range when the blocking becomes

noticeable, for aggregate call arrival rates Nλ around 20 – 30 calls per second. The

high rate calls require substantially more computing and communication resources

than the medium and low rate calls and accordingly the high rate calls experience

substantially higher blocking probabilities than the other call types. The rough

analytical approximation from Section 1.6.1 does not consider the different call types,

but confirms the general trends of the blocking probability and revenue dynamics.

We observe from Fig. 1.6(b) that sharing brings only relatively small revenue

increases for the uniform call load scenario. The increases with sharing are largest

for the high rate calls around Nλ = 30 − 35 calls/s. The high rate calls present a

favorable combination of high revenue (which we set equal to the data bitrate) and

low to moderate blocking probabilities up to around Nλ = 30− 35 calls/s. For higher

arrival rates, more frequent low and medium rate calls fill up the free capacities and

block the high rate calls, resulting in a drop of the revenue from high rate calls.

RAN Sharing for Non-Uniform Call Load

We evaluate different skewness levels of call arrivals that may arise due to shifts in

call generation, e.g., due to popular events. We consider the Zipf distribution Adamic

and Huberman (2002) with exponent ζ = 1 for different numbers ∆ of CRAN systems

that receive medium rate calls. In particular, for ∆ = 1, the entire call generation

35

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40

Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

O
 [

%
]

Mean Call Arrival Rate Nλ [calls/s]

sha., uni., sim.
sha., uni., ana.

no sha., Δ=1, sim.
no sha., Δ=1, ana.
no sha., Δ=2, sim.
no sha., Δ=3, sim.
no sha., uni., sim.
no sha., uni., ana.

 0

 200

 400

 600

 800

 1000

 5 10 15 20 25 30 35 40

R
ev

en
ue

 R
at

e
R
 [

M
bp

s/
s]

Mean Call Arrival Rate Nλ [calls/s]

sharing, uni, sim.
sharing, uni, ana.

no sharing, Δ=1, sim.
no sharing, Δ=1, ana.
no sharing, Δ=2, sim.
no sharing, Δ=3, sim.
no sharing, uni, sim.
no sharing, uni, ana.

(a) Call Blocking Probability O (b) Revenue Rate R

 0

 20

 40

 60

 80

 100

 120

 5 10 15 20 25 30 35 40

Co
m

pu
te

 U
til

iz
at

io
n

Mean Call Arrival Rate Nλ [calls/s]

sha., l=1
sha., l=2
sha., l=3
sha., l=4

no sha., Δ=3, l=1
no sha., Δ=3, l=2
no sha., Δ=3, l=3
no sha., Δ=3, l=4
no sha., Δ=1, l=1
no sha., Δ=1, l=2
no sha., Δ=1, l=3
no sha., Δ=1, l=4

 0

 0.5

 1

 1.5

 2

 5 10 15 20 25 30 35 40

M
ea

n
In

tr
a

Co
m

m
un

.
Bi

tr
at

e
[1

0
G

bp
s]

Mean Call Arrival Rate Nλ [calls/s]

sha., Δ=1, l=1,
sha., Δ=1, l=2,
sha., Δ=1, l=3,
sha., Δ=1, l=4,
sha., Δ=3, l=1,
sha., Δ=3, l=2,
sha., Δ=3, l=3,
sha., Δ=3, l=4,

(c) MEC Utilization (d) Intra-layer Communication Bitrates with Sharing

Figure 1.7: Performance of System of n Parallel Crans With Resource Sharing among

the n Crans (Enabled by Layback) Vs. Without Resource Sharing (Conventional

Architectures with Prohibitive Sharing Complexity) for Non-uniform Arrivals of

Medium Rate Data Calls According to Zipf Distribution to δ Crans.

rate Nλ arrives to one CRAN system. For ∆ = 2, the call generation rate Nλ arrives

to two CRAN systems according to the Zipf distribution with support 2, i.e., a given

generated call arrives to one CRAN system with probability 2/3 and to the other

CRAN system with probability 1/3. For ∆ = 3, the calls arrive to the three CRAN

systems with proportions 6/11, 3/11, and 2/11.

We observe from Fig. 1.7(a) that for the CRAN system without resource sharing,

the blocking probability substantially increases with increased skewness of the call

arrivals, i.e., smaller ∆. We confirmed in additional simulations that are not included

36

to avoid clutter that the blocking probability of the CRAN system with resource

sharing is essentially unaffected by the skewness of the call arrivals. With sufficient

intra-layer communication capacities, the resource sharing flexibly diverts the function

blocks to the available resources in the parallel CRANs, keeping the call blocking low

even for highly skewed call arrivals. We observe from Fig. 1.7(b) that the sharing

greatly increases the revenue for skewed call arrivals. For the moderate case of skewed

call arrivals with ∆ = 3 to all N = 3 CRAN systems, sharing can increase the revenue

by approximately 25%, while more pronounced skewness in the call arrival pattern

allows for even larger gains.

We also observe from Figs. 1.7(a) and (b) that the rough approximation with the

Erlang B trunking model from Section 1.6.1 gives slightly lower blocking probabilities

than the simulated CRAN system. This is mainly because the CRAN system function

blocks f1, f2, f3, and f4 have specific placement constraints that are neglected in

the lumped trunking system model. Mainly, the function blocks have decreasing

computing demands β1 > β2 > β3 > β4 and need to be executed one after the other

with the placement on MEC nodes according to the considered greedy service policy.

Thus, the “no sharing” CRAN system blocks for example a call if MEC layer l = 4

has enough free compute capacity for β1, but not enough to accommodate
∑B

b=1 βb,

and the other MEC layers l = 1, 2, and 3 have enough free capacity for β2, β3, and

β4, but not enough for β1; while this example call would be accommodated in the

trunking system.

For the compute utilization, we observe from Fig. 1.7(c) that without sharing the

utilization levels are quite low compared to the CRANs with sharing. Without sharing,

the ∆ = 1 scenario already fully loads the resources in the one CRAN receiving all

the calls for fairly low call arrival rates. The resources in the two parallel CRANs

cannot be utilized, i.e., they have a utilization of zero. Thus, the overall utilization

37

of the compute resources of the N = 3 parallel CRANs is limited to one third. In

contrast, the sharing utilizes the compute resources across all N = 3 parallel CRANs.

(Additional simulations that are not included to avoid clutter confirmed that sharing

achieves very similar utilization levels for all considered call arrival patterns.) The

considered greedy function block placement policy more and more fully utilizes the

successive MEC layers l = 1, 2, 3, and 4 as the call arrivals increase. For the ∆ = 3

scenario in Fig. 1.7(c), all N = 3 CRANs receive calls, but with rates skewed according

to the Zipf distribution. Without sharing, the CRAN system receiving the highest

proportion of calls reaches near full utilization already for moderate call arrival rates

and blocks calls, while the two parallel CRAN systems have still unutilized compute

resources. In contrast, the fluid RAN system with resource sharing among the N

CRAN systems consistently achieves high resource utilization, low blocking probability,

and high revenue for a wide range of call arrival patterns.

Fig. 1.7(d) shows the intra-layer communication bitrates for layers l = 1, 2, 3, and 4

for the resource sharing between the N = 3 parallel CRAN systems. We observe that

the extreme case of all calls arriving to ∆ = 1 CRAN system results in relatively high

bitrates in layer l = 1 already for low call arrival rates. The intra-layer bitrates in

the successive layers l = 2, 3, and 4 increase as the call arrival rate increases. This

behavior is in accordance with the considered greedy service policy that strives to

complete function blocks in the lowest indexed layers. For the more realistic case

of skewed arrivals to all ∆ = N = 3 CRAN systems, we observe significantly lower

intra-layer communication bitrates, whereby layer l = 1 experiences again the highest

intra-layer bitrates.

38

1.7 Conclusions

We have introduced the Layered Backhaul (LayBack) architecture for coordinating

heterogeneous radio access networks (RANs) with software defined networking (SDN).

LayBack ties the heterogeneous RANs together behind their respective gateways,

such as cloud RAN (CRAN) baseband units of small cell gateways. More specifically,

these heterogeneous gateways are connected by an SDN network to a unifying SDN

orchestrator. We have introduced an SDN based management framework that is

executed in the SDN orchestrator. The management framework coordinates distributed

computing resources, such as distributed multiple-access edge computing (MEC) nodes,

to cohesively provide computing for network services.

We showcased the LayBack architecture and management framework for a novel

fluid cloud RAN (CRAN) function split. The fluid function split partitions the entire

set of CRAN fronthaul computations into multiple function blocks. The function

blocks are assigned to MEC nodes according to a service policy. We evaluated an

elementary greedy service policy that shares resources between the CRAN systems of

different operators. We found that the resource sharing substantially increases the

revenue rate from the CRAN service.

LayBack can serve as basis for a wide range of future research directions. One

direction is to develop and evaluate optimization mechanisms for the function splitting

(problem decomposition) and the allocation of the resulting function blocks (sub-

problems). Initial work in this direction has, for instance, explored time-scale based

decompositions Ferrari et al. (2018a); Tang et al. (2017). The convergence and

optimality characteristics of such time-scale decompositions as well as other problem

decomposition approaches need to be thoroughly examined in future research.

39

Table 1.1: Summary of Main Notations and Parameter Settings For Numerical

Evaluations in Section 1.6.

CRAN/MEC Network

N Number of parallel CRANs (e.g., operators) 3

L Number of layers of MEC nodes 4

(l, n) MEC node indices, 0 ≤ l ≤ L; 1 ≤ n ≤ N

Zl,n Compute capacity of node (l, n) 200

Ck Intra-layer comm. capacity [Gbit/s] in layer k 103

Ck;l Inter-layer comm. capacity [Gbit/s] 103

betw. layers k and l

Data Call

r Payload (IP level) data bitrate [Mbit/s] 5, 30, 100

τ Expected duration [s] 2

λ Arrival rate [calls/s] per CRAN

Function Blocks

B Number of function blocks for RAN function, 4

indexed with b, b = 0, 1, . . . , B

βb Computation demand (load) of function block b Sec. 1.6.2

ρb Bitrate [bit/s] departing function block b; Sec. 1.6.2

ρ0 = RI/Q time; ρB = r

Performance Metrics

O Call blocking probability

R Revenue rate from completed calls

40

Chapter 2

LAYERED BACKHAUL OPTIMIZATION

2.1 Introduction

2.1.1 Motivation

In conventional wireless networks, each wireless service operator maintains its own

wireless network infrastructure with its own backhaul network that interconnects the

wireless network frontend with the Internet at large. Typically, each operator has a fixed

maximum installed backhaul capacity. Sudden demand surges for backhaul capacity

from the wireless devices and the corresponding radio nodes, e.g., the LTE enhanced

Node Bs (eNBs) and Wi-Fi access points (APs), of one operator may overwhelm

the operator’s backhaul capacity and result in poor service quality, and ultimately,

reduced revenue. Overall, with the advances in the wireless transmission capacities,

the backhaul has emerged as a critical bottleneck of novel high-capacity wireless

networks, such as small cell networks and 5G networks Ferrari et al. (2018b); Andrews

et al. (2014); Lopez Rodriguez et al. (2019); Hassan and Gao (2019); Mikaeil et al.

(2018); Wang et al. (2015b); Yang (2019).

Recently, Software-Defined Networking (SDN)-based backhaul architectures have

been proposed to flexibly interconnect the backhaul networks of the different operators

in a centrally controlled manner, as reviewed in detail in Section 2.2. The central SDN

control enables the dynamic on-demand sharing of the backhaul resources among the

various operators. Thus, sudden demand surges for backhaul capacity from the radio

nodes (e.g., LTE eNBs and Wi-Fi APs) of one operator may be served by sharing

the backhaul capacities of the various operators. Of course, aside from the technical

41

capabilities, appropriate legal and business agreements need to be in place between

the operators to make the sharing practically feasible and economically advantageous.

The SDN-based control of the backhaul resource sharing poses two main challenges.

First, the aggregate of multiple operator networks with all their radio nodes and

subscribing wireless devices considered by the central SDN orchestrator can be very

large; thus posing scalability challenges. Second, the central SDN orchestrator that

coordinates among multiple operators may be far removed from the distributed radio

nodes resulting in long signaling delays and accordingly slow reactions to dynamic

demand variations at the radio nodes. Thus, purely centralized optimization is not

practical for backhaul networks. Rather, distributed optimization strategies are needed

for operating large backhaul networks.

Network optimization that operates on distributed systems has so far had two

flavors: (i) peer-to-peer optimization for a flat (i.e., not layered) system and (ii)

Network Utility Maximization (NUM) Kelly et al. (1998); Lin et al. (2006); Chiang et al.

(2007); Chiang (2008) which employs dual decomposition to distribute computations

across different terminals that share the network resources. The dual decomposition

leads to a master-slave model, where each user (slave) needs to directly interact with

the SDN controller (master). The main benefit of operating the NUM is that the

SDN controller simply passes the dual variable iterates, and the slaves pass only

their demands (while locally monitoring their constraints). Thus, the SDN controller

does not need to know all the details of the users and yet, can solve the global

optimization problem. However, for large backhaul networks, it is not practical

for the numerous eNBs to directly interact with the central SDN controller, as the

NUM dual decomposition would require. Essentially, the well-researched NUM dual

decomposition models are incompatible with the multiple layers in large practical

backhaul network architectures.

42

2.1.2 Contributions

This article presents a generalization of the NUM framework using auxiliary vari-

ables to make NUM modeling compatible with the multiple layers in layered backhaul

network architectures. More specifically, we decompose the global optimization that

the central SDN orchestrator is trying to solve, through formulation of a multi-layer

NUM. Moreover, we include a virtual queue framework in our formulation to allow the

SDN orchestrator to comply to long-term agreements. Our formulation strives to opti-

mize the sharing of backhaul resources in an SDN-based backhaul network architecture.

In particular, this case study is conducted in the context of the recently proposed

LayBack backhaul network architecture Shantharama et al. (2018a). LayBack, as re-

viewed in more detail in Section 2.3, introduces layers for the different wireless network

components, including layers for wireless devices, radio nodes (e.g., eNBs, Wi-Fi APs),

and gateways (e.g., small cell gateways, LTE gateways). LayBack interconnects the

gateways through an SDN switching layer in a full mesh with the respective core

network entities (e.g., the LTE Enhanced Packet Core (EPC)) of the various operators.

The gateways and core network entities of the various operators as well as the SDN

switching network are under the control of a unifying SDN orchestrator. The LayBack

backhaul architecture provides centralized fine-grained tuning knobs to optimize the

backhaul operation, e.g., to share backhaul capacity among the different operators

in a dynamic fashion. Our layered iterative optimization formulation distributes the

optimization computations over the LayBack layers. We conduct numerical evaluations

with the formulated optimization to quantify the performance gains that the optimized

backhaul resource sharing in the SDN-based LayBack architecture achieves compared

to the conventional non-SDN backhaul.

43

2.2 Background and Related Work

2.2.1 SDN-Based Backhaul Architectures

The SDN paradigm with a control plane that is separate from the data plane

and with a centralized SDN controller has spurred significant research interest in

wireless networks Amin et al. (2018); Haque and Abu-Ghazaleh (2016); Jagadeesan

and Krishnamachari (2014). An extensive set of studies have developed SDN-based

architectures for the backhaul of wireless network traffic Marabissi et al. (2019);

Niephaus et al. (2015); Tayyaba and Shah (2019). Given the complexity of the

backhaul, most of this work has considered layered or tiered architectures Cavaliere

et al. (2017); Costa-Perez et al. (2017a); Elgendi et al. (2016); González et al. (2016);

Gutiérrez et al. (2016); Oliva et al. (2015); Shantharama et al. (2018a), whereby

intermediate gateway nodes perform various protocol related functions Mayoral et al.

(2017); Chih-Lin et al. (2018b); Thyagaturu et al. (2016a); Tonini et al. (2018).

For instance, there may be gateway nodes that interface with Internet of Things

nodes Cilfone et al. (2019); Silva et al. (2019) or specific wireless network technologies,

such as wireless local area networks Kostal et al. (2019). Moreover, the efficient

interconnection via metropolitan area networks to the Internet at large has received

increasing attention King et al. (2019); Tzanakaki et al. (2017).

This case study considers the LayBack architecture Shantharama et al. (2018a)

which can encompass the layering structures of a wide range of other proposed archi-

tectures and wireless technologies while allowing for fine-grained SDN control, as elab-

orated in Section 2.3. The enabling idea is the generalization of the decomposition

approach referred to as network utility maximization (NUM) to a multi-tier system.

44

2.2.2 Network Optimization

Kelly et al. Kelly et al. (1998) introduced the NUM concept to solve the problem

of rate allocation in a network with link capacity constraints. Extensive follow-up

studies have analyzed the NUM concept in the contexts of distributed optimization and

stochastic network theory Lin et al. (2006); Chiang et al. (2007); Chiang (2008). For

instance, Tassiulas and Ephremides Tassiulas and Ephremides (1992, 1993) analyzed

Queue length Maximum Weight (QMW) scheduling, which facilitated the subsequent

analysis of throughput optimality conditions and related performance guarantees Kar

et al. (2008); Ji et al. (2013). However, QMW scheduling does not guarantee minimal

delay Cui and Yeh (2014), which has led to investigations of QMW variations that

reduce delays in general multi-hop networks Cui et al. (2016) or provide better delay

guarantees Kar et al. (2012); Neely (2013). A common shortcoming of these optimiza-

tion models is that a centralized optimal scheduler can be impractical, mainly due to

scalability problems and signaling delays. Decompositions of NUM models can provide

the desired implementation scalability to a certain extent. The existing NUM model

decompositions strictly conform to a master-slave architecture, which means that these

decompositions do not truly reflect the many intermediate layers that exist between

the edge devices and the core network in large-scale wireless networks.

Furthermore, NUM model decompositions commonly build on the so-called timescale

separation assumption Palomar and Chiang (2006); Johansson et al. (2006), which

states that the session interval is much longer than the convergence time of the greedy

resource allocation policy Chiang (2008). With the timescale separation assumption,

the decomposition neglects the convergence of the local control. Building on the

timescale separation assumption, decentralized algorithms for link scheduling based

on queue lengths have been proposed in Gupta et al. (2009); Bui et al. (2009); Teng

45

and Song (2017).

Our multi-layer multi-timescale NUM framework contains two innovative aspects.

First, rather than having a single central master (or single master layer), we con-

sider four decomposition layers that include the SDN controller at the backhaul,

the operators, the network gateways, and the eNodeBs. Second, we consider realistic

network signaling latencies for the decomposition of the QMW utility over the LayBack

architecture layers. The signaling delays make the timescale separation assumption

unrealistic. Generally, there have been two categories of studies that have examined

the removal of the timescale separation assumption: (1) studies that use intermediate

iterates as decisions and assume continuous underlying flows Lin et al. (2008); Srikant

(2004), and (2) studies that use a multi-timescale approach across different layers

of the protocol stack Altman et al. (2012); Pham et al. (2015). More specifically,

the study Lin et al. (2008) showed that a β-fairness utility function can be maxi-

mized, while guaranteeing system stability, under the assumptions that the number

of users per class follows a recurrent Markov Chain. We follow a similar rationale

as Lin et al. (2008) for the intermediate decisions. Moreover, similarly to the second

category of studies, we consider multiple timescales. While the different allocation

problems in prior studies had been placed in different layers of the conventional

protocol stack, the different allocation problems correspond to different layers of the

LayBack architecture in our optimization model.

The Lyapunov drift-plus-penalty method introduced in Georgiadis et al. (2006);

Neely (2006) has been extensively used in recent years for enforcing constraints in

dynamic control. We employ the Lyapunov drift-plus-penalty method to incorporate

an economic constraint in the allocation across different operators.

46

2.2.3 Wireless Backhaul Network Optimization

Judicious usage of the resources in backhaul networks can greatly enhance the

wireless services while increasing revenues Ge et al. (2019); Luong et al. (2019).

Generally, the dynamic sharing of installed transmission resources is a promising

strategy for enhancing the performance of wireless backhaul networks Bernal-Mor

et al. (2013); Biermann et al. (2012); De Domenico et al. (2013); Lakshminarayana

et al. (2013); Li et al. (2019d); Liu et al. (2016b,a); Niu et al. (2016); Samdanis et al.

(2016); Semiari et al. (2015); Taleb et al. (2015). Our specific focus is on expanding

the scope of resource sharing by exploiting the centralized control that SDN provides

while operating within the hierarchical layer structure of the SDN-based backhaul

networks. We note that aside from the general enhancement of resource sharing

and use, some recent optimization studies have sought to consider specific objectives,

such as to minimize energy consumption Ali et al. (2019); Cen et al. (2019); Scarpiniti

et al. (2019), or to optimize for uploading specific content, e.g., video Yang et al.

(2019a).

Typically, the different hierarchical layers cover geographic regions of different

scopes and operate on different timescales, e.g., fast timescales in small localized

regions and slow timescales over wide-area regions. To the best of our knowledge,

only a few studies have explicitly considered these heterogenous scopes and timescales.

Prasad et al. Prasad et al. (2014) combined an allocation of users to a set of beam

vectors in the backhaul of a heterogeneous wireless network on a slow timescale with a

corresponding transmission time slot allocation on a fast timescale. Tang et al. Tang

et al. (2017) examined interactions between slow timescale resource allocation in a

pool of baseband units (BBUs) in a cloud radio access network with a fast-timescale

beam-forming in remote radio heads. The related recent study Tang et al. (2019) has

47

examined the interactions between the slicing of the upper layers of the communication

network stack at a slow timescale with the fast-timescale wireless channel dynamics,

while the study Lyu et al. (2018) has considered multiple timescales for optimizing a

decentralized SDN control structure. Moreover, in the context of computation task

scheduling on virtual machines, a collaborative centralized and distributed control

approach has recently been examined in Xia et al. (2019), while multiple timescales

have been examined in Chen et al. (2019). We also note that two timescales have

been considered for minimizing energy costs for data center computations Yao et al.

(2014); Yu et al. (2015) and for smart grid optimization Wang et al. (2018a).

Complementary to these prior studies, we present a case study on the optimal

dynamic allocation of an abstract backhaul resource (represented by a bitrate) over

a total of four layers operating on four different timescales. A preliminary version

of parts of this case study has appeared in Ferrari et al. (2018b). This article

gives a refined comprehensive presentation of our case study, including the complete

set of algorithms for solving the four sub-problems at the considered four layers,

whereas only the algorithm for solving one subproblem was worked out in Ferrari et al.

(2018b). Moreover, this article gives the full details of the evaluation methodology

and expanded results.

We note that this case study does not seek to examine theoretical convergence

guarantees for multi-layer multi-timescale optimization. Initial steps towards such

a theoretical analysis have recently been reported in Karakoc et al. (2018). As a

complement to and a motivation for detailed theoretical analyses, this present case

study seeks to demonstrate the feasibility of the multi-layer optimization with multiple

timescales and to showcase performance gains for wireless backhaul.

48

2.3 Overview of Layered Backhaul (LayBack) Network Architecture

The LayBack network architecture Shantharama et al. (2018a) categorizes the

backhaul network elements, such as switches, gateways, and core networks, into layers

that are broader than the traditional access networks, aggregation networks, and data

center networks. The LayBack architecture envisions to homogenize the multitude of

networking technologies, such as cable, cellular, and traditional Ethernet through a

unifying SDN orchestrator.

2.3.1 Layers in LayBack

We briefly review the layers in the LayBack architecture, which is illustrated

in Figure 2.1, focusing mainly on the context of cellular networks. The end-device

layer encompasses the heterogeneous mobile wireless end devices. The radio node

layer includes the LTE eNBs and Wi-Fi APs. The gateway (GW) layer encompasses

the network entities between the radio node layer and the backhaul (core) entities,

e.g., entities of the legacy enhanced packet core. For instance, the GW layer may

include the gateways of small cell deployments, or the Base Band Units (BBUs)

of a cloud radio access network. Similarly, a Cable Modem Termination System

(CMTS) Gowdal et al. (2018); Granizo Arrabe et al. (2018), which serves as a gateway

for radio nodes Thyagaturu et al. (2018a), belongs to the GW layer. The SDN switching

layer consists of SDN switches that flexibly interconnect the radio node layer with the

backhaul (core) layer. Radio nodes operating in a non-C-RAN environment (such as

macro cell eNBs) process the baseband signals locally and connect directly to the

backhaul (core) layer network gateways via the SDN switching layer. The backhaul

(core) network layer comprises technology-specific network elements, such as the

Evolved Packet Core (EPC) which supports the connectivity of LTE eNBs.

49

Sub
Prob.

Sub
Prob.

Sub
Prob.

LayBack
Architecture,

Sec. 2

Macro
femto

Flexible

integrated

RAN

deployment

eNBs

WiFi

APs

RRHs

5G envisioned

user

applications

Health

Wireless

Generic

Controller

Internet

SDN APPs

Flowvisor/

Hypervisor

SDN-

Switche

s

CRAN

(BBUs)
Generic Prog.

Gateway

 CPRI,

OBSAI

Wi-Fi

Gateways

(e.g.,

CMTS)

Small cell

Gateways

Ethernet

(e.g.,

DOCSIS,

EPON etc.)

Ethernet

E.g.,

OpenFlow

Network of SDN switches,

where some are capable of

supporting edge computing

such as fog nodes.

Multimedia

Caching

Legacy EPC

Legacy 3G/2G
(e.g., GGSN, SGSN,

RNC etc.)

Unifying SDN

Orchestrator

Devices

Layer

Gateway

Layer

SDN

Switching Layer

SDN Backhaul

Layer (Core)

Compute

& Storage

Radio

Node Layer

Generic (e.g.,

MPLS)

Generic (e.g.,

MPLS)

Fronthau

l

Backhau

l

Network Grid with potential
support for computations

Parallel
Deployments

Vertical
Deployments

Technology

Operator

Geographical

Infrastructure
Vendor

Network
Service

Radio
Nodes

Users

Comm. Links
(Switches)

Gateways

Core
Network

Control
Entities

Orchestrator

User 1
Compu.

Entity (C1)
Compu.

Entity (C2)

User 2
Requests

User 3
Requests

Layer 1
Feedback

Compu.
Entity (C3)

Layer 2
Feedback

Root Compu.
Entity (CR)

Root
Feedback

Requests
Convergence

Request

Service

User

Orchestrator
Mapping

Computation

Network Grid

1

2

3

4

1: User Requests Service with Orchestrator
2: Evaluate Computation Mapping
3: Configure Network Grid
4: Service delivery to users

Cloud

Macro
femto

Flexible

integrated RAN

deployment

eNBs

WiFi

APs

RRHs

5G envisioned

user

applications

Health

Wireless

Generic

Controller

Internet

SDN APPs

Flowvisor/

Hypervisor

SDN-

Switches

CRAN

(BBUs)
Generic Prog.

Gateway

 CPRI, OBSAI

Wi-Fi

Gateways

(e.g., CMTS)

Small cell

Gateways

Ethernet

(e.g., DOCSIS,

EPON etc.)

Ethernet

E.g.,

OpenFlow

Network of SDN switches, where

some are capable of supporting

edge computing such as fog/MEC

nodes.

Multimedia

Caching

Legacy EPC

Legacy 3G/2G
(e.g., GGSN, SGSN,

RNC etc.)

Unifying SDN Orchestrator

Devices Layer
Gateway

Layer

SDN

Switching Layer

SDN Backhaul

Layer (Core)

Compute

& Storage

Radio Node

Layer

Generic (e.g., MPLS)

Generic (e.g., MPLS)

Fronthaul

Backhaul

C
o

o
rd

in
a
ti

o
n

 P
o

in
t

Radio Node
Layer

Gateway
Layer

SDN
Switching

Layer

Core Netw.
Layer

Unifying SDN Orchestrator
Centralized

Cloud
End Devices

Layer

Root
Problem

Sub-problem Sub-problem

Sub-problem

Sub-problemSub-problem

Sub-problem

Sub-problem

Sub-problem
Sub-problem

Stage 3
Operator Core

Networks

Stage 2
Gateway Nodes

Stage 1
Radio Nodes

Faster
Timescale

Slower
Timescale

Multi Timescale
Multi-Layer

Decomposition

l=1 l=2

o=1

o=2

o=O

Lower time-scale
interaction

Cloud
Layer

Core Net.
Layer

Gateway
Layer

Radio
Layer

SDN Orchestration Layer

Sub
Prob.

Sub
Prob.

Sub
Prob.

Sub
Prob.

Sub
Prob.

Sub
Prob.

Higher time-scale
interaction

Sub
Prob.

Sub
Prob.

Sub
Prob.

Sub
Prob.

l=L

Wireless
Sch.

Sub
Prob.

Sub
Prob.

Sub
Prob.

Sub
Prob.

o=1

o=2

o=1

a)

b)

Stage 4
SDN Orchstr.

Figure 2.1: Illustration of Layback Architecture and Multi-timescale Optimization

Decomposition in Context of Cellular Networks: Layback Partitions the Wireless

Backhaul Infrastructure into Radio Node Layer, Gateway layer, Sdn switching Layer,

And core Network Layer. The Entire Network Is Controlled by the Central Unifying

Sdn Orchestrator. This case Study Decomposes the Optimization of The Sharing of

the Backhaul Bitrate of Multiple Operator Core Networks Into Fast-timescale Sub-

problems at the Radio Nodes And Progressively Slower Timescale Sub-problems at the

Gateways And Operator Core Networks; Whereby All Sub-problems Are Coordinated

Through a Root Problem at the Sdn Orchestrator.

2.3.2 Management in LayBack

The unifying SDN orchestrator in LayBack has three main tasks: (1) it creates

a common platform for coordinating among all the wireless service operators and

heterogeneous network technologies across its layers; (2) it maintains the current

topology information of the entire network and tracks the network capabilities; (3) it

enables each of the layers to flexibly reconfigure the network by allocating resources

50

in response to their time-varying needs, while maintaining long-term performance

requirements that define the service guarantees. The networks maintained by different

operators periodically communicate their requirements and reconfiguration capabilities

to the SDN orchestrator to enable the SDN orchestrator to fulfill its tasks. Next,

we show how these tasks can be combined with an online optimal resource sharing

task that leverages our multi-layer multi-timescale NUM framework.

2.4 Layered SDN-Based Optimization Framework

2.4.1 Overview

This section formulates a multi-layer multi-timescale optimization model for the

backhaul resource sharing in LayBack. The optimization model is decomposed into

multiple layers so that the orchestrator centrally controls the resource sharing among

the operators, while distributing the decision-making processes to ensure scalability.

The multiple timescales facilitate quick dynamic reactions to the needs of the network

end users while accommodating the signaling delays to the central SDN orchestrator.

In our optimization model, we abstract away the actual relationships between

the physical layer wireless communication resources (i.e., spectrum and power) at

the radio node layer (eNB, Wi-Fi AP) and the corresponding dynamic allocation

of the bitrate. We focus on the management of an abstract total backhaul bitrate

resource Z, which is indirectly tied to the redistribution of the physical layer wireless

communication resources. The SDN-based LayBack architecture maintains a logically

separated queue at each radio node. The shared resource Z trickles down from the

unifying SDN orchestrator to the operators, from each operator to its gateways (GWs)

and, finally, from each GW to its radio nodes.

51

2.4.2 Model Definitions

We consider a network with O distinct operators, indexed by o = 1, 2, . . . , O.

(The main model definitions are summarized in Table 2.1.) Each operator manages a

set Go of GWs indexed by g ∈ Go. In turn, each GW g manages a set of eNBs, indexed

by n ∈ Ng. Let us also define the set N ,
⋃O
o=1

⋃
g∈Go Ng of all the eNBs and the set

G ,
⋃O
o=1 Go of all the GWs. The queue at a given eNB n ∈ N is denoted by Qn and

its dynamics are

Qn[t+ 1] = [Qn[t]− zn[t]]+ + an[t+ 1], (2.1)

where an[t] and zn[t] represent, respectively, the exogenous packet arrival process and

the backhaul service rate that is granted to eNB n during time slot t. Also, [·]+ denotes

the projection onto the nonnegative orthant ([γ]+ = max(γ, 0)). The service rate zn[t]

represents the backhaul (bitrate) resources allocated for the upstream (eNB to GW)

transmission between t and t+ 1 to the specific eNB n.

The multi-layer multi-timescale optimization framework developed in this section

is applicable for the wide range of optimal resource allocations to distributed entities.

In particular, the developed optimization framework is well suited for scenarios with

substantial signaling delays between the distributed entities and a central controller so

that purely centralized decisions are impractical. Aside from large-scale wireless access

networks, such resource allocation problems arise for instance in supply and demand

management Thyagaturu et al. (2016b) and in transactive energy markets Nasrallah

et al. (2018, 2019); Thyagaturu et al. (2018b); Alharbi et al. (2017); Rehmani et al.

(2021).

52

Table 2.1: Summary of Model Notations.

Values

Parameter Notation (for eval. in Section 2.5)

Backhaul Netw. Architecture

of Operators (indexed o = 1, . . . , O) O 2

of GWs per oper. o |Go| 3

of eNBs per GW g |Ng| 10

Total Backhaul Cap. (Mbps) Z 20

Operator Backhaul Cap. (Mbps) Zo 10

eNB-to-GW RTT (ms) τGN 1

GW to Operator RTT (ms) τOG 100

Operat. to SDN Orch. RTT (s) τSO 1

Resource Allocations

Cap. alloc. to Oper. o xo

Vector of Oper. alloc. x = {x1, . . . , xO}

Cap. alloc. to GW g yg

Vector of alloc. to GWs at Op. o yo = {yg : g ∈ Go}

Cap. alloc. to eNB n zn

Vector of alloc. to eNBs at GW g zg = {zn : n ∈ Ng}

2.4.3 Centralized Queue Length Minimization

Before introducing our timescale decomposition, we start from the centralized

optimization we wish to emulate, and the logical steps that decompose the problem

into layers via the Lagrange decomposition. If the SDN orchestrator, with full control

of the total service rate Z, could allocate rates directly to the eNBs, the optimization

53

would be:

max
z

∑
n∈N

Un(zn) s.t.
∑
n∈N

zn ≤ Z, 0 ≤ zn ≤ Qn[t] ∀n ∈ N , (2.2)

where we use the QMW policy as objective function with Un(zn) = Qn[t]zn for the sake

of illustrating the decomposition technique. In this formulation, the first constraint

represents the overall backhaul capacity, whereas the second constraint defines the

feasible region for optimization variable zn which is limited by serving all packets in

the queue per one time slot. We remark that an alternative optimization case study

would be to consider the wireless device queues as the bottom layer queues. For such

an alternate optimization model with wireless device queues, the utility should include

the state w of the wireless channel which could be incorporated as f(Qn[t], w, zn[t]),

whereby f is a known function of the queue, channel state information w, and service

rate zn[t].

With the QMW policy, the maximization in (2.2) leads to the minimization of the

long-term average total queue length, which also results in the minimization of the

end-to-end delay in the network (a consequence of Little’s theorem Allen (1990) for

the simplified scenario of continuous flows and infinite queue backlogs Banirazi et al.

(2012)).

2.4.4 Operator Resource Constraints

There are two potential problems with solving (2.2): (1) the allocation of network

resources at the level of granularity of individual eNBs may result in scalability

problems; and (2) without any long-term constraints, some operators may hoard

backhaul resources. In order to create multiple layers to distribute the decision-

making processes, we rewrite the maximization in (2.2) by introducing variables

that for the sake of solving (2.2), are slack variables. As we will see, the additional

variables represent actual network decisions in the distributed and time-decomposed

54

implementation of the centralized scheduler.

In particular, let us denote by xo the portion of the wireless service rate Z

that is distributed to operator o and let x = {x1, x2, . . . , xO} denote the vector of

allocated operator service rates. Each operator o, o = 1, . . . , O, redistributes the

resources, by giving a portion yg of xo to each of its GWs g ∈ Go, whereby we denote

yo = {yg : g ∈ Go} for the vector of GW rate allocations of operator o. In turn,

each GW g redistributes the resources, by giving a portion zn of yg to each of its

eNBs n ∈ Ng, whereby we denote zg = {zn : n ∈ Ng}. If all these assignments could

happen at the same timescale indexed by t, distributing the constraints at each layer,

the optimization could be solved as follows:

max.
x

O∑
o=1

U?o (xo; t) s.t.
O∑
o=1

xo ≤ Z (2.3)

with U?o (xo; t) being the optimal value of the subproblem:

max.
yo

∑
g∈Go

U?g (yg; t) s.t.
∑
g∈Go

yg ≤ xo (2.4)

and U?g (yg; t) being the optimal value of

max
zg

∑
n∈Ng

Qn[t]zn s.t.
∑
n∈Ng

zn ≤ yg, 0 ≤ zn ≤ Qn[t] ∀n ∈ Ng. (2.5)

It is important, however, to remark that the allocation of x to solve (2.3) needs

to respect an “economic” constraint across the operators that defines a contractual

service obligation and prevents any operator from gaming the system (i.e., consistently

acquiring more resources than what it paid for). This constraint on the long-run

average of the decisions x is:

lim sup
τ→∞

1

τ

τ−1∑
t=0

xo[t] ≤ Zo, (2.6)

where for consistency of the problem, it is necessary to have
∑O

o=1 Zo ≤ Z. At the

same time, by having an inequality constraint, we are not forced to assign resources

to an operator that would be wasted if there is not sufficient uplink demand.

55

We use the concept of virtual queues, following the Lyapunov drift-plus-penalty

approach Georgiadis et al. (2006) to encode the constraint in (2.6), and we modify

the objective in (2.3) into:

O∑
o=1

U?o (xo; t)−
1

V

O∑
o=1

Θo[t]xo. (2.7)

After deciding x[t], the virtual queues Θo are updated as:

Θo[t+ 1] = [Θo[t] + (xo[t]− Zo)]+ , (2.8)

where Zo is the fixed average maximum resource limitation of operator o.

The parameter V represents the “flexibility” of the constraint in (2.6), e.g., the

higher V the more inclined we are to temporarily violate the constraint. The next

subsection serves as a basis to tackle the problem at different timescales that are

aligned with the network infrastructure, as elaborated in Section 2.4.6. It is however

easier to derive them in the ideal static case first, given that the expressions in the

dynamic case will have the same form, albeit with different meanings.

2.4.5 Iterative Solution via Gradient Descent

We omit the time index t to avoid notational clutter. The dual objective function

of the subproblem (2.3) can be written as

Φ1

(
yg, λyg ; Q

)
, λygyg+max

zg

∑
n∈Ng

(Qn − λyg)zn, (2.9)

whereby Q denotes the vector of queue occupancies. We introduce the Lagrangian

dual variable λZ for the constraint in (2.3), the Lagrangian dual variables {λxo : o =

1, . . . , O} for the constraints in (2.4), and the Lagrangian dual variables {λyg : g ∈ G}

for the constraints in (2.5). Then, unfolding all the constraints, we obtain (2.2) and

following a cascade of primal dual decompositions (see Palomar and Chiang (2006)),

the optimization can be solved via the sequence of projected gradient descent updates:

56

Figure 2.2: Optimization Solved Via the Sequence of Projected Gradient Descent

Updates.

λ
(k+1)
Z =

[
λ

(k)
Z −α

(k)
1

(
Z−

O∑
o=1

argmax
xo

Φ4

(
λ(k)
z , xo

))]+

(2.10)

x(k+1)
o =

[
x(k)
o +α

(k)
2

(
argmin
λxo

Φ3

(
x(k)
o , λxo

)
−λZ−

Θo

V

)]+

(2.11)

λ(k+1)
xo =

[
λ(k)
xo−α

(k)
3

(
xo−
∑
g∈Go

argmax
yg

Φ2

(
λ(k)
xo , yg

))]+

(2.12)

y(k+1)
g =

[
y(k)
g +α

(k)
4

(
argmin

λyg

Φ1(y(k)
g , λyg)− λxo

)]+

, (2.13)

where the different α denote step sizes. The bottom layer optimization in (2.9) can

be solved with Algorithm 1, while the solution for a general utility is shown in Low

and Lapsley (1999). We note that to ensure the convergence of the decomposition,

the updates in (2.10)–(2.13) must be read as follows: to reach the optimal λZ , the SDN

orchestrator needs to perform a sufficient number of iterations in (2.10). However,

before computing one iteration of (2.10), the operator layer below should perform a

sufficient number of iterations of (2.11) upon receiving the Lagrangian λZ , and so

on. Unless a value can be computed in closed form in one shot, each update that

includes the solution of an optimization problem (i.e., it has an argmax or argmin

term in the update) requires a sufficient number of gradient descent updates at the

57

lower level to approximate the solution of the subproblem. Therefore, the indices k

in (2.10)–(2.13) are not associated with the same timescale. If the computation at

each layer and the communication delays among layers were all negligible, we would

be in the timescale separation regime Palomar and Chiang (2006); Johansson et al.

(2006). However, this is not possible in a real system, since latencies play a significant

role in real networks and the framework we are about to explain explicitly takes these

latencies into consideration. We also note that in this decomposition model, there is

no sharing of information among the operators, which makes the model more practical.

All message passing occurs only between neighboring layers, whereby the lower layer

sends the optimal resource allocation and the upper layer sends the dual variable.

Algorithm 1: Solution of (2.9) (at GW g).

Input : yg, {Qn : n ∈ Ng}

Output :λ?yg , zg

1 if
∑

n∈Ng
Qn ≥ yg then

2 Find the permutation π = {πi : i = 1, . . . , |Ng|} to

3 sort the queues Qn such that i ≥ j ⇒ Qπi ≤ Qπj ;

4 Find i∗ = inf{i :
∑i

j=1 Qπj ≥ yg};

5 zπj = Qπj for j < i∗, zπi∗ = yg −
∑i∗−1

j=1 Qπj , zπj = 0 for j > i∗, λ?yg = Qπi∗ ;

6 else

7 zn = Qn ∀n ∈ Ng, λ?yg = 0;

8 end

Let us start by considering the optimization at the bottom layer as the one that

operates at the minimum latency, i.e., the time difference between the time indexes t

and t+ 1 is the Round Trip Time (RTT) between GW and eNB τGN (considered equal,

for simplicity, for all GWs and eNBs), since it is the one closest to the devices and to

the information regarding traffic. To map all the time instants into integer values of t,

58

it is convenient to normalize all times with respect to τGN (i.e., we set τGN = 1).

Our framework considers that in actual network infrastructures one has constraints

that prevent the redistribution of the total resource across the operators (e.g., the de-

cisions {xo : o = 1, . . . , O}) and redistribution of operator resources across the GWs

(e.g., the decisions {yg : g ∈ G}) from changing at the same timescale of the redistri-

bution of GW resources across the eNBs (e.g., the decisions {zn : n ∈ N}). Therefore,

even if a genie could compute the optimal solution of the decomposed problem at each

instant t, it might not be possible to implement the decision.

Denoting with L and P · L the minimum refresh times for the GW decisions y

and for the operator’s decisions x, respectively, time t can be written according to a

poly-phase decomposition as

t = (mP + p)L+ `, m ∈ N, 0 ≤ p ≤ P − 1, 0 ≤ ` ≤ L− 1, (2.14)

where P · L > P · L and L > L are the selected refresh times. We illustrate the

multi-timescale dynamics of the optimization framework in Figure 2.3 showing the

interactions of eNBs, GWs, operators, and SDN orchestrator.

In the next subsection, to comply with the refresh time limits, the greedy op-

timization, decoupled at any instant t, is mapped into the stochastic optimization

we solve. Changing the objectives from deterministic values to expected values is

necessary to capture the uncertainty of the impact of the decisions x and y on the

future queues evolving at a faster timescale, e.g., on the effect that a change in higher

layers’ resources distribution, produces on the lower layers’ optimizations.

59

SDN Orchestrator

Operators

GW’s

eNB’s

Time

λ
(0)
Z λ

(1)
Z

. . .

. . .

λ
(K4)
Z

τSO

m m+1K4(K3(K2K1 + τOG)) + τSO

K3(K2K1 + τOG)x
(0)
o x

(1)
o

. . . x
(K3)
o

λ
(0)
xo λ

(1)
xo

. . . λ
(K2)
xo

y
(0)
g y

(1)
g . . . y

(K1)
g

p p+1

. . .K2K1 + τOG

` `+ 1

zg[`+ 1]Qg[`+ 1]

yo[p+1]

x[m+1]

τOG

.

K1

SDN Orchestrator

Operators

GW’s

eNB’s

Time

λ
(0)
Z λ

(1)
Z

. . .

. . .

λ
(K4)
Z

τSO

m m+1K4(K3(K2K1 + τOG)) + τSO

K3(K2K1 + τOG)x
(0)
o x

(1)
o

. . . x
(K3)
o

λ
(0)
xo λ

(1)
xo

. . . λ
(K2)
xo

y
(0)
g y

(1)
g . . . y

(K1)
g

p p+1

. . .K2K1 + τOG

` `+ 1

zg[`+ 1]Qg[`+ 1]

yo[p+1]

x[m+1]

τOG

.

K1

Fig. 2: Illustration of the dynamics of the multi-timescale optimization framework within context of LayBack infrastructure: the optimal
policy to minimize end-to-end delay is decoupled into multiple layers of sub-problems, with faster timescale at the lower LayBack layers.

the impact of the choice of the Ki, i = 1, . . . , 4 has not been
fully addressed in the literature, where these parameters are
implicitly predetermined in the formulations studied. If we
look at the static problem, as a “surrogate” for the dynamic
problem (up to the next decision), increasing the number
of iterations and delaying future decisions can guarantee a
better accuracy for a static scenario; however, the ability
of the algorithm to incorporate new dynamic information is
compromised. That trade-off just described creates another
optimization issue which is the subject of our future research
and not in the scope of this paper.

IV. EVALUATION

In this section, we show the effectiveness of the proposed
method in handling demand peaks (i.e., high traffic hours)
across different operators by multiplexing resources dynami-
cally. The bottleneck of the proposed approach is that, due to
network latencies, high level decisions cannot be instantaneous
and if one of the operators experiences a demand peak right
after the other, the first of the event creates a response lag in
addressing the subsequent events. In our experiments we test
different values of the parameter V in (7). Our baselines are: 1)
absence of the LayBack orchestrator, e.g. fixed allocation for
xo (labeled “no LB” in the plots) and 2) a centralized optimal
scheduler with no latency and no long term constraints limiting
operators (labeled “QMW” in the plots). The parameters in
Fig. 2 are set to K1 = 10,K2 = 1,K3 = 5,K4 = 1, τSO =
100, τOG = 10, which correspond to 1s and 100ms for an RTT
between GWs and eNBs of 10ms latency, respectively. L and
PL are set to 20 and 200 respectively. For all the updates
α = 0.4. For numerical stability, the computation of λ?yg uses
the following queues’ normalization Qn∑

n∈Ng
Qn

|Ng|
2 , which

does not alter the solution. The network has the following
parameters: O = 2, |Go| = 2 ∀ o, |Ng| = 10 ∀ g ∈ G, Zo =
100Mbps, ∀ o, Z = 200Mbps. The aggregate rate demand for
each operator is kept constant at 80Mbps, except for a peak
of 10s duration of 160Mbps, for each operator. Operator 1
experiences the peak in demand rate at time t = 10s, whereas

for Operator 2 the peak happens at time t = (10+∆t)s. At all
times, the traffic is homogeneous across the same operator’s
eNBs. For the selected time parameters and a packet size
of 12.5 KBytes, the scenario just described corresponds to
a process an[t] in (1) as Pois(0.4) in normal conditions
and Pois(0.8) when the demand peak occurs. In Fig. 3, we
show three different simulations over time for different values
of ∆t: for ∆t = 0 traffic is perfectly balanced, hence no
redistribution across operators is enabled, for ∆t = 15s the
aforementioned overshadowing effect can be seen in the delay

0 10 20 30 40 50 60 70 80 90 100
40

60

80

100

120

140

160

180

Time (s)

Overall allocated rate (Mbps)
Op 1 Demand Op 2 Demand

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5 ·10
3 Avg queue per eNB (KB)

Op 1 (no LB) Op 2 (no LB)
Op 1 (V=1) Op 2 (V=1)

Op 1 (V=100) Op 2 (V=100)
Op 1 (QMW) Op 2 (QMW)

(a) ∆t = 0s

0 10 20 30 40 50 60 70 80 90 100
40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5 ·10
3

(b) ∆t = 15s

0 10 20 30 40 50 60 70 80 90 100
40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5 ·10
3

(c) ∆t = 30s

Fig. 3: Aggregate rate allocation for the two operators for different
values of V and when no sharing across operators is enabled

Figure 2.3: Illustration of the Dynamics of the Multi-timescale Optimization Frame-

work Within Context of Layback Infrastructure: The Optimal Policy to Minimize

End-to-end Delay Is Decoupled Into Multiple Layers of Sub-problems, With faster

Timescales at the Lower Layback Layers The Enbs n, N ∈ Ng, At a Gw g Pass Their

Queue Occupancies Each Enb-gw Round-trip Time Rtt τ gn to Gw g. Based on the

Received Vector of Queue Occupancies Q, Gw g Evaluates The Allocations Zg to Its

enbs with Algorithm 1. Similarly, The Sdn Orchestrator Evaluates the Allocations

X to The Operators with Algorithms 2 And 3; While Each operator o Evaluates the

Allocations Yo to Its Gws with Algorithms 4 And 5. (In order to Reduce Clutter,

The Enb-to-gw Rtt τ gn Has Been Normalized to One In the Illustration, I.E., k1 in the

Illustration Corresponds to k1τ
g
n in Actual Time).

60

Algorithm 2: At the SDN orchestrator.

Input :λ
(0)
Z , k4 = 0

Output :λ
(K4)
Z , x

1 while k4 < K4 do

2 Call Algorithm 3 with input λ
(k4)
Z to all operators;

3 Receive x(K3)
(
λ

(k4)
Z

)
and update λ

(k4+1)
Z via (2.10);

4 k4 ← k4 + 1;

5 end

6 Decide x[m+ 1] by projecting x(K3)
(
λ

(K4−1)
Z

)
onto the feasible set in (2.2);

7 m← m+ 1;

8 Call Algorithm 2 with input λ
(0)
Z ← λ

(K4)
Z ;

Algorithm 3: Iterates for xo (at operator o).

Input :λZ , k3 = 0, (x
(0)
o only if first call)

Output : x
(K3)
o

1 while k3 < K3 do

2 Call Algorithm 4 with input x
(k3)
o ;

3 Receive λ
(K2)
xo

(
x

(k3)
o

)
and update x

(k3+1)
o via (2.11);

4 k3 ← k3 + 1;

5 end

6 x
(0)
o ← x

(K3)
o

61

Algorithm 4: Iterates for λxo (at operator o).

Input : xo, k2 = 0, (λ
(0)
xo only if first call)

Output :λ
(K2)
xo , yo

1 while k2 < K2 do

2 Call Algorithm 5 with input λ
(k2)
xo ;

3 Receive y
(K1)
g

(
λ

(k2)
xo

)
and update λ

(k2+1)
xo via (2.11);

4 k2 ← k2 + 1;

5 end

6 Decide y [(mP + (p+ 1))L] by projecting y(K1)
(
λ

(K2−1)
xo

)
onto the feasible set

in (2.16);

7 p← p+ 1;

Algorithm 5: Iterates for yg (at GW g).

Input :λxo , k1 = 0, (y
(0)
g only if first call)

Output : y
(K1)
g

1 while k1 < K1 do

2 Call Algorithm 1 with input yg to solve (2.5);

3 Receive λ?yg(y
(k1)
g) and update y

(k+1)
g via (2.13);

4 k1 ← k1 + 1;

5 end

2.4.6 Stochastic Optimization and Temporal Decomposition

Since the different layers cannot communicate instantaneously, the parameters of

the queues change dynamically underneath. Clearly, the objectives of the optimization

must be defined in such a way that they stay constant while the bottom layer changes

stochastically from one state to the next. The proposed framework can be seen as

62

a special case of stochastic gradient descent where the network dynamics, via the

evolution of the queues, impose the sequence of training sample updates. In particular,

the SDN orchestrator operates its optimization at every time instant t = mPL,

performing

max
x

O∑
o=1

−Θo[m]xo
V

+
1

P

P−1∑
p=0

E {U?o (xo; (mP+p)L)}

s.t.
O∑
o=1

xo ≤ Z,

(2.15)

with U?o (xo; (mP + p)L) equal to the optimal value of the problem solved at the

operator layer below:

max
yo

∑
g∈Go

1

L

L−1∑
`=0

E
{
U?g (yg; (mP + p)L+ `)

}
s.t.
∑
g∈Go

yg ≤ xo,

(2.16)

and U?g (yg; (mP + p)L+ `) being the optimal values of the optimization in (2.5) for

t = (mP + p)L+ `. The updates derived in (2.10)–(2.13) will then be used to update

the decisions x every PL and the decisions y every L, as if convergence to the

solution of a static problem has been achieved in the time horizons of length PL

and L, respectively. By introducing Ki as the number of iterations of each update in

layer i = 1, . . . , 4, respectively, starting from the bottom, we can derive the following

relations:

PL ≥ max
{
K4

(
K3

(
K2K1τ

G
N + τOG

)
+ τSO

)
, PL

}
(2.17)

L ≥ max
{
K2K1τ

G
N + τOG , L

}
, (2.18)

where τSO , τOG , and τGN , are, respectively, the RTTs between the SDN orchestrator and

the operators, between the operators and the GWs, as well as between the eNBs and

the GWs (see also Figure 2.3, where τGN has been normalized to one). The inequalities

63

in (2.17)–(2.18) indicate that if we want to act fast, e.g., reduce P and L (possibly to

the minimum refresh times) we need to perform fewer iterations. Vice versa, if we want

to perform more iterations, we must be willing to act slower in updating the decisions

x and y. If we view the static problem as a “surrogate” for the dynamic problem

(up to the next decision), increasing the number of iterations and delaying future

decisions can guarantee a better accuracy for a static scenario; however, the ability of

the algorithm to incorporate new dynamic information is compromised. This trade-off

creates another optimization issue which is an important future research direction.

2.5 Numerical Evaluation Results

In this section, we describe the evaluation setup for this numerical optimization

case study and discuss the evaluation results obtained with the optimization approach

described in the preceding section.

2.5.1 Evaluation Setup

We have implemented the optimization framework described in Section 2.4 in

MATLAB to evaluate the allocation of the backhaul bitrate resources in the upstream

path in LayBack. The upstream data path consists of eNB, GW, and an operator

core network.

LayBack Architecture

Initially, we consider a LayBack network architecture with O = 2 network operators,

which we index with o = 1 and o = 2. Each network operator has three GWs for a

total of six GWs. Each gateway has ten eNBs for a total of 60 eNBs.

Each operator has an installed backhaul bitrate resource (capacity) of Zo =

10 Mbps. Assuming that the two operators have agreements to fully share each other’s

64

backhaul capacity, the aggregate available backhaul bitrate (capacity) is Z = 20 Mbps.

The objective of the optimization is to optimally share the available backhaul resource

of Z = 20 Mbps among all eNBs attached to all the GWs of both operators o = 1 and

o = 2.

The round-trip propagation delays (RTTs) are set to eNB-GW RTT τGN = 1 ms,

GW-operator RTT τOG = 100 ms, and operator-SDN orchestrator RTT τSO = 1 s.

Optimization Parameters

The iteration parameters are set to K1 = 10, K2 = 5, K3 = 10, and K4 = 1.

Following the lower bounds imposed by the K values in Equations. (2.17) and (2.18),

we set PL = 2500 and L = 150. By default, we set the mean drift-plus-penalty

parameter to V = 1000. For all the updates, α = 0.4 and for numerical stability,

the computation of λ?yg considers the queue normalization Qn∑
n∈Ng

Qn

|Ng |
2

, which does

not alter the solution.

Comparison Benchmark

The baseline in our evaluation is the performance of a no-SDN wireless scheduling

framework, i.e., the absence of the LayBack orchestrator to coordinate the scheduling.

As a result, each operator o can only occupy its own backhaul bandwidth Zo, i.e., there

is no inter-operator bandwidth sharing. More specifically, in our simulations, the no-

SDN benchmark solves only the optimization up to the subproblem Equation (2.4)

with the dynamic operator allocation xo replaced by the static operator capacity

Zo, and the subproblem Equation (2.5) [but not the subproblem Equation (2.3)].

That is, the no-SDN benchmark only optimizes the allocations within each given

operator individually, i.e., performs essentially only “intra-operator” optimization.

The no-SDN benchmark follows the same multi-timescale behavior with K1 = 10,

65

K2 = 5, and K3 = 10 as the SDN-based optimization. We report the aggregate of

the gateway allocations
∑

g∈Go yg for operators o = 1 and 2 as the actual allocated

operator upstream bitrates of the no-SDN benchmark; whereas, for the SDN-based

optimization, we report the operator rate allocations xo.

We note that an alternate benchmark without any optimization could consider

a static allocation of backhaul capacity portions to individual eNBs. Such a static

allocation would perform poorly for dynamic bursty traffic models, as specified in

Section 2.5.1. The static allocation would incur substantially longer queue lengths

than the considered “intra-operator” optimization, which individually independently

optimizes the allocations within each operator. Another alternative benchmark could

employ conventional two-layer NUM between the eNBs and the operators (with the

gateways subsumed by the operators). Such a two-layer benchmark would still perform

the intra-operator optimization, but with only two layers compared to the three

layers in the considered benchmark. These two benchmarks would generally perform

similarly, with differences being influenced by convergence characteristics Karakoc

et al. (2018). For the present study, we focus on the impact of the sharing of the

backhaul resource across operators as quantified by comparing the considered no-

SDN “intra-operator” optimization with the full SDN-based optimization involving

the central SDN orchestrator.

Traffic Model

We model the upstream packet traffic generation at a given eNB (which is due to

upstream packet arrivals from associated user end devices Bikram Kumar et al. (2019))

as an independent Poisson process. We set the eNB Poisson process rates such that

the aggregate load from the eNBs at a given operator o results in a base packet

traffic load of 5 Mbps, whereby each of the 30 eNBs at a given operator o contributes

66

equally to the aggregate operator load. We conduct simulations of 100 s of backhaul

network operation, whereby the Poisson traffic generation occurs over time increments

of 0.1 ms, i.e., one simulation run of 100 s corresponds to one Million Poisson packet

traffic generation instantiations.

We consider dynamic upstream traffic variations, which can, for instance, be caused

by new temporary connection establishment or data connection handovers, e.g., due

to user mobility. Specifically, we initially simulate a peak load of 20 Mbps occurring

by default at operator 1 from 10 to 20 s of a simulation run and at operator 2 from 50

to 60 s of a simulation run.

2.5.2 Results

Temporal Spacing of Operator Peak Demands

Overlapping Peak Demands We first verify the correct operation of the SDN-

based optimization for a scenario that does not permit inter-operator bitrate sharing,

specifically, for a scenario where the peak periods of the upstream bitrate demand

at the eNBs of the two operators occur simultaneously, as illustrated in Figure 2.4a.

Both operators experience a jump of the demanded upstream bitrate from 5 Mbps to

20 Mbps at simulation time 10 s; the 20 Mbps peak load persists for 10 s, and then

returns to the 5 Mbps base load level. Note that these load levels correspond to

the prescribed Poisson process rates, i.e., the actual load levels vary according to

the stochastic characteristics of the Poisson packet generation processes around the

prescribed bitrates, as is visible through the slight random “ripples” of the demand

bitrates in Figure 2.4a.

67

0 10 20 30 40 50 60 70 80 90 100
Simulation Time (s)

0

5

10

15

20

25

D
at

a
R

at
e

(M
bp

s)

Demand, o=1
Demand, o=2
Alloc. w/ SDN, o=1
Alloc. w/ SDN, o=2
Alloc. w/o SDN, o=1
Alloc. w/o SDN, o=2

0 10 20 30 40 50 60 70 80 90 100
Simulation Time (s)

0

20

40

60

80

100

A
gg

. Q
u.

 L
en

gt
h

of
 e

N
B

s a
t a

n
O

pe
r.

(M
b)

o=1 w/o SDN
o=2 w/o SDN
o=1 w/ SDN
o=2 w/ SDN

(a) Overlap.: Demand, Rate Alloc. to Op. (b) Overlap.: Agg. eNB Queue Length for Op.

0 10 20 30 40 50 60 70 80 90 100
Simulation Time (s)

0

5

10

15

20

25

D
at

a
R

at
e

(M
bp

s)

Demand, o=1
Demand, o=2
Alloc. w/ SDN, o=1
Alloc. w/ SDN, o=2
Alloc. w/o SDN, o=1
Alloc. w/o SDN, o=2

0 10 20 30 40 50 60 70 80 90 100
Simulation Time (s)

0

20

40

60

80

100

Q
ue

. L
en

. (
M

b)

o=1 w/o SDN
o=2 w/o SDN
o=1 w/ SDN
o=2 w/ SDN

(c) Sep.: Demand, Rate Alloc. to Op. (d) Sep.: Agg. eNB Queue Length for Op.

Figure 2.4: Upstream Traffic Demands and Corresponding Backhaul Bitrate Alloca-

tions to Operators as Well as Aggregated Queue Length of Enbs Associated With a

given Operator When Peak Demand Periods of the Two Operators Overlap or Are

Separated (Fixed parameter: Mean Drift-plus-penalty Parameter v = 1000): For Over-

lapping Peak Demands (a,B), Both the Sdn-based Optimization and the Benchmark

Without Sdn Allocate to Each Operator Its Maximum Capacity of zo = 10 mbps to

Serve The Peak Demands; There Is No Sharing among Operators. For separated Peak

Demands (C,D), The sdn Orchestrator Dynamically Shares The Total Aggregated

Backhaul Capacity of z = 20 mbps among the Two Operators, Reducing enb Queue

Lengths Compared to the Benchmark Without Sdn-based Resource Sharing.

68

We observe from the curves for the allocated operator rates (xo with SDN,
∑

g∈Go yg

without SDN) in Figure 2.4a that both the SDN and no-SDN approaches allocate the

maximum operator rate of Zo = 10 Mbps to serve the peak load. Since both operators

experience the peak load at the same time, sharing among operators would not be

sensible. Rather, each operator o should use its own full upstream bitrate resource

Zo to minimize packet delays. We observe from Figure 2.4a that the SDN-based

optimization meets this intuitive optimization goal and gives essentially the same

rate allocations as the no-SDN benchmark. In particular, given the equal demands

from the eNBs of both operators, the SDN-based optimization strives to allocate an

equal share of half of the total upstream backhaul bitrate of Z = 20 Mbps to each

operator while serving the peak load. Thus, for the entire simulation time duration,

the resource allocation with SDN-based optimization follows the resource allocation

without SDN.

The no-SDN benchmark solves the optimization up to the subproblem Equa-

tion (2.4), whereby the operator upstream transmission capacity is limited to Zo =

10 Mbps with the considered parameter settings. Thus, by solving subproblem (2.4),

each operator in the no-SDN benchmark is able to allocate up to Zo = 10 Mbps when

a demand burst occurs.

We note that a conventional static allocation of backhaul bitrate (without any

dynamic optimization, not even the intra-operator optimization of the no-SDN bench-

mark) would allocate Zo = 10 Mbps for the entire simulation duration. However,

only 5 Mbps out of these 10 Mbps could be used during the time period from 0 to

5 s and from 40 s onwards to the end of the simulation time, thus leading to wasted

backhaul bandwidth.

We observe from Figure 2.4b that the queue lengths of the eNBs at both operators

linearly increase at a constant rate since both operators experience the same peak load

69

that exceeds their respective available backhaul bitrate Zo. In particular, the queue

lengths increase from 0 to a maximum value corresponding to 10 s ×(20− 10) Mbps

= 100 Mbit while the peak load is feeding into the eNBs from 10 to 20 s simulation

time. Subsequently, the queue length decreases down to zero over 20 s as effectively

an “extra” backhaul bitrate of 5 Mbps, i.e., the allocated 10 Mbps minus the currently

served base load of 5 Mbps, is serving the backlog from 20 s to 40 s simulation time.

Separated Peak Demands Figure 2.4c,d considers the more typical operational

scenario when peak demands for the different operators are separated in time, e.g., due

to different traffic and mobility patterns of the end users. We observe from Figure 2.4c

that the SDN-based optimization with backhaul resource sharing among the two

operators allocates up to 15 Mbps to the operator that currently experiences the peak

demand (while 5 Mbps continue to serve the other operator); thus fully using the

total available backhaul bitrate Z = 20 Mbps. In contrast, the benchmark without

SDN does not share backhaul capacity among operators. Accordingly, without SDN,

operator 1 can only serve the peak demand that occurs from 10–20 s with its own

10 Mbps capacity; meanwhile, operator 2 uses only 5 Mbps of its 10 Mbps capacity

and the other 5 Mbps are wasted.

The SDN-based backhaul resource sharing reduces the queue build-up in the eNBs,

as observed in Figure 2.4d compared to the benchmark without SDN, implying shorter

latencies with SDN-based sharing. The slight variations between the optimization

behaviors for the peak demands of operators 1 and 2 are due to the random variations

of the actual demands around the prescribed mean Poisson traffic rates.

70

Impact of Flexibility Parameter V

The mean-plus drift parameter V in the optimization framework, see Equation (2.7),

relates to the degree of flexibility with which the operators can share the total

aggregate backhaul capacity Z beyond their own backhaul capacity Zo. Figure 2.5

shows the performance of the resource allocation algorithm for increasing values of

the flexibility parameter V , namely for V = 1, 10, and 100, while for V = 1000 we

refer to Figure 2.4c,d. Moreover, Figure 2.5g,h shows the optimization performance

without the economic constraint (2.6). We observe from Figure 2.5a,c that for

small V values, e.g., V = 1 and 10, the rate allocation with SDN optimization is

nearly equivalent to the no-SDN benchmark. The small differences between the

allocations with the SDN optimization and the no-SDN benchmark are mainly some

low-amplitude oscillations in the SDN allocations. The allocation oscillations result

from the optimization framework striving to adapt to slight random variations in

the traffic generation processes. Accordingly, both the SDN optimization and the

no-SDN benchmark give essentially the same eNB queue lengths as observed from

Figure 2.5b,d. Intuitively, small V values restrict the drift from the mean in the

optimization framework, which inherently corresponds to a low degree of flexibility

when operators want to share each other’s resources.

71

0 10 20 30 40 50 60 70 80 90 100
Simulation Time (s)

0

5

10

15

20

25

D
at

a
R

at
e

(M
bp

s)

Demand, o=1
Demand, o=2
Alloc. w/ SDN, o=1
Alloc. w/ SDN, o=2
Alloc. w/o SDN, o=1
Alloc. w/o SDN, o=2

0 10 20 30 40 50 60 70 80 90 100
Simulation Time (s)

0

20

40

60

80

100

Q
ue

. L
en

. (
M

b)

o=1 w/o SDN
o=2 w/o SDN
o=1 w/ SDN
o=2 w/ SDN

(a) V = 1 Demand, Rate Alloc. to Op. (b) V = 1 Agg. eNB Queue Length at Op.

0 10 20 30 40 50 60 70 80 90 100
Simulation Time (s)

0

5

10

15

20

25

D
at

a
R

at
e

(M
bp

s)

Demand, o=1
Demand, o=2
Alloc. w/ SDN, o=1
Alloc. w/ SDN, o=2
Alloc. w/o SDN, o=1
Alloc. w/o SDN, o=2

0 10 20 30 40 50 60 70 80 90 100
Simulation Time (s)

0

20

40

60

80

100

Q
ue

. L
en

. (
M

b)

o=1 w/o SDN
o=2 w/o SDN
o=1 w/ SDN
o=2 w/ SDN

(c) V = 10 Demand, Rate Alloc. to Op. (d) V = 10 Agg. eNB Queue Length at Op.

0 10 20 30 40 50 60 70 80 90 100
Simulation Time (s)

0

5

10

15

20

25

D
at

a
R

at
e

(M
bp

s)

Demand, o=1
Demand, o=2
Alloc. w/ SDN, o=1
Alloc. w/ SDN, o=2
Alloc. w/o SDN, o=1
Alloc. w/o SDN, o=2

0 10 20 30 40 50 60 70 80 90 100
Simulation Time (s)

0

20

40

60

80

100

Q
ue

. L
en

. (
M

b)

o=1 w/o SDN
o=2 w/o SDN
o=1 w/ SDN
o=2 w/ SDN

(e) V = 100 Demand, Rate Alloc. to Op. (f) V = 100 Agg. eNB Queue Length at Op.

0 10 20 30 40 50 60 70 80 90 100
Simulation Time (s)

0

5

10

15

20

25

D
at

a
R

at
e

(M
bp

s)

Demand, o=1
Demand, o=2
Alloc. w/ SDN, o=1
Alloc. w/ SDN, o=2
Alloc. w/o SDN, o=1
Alloc. w/o SDN, o=2

0 10 20 30 40 50 60 70 80 90 100
Simulation Time (s)

0

20

40

60

80

100

Q
ue

. L
en

. (
M

b)

o=1 w/o SDN
o=2 w/o SDN
o=1 QMW
o=2 QMW

(g) QMW Demand, Rate Alloc. to Op. (h) QMW Agg. eNB Queue Length at Op.

Figure 2.5: Upstream Backhaul Bitrate Allocations and Enb Queue Lengths When

Demand Peaks for Operators 1 and 2 Are Spaced Apart: Increasing The “flexibility

Parameter” v, See equation (2.7), Increases the Sharing of Backhaul Capacity 2.4.

72

In contrast, we observe for the higher V = 100 and 1000 values in Figure 2.5f and

Figure 2.4d that SDN optimization with flexible backhaul resource sharing among

operators achieves smaller eNB queue lengths than the no-SDN benchmark. We observe

that the queue lengths for V = 1000 in Figure 2.4d are nearly as small as the queue

lengths in Figure 2.5h for optimization without the long-run rate allocation constraint.

Indeed, the rate allocation without the rate allocation constraint in Figure 2.5g is

being approximated by the SDN rate allocation in Figure 2.4c. The rate allocation

constraint safeguards against persistent unfair backhaul capacity usage by a given

operator and is therefore generally recommended for operational networks.

Overall, we observe from Figures 2.4 and 2.5 that the SDN-based optimization of

backhaul resource sharing can significantly lower the eNB queue lengths. These lowered

eNB queue lengths translate into significantly reduced latencies for the end-user

upstream traffic.

Impact of Spacing between Operator Traffic Bursts

While Figures 2.4 and 2.5 considered a fixed 40 s separation of the starting time

instants of the data bursts (of 10 s duration) at the two operators, we consider a range

of burst separations in Figure 2.6. We observe from Figure 2.6 that a burst separation

of zero, which corresponds to the scenario in Figure 2.4a,b does not permit queue

reductions through backhaul resource sharing. In contrast, the 40 s separation of

the data bursts corresponding to the scenario in Figure 2.4c,d as well as Figure 2.5,

does permit the sharing of the backhaul resources of the two operators. Thus, with the

large V = 1000 flexibility parameter setting, substantial reductions of the average

eNB queue lengths can be achieved for both operators for large separations of the

data bursts.

73

0 5 10 15 20 25 30 35 40 45 50
Burst Separation (s)

500

600

700

800

900

1000

A
vg

. Q
ue

ue
 L

en
gh

t p
er

 e
N

B
 (k

B
)

o=1 w/o SDN
o=2 w/o SDN
o=1 w/ SDN V=10
o=2 w/ SDN V=10

o=1 w/ SDN V=1000
o=2 w/ SDN V=1000
o=1 w/ SDN QMW
o=2 w/ SDN QMW

Figure 2.6: Queue Length in Kb at an Enb Averaged over Time and over The Enbs

at a given Operator o as A Function of Separation of o = 1 and o = 2 Data Bursts in

S; Figures 2.4 And 2.5 Consider a Burst Separation of 40 s.

In contrast, for the short separation times of 5 s and 10 s, we observe from Figure 2.6

that operator o = 1 achieves queue length reductions for the large V = 1000 setting,

whereas the queue lengths for operator o = 2 increase. The eNBs at operator o = 1,

which receives the earlier data burst, can still achieve queue length reductions by

using some of the backhaul capacity of operator o = 2 to serve the data burst arriving

to the eNBs at operator o = 1. However, the use of the o = 2 capacity by the o = 1

burst when the data burst to the eNBs at operator o = 2 arrives, slows down the

service for the o = 2 burst, resulting in the o = 2 queue length increases observed

in Figure 2.6. However, we observe from Figure 2.6 that the average of the curves

for o = 1 and o = 2 for the V = 1000 setting is slightly below the corresponding

queue length averages for operation without SDN or with the inflexible V = 10. Thus,

the flexible sharing of backhaul capacity with V = 1000 does not “harm” the overall

system compared to operation without sharing. The QMW benchmark gives yet

lower queue length as QMW shares the bandwidths of the two operators without any

constraints, i.e., corresponds to V approaching infinity (which would not enforce fair

74

bandwidth allocations to operators).

Impact of Random Traffic Bursts at Operators

The traffic model from Section 2.5.1 consisted of eNB Poisson packet traffic, whereby the

eNB Poisson traffic rates at a given operator o were set to result in traffic bursts at

prescribed times, as examined in Sections 2.5.2 through 2.5.2. We now generalize

this traffic model to random traffic bursts as follows. The eNBs continue to generate

independent Poisson packet traffic. The eNB Poisson packet rates at a given operator

o, o = 1, 2, follow an independent two-state (on and off) Markov chain. In the on

state, the 30 eNBs at a given operator generate an aggregate Poisson traffic rate

of 20 Mbps; while in the off state, there is no packet generation. Both states have

exponentially distributed random sojourn times with a mean of 10 s. The load is

varied by adjusting the steady-state probability pon of being in the on state and each

simulation scenario is run for 1000 s.

Figure 2.7a shows the mean eNB queue length as a function of the on-state

probability pon, i.e., effectively as a function of the load level. We observe from

Figure 2.7 that the SDN control achieves eNB queue length reductions across the

entire stable load range from a small on-state (burst) probability pon up to a load

level near the stability limit, which would be reached for pon = 0.5. The eNB queue

length reduction appears initially modest for small pon because the bursts are rare

for low pon, i.e., the behavior is similar to the individual burst scenario considered

in Figures 2.4 and 2.5 and thus can be cleared relatively quickly, even without SDN

control. For increasing pon, the bursts become more frequent, the eNB queue backlogs

increase and flexible SDN control with V = 1000 achieves substantial queue reductions

compared to operation without SDN control and compared to a less flexible SDN

control with V = 100.

75

Figure 2.7b–d show the cumulative distribution function (CDF) of the eNB queue

occupancy for three load levels, represented by different pon. We observe from Fig-

ure 2.7b–d that the CDF curves for SDN control reach the level of one within a

much smaller span of eNB queue lengths than the operation without SDN control.

For instance, for the medium load level pon = 0.35, the CDF for the SDN control

with V = 100 reaches one for a queue length of about 90 kB; whereas, operation

without SDN control reaches a CDF level of one only for around 760 kB eNB queue

length. Thus, the CDF results indicate vastly reduced variability of the eNB queue

length with the SDN control as the SDN control reacts to the traffic bursts by actively

re-allocating backhaul resources among the O = 2 considered operators.

We observe from Figure 2.7d that for the low eNB queue occupancies in the range

up to about 200 kB, operation without SDN control achieves higher probabilities of

keeping the eNB queue lengths in this low range than SDN control with V = 100.

This is mainly because the SDN control strives for fairness. If some eNB has a small

queue occupancy compared to the other eNBs, the SDN control balances out the

eNB queue occupancies via the centrally coordinated backhaul bandwidth allocation.

In particular, the CDF curve for SDN control with V = 100 indicates that almost all

the queue occupancies occur around the 200 to 250 kB range (the larger V = 1000

allows for flexible violations of the fairness constraint while sharing the backhaul

bandwidth and thus achieves substantially lower queue occupancies). If some services

do not want to be subjected to this fairness guided resource allocation and rather

want priority service, then the priorities can be implemented through weights for their

utilities.

76

0.2 0.275 0.35 0.4 0.45 0.48
Burst Probability p

on

0

500

1000

1500
M

ea
n

eN
B

 Q
ue

ue
 L

en
gt

h
(k

B
)

w/ SDN V=100
w/ SDN V=1000
w/o SDN

0 100 200 300 400 500 600
eNB Queue Length (kB)

0

0.2

0.4

0.6

0.8

1

C
D

F

w/ SDN V=100
w/ SDN V=1000
w/o SDN

(a) Mean eNB queue vs. pon (b) CDF of eNB queue for pon = 0.2

0 200 400 600 800
eNB Queue Length (kB)

0

0.2

0.4

0.6

0.8

1

 C
D

F

w/ SDN V=100
w/ SDN V=1000
w/o SDN

0 500 1000 1500 2000 2500
eNB Queue Length (kB)

0

0.2

0.4

0.6

0.8

1

 C
D

F

w/ SDN V=100
w/ SDN V=1000
w/o SDN

(c) CDF of eNB queue for pon = 0.35 (d) CDF of eNB queue for pon = 0.45

Figure 2.7: Mean and Cdf of Enb Queue Length in Kb for o = 2 Operators With

Random Traffic Burst as a Function of Steady-state Probability pon of Burst State.

We considered only O = 2 operators sharing the overall backhaul resource Z in this

section. When a larger number O of operators shares the overall resource, then the

performance of the SDN control would further improve in accordance with the classical

statistical multiplexing gains for many variable bitrate traffic streams sharing a common

resource Smith and Whitt (1981); Liu et al. (2016a); Tonini et al. (2018). In this and

the preceding evaluation scenarios, traffic bursts were generated on a per-operator

basis, i.e., an independent Markov chain for each operator o, o = 1, 2, determined the

77

Poisson packet traffic rates (whereby the eNBs at an operator contributed equally to

the operator traffic load). This per-operator traffic burst scenario reflects situations

where traffic demands shift among operators, e.g., as large groups of users move among

different nearby sub-networks, e.g., from lecture halls to restaurants (whereby the

lecture halls and the restaurants have different operators) in a campus setting. In the

next section, we consider per-eNB Markov chain modulated Poisson packet traffic

rates that reflect situations where each eNB generates traffic bursts independently,

e.g., when individual users conduct bursty Internet transactions, e.g., upload files.

Impact of Random eNB Traffic Bursts

To evaluate the multi-layer multi-timescale approach for a large-scale network with

independent eNB traffic bursts we modify the LayBack architecture from Section 2.5.1

as follows. We consider O = 20 operators, each with two GWs; each GW has five

eNBs, for a total of 200 eNBs. The overall backhaul capacity still equals Z = 20 Mbps,

but the operator backhaul capacity is Zo = 1 Mbps. We consider this large network for

random eNB Poisson packet traffic bursts generated according to an independent two-

state (on and off) Markov chain for each of the 200 eNBs. An eNB generates 0.2 Mbps

of Poisson packet traffic in the on state (fixed sojourn time of 10 s) and no traffic in the

off state (exponentially distributed random sojourn time with mean 20 s for low load,

15 s for medium load, and 12 s for high load). The stationary distribution of visits to

the on and off states is kept at 0.5 and 0.5. The resulting long-run traffic load for the

medium load scenario is 16 Mbps (= 200·0.2 Mbps·(0.5·10 s)/(0.5·10 s + 0.5·15 s)),

while the long-run traffic loads for the low and high load scenarios are 13.3 Mbps and

18.2 Mbps, respectively.

We observe from Figure 2.8a that for the light load scenario the SDN orchestrated

backhaul bitrate allocation increases the probabilities for low eNB queue occupan-

78

cies below 50 kB only relatively slightly compared to the operation without SDN.

In contrast, we observe from Figure 2.8b vastly increased probabilities for low eNB

queue occupancies below 50 kB with the SDN control compared to operation without

SDN. More specifically, SDN control keeps the eNB queue lengths below 50 kB with a

probability near one, whereas queue lengths below 50 kB occur only with a probability

of about 0.4 without SDN control.

0 20 40 60 80
eNB Queue Length (kB)

0

0.2

0.4

0.6

0.8

1

C
D

F

w/ SDN V=100
w/ SDN V=1000
w/o SDN

0 50 100 150 200 250 300
eNB Queue Length (kB)

0

0.2

0.4

0.6

0.8

1

w/ SDN V=100
w/ SDN V=1000
w/o SDN

(a) Light load, 10 s eNB burst (b) Medium load, 10 s eNB bursts

0 500 1000 1500
eNB Queue Length (kB)

0

0.2

0.4

0.6

0.8

1

C
D

F

w/ SDN V=100
w/ SDN V=1000
w/o SDN

0 50 100 150 200 250 300
eNB Queue Length (kB)

0

0.2

0.4

0.6

0.8

1

w/ SDN V=100
w/ SDN V=1000
w/o SDN

(c) High load, 10 s eNB bursts (d) Medium load, 0.5 s eNB bursts

Figure 2.8: Cumulative Distribution Function (Cdf) of Enb Queue Length For In-

dependent Enb Traffic Bursts with Various Load Levels for Long (10 s) Bursts and

Medium Load for Short (.5 s) Bursts; Fixed parameters: o = 20 Operators, Each with

Two Gateways (Each with Five Enbs).

79

If five or fewer eNBs at a given operator are in the on (traffic burst of 0.2 Mbps)

state, then the aggregate traffic of the ten eNBs at the operator can be accommodated

within the operator backhaul capacity of Zo = 1 Mbps. If six or more eNBs at a given

operator are in the traffic burst state and another operator has less than five eNBs in

the traffic burst state, then the SDN control can share the backhaul resource among

the operators. For the light traffic scenario (Figure 2.8a), occurrences of six or more

simultaneous eNB traffic bursts at a given operator occur only occasionally; thus,

there are relatively few opportunities for SDN control to share backhaul resources.

For the medium and high load levels (Figure 2.8b,c) it becomes increasingly likely

that the aggregate load from the ten eNBs at a given operator exceeds the operator

backhaul capacity Zo. At the same time, due to the general Poisson process clumping

behaviors, it is likely that the eNB traffic bursts “clump” at a given operator and

exceed Zo, while other operators have spare backhaul capacity. Thus, central SDN

control of the backhaul capacity allocation can achieve substantial eNB queue length

reductions compared to the operation without SDN.

Regarding the flexibility parameter V , we observe from Figure 2.8 that the benefit

of the large V = 1000 relative to the smaller V = 100 increases as the load increases

from the light/medium load to the high load. This is mainly because, 1/V is essentially

the penalty for using spare bandwidth from other operators. For the light and moderate

load levels, there are only relatively rare to moderately frequent occasions of bandwidth

sharing; thus, there is no pronounced effect of V . For the high load (which corresponds

to a long-run average overall backhaul use of 10/12), the assumption of the Lyapunov

optimization is satisfied (i.e., the queues are stable), allowing the increased V to

reduce the queue lengths.

Figure 2.8d considers the medium load scenario for short eNB bursts of 0.5 s

(with corresponding 0.75 s off state sojourn time). Comparing Figure 2.8b,d, we observe

80

that the operation without SDN achieves shorter eNB queue lengths with the short

bursts in Figure 2.8d compared to the long bursts in Figure 2.8b. For example,

an eNB queue length under 100 kB is achieved with over 0.8 probability in Figure 2.8d,

but only less than 0.65 probability in Figure 2.8b. Intuitively, the shorter eNB traffic

bursts create only smaller eNBs queue backlogs that are easier to clear with the limited

operator bandwidth Zo. We also observe from the comparison of Figure 2.8b,d that

the gap between SDN control with V = 100 and with V = 1000 has slightly widened

in Figure 2.8d, mainly due to the CDF curve for V = 100 reaching only lower values

in Figure 2.8d compared to Figure 2.8b. This is primarily because the shorter burst

in Figure 2.8d require more flexibility from the SDN control; however, the V = 100

control provides only limited flexibility and can therefore not perform quite as well

as for the longer bursts in Figure 2.8b. Nevertheless, even though the gap between

operation with SDN control vs. operation without SDN control has slightly shrunken

in Figure 2.8d compared to Figure 2.8b, the SDN control still achieved substantial

eNB queue length reductions.

2.6 Conclusions

This article has presented a multi-timescale approach for optimizing the shar-

ing of backhaul resources in the SDN-based layered backhaul (LayBack) network

architecture. Through primal dual decomposition and Lyapunov drift techniques

we decomposed the traditionally centralized SDN resource management into a dis-

tributed management model. The distributed resource management accommodates

realistic signaling propagation delays by conducting optimization computations at the

higher gateway and SDN orchestrator layers at slower timescales compared to the

fast-timescale operation at the eNB radio nodes. The distributed optimization is also

highly scalable as only slow timescale optimizations of the sharing of the backhaul

81

resources among multiple operators are performed at the central SDN orchestrator;

the finer-grained faster timescale resource allocations to the individual eNB radio

nodes and various gateway nodes are performed at the lower layers of the multi-layered

multi-timescale optimization.

Our numerical evaluations for backhaul example networks have quantified the

performance characteristics of the described multi-timescale backhaul resource opti-

mization. We found that the SDN controlled sharing of the backhaul resources among

operators can significantly reduce the queue lengths at the radio nodes, e.g., the

eNBs that serve the upstream traffic from the wireless end users, compared to an

optimization without SDN controlled resource sharing.

There are many interesting directions for future research on optimizing the backhaul

in wireless networks. This present case study has focused on demonstrating the

feasibility of a multi-timescale optimization with a specific example optimization

methodology (gradient descent combined with Lyapunov drift-plus-penalty method) in

a specific configuration of the LayBack backhaul network architecture. Future research

should examine how wireless backhaul network architectures should be dimensioned,

e.g., how many layers and how many nodes should be in a given layer for a range

of anticipated end-device densities and mobility patterns over the geographic area

covered by the wireless backhaul network architecture, so as to best support the

optimization processes for resource allocation. With the emergence of multi-access

edge computing (MEC) it may become important to widen the scope of resource

allocation optimization to cover communication, caching (storage), and computation

(e.g., virtual machine compute processing) resources Wang et al. (2017c); Xiang et al.

(2019). Moreover, the suitability of the various types of optimization methodologies

for the resource allocation in wireless backhaul networks should be broadly studied and

compared. The comparison should consider both the optimization performance as well

82

as the practical operational aspects, e.g., simplicity and computation resource usage.

Another important future research aspect is robustness and reliability of the wireless

backhaul network. Emerging cyber-physical systems, such as medical devices that

provide critical diagnostics and continuous therapeutic interventions to humans going

about their daily lives Ogudo et al. (2019) as well as networked vehicular systems Arena

and Pau (2019); Santa et al. (2019); Storck and Duarte-Figueiredo (2019), such as

the transportation systems in smart cities, require uninterrupted connectivity with

high quality of service levels. Wireless backhaul networks need multiple redundant

connectivity paths that provide fail-over functionalities in case of failures Frascolla

et al. (2019); Gazit and Messer (2018); Tran et al. (2018). Future backhaul resource

optimization needs to account for and route among these multiple connectivity paths

(e.g., with SDN support Guck et al. (2018)) and optimally allocate resources during

normal operation as well as after various failure scenarios. Furthermore, it would be of

interest to implement the SDN controlled backhaul resource sharing in SDN testbeds

to verify the resource sharing performance characteristics in real operational networks.

83

Chapter 3

HARDWARE ACCELERATION

3.1 Introduction

3.1.1 Trend to Run Softwarized Network Functions on General-Purpose Computing

(GPC) Platforms

Traditionally, the term “network function (NF)” applied primarily to functions of

the lower network protocol layers, i.e., mainly the data link layer (e.g., for the data

link layer frame switching NF, virtual local area network NF, and medium access

control security NF) and the network layer (e.g., for the datagram routing NF and

Internet Protocol firewall NF). These low-level NFs were usually executed in specially

designed dedicated (and typically proprietary) networking equipment, such as switches,

routers, and gateways. Recently, the definition of an NF has been broadened to describe

networking related tasks spanning from low-level frame switching and Internet Protocol

(IP) routing to high-level cloud applications Ballani et al. (2015); Kozat et al. (2020);

Mijumbi et al. (2015). The area of networking currently undergoes an unprecedented

transformation in moving towards implementing NFs as software entities—so-called

“softwarized NFs”—that run on General-Purpose Computing (GPC) platforms and

infrastructures as opposed to dedicated networking equipment hardware.

In order to motivate this survey on hardware-accelerated platforms and infrastruc-

tures for softwarized NFs, we briefly introduce the basic concepts of softwarized NFs,

including their computation and management on GPC platforms and infrastructures,

in the following paragraphs. We then explain the need for hardware-acceleration of

softwarized NFs on GPC platforms and infrastructures in Section 3.1.2, followed by

84

an overview of the contributions of this survey in Section 3.1.3.

Network Functions (NFs) and Network Function Virtualization (NFV)

The term “Network Function (NF)” broadly encompasses the compute operations

(both logical [e.g., bitwise AND or OR] and mathematical scalar and vector [e.g.,

integer and floating point arithmetic]) related either directly or indirectly to data link

layer (Layer 2) frames, network layer (Layer 3) datagrams or packets, and network

application data (higher protocol layers above Layer 3). For instance, a packet filter

is a direct logical NF that compares header data to allow or block packets for further

processing, while a jitter and latency estimator function is an example of an indirect

arithmetic NF. An NF that requires dedicated processing with a strict deadline, e.g., an

NF to verify a medium access control (MAC) frame error through a Cyclic Redundancy

Coding (CRC) check, is preferably implemented as a hardware component. On the

other hand, an NF with relaxed timing requirements, e.g., TCP congestion control,

can be implemented as a software entity.

The push towards “softwarized NFs” is to reduce the hardware dependencies of

NFs for function implementation so as to maximize the flexibility for operations, e.g.,

to allow for the flexible scaling and migration of NF services. Softwarized NFs enable

compute operations to be implemented as generic executing programs in the form of

applications that can be run on a traditional OS or isolated environments, such as

Virtual Machines (VMs) Clayman et al. (2014) or containers Anderson et al. (2016),

on GPC platforms. Analogous to the broad term “Network Function (NF)”, the term

“Network Function Virtualization (NFV)” broadly refers to NF implementation as a

virtualized entity, typically as an application (which itself could run inside a container),

and running inside a VM (see Fig. 3.1). Thus, NFV is an implementation methodology

of an NF; while the term NF broadly refers to compute operations related to general

85

packet processing. Moreover, the term “Virtual Network Function (VNF)” refers to

an NF that is implemented with the NFV methodology.

Role of Software Defined Networking (SDN) in the Management of NFs

Software Defined Networking (SDN) Amin et al. (2018); Cox et al. (2017); Farhady et al.

(2015); Kaljic et al. (2019) is a paradigm in which a logically centralized software entity

(i.e., the SDN controller) defines the packet processing functions on a packet forwarding

node. The notion of centralized decision making for the function implementation

and configuration of forwarding nodes implies that the network control plane (which

makes the decisions on the packet processing) is decoupled from the network data

plane (which forwards the packets). Extending the principles of SDN from forwarding

nodes to the broad notion of compute nodes can achieve more flexibilities in the

deployment of NFs on GPC platforms in terms of scalability and management Alberti

et al. (2019); Li and Chen (2015). More precisely, SDN can be applied for two primary

purposes: i) macro-scale NF deployments, where the decisions involve selecting a

specific platform for NF deployments based on decision factors, such as physical

location, capabilities, and availability, and ii) micro-scale NF deployments, where the

decisions involve reconfiguring the NF parameters during on-going operations based

on run-time requirements, such as traffic loads, failures and their restoration, as well

as resource utilization.

Compute Nodes for Running NFs

In general, the compute nodes running the NFs as applications (VMs and containers)

can be deployed on platform installations ranging from large installations with high

platform densities (e.g., cloud and data-centers) to distributed and singular platform

installations, such as remote-gateways, clients, and mobile nodes. The cloud-native

86

approach Roseboro (2016) is the most common method of managing the platform

installations for the deployment of NFs that are centrally managed with SDN principles.

While the cloud-native approach has proven to be efficient for resource management

in cloud and data center deployments of NFs, the applicability of the cloud-native

approach to remote-gateways, clients, and mobile nodes is yet to be investigated Shah

et al. (2020).

The wide-spread adoption of Multi-Access Edge Computing (MEC) Abbas et al.

(2017) with cloud-native management is accelerating the trend towards softwarized

NFs, which run on GPC platforms. The MEC aims to deliver low-latency services by

bringing computing platforms closer to the users Liu and Zhang (2018); Mehrabi et al.

(2019); Heuchert et al. (2022); Mehrabi et al. (2021); Tang and Hu (2020); Xiang et al.

(2019, 2022); Doan et al. (2021); Wang et al. (2020); ?. A key MEC implementation

requirement is to inherit the flexibility of hosting a variety of NFs as opposed to a

specific dedicated NF. A GPC platform inherently provides the flexibility to implement

NFs as software entities that can easily be modified and managed, such as applications,

Virtual Machines (VMs), and containers Zhang et al. (2018). In a typical MEC node

deployment, the GPC platform is virtualized by a hypervisor Dinakar (2019), e.g.,

Linux Kernel-based Virtual Machine (KVM), Microsoft HyperV, or VMware ESXi,

and then NFs are instantiated as a VM or container managed by the hypervisor. The

flexibility of an MEC is achieved by the process of migrating applications, VMs, and

containers to different locations by an orchestration function Wang et al. (2018).

Management of NFs

The NF deployment on a compute node (i.e., physical platform) is typically managed

through a logically centralized decision making entity referred to as “Orchestrator”.

Based on SDN principles, the orchestrator defines and sends orchestration directives to

87

the applications, VMs, and containers to run on compute nodes Alsaeedi et al. (2019);

Binsahaq et al. (2019); Li and Chen (2015); Kellerer et al. (2019); Shantharama et al.

(2018b); Wang et al. (2019b); Zilberman et al. (2015). OpenStack Kavanagh (2015)

and Kubernetes Mart́ı Luque (2019); Kouchaksaraei and Karl (2019) are the mostly

commonly adopted dedicated orchestration frameworks in the cloud and data-center

management of resources and applications, including VMs and containers. In addition

to flexibility, the softwarization and virtualization of NFs can reduce CAPEX and

OPEX of the network operator. In particular, the network operator can upgrade,

install, and configure the network with a centralized control entity. Thus, MEC and

virtualization are seen as key building blocks of future network infrastructures, while

SDN enables efficient network service management.

3.1.2 Need for NF Hardware Acceleration on GPC Platform

The NF softwarization makes the overall NF development, deployment, and perfor-

mance characterization at run time more challenging Li and Chen (2015). Softwarized

NFs rely on GPC central processing units (CPUs) to accomplish computations and

data movements. For instance, data may need to be moved between input/output

(I/O) devices, e.g., Network Interface Cards (NICs), and system memory. However,

the GPC platforms, such as the Intel® x86–64 Arafa et al. (2019) and AMD® Lepak

et al. (2017) CPU platforms, are not natively optimized to run NFs that include

routine packet processing procedures across the I/O path Cerović et al. (2018); Garay

et al. (2016); Nobach and Hausheer (2015); Ordonez-Lucena et al. (2017). The short-

comings of GPC platforms for NF packet processing have motivated the development

of a variety of software and hardware acceleration approaches, such as the Data

Plane Development Kit (DPDK) Intel Corp. (2014), Field Programmable Gate Array

(FPGA), Graphics Processing Unit (GPU), and Application Specific Integrated Circuit

88

(ASIC) Nurvitadhi et al. (2016), to relieve the hardware CPU from compute-intensive

tasks generated by the NFs, such as data link layer frame switching, IP look-up, and

encryption Pongrácz et al. (2013).

The deployment of softwarized NFs on GPC platforms achieves a high degree of

flexibility. However, it is important to note that critical NF functionalities can be

compromised if the hardware and software functional limitations as well as operational

characteristics and capabilities are not carefully considered. Generally, the dynamic

CPU characteristics can vary over time. For instance, the cache coherency during

memory accesses can introduce highly variable (non-deterministic) latencies in NF

packet processing Gallenmüller et al. (2015). Moreover, the CPU power and thermal

characteristics can vary the base operating frequency, introducing variable processing

time behaviors Makineni and Iyer (2003); Emmerich et al. (2015); Chou and Bhuyan

(2015). Therefore, the softwarization of NFs must carefully consider the various

performance implications of NF acceleration designs to ensure appropriate performance

levels of NFs deployed on hardware-accelerated GPC platforms. These complex NF

performance implications of hardware-accelerated GPC platforms and infrastructures

motivate the comprehensive survey of this topic area so as to provide a foundation for

the further advancement of the technology development and research on hardware-

accelerated platforms and infrastructures for NFs.

3.1.3 Contributions and Organization of this Survey

In order to inform the design of hardware acceleration for the processing of

softwarized NFs on GPC platforms, this article comprehensively surveys the relevant

existing enabling technologies and research studies. Generally, the processing of a

software application task is essentially achieved by a set of hardware interactions.

Therefore, understanding hardware features provides a key advantage in the design of

89

software applications. In contrast to a generic software application, an NF involves

typically extensive I/O interactions, thus, the NF compute processing largely depends

on hardware support to achieve high throughput and short latency for NF packet

processing. However, the NF implementation relies not only on I/O interactions

for packet transmission and reception, but also requires memory for tunneling and

encapsulation, storage for applications (e.g., store-and-forwarding of media), as well

as computing (e.g., for cryptography and compression).

This survey provides an authoritative up-to-date survey of the hardware-accelerated

platforms and infrastructures that speed up the processing of NF applications. The

term “platform” as used in this survey article consolidates all the physical hardware

components that can be used to build a complete system to support an Operating

System (OS) to drive an application. The platform includes the Basic Input Output

System (BIOS), CPU, memory, storage, I/O devices, dedicated and custom accelerators,

switching fabric, and power management units. The term “infrastructure” corresponds

to the end-to-end connectivity of platforms, such as network components, switches,

Ethernet, and wireless links. Platform and infrastructure together constitute a

complete hardware framework to support an NF.

Despite the wealth of surveys on NFs and their usage in a wide variety of net-

working contexts, to the best of our knowledge, this present survey article is the

first comprehensive survey of hardware-accelerated platform and infrastructure tech-

nologies and research studies for the processing of NFs. We give an overview of the

related surveys in Section 3.1.4 and provide background on the processing of NFs

in Section 3.2. Section 3.3 comprehensively surveys the relevant enabling technolo-

gies for hardware-accelerated platforms and infrastructures for processing NFs, while

Section 3.4 comprehensively surveys the related research studies. For the purpose of

this survey, we define enabling technologies as designs, methodologies, and strategies

90

that are currently available in the form of a product in the market place; enabling

technologies are typically developed by industry or commercially oriented organi-

zations. On the other hand, we define research studies as investigations that are

primarily conducted to provide fundamental understanding and insights as well as

new approaches and methodologies that aim to advance the overall field; research

studies are primarily conducted by academic institutions, such as universities and

research labs.

Section 3.3 classifies the enabling technologies according to the relevant hardware

components that are needed to support the processing of NFs, namely the CPU,

interconnects, memory, as well as custom and dedicated accelerators on the platforms;

moreover, Section 3.3 surveys the relevant infrastructure technologies (SmartNICs

and Non-Transparent Bridging). Section 3.4 categorizes the research studies into

studies addressing the computer architecture, interconnects, memory, and accelerators

on platforms; moreover, Section 3.4 surveys infrastructure research on SmartNICs.

Section 3.5 summarizes the main open challenges for hardware-accelerated platforms

and infrastructures for processing softwarized NFs and Section 3.6 concludes this

survey article.

3.1.4 Related Surveys

This section gives an overview of the existing survey articles on topics related to NFs

and their processing and use in communication networks. Sections 3.1.4 through 3.1.4

cover topic areas that border on our central topic area, i.e., prior survey articles on

topic areas that relate to our topic area in a wider sense. Section 3.1.4 focuses on

prior survey articles that cover aspects of our topic area. Section 3.1.4 highlights our

original survey coverage of hardware-accelerated platforms and infrastructures for NFs

with respect to prior related survey articles

91

Softwarization of Network Functions (NFs)

The NF softwarization can be achieved in different forms, i.e., an NF can be imple-

mented as a software application, as a Virtual Machine (VM), or as a container image.

The concept of implementing an NF as a VM has been commonly referred to as

Virtualized Network Function (VNF), and Network Function Virtualization (NFV) as

a broader term for the technology of implementing, deploying, and managing the VNFs.

In general, the NFV concept has been widely discussed in the survey literature Han

et al. (2015); Jain and Paul (2013); Rehman et al. (2019). The traditional challenges

of NFV deployment are associated with the virtualization process of NFs, such as

overhead, isolation, resource allocation, and function management Wood et al. (2015).

Herrera et al. Herrera and Botero (2016) have discussed the resource allocation and

placement of applications, VMs, and containers on GPC platforms. More specifically,

Herrera et al. Herrera and Botero (2016) have surveyed different schemes for the

embedding of virtual networks over a substrate network along with the chaining of

NFs.

The deployment of an NF as a software application, VM, or container image in

the cloud and public networks poses critical security challenges for the overall NFV

service delivery. The security aspects and challenges of NFs have been discussed by

Yang et al. Yang and Fung (2016) and Farris et al. Farris et al. (2018) for threats

against NFs on Internet of Things (IoT) networks; while threat-based analyses and

countermeasures for NFV security vulnerabilities have been discussed by Pattaranan-

takul et al. Pattaranantakul et al. (2018). Furthermore, Lal et al.Lal et al. (2017)

have presented best practices for NFV designs against security threats.

92

Software Defined Networking (SDN) for NFs

Software Defined Networking (SDN) provides a centralized framework for manag-

ing multiple NFs that are chained together to form a network Service Function

Chain (SFC) Bhamare et al. (2016); Li and Qian (2016); Miotto et al. (2019). SDN

controllers can be used to monitor the resources across multiple platforms to allocate

resources for new SFCs, and to manage the resources during the entire life time of a

service. The SDN management strategies for NFs have been summarized by Li et al. Li

and Chen (2015). SDN also provides a platform for the dynamic flow control for traffic

steering and the joint optimization of resource allocation and flow control for NFV.

The main challenges of SDN-based management is to achieve low control overhead

and latency while ensuring the security during the reconfiguration Pattaranantakul

et al. (2019). In contrast to surveys of independent designs of SDN and NFV, Bonfim

et al. Bonfim et al. (2019) have presented an overview of integrated NFV/SDN archi-

tectures, focusing on SDN interfaces and Application Programming Interfaces (APIs)

specific to NFV management.

Network Function Virtualization (NFV) and Network Slicing

5th Generation (5G) Ghosh et al. (2019); Gupta and Jha (2015); Sharma et al.

(2020); Rischke et al. (2021) is a cellular technology that transforms the cellular

infrastructure from hardware-dependent deployment to software-based hardware-

independent deployment. 5G is envisioned to reduce cost, lower the access latencies,

and significantly improve throughput as compared to its predecessors Nasrallah et al.

(2018); Parvez et al. (2018); Sachs et al. (2018). VNFs are an integral part of the

5G infrastructure as NFs that realize the 5G based core network functionalities are

implemented as VNFs. In addition to NFV, 5G also adopts SDN for the centralized

93

management of the NFV resources. Yang et al. Yang et al. (2015) have presented a

survey of SDN management of VNFs for 5G networks, while Nguyen et al. Nguyen et al.

(2017); Lucani et al. (2018); Tasdemir et al. (2021); Gabriel et al. (2018); Wunderlich

et al. (2017) have discussed the relative benefits of different SDN/NFV-based mobile

packet core network architectures. Bouras et al. Bouras et al. (2017) have discussed

the challenges that are associated with SDN and NFV based 5G networks, such as

scalability and reliability. Costa et al. Costa-Perez et al. (2017b) have summarized

efforts to homogeneously coordinate resource allocation based on SDN and NFV across

both fronthaul and backhaul networks in the 5G infrastructure.

In conjunction with SDN and NFV, the technique of network slicing provides a

framework for sharing common resources, such as computing hardware, across multiple

VNFs while isolating the different network slices from each other. Afolabi et al. Afolabi

et al. (2018) have surveyed the softwarization principles and enabling technologies for

network slicing. As discussed in the survey by Foukas et al. Foukas et al. (2017) for

VNFs in 5G, for the design of 5G infrastructure, network slicing provides an effective

management and resource allocation to multiple tenants (e.g., service providers) on

the same physical infrastructure. A more general survey on network slicing for wireless

networks (not specific to 5G wireless networks) has been presented by Richart et

al. Richart et al. (2016b). The surveys Barakabitze et al. (2020); Ben Azzouz and

Jamai (2019); Bojkovic et al. (2019); Su et al. (2019) have discussed network slicing

and the management of resources in the context of 5G based on both SDN and NFV.

NFV in Multi-Access Edge Computing (MEC)

In contrast to the deployment of VMs and containers in cloud networks, fog and

edge networks bring the network services closer to the users, thereby reducing the

end-to-end latency. Yi et al. Yi et al. (2015) have presented a survey of NFV techniques

94

as applied to edge networks. Some of the NFV aspects that are highlighted by Yi

et al. Yi et al. (2015) in the context of fog and edge networks include scalability,

virtualization overhead, service coordination, energy management, and security. As an

extension of fog and edge networks, Multi-Access Edge Computing (MEC) generalizes

the compute infrastructure at the edge of the access network. A comprehensive MEC

survey has been presented by Tanaka et al. Tanaka et al. (2018), while the role of

NFV in MEC has been surveyed by Taleb et al. Taleb et al. (2017). The use of both

SDN and NFV provides strategies for effective management of MEC resources in edge

networks as described by Baktir et al. Baktir et al. (2017) and Blanco et al. Blanco

et al. (2017).

NFV Orchestration

NFV service orchestration involves the management of software applications, VMs,

and containers which implement NFs. The NFV management constitutes the storage

of VNF images, the allocation of resources, the instantiation of VNFs as runtime

applications, the monitoring of the NFV performance, the migration of the VNFs

between different hosts, and the shutting down of VNFs at the end of their life

time. De et al. de Sousa et al. (2019) have presented a survey of various methods for

managing NFV services. In contrast to NFV management, the orchestration of service

function chaining (SFC) adds more complexity since an SFC involves the management

of multiple VNFs for a single network service. The SFC complexities, such as compute

placement, resource monitoring, and flow switching have been outlined in a survey

article by Mechtri et al. Mechtri et al. (2017). Duan et al. Duan et al. (2016) have

presented a survey on SDN-based orchestration studies for NFV management.

95

Acceleration of NFs

NFs typically require the routine processing of packets involving intense Input/Output

(I/O) activities into and out of the compute platform Pitaev et al. (2018). Since GPC

platforms are not fundamentally designed for packet processing, GPC platforms re-

quire additional acceleration techniques for effective high-speed packet processing Kim

and Shao (2018). Linguaglossa et al. Linguaglossa et al. (2019) have provided a

tutorial introduction to the broad NFV field and the overall NFV ecosystem, including

tutorial introductions to software acceleration (inclusive of the related ecosystem

of software stacks) and hardware acceleration of NFV. The hardware acceleration

section in Linguaglossa et al. (2019) focuses mainly on a tutorial introduction to

the general concept of hardware offloading, mainly covering the general concepts of

offloading to commodity NICs and SmartNICs; an earlier brief tutorial overview of

hardware offloading had appeared in Woesner et al. (2018). However, a comprehensive

detailed survey of specific hardware offloading technologies and research studies is

not provided in Linguaglossa et al. (2019). Zhang Zhang (2020) has presented an

overview of NFV platform designs; whereby, Zhang defines the term “NFV platform”

to broadly encompass all hardware and software components involved in providing an

NFV service (in contrast, we define the term “platform” to only refer to the physical

computing entity). Zhang Zhang (2020) mainly covers the VNF software and manage-

ment aspects, i.e., Management and Orchestration (MANO) components Yousaf et al.

(2019), that are involved in NFV deployments. Zhang Zhang (2020) covers hardware

acceleration only very briefly, with only about ten references in one paragraph. In

contrast to Linguaglossa et al. (2019) and Zhang (2020), we provide a comprehensive

survey of hardware-accelerated platforms and infrastructures for NF processing. We

comprehensively cover the technologies and research studies on the hardware accel-

96

eration of CPUs, interconnects, and memory, as well as the accelerator devices on

platforms, and furthermore the hardware acceleration of infrastructures (which in our

classification encompass SmartNICs) that benefit NF processing.

FPGAs can be programmed with different functions, thereby increasing design

flexibility. FPGA-based acceleration in terms of application performance is limited by

the transistor-gate density and CPU-to-I/O transactions. Additionally, the FPGA

configuration time is relatively longer than running a compiled executable on a

GPU or CPU. While GPUs are beneficial for running numerous parallel, yet simple

computations, the FPGA advantages include the support for complex operations

which can be a differentiating factor for compute-intensive workloads Li et al. (2016a).

NF applications that require specialized compute-intensive functions, such as security,

can achieve superior performance with FPGAs as compared to GPUs and CPUs.

Niemiec et al. Niemiec et al. (2020) have surveyed FPGA designs for accelerating VNF

applications covering the use cases that require compute-intensive functions, such as

IPSec, intrusion detection systems, and deep packet inspection Xu et al. (2016). The

Niemiec et al. survey Niemiec et al. (2020) includes FPGA internals, virtualization and

resource slicing of FPGA, as well as orchestration and management of FPGA resources

specifically for NFV deployments. In contrast, our survey includes FPGAs operating

in conjunction with CPUs, i.e., FPGAs as platform capability enhancements, to assist

in accelerating general NF applications (that are not limited to NFV deployments, but

broadly encompass arbitrary NF applications, including e.g., bare-metal applications).

3.2 Background on NF Implementation

In this section we provide background on Network Functions (NFs), discuss various

forms of NF implementation, and common acceleration strategies. An NF is a compute

operation on a packet of an incoming traffic stream in a compute host. NF examples

97

Dedicated

Accelerators

Storage

NAND

Memory

DDR/NV-NAND

Custom

Accelerators

Packets IN

to

Hardware

Packets OUT

from Hardware

Host OS Hypervisor

Docker Engine

Docker Engine

Virtual Machine

(Guest OS)

Hardware Assisted

Virtualization

Technologies

Kernel Bypass and

Application Direct

Access to Hardware

FPGA: Field Programmable Gate Array

GPU: Graphic Processing Unit

RDT: Resource Director Technology

DSA: Data Stream Accelerator

CCA: Crypto Compression Accelerator

IMA: In-Memory Accelerator

HQM: Hardware Queue Manager

NV-NAND: Non-Volatile NAND

SmartNIC: Smart Network Interface Card
RDT

Resource

Monitoring and

Allocation

Sec. III

Sec. V.G.2

Sec. V.G.1

Packets IN to

NF delivered

by hardware

Packets OUT from

NF delivered

to hardware

Sec. II.B

Sec. II.E

Sec. II.D

Sec. V.G.2

Sec. V.G.2

Figure 3.1: Illustration of Gpc Platform Hardware to Process Network Functions

(Nfs). An Nf Can Be Implemented as a Bare Metal Nf, Application Nf (Not Shown),

Virtual Nf (Vnf), or Container Nf (Cnf).

range, for instance, from a simple IP header look-up for packet forwarding to complex

operations involving security negotiations of an end-to-end connection. NFs can also

be indirect functions, such as statistical analysis of traffic, network port management,

and event monitoring to detect a Denial-of Service (DoS) attack. Traditionally, an NF

is implemented with dedicated hardware and software components (see Sec. 3.2.1).

Recently, with the softwarization of NFs, the trend is towards implementing NFs as

software running on General-Purpose Computing (GPC) platforms. A softwarized NF

running on a GPC platform can be designed as: a bare-metal (BM) implementation

on a native OS (as user application) or as a part of the OS (as kernel module) (see

Sec. 3.2.2), as application running on an OS, i.e., as user application, or as kernel

module as part of the OS (see Sec. 3.2.3), as Virtual Machine (VM) on a hypervisor

(see Sec. 3.2.4), or as container running on a container engine (see Sec. 3.2.5). Brief

background on general acceleration strategies for NFs running on GPC platforms is

98

given in Sec. 3.2.6.

Before we delve into the background on NFs, we give a brief overview of the

terminology used for structures on GPC processor chips. The term “package” refers

to several hardware components (e.g., CPU, memory, and I/O devices) that are

interconnected and packed to form a system that is integrated into a single unit with

metallic finishing for physical mounting on a circuit board. That is, a package is a

typical off-the-shelf product that is available as a full hardware module and that can be

plugged into a server-chassis. A package is often a combination of CPU and non-CPU

components, such as memory (DRAM modules), I/O devices, and accelerators. A

GPC platform consists typically of multiple packages.

Typically, a commercially available “chip”, such as a processor chip or a RAM

chip, is a full System-on-Chip (SoC). A GPC processor chip is typically, in the socket

form-factor. We may therefore use the terminology “CPU chip” and “socket” inter-

changeably; synonymous terminologies are “CPU socket” and “CPU slot”. Generally,

a package contains only a single CPU socket (plus other non-CPU components). Also,

a given CPU socket consists generally of only a single CPU chip, which can contain

multiple dies, and each die can consist of multiple CPU cores. In particular, a single

CPU chip consists typically of multiple interconnected CPU dies. A die is a single

silicon design entity that is etched in one shot during fabrication. On a CPU chip,

there can be multiple dies interconnected through silicon vias or metallic wires.

3.2.1 Dedicated Hardware Based NF Implementation

Overview

The traditional implementation of an NF was through the design of dedicated hardware

and software, such as off-the-shelf network switches, routers, and gateways Velte and

99

Velte (2013); Ball et al. (1995); Chen et al. (2003). Hardware based systems are driven

by an embedded software (firmware, microcode), with microprocessor, microcontroller,

Digital Signal Processor (DSP), or Application-Specific Integrated Circuit (ASIC)

modules. Embedded software for hardware control is generally written in low-level

languages, such as C or assembly. The designs are tightly focused on a specific

prescribed (dedicated) task. For instance, if the design is to route packets, the

embedded hardware and software components are programmed to route the packets.

Hence, dedicated hardware NF implementations are fixed implementations that are

designed to perform a dedicated task, except for the management configuration of the

device and NF.

Benefits

Implementation with dedicated hardware and software achieves the best performance

for the dedicated task due to the constrained nature of task processing. As opposed

to the processes and task scheduling in an OS, processes running on dedicated

hardware use static (fixed) resource allocation, thereby achieving a deterministic

packet processing behavior. Dedicated NF hardware units are also energy efficient as

no processing cycles are wasted for conversions, e.g., privileges of execution, modes of

operation, and address translations, in OSs and hypervisors.

Shortcomings

A main shortcoming of NF hardware implementation is very limited flexibility. Recon-

figurations require additional efforts, such as intervention by a network administrator.

Moreover, NF hardware (HW) is typically locked into vendors due to proprietary

designs, procedures, and protocols. The overall cost of dedicated hardware products

could be relatively high since the deployment and maintenance require specialized

100

skills and specialized vendor assistance.

3.2.2 Bare-Metal (BM) NF Implementation

Overview

Hardware resources that directly host software tasks, e.g., applications, for computing

and I/O without any additional abstraction (except for the OS that directly hosts

the software task) are referred to as Bare-Metal (BM) hardware Hovemeyer et al.

(2004). In contrast to BM hardware, the other forms of hardware include abstracted

hardware (i.e., virtualized HW). In theory and practice, there can be multiple layers

of abstraction, achieving nested virtualization Ben-Yehuda et al. (2010); Zhang et al.

(2011). Abstraction of hardware resources reduces the complexity of operating and

managing the hardware by the application which can help the application to focus

on task accomplishment instead of managing the hardware resources. The BM

implementation can provide direct access to hardware for configurability, reducing

the overheads for computing and for hardware interactions for I/O. The application

performance on BM as compared to abstracted hardware, i.e., on a VM or container,

has been examined in Yamato et al. Yamato (2015).

Benefits

The BM implementation of NFs can achieve relatively higher performance as compared

to NFs running on virtualized and abstracted environments Yamato (2015). The

high BM performance is due to the low overhead during NF compute tasks. The

instruction and memory address translations required by abstractions are avoided

by BM implementations. The BM implementation also provides direct access to OS

resources, such as the kernel, for managing the memory allocation, prioritizing the

scheduling processing, and controlling I/O transactions.

101

Shortcomings

The BM implementation of an NF does not provide a secure and isolated environment

to share the hardware resources with other NFs on the same BM. If multiple NFs

run on the same BM hardware, multiple NFs can interfere with each other due

to the contention for resources, such as CPU, cache, memory, and I/O resources,

resulting in non-deterministic behaviors. Running a low number of NFs to avoid

interference among NFs can result in low resource utilization. Hence, the management

of applications could incur additional computing as well as a higher management cost.

NF implementation on BM with hardware-specific dependencies can result in reduced

scalability and flexibility.

3.2.3 Application and Kernel Based NF Implementation

Overview

In general, NFs are mainly deployed as applications which implement the overall

packet processing functionality. In contrast to the NF implementation as a user-space

application, NF tasks can also be embedded into the kernel as a part of the OS.

Generally, there are two types of processes that are run by the OS on the CPU: i)

applications that use the user-space memory region, and ii) more restrictive kernel

(software) modules that use the kernel-space memory region. However, a kernel-based

NF provides little or no control to the user for management during runtime. Therefore,

NFs are mainly run as applications in the user-space execution mode in an OS.

The user-space has limited control over scheduling policies, memory allocation,

and I/O device access. However, NFs in the user-space are given special permissions

through kernel libraries and can access kernel-space resources (i.e., low level hardware

configurations). Some NF applications, such as authentication, verification, and

102

policy management, may not always require hardware interactions and special kernel-

space access. Therefore, the design of NF applications should consider the hardware

requirements based on the nature of the task, i.e., whether an NF is time-sensitive

(e.g., audio packets), memory intensive (e.g., database management), or compute

intensive (encryption/decryption). Some examples of high level NF applications

with low resource dependencies are data validation, traffic management, and user

authentication.

Benefits

Application based NFs have simple development, deployment, and management.

Most NFs are designed and deployed as user-space application in an OS. User-space

applications generally consume lower compute, memory, and I/O resources compared

to abstraction and isolation based implementations, such as container and VMs.

Shortcomings

NF applications that are implemented in the user-space are vulnerable to security

attacks due to limited OS protection. Also, user-space applications are not protected

from mutual interference of other NF applications, thus there is no isolation among

tasks, resulting in non-deterministic execution of NF tasks. Moreover, user-space

applications fall short for networking tasks that require near real-time reaction as

the requests propagate through memory regions and follow traditional interrupt

mechanisms through I/O hardware.

103

3.2.4 Virtual Machine (VM) Based NF Implementation

Overview

To flexibly manage NFs with effective resource utilization and isolation properties,

NFs can be implemented as an application running on a Virtual Machine (VM). A

VM is typically implemented as a guest OS over a host OS. The host OS abstracts the

hardware resources and presents a virtualized hardware to the guest OS. The software

entity (which could be part of the host OS) that abstracts and manages the hardware

resources is referred to as a hypervisor. An NF can then be implemented as a kernel

module or as a user-space application on the guest OS. A host OS/hypervisor can

support multiple guest OSs through sliced resource allocation to each guest OS, thus

providing a safe virtual environment for the NF execution.

Benefits

VM based NF implementation provides a high degree of flexibility in terms of deploying

and managing the NFs. Multiple instances of the same NF can be instantiated through

duplication of VM images for scalability and reliability. VM images can also be

transported easily over the network for the instantiation at a remote site. Additionally,

multiple NFs can be hosted on the same host OS, increasing the effective resource

sharing and utilization. A VM is a complete OS, and all the dependent software

necessary for the execution of an NF application is built into the VM, which improves

the compatibility across multiple host OSs and hypervisors.

Shortcomings

In general, the performance of an NF implemented as a VM is lower than BM and

OS based implementation, since virtualization incurs both compute and memory

104

overhead Yamato (2015). Since a VM is also a fully functional OS, the overall memory

usage and execution processes are complex to design and manage as compared to

a user-application based NF running on an OS without virtualization. NF software

implementation issues are complex to trace and debug through multiple layers of

abstraction. Deployment cost could be higher due to the need for specialized support

for the VM management Strunk (2012).

3.2.5 Container based NF Implementation

Overview

The VM based NF implementation creates a large overhead for simple NFs, such as

Virtual Private Network (VPN) authentication gateways. Scaling and migrating VMs

requires large memory duplications, which result in overall long latencies for creating

and transporting multiple VM instances. The concept of workload containerization

originated for application management in data centers and the cloud to overcome the

disadvantages of VMs Coutinho et al. (2015). Containers have been designed to create

a lightweight alternative to VMs. A key difference between a VM and a container is

that a container shares the host OS kernel resources with other containers, while a

VM shares the hardware resources and uses an independent guest OS kernel. The

sharing of host OS resources among containers is facilitated by a Container Engine

(CE), such as Docker. NFs are then implemented as a user-space application running

on a container Cziva and Pezaros (2017). The primary functions of a CE are:

i) Provides Application Programming Interfaces (APIs) and User Interfaces (UIs)

to support interactions between host OS and containers.

ii) Container image management, such as storing and retrieving from a repository.

iii) Configuration to instantiate a container and to schedule a container to run on a

105

host OS.

Benefits

The primary benefits of containerization are the ease of NF scalability and flexibility.

Containers are fundamentally designed to reduce the VM management overhead, thus

facilitating the creation of multiple container instances and transporting them to

different compute nodes. Container based NFs support cloud-native implementation,

i.e., to inherently follow the policies applied through a cloud management framework,

such as Kubernetes. Containerization creates a platform for NFs to be highly elastic

to support scaling based on the demand during run time, resulting in Elastic-Network

Functions (ENFs) Szabo et al. (2015).

Shortcomings

Critical shortcomings of containerization of an NF are:

i) Containers do not provide the high levels of security and isolation of VMs.

ii) A container can run on BM hardware; whereas, a VM can run both on a

hypervisor and on BM hardware.

iii) Only the subset of NF applications that support a modularized software imple-

mentation and have low hardware dependencies can be containerized.

iv) Containers do not provide access to the full OS environment, nor access to

a Graphic User Interface (GUI). Containers are limited to a web-based user

interface that provides simple hypertext markup language (HTML) rendering for

applications that require user interactions, e.g., for visualizations and decisions

based on traffic analytics.

106

3.2.6 Acceleration Strategies for NF Implementation

NF softwarization should carefully consider different design strategies as one

design strategy does not fit all application needs. In addition to discussed software

implementation designs (Sections 3.2.2– 3.2.5), we need to consider acceleration

techniques to facilitate the NF application to achieve optimal performance in terms of

overall system throughout, processing latency, resource utilization, energy, and cost,

while preserving scalability and flexibility. Towards these goals, acceleration can be

provided in either software or hardware.

Software Acceleration Methods

Overview Typically, an NF on a GPC infrastructure requires an application running

on a traditional OS, such as Linux or Windows, whereby, an application can also be

hosted inside a VM or container for abstraction, security, and isolation requirements.

However, traditional OSs are not natively designed towards achieving high network

performance. For instance, an OS network driver typical operates in interrupt mode.

In interrupt mode, a CPU is interrupted only when a packet has arrived at the Network

Interface Card (NIC), upon which the network driver process running on the CPU

executes a subroutine to process the packet waiting at the NIC. If the CPU is in a

power-saving deep sleep state due to inactivity, waking the CPU would take several

cycles which severely lengthens the overall packet processing latency. An alternative

to the interrupt mode is polling. However, polling of the NIC would significantly

reduce the ability of the CPU to perform other tasks. Thus, the interrupt mode incurs

relatively long latencies, while keeping the CPU and power utilization low. However,

the interrupt mode generally does not maximize the overall throughput (total packets

processed by the CPU per second), which requires the batching of packets and is more

107

readily achieved with polling Barach et al. (2018).

Some of the examples of software acceleration strategies are:

i) Polling strategies of I/O devices for offloading task completions and I/O requests.

ii) Continuous memory allocation, and reduction in memory copies between pro-

cesses and threads.

iii) Reduced virtual to physical address translations.

iv) Maintaining cache coherency during memory accesses.

iv) Scheduling strategies for resource monitoring and allocation.

Benefits One of most prominent benefits of software acceleration is the low cost

of adoption in the market, which also reduces the development to deployment cycle

time. Software acceleration requires only very small or no modifications of the

existing infrastructure. Software optimizations also pave the way to an open source

architecture model of software development. The overall development and deployment

of software acceleration reduces the complexity and need for sophisticated traditional

hardware acceleration designs; and maximizes the performance and utilization of

existing hardware infrastructures.

Shortcomings Software acceleration may not provide the best possible system

throughput as compared to hardware acceleration to fully utilize the system capacity

as the software overhead may cause bottlenecks in the system, e.g., for memory

and I/O device accesses. Software implementation also increases the overall energy

consumption for a given acceleration as the processing is done by the CPU through

a generic instruction set. Higher access control (e.g., root privileges) for user-space

applications to achieve software acceleration generally does not go well with isolation

108

and has security implications in terms of privacy as multiple applications could interfere

with each other Lal et al. (2017). Also, additional layers of software abstractions for

acceleration add more latency for the overall task processing as compared to hardware

acceleration.

Hardware Acceleration Methods

Overview Although software optimizations provide acceleration of NFs, software is

fundamentally limited by the CPU availability (i.e., contention with other processes),

load (i.e., pending tasks), and utilization (i.e., average idle time) based on the active

task computing that the CPU is trying to accomplish. NFs typically require routine

tasks, such as IP look-up for network layer (Layer 3) forward routing operations. For

data link layer (Layer 2) operations, the MAC look-up and port forwarding that needs

to be performed for every frame creates a high I/O bound workload. Similarly, the

encapsulation and decapsulation of every packet needed for tunnel-based forwarding

constitutes a high memory bound workload. A more CPU intensive type of task is, for

instance, encryption and decryption of IP packets for security. In order to maximize

the performance, the CPU has to frequently monitor the NIC and has to process the

IP packets as part of an NF; both of these actions consume large numbers of CPU

cycles. Therefore, hardware based acceleration is critical for NF development and

deployments.

Hardware acceleration can be broadly categorized into custom acceleration and

dedicated acceleration. Custom acceleration is generic and programmable to applica-

tion requirements either at run-time or preloaded based on the need. Examples of

custom acceleration are Graphic Processing Unit (GPU) and Field Programmable

Gate Arrays (FPGA). In contrast, dedicated hardware acceleration is designed and

validated in hardware for a defined function, with little or no programming flexibility

109

to change the behavior of hardware at run-time. On the other hand, custom hardware

acceleration is cost effective and easy to configure which helps in developing new

protocols and behaviors that are adapted to the applications.

Benefits As compared to software acceleration, hardware acceleration provides more

robust advantages in terms of saving CPU cycles that execute the NF processing

tasks than implementation as a software. Overall, hardware accelerators significantly

improve the system throughput and task latency as well as energy efficiency for NF

implementations Benini et al. (2012).

Shortcomings The main shortcomings of hardware accelerations are:

i) Longer time frame for development cycle than for software acceleration develop-

ment.

ii) For every hardware component there is an associated software component that

needs to be developed and maintained.

iii) Introduction of new technologies, newer specifications and skills to manage the

hardware.

iv) Higher cost of implementation and adoption into market.

v) Infrastructure upgrades with new hardware components are difficult

vi) Locked in vendors for hardware and maintenance support.

3.3 Enabling Technologies for Hardware-Accelerated Platforms and Infrastructures

for NF Implementation

This section comprehensively surveys the enabling technologies for hardware-

accelerated platforms and infrastructures for implementing NFs. This section is

110

Figure 3.2: Classification Taxonomy of Enabling Technologies For Hardware-

accelerated Platforms and Infrastructure for Processing Softwarized Nfs: The Main

Platform Related Categories Are Hardware Accelerations for the Cpu, Interconnects,

and Memory, as Well As Custom and Dedicated Hardware Accelerators That Are

Embedded on The Platform; The Infrastructure Hardware Accelerations Focus on

Network Interface Cards and Bridging.

structured according to the classification structure of the enabling technologies in

Fig. 3.2, whereby a subsection is dedicated to each of the main categories of en-

abling technologies, i.e., CPU, interconnects, memory, custom accelerators, dedicated

accelerators, and infrastructure.

3.3.1 Central Processing Unit (CPU)

Traditionally in the current deployments, the CPU performs nearly all the comput-

ing required by an NF. While most NF computing needs can be met by a CPU, an

important question is to decide whether a CPU is the ideal resource to perform the NF

tasks. For instance, a polling function only continuously monitors a hardware register

111

or a memory location; a CPU may not be well suited for such a polling function.

This section comprehensively surveys the enabling technologies for accelerating the

operation of the CPU hardware for processing NFs.

Instruction Set Acceleration (ISAcc)

An instruction is a fundamental element that defines a CPU action. A CPU action

can be a basic operation to perform an arithmetic or logic operation on two variables,

to store or to retrieve data from memory, or to communicate with an external I/O

device. The instruction set (IS) is a set of instructions that are pre-defined; the

IS comprehensively lists all the CPU operations. In the computing literature, the

IS is also commonly referred to as Instruction Set Architecture (ISA); for brevity,

we use the terminology “Instruction Set (IS)” and define the acronym “ISAcc” to

mean “Instruction Set Acceleration”. The properties of the IS list distinguish the type

of CPU, typically as either Reduced Instruction Set Compute (RISC) or Complex

Instruction Set Compute (CISC) Blake et al. (2009). Generally, RISC has a very basic

set of limited operations, while CISC includes a comprehensive set of instructions

targeted at complex operations. RISC is power and silicon-space efficient. However,

the limited set of RISC operations generates large amounts of translated machine

opcodes from a high-level programming language which will reduce performance for

complex operations, such as encryption or compression. On the other hand, CISC can

implement a complex operation in a single CPU instruction which can result is smaller

machine opcodes, improving the performance for complex operations. However, CISC

generally consumers higher power and requires more silicon-space than RISC.

Tensilica Tensilica (2020) is an example of low-power DSP processor based on

the RISC architecture which is optimized for floating point operations Arnold et al.

(2014b). Tensilica processors are typically used in the design of I/O devices (e.g., NIC)

112

Table 3.1: Cpu Instruction Set Acceleration (Cpu-isacc) Extensions: Aes-ni, Drng, and

Avx-512. Cpu-isacc Optimizes Hardware Implementations of Software Functions, Such

as Random Number Generation, Cryptographic Algorithms, and Machine Learning,

in Terms Of Power and Performance.

CPU Instruction Acceleration Function

AES-NI

AESENC One round AES encryp. flow

AESNCLAST Last round AES encryp. flow

AESDEC One round AES decryp. flow

AESDECLAST Last round AES decryp. flow

AESKEYGENASSIST AES round key generation

AESIMC AES Inverse Mix Columns

PCLMLUQDQ Carryless multiply

DRNG
RDRAND Hardw.-gen. random value

RDSEED Hardw.-gen. random seed value

AVX-512

VNNI Vector Neural Net. Instr.

GFNI Galois Field New Instr.

VAES Vector AES Instructions

VBMI2 Vector Byte Manip. Instr. 2

BITALG Bit Algorithms

113

and hardware accelerators in the form of new IS definitions and concurrent thread

execution to implement softwarized NFs. The IS extensions have been utilized to

accelerate hashing NFs Arnold et al. (2014a); Pauls et al. (2019) and dynamic task

scheduling Arnold et al. (2012). Similar IS extensions have accelerated the complex

network coding function Nguyen et al. (2020); Wunderlich et al. (2019); Yang et al.

(2019b) in a hardware design Acevedo et al. (2018).

ISAcc Hennessy and Patterson (2019); Yokoyama et al. (2019) provides an addi-

tional set of instructions for RISC and CISC architectures. These additional instruc-

tions enable a single CPU instruction to performs a specific part of the computation

that is needed by an application in a single CPU execution cycle. The most important

CPU instructions that directly benefit NF designs are:

Advanced Encryption Standard-New Instructions (AES-NI) Advanced En-

cryption Standard-New Instructions (AES-NI) Akdemir et al. (2010); Hofemeier and

Chesebrough (2012) include IS extensions to compute the cryptography functions of

the Advance Encryption Standard (AES); in particular, AES-NI includes the complete

encryption and decryption flow for AES, such as AES-GCM (AES-GCM is a type

of AES algorithm, and AES-ENC is used internally for GCM encryption). AES-NI

has been widely used for securing HTTPS connections needed for end-to-end NFV

instances over networks. HTTP uses the Transport Layer Security (TLS) Secure

Sockets Layer (SSL) protocol (which incorporates AES) to generate and exchange

keys as well as to perform encryption and decryption. SSL implementations, such

as OpenSSL, provide the interface and drivers to interact with the AES-NI CPU

acceleration instructions.

114

Digital Random Number Generator (DRNG) The Digital Random Number

Generator (DRNG) Cox et al. (2011) with the RDRAND instruction can be used for

generating public and private cryptographic keys. The RSEED instruction can be

used for seeding software-based Pseudorandom Number Generators (PRNGs) used

in cryptography protocols. DRNG is also extensively used in modeling, analytics

for random selections, large scale system modeling to introduce randomization, nat-

ural disturbances, and noises in encryption and control loop frameworks, which are

applicable to SDN controller-based NF designs.

CPU IDentification (CPUID) The CPU IDentification (CPUID) Cloutier (2019)

instruction provides the details of CPU specifications, enabling software to make

decisions based on the hardware capabilities. A user can write a predefined value to

the EAX CPU register with the CPUID instruction to retrieve the processor specific

information that is mapped to the value indicated by the EAX CPU register. A

comprehensive list of CPU specifications can be enumerated by writing values in

sequence to the EAX and reading the EAX (read back the same write register), as

well as the related EBX, ECX, and EDX CPU registers. For instance, writing 0x00h

to the EAX provides the CPU vendor name, whereas writing 0x07h gives information

about the AVX–512 IS capability of the CPU. NF orchestration can use the CPUID

instruction to identify the CPU specifications along with the ISAcc capabilities to

decide whether an NF can be run on the CPU or not.

Virtual Machine Extensions (VMX) The Virtual Machine Extensions (VMX) In-

tel Corp. (2020c,d); Linux Assembly (2018) provide advanced CPU support for the

virtualization of the CPU, i.e., the support for virtual CPUs (vCPUs) that can be

assigned to VMs running on a Virtual Machine Monitor (VMM) Sugerman et al.

115

(2001); Plouffe et al. (2014). In the virtualization process, the VMM is the host

OS which has direct controlled access to the hardware. VMX identifies an instruc-

tion as either a VMX root operation or a VMX non-root operation. Based on the

instruction type provided by the VMX, the CPU executes a VMX root operation

with direct hardware access, while a VMX non-root operation is executed without

direct hardware access. The two most important aspects in virtualization are: a) VM

entries, which correspond to VMX transitions from root to non-root operation, and

b) VM exits, which correspond to VMX transitions from non-root to root operation.

NFs implemented on a virtual platform should be aware of the VMX principles and

whether an NF requires root operations to take the advantage of performance benefits

in root-based operations.

Deep Learning (DL) Boost The Deep Learning (DL) Boost IS acceleration

on Intel® CPUs Arafa et al. (2019) targets machine learning and neural network

computations. The traditional implementation of floating point operations results in

extensive Arithmetic and Logic Unit (ALU) computations along with frequent accesses

to registers, caches, and memory. DL Boost transforms floating point operations

to integer operations, which effectively translates the higher precision floating point

multiply and addition operations to lower precision integer calculations. The downside

is the loss of computation accuracy. However, for machine learning and neural network

computations, a loss of accuracy is often tolerable. DL Boost can transform Floating

Point 32 bit (FP32) operations to FP16, INT8, and further down to INT2. DL boost

reduces the multiply-and-add operations, which increases system throughput while

reducing latency and power consumption. An NF that requires low precision floating

operation for prediction, estimation, and machine learning applications can benefit

from DL Boot acceleration of the CPU IS.

116

C
P

U
 C

o
re

LLC

MC
Pwr.

Clk.
DRAM

Core

Uncore

UPI UPI

MC: Memory Controller

UPI: Ultra Path Interconnect

DRAM: Dynamic Random Access Mem.

LLC: Last Level Cache

C
P

U
 C

o
re

C
P

U
 C

o
re

Figure 3.3: Components Inside Processor Chips Are Generally Functionally Sepa-

rated into Core (I.E., Cpus) and Uncore Elements. Uncore Elements Are Non-core

Components, Such as Clock, Memory Controllers, Integrated Accelerators, Interrupt

Controllers, And Interconnects.

Cache Hierarchy The cache hierarchy has been commonly organized as follows:

i) The level L1 cache for code is normally closest to the CPU with the lowest

latency for any memory access. A typical L1 cache for code has a size of around

64 kilobytes (KB), is shared between two cores, and has 2-way access freedom.

The L1 cache for code is commonly used to store opcodes in the execution flow,

whereby a block of opcodes inside a loop can greatly benefit from caching.

ii) The level L1 cache for data is a per-core cache which resides on the CPU itself.

The L1 data cache typically stores the data used in the execution flow with the

shortest access latency on the order of around 3–4 clock cycles.

iii) A typical level L2 cache is shared between two cores and has a size of around

1–2 MB. The access latency is typically around 21 clocks with 1 read for 4 clock

cycles and 1 write for 12 clock cycles.

iv) The level L3 cache is generally referred to as shared Last Level Cache (LLC),

which is shared across all cores. The L3 cache is typically outside the CPU die,

but still may reside inside the processor die. A typical processor die consists of

117

core and uncore elements Gupta et al. (2012) (see Fig. 3.3). Uncore elements

refer to all the non-CPU components in the processor die, such as clock, Platform

Controller Hub (PCH), Peripheral Component Interconnect express (PCIe) root

complex, L3 cache, and accelerators.

Data-Direct IO (DDIO) The Data-Direct IO (DDIO) Intel Corp. (2012) is a

cache access advancement I/O technology. The DDIO allows I/O devices, such as the

PCIe based NIC, GPU, and FPGA, to directly read and write to the L3 shared LLC

cache, which significantly reduces the latency to access the data received from and

sent to I/O devices. Traditionally, I/O devices would write to an external memory

location which would then be accessed by the CPU through a virtual to physical

address translation and a page look-up process. NF applications require frequent I/O

activities, especially to read and write packets between NIC and processor memory.

With DDIO, when a packet arrives at the NIC, the NIC directly writes to the cache

location that is indexed by the physical address of the memory location in the shared

L3 cache. When the CPU requests data from the memory location (which will be a

virtual address for CPU requests), the address is translated from virtual to physical,

and the physical address is looked up in the cache, where the CPU finds the NIC

packet data. The DIDO avoids the page walk and memory access for this packet read

operation. A CPU write to NIC for a packet transmission executes the same steps

in reverse. Thus, NF implementations with intense I/O can greatly benefit from the

DDIO cache management.

CPU Clock

One of the critical aspects of an NF is to ensure adequate performance when running on

a GPC platform. In addition to many factors, such as the transistor density, memory

118

access speeds, and CPU processing pipeline, the CPU operational clock frequency is

a major factor that governs the CPU throughput in terms of operations per second.

However, in a GPC platform, the CPU clock frequency is typically dynamically scaled

to manage the thermal characteristics of the CPU die Cohen et al. (2003). The CPU

clock frequency directly impacts the total power dissipated as heat on the CPU die.

Base Frequency The base frequency Schone et al. (2012) is the normal CPU

operational frequency suggested by the manufacturer to guarantee the CPU perfor-

mance characteristics in terms of number of operations per second, memory access

latency, cache and memory read and write performance, as well as I/O behaviors. The

base frequency is suggested to achieve consistent performance with a nominal power

dissipation to ensure sustainable and tolerable thermal features of the CPU die.

Turbo Frequency The turbo frequency technique Charles et al. (2009) automati-

cally increases the platform and CPU operational frequency above the base frequency

but below a predefined maximum turbo frequency. This frequency increase is done

opportunistically when other CPUs in a multi-core system are not active or operating

at lower frequencies. The turbo frequency is set according to the total number of cores

running on a given CPU die, whereby the thermal characteristic of the CPU die is

determined by the aggregated power dissipated across all the cores on the CPU die. If

only a subset of the cores on the CPU die are active, then there is an extra thermal

budget to increase the operational frequency while still meeting the maximum thermal

limits. Thus, the turbo frequency technique exploits opportunities for automatically

increasing the CPU core frequencies for achieving higher performance of applications

running on turbo frequency cores.

119

C0

C1

Cn

C2

P0
1- CORE

2- CORE

P1

P2

Pn

T- States

T- States

Turbo Freq.

Base, Guaranteed Freq.

OS Control

Energy Effi. Freq.

Thermal Control

C-States

(Idle Power Mgt.)

P-States

(Active Power Mgt.)

Figure 3.4: Processor States Are Broadly Classified as Cpu States (c-states) Which

Indicate the Overall Cpu State; Additionally, When the Cpu Is Active (I.E., In c0),

Then Core-specific Power States (p-states) Indicate the Operational Frequencies of

The Cores That Are Actively Executing Instructions.

Over-clocking Over-clocking Jang et al. (2012) manually increases the CPU clock

frequency above and beyond the manufacturer’s suggested maximum attainable fre-

quency, which is typically, higher than the maximum turbo frequency. Over-clocking

changes the multipliers of the fundamental CPU clock frequency. A clock multiplier

on the uncore part of the CPU die generally converts the lower fundamental frequency

into the operating base and turbo frequencies. Over-clocking manually alters the

multipliers of the clock frequency to reach the limits of thermal stability with an

external cooling infrastructure. The thermal budget of the CPU die is forcefully

maintained through a specialized external cooling infrastructure (e.g., circulating

liquid nitrogen) that constantly cools the CPU die to prevent physical CPU damage

from overheating. The highest CPU performance can be achieved through successful

over-clocking procedures; however, the cost and maintenance of the cooling infras-

tructure limit sustained over-clocked operations. Hence only few applications can

economically employ over-clocking on a consistent basis.

120

ARM Architectures in High Performance Computing (HPC)

RISC and CISC compute architectures with ISAcc support have recently been merging

their boundaries to achieve the benefits from both architectures. The demand for low

power consumption while achieving high performance has prompted RISC architectures

to support High Performance Computing (HPC) capabilities. For instance, the ARMv7

RISC architecture contains the THUMB2 extensions for 16-bit instructions similar to

CISC, and the x86 ISAcc performs micro-operation translations that are similar to

RISC. Yokoyama et al. Yokoyama et al. (2019) have surveyed the state-of-the-art

RISC processor designs for HPC computing and compared the performance and

power consumption characteristics of the ARMv7 based server platforms to the Intel

server platforms. The results from over 400 workload executions indicate that the

state-of-the-art ARMv7 platform is 2.3-fold slower than the Sandy Bridge (Intel),

3.4-fold slower than Haswell (Intel), and nearly 7% faster than Atom (Intel). However,

the Sandy Bridge (Intel) platform consumes 1.2-fold more power than the ARMv7.

Figure 3.5 presents an overview of the Neoverse N1 Pellegrini et al. (2020) CPU

architecture targeted for edge and cloud infrastructures to support hyper-scale comput-

ing. The N1 platform can scale from 8 to 16 cores per chip for low computing needs,

such as networking, storage, security, and edge compute nodes, whereas, for server

platforms the architecture supports more than 120 cores. For instance, a socket form

factor of N1 consists of 128 cores on an 8×8 mesh fabric. The chip-to-chip connectivity

(e.g., between CPU and accelerator) is enabled by the CCIX® (see Sec. 3.3.2) through

a Coherent Mesh Network (CMN) interfacing with the CPU. The latency over the

CMN is around 1 clock cycle per Mesh Cross Point (XP) hop. The N1 supports 8

DDR channels, up to 4 CCIX links, 128 MB of L3 cache, 1 MB of private cache along

with 64 kB I-cache and 64 kB D-cache. The performance improvements of N1 as

121

compared to the predecessor Cortex-A72 are: 2.4-folds for memory allocation, 5-folds

of object/array initializations, and 20-folds for VM initiation. The Neoverse N1 has

been commercially deployed on Amazon Graviton Amazon Web Services, Inc. (2020)

servers, where the workload performance per-vCPU shows an improvement of 24% for

HTTPS load balancing with NGNIX and 26% for X.264 video encoding as compared

to the predecessor M5 server platforms of Amazon Graviton.

Summary of CPU

In summary, the CPU provides a variety of options to control and enable the features

and technologies that specifically enhance the CPU performance for NF applications

deployed on GPC platforms. In addition to the OS and hypervisors managing the CPU

resources, the NF application designers can become aware of the CPU capabilities

through the CPU instruction CPUID and develop strategies to run the NF application

processes and threads on the CPU cores at desired frequency and power levels to

achieve the performance requirements of the NF applications. In general, a platform

consists of both CISC and RISC computing architectures, whereby CISC architectures

(e.g., x86 and AMD) are predominantly used in hyper-scale computing operations,

such as server processors, and RISC architectures are used for compute operations on

I/O devices and hardware accelerators.

The CPU technologies discussed in Sec. 3.3.1 along with the general CPU technology

trends in support of diverse application demands Sengupta et al. (2020); Datta et al.

(2020) enable increasing numbers of cores within a given silicon area such that the

linear scaling of CPU resources could—in principle—improve the overall application

performance. However, the challenges of increasing the core density (number of cores

per die) include core-to-core communication synchronization (buffering and routing of

messages across interconnects), ensuring cache coherency across L3 caches associated

122

with each core, thread scheduling such that the cache coherency is maximized and

inter-core communication is minimized. Another side effect of the core-density increase

is the higher thermal sensitivity and interference in multi-core computing, i.e., the load

on a given core, can impact the performance and capacity of adjacent cores. Therefore,

in a balanced platform, the compute (processes and threads) scheduling across different

cores should consider several external aspects in terms of spatial scheduling for thermal

balancing, cache coherency, and inter-core communication traffic.

3.3.2 Interconnects

An interconnect is a physical entity for a point-to-point (e.g., link) connection

between two hardware components, or a point-to-multi-point (e.g., star, mesh, or bus)

connection between three or more hardware components. Commonly, an interconnect,

which can exist within a given chip (i.e., on-chip) or between multiple chips (i.e.,

chip-to-chip), is a physical path between two discrete entities for data exchanges. On

the other hand, an interface is a logical stateful connection between two components

following a common protocol, such as the Universal Serial Bus (USB) or PCIe protocol,

to exchange data among each other. (Interfaces have mainly been defined for point-to-

point; the PCIe has some point-to-multi-point broadcast messages, however only for

control and enumeration of devices by the OS.) More specifically, an interface is the

logical stateful connection, e.g., a time slot structure, that exists on a physical path

(i.e., the interconnect) between two discrete physical components. For instance, there

exists a USB interface on a physical USB interconnect; similarly, there exists a logical

PCIe interface (e.g., slot structure) on a PCIe interconnect Gerszberg et al. (2000).

Physical interconnects between hardware components often limit the maximum

achievable performance of the entire system due to bottlenecks, e.g., the memory

transaction path limits the access of applications to shared resources. The NF design

123

should pay close attention to interconnects and interfaces since NF application can

easily saturate an interconnect or interface between hardware components, limiting

the NF performance. Several interconnect and interface technologies can connect

different components within a die, i.e., on-chip, and connect components die-to-die,

i.e., external to the chip.

On-Chip Interconnects

On-chip interconnects, which are also referred to as on-die interconnects, connect vari-

ous hardware components within a chip, such as core, accelerator, memory, and cache,

that are all physically present inside the chip. On-die interconnects can be broadly

categorized into core-to-core, core-to-component, and component-to-component, de-

pending on the end-point use cases. The typical design of an on-die interconnect

involves a mesh topology switching fabric built into the silicon die, which allows

multiple components to simultaneously communicate with each other. The mesh

topology switching fabric achieves high overall throughout and very low latency.

Scalable Data Fabric (SDF) & Scalable Control Fabric (SCF) The Infinity

Scalable Data Fabric (SDF) and Scalable Control Fabric (SCF) Lepak et al. (2017)

(see Fig. 3.6) are the AMD® proposed switching fabrics for on-die component com-

munications. SDF and SCF are responsible for the exchange of data and control

messages between any endpoint on the chip. The separation of data and control paths

allows the fabric to prioritize the control communications. The SCF functions include

thermal and power management on-die, built-in self-tests, security, and interconnecting

external hardware components (whereby a hardware component is also sometimes

referred to as a hardware Intellectual Property (IP) in this field). SDF and SCF

are considered as a scalable technology supporting large numbers of components to

124

be interconnected on-die. Similarly, Infinity Fabric On-Package (IFOP) provides

die-to-die communication within a CPU socket i.e., on the same package.

2D Mesh The Intel® 2D mesh Park et al. (2012) (see Fig. 3.7) interconnects

multiple core components within a socket. A core component along with a Cache

Homing Agent, Last Level Cache (LLC), and Snooping Filter corresponds to a “Tile”

in the CPU design. A tile is represented as a rectangular block that includes a core,

CHA, and SF as illustrated in the Xeon® CPU overview in Fig. 3.7. The 2D mesh

technology implements a mesh based interconnect to connect all the cores on a given

die, i.e., single CPU socket.

In previous Intel® core architecture generations, the Home Agent (HA) was

responsible for the cache management. In the current generation, each mesh stop

connects to a tile, enumerated as logical number, i.e., as tile0/CHA0, tile1/CHA1, and

so on; thereby effectively moving from a centralized HA to distributed CHA agents.

When a memory address is accessed by the CPU, the address is hashed and sent for

processing by the LLC/CHA/SF residing at the active mesh stop that is directly

connected to the tile that makes the memory request. The CHA agent then checks

the address hash for data presence in an LLC cache line, and the Snoop Filter (SF)

checks the address hash to see if the address is cached at other LLC locations. In

addition to cache line and SF checks, the CHA makes further memory read/write

requests to the main memory and resolves address conflicts due to hashing.

In summary, the Infinity Fabric SDF and SCF (Fig. 3.6), and the 2D mesh (Fig. 3.7)

are part of core-to-core and core-to-component designs which directly interact with the

CPU on-die. On the other hand, most accelerator hardware components are external

to CPUs and come as discrete components that can be (i) embedded on the CPU die

(on-chip), but are (ii) externally connected to the CPU through I/O interfaces, such

125

as PCIe.

Network on Chip (NoC) A Network on Chip (NoC) Kumar et al. (2002) (see

Fig. 3.8) implements an on-die communication path similar to the network switching

infrastructure in traditional communication networks. On-die communications over

a switching fabric uses a custom protocol to package and transport data between

endpoints; whereas, the NoC uses a common protocol for the transport and physical

communication layer transactions. The data is commonly packetized, thus supporting

variably bit-widths through serialization. An NoC provides a scalable and layered

architecture for flexible communication among nodes with a high density on a given

die area. An NoC has three layers: i) transaction, which provides load and store

functions; ii) transport, which provides packet forwarding, and iii) physical, which

constitutes wires and clocks. A pitfall to avoid is excessive overhead due to high

densities of communication nodes on the NoC which can impact the overall throughput

performance due to overhead. Additionally, an NoC can pose a difficult challenge to

debug in case of a transaction error.

Advanced eXtensible Interface (AXI) The Advanced eXtensible Interface (AXI)

as defined in the ARM® Advanced Micro-controller Bus Architecture (AMBA) AXI

and AXI-Coherency Extension (ACE) specification ARM Holdings (2019) provides

a generic interface for on-chip communication that flexibly connects various on-die

components (see Fig. 3.9). The AXI interconnect provides master and slave based

end-to-end connections; operations are initiated by the master, and the slaves respond

to the requested operation. As opposed to operations, transfers on AXI can be

mutually initiated. Dedicated channels are introduced for multiple communication

formats, i.e., address and data. Each channel is essentially a bus that is dedicated to

126

send the message of similar type: i) Address Write (AW), ii) Address Read (AR), iii)

Write Data (W), iv) Read Data (R), and v) Write Response (R). These dedicated

channels provide an asynchronous data transfer framework that allows concurrency

in read and write requests simultaneously between master and slave. If there are

multiple components with caches associated with each IP, ACE provides an extension

to AXI that provides cache coherency between multiple IPs (i.e., components on-die)

by maintaining coherence across multiple caches. Cache coherency is only applied to

components that act as the master in the AXI transactions.

Chip-to-Chip

While on-chip interconnects provide connectivity between hardware components inside

a chip or a die, chip-to-chip interconnects extend physical interconnects outside the

chip for extending communication with an external IP component, i.e., hardware block

present on another chip.

Ultra Path Interconnect (UPI) The Intel® Ultra Path Interconnect (UPI) Meng

et al. (2018); Tam et al. (2018) implements a socket-to-socket interconnect that

improves upon its predecessor, the Quick Path Interconnect (QPI). The UPI allows

multiple processors to access shared addresses with coordination and synchronization,

which overcomes the QPI scalability limitations as the number of cores increases. In

coordination with the UPI, a Caching and Home Agent (CHA) maintains the coherency

across the cores of multiple sockets, including the management of snoop requests from

cores with remote cache agents Thus, the UPI provides a scalable approach to support

high socket densities on a platform while supporting cache coherency across all the

cores. The UPI supports 10.4 Giga Transfers per second (GT/s), which is effectively

20.8 GB/s. The UPI can interconnect processor cores over multiple sockets in the

127

form of 2-way, 4-way, and 8-way Symmetric Multiprocessing (SMP), with 2 or 3 UPI

interconnects on each socket, as illustrated in Fig. 3.10 for Intel® Skylake processors.

Infinity Fabric InterSocket (IFIS) The Infinity Fabric InterSocket (IFIS) Beck

et al. (2018); Lepak et al. (2017); AMDl (2020); Teich (2017) of AMD® implements

package-to-package (i.e., socket-to-socket) communication to enable two-way multi-

core processing. A typical IFIS interconnect has 16 transmit-receive differential data

lanes, thereby providing bidirectional connectivity with data rates up to 37.93 GBs.

IFIS is implemented with a Serializer-Deserializer (SerDes) for inter-socket physical

layer transport whereby data from a parallel bus of the on-chip fabric is serialized to be

transported over IFIS interconnect; the deserializer then parallelizes the data for the

on-chip fabric. One key IFIS property is to multiplex data from other protocols, such

as PCIe and Serial AT Attachment (SATA), which can offer transparent transport of

PCIe and SATA packets over multiple sockets.

Due to their high physical complexity and cost, UPI and IFIS are only employed

for inter-socket communication between CPU sockets. However, the vast majority of

the compute pipeline hardware components, such as memory and I/O devices, could lie

outside of the CPU socket chip, depending on the compute package design of the GPC

platform. Therefore, it is critical for NF performance to consider general chip-to-chip

interconnects beyond CPU sockets. The dominant general state-of-the-art hardware

chip-to-chip interconnects are the Peripheral Component Interconnect express (PCIe)

and Compute eXpress Link (CXL) which are summarized below.

Peripheral Component Interconnect express (PCIe) The Peripheral Compo-

nent Interconnect express (PCIe) McGinnis (2017) (see Fig. 3.12) is a chip-to-chip

interconnect and interface protocol that enables an external system-on-chip component,

128

Table 3.2: Summary of Pcie Lane Rates Compared Across Technology Generations

from Gen 1.1 Through Gen 5: The Raw Bitrate Is In Giga Transfers per Second, and

the Total Bandwidth in Giga Byte Per Second Is given for 16 Parallel Lanes in Both

Directions For Application Payload (Without the Pcie Transaction, Link Layer, And

Physical Layer Overheads).

PCIe

Gen.

Raw

Bitrate

(GT/s)

BW per lane

per direc. (App.)

(GB/s)

Total BW for

16-lane Link

(App.) (GB/s)

1.1 2.5 0.25 8

2.0 5 0.50 16

3.0 8 1 32

4.0 16 2 64

5.0 32 4 128

e.g., the PCIe enables a non-CPU chip (such as NIC or disk) to connect to a main CPU

socket. The PCIe can connect almost any I/O device, including FPGA, GPU, custom

accelerator, dedicated accelerator (such as ASIC), storage device, and networking

device (including NIC). The current PCIe specification generation is 5.0 which offers

a 4 GB/s speed for each directional lane, and an aggregated total throughput over 16

lanes of 128 GB/s, as shown in Table 3.2.

The PCIe follows a transactional protocol with a top-down tree hierarchy that

supports serial transmissions and unidirectional links running in either direction of the

PCIe link. The PCIe involves three main types of devices: Root Complex (RC): A RC

is a controller that is responsible for direct memory access (DMA), address look-up,

and error management; End Point (EP): An endpoint is a device that connects to the

PCIe link; and Switch: A switch is an extension to the bus to which an endpoint (i.e.,

device) can be connected. The system BIOS enumerates the PCIe devices, starting

129

from the RC, and assigning identifiers referred to as “Bus:Device:Function” or “BDF”

for short, a 3 tuple to locate the device placement in the PCIe hierarchy. For instance,

a system with a single root complex could have the identifier of 00:00:1, with bus ID

00, device ID 00, and function 1.

The PCIe does not support sideband signaling; hence, all the communication has

to be conducted in a point-to-point fashion. The predecessor of the PCIe was the PCI,

which had lower throughput due to skew across the parallel bus width; however, to

maintain backward compatibility, the PCIe allows PCI devices to be connected via

a PCIe-to-PCI bridge. There are almost no PCI devices in the recent platforms, as

the PCIe provides both cost efficiency and performance benefits. However, the OS

recognizes PCIe switches as bridges to keep backward compatibility with the software

drivers and hence can be seen in the enumeration process of the PCIe. Essentially,

every switch port is a bridge, and hence appears so in the OS listing of all PCIe

devices.

CCIX®: Cache Coherent Interconnect for Accelerators One factor that

limits the hardware accelerator performance in accelerating softwarized NFs is the

memory transaction bottleneck between system memory and I/O device. Data transfer

techniques between system memory and I/O device, such as DDIO (see Sec. ??),

utilize a system cache to optimize the data transactions between the system memory

and I/O device. For I/O transactions, a cache reduces the latencies of memory read

and write transactions between the CPU and system memory; however, there is still a

cost associated with the data transactions between the I/O device and system memory.

This cost can be reduced through a local device-cache on the I/O device, and by

enabling cache coherency to synchronize between the CPU-cache and the device-cache.

While the CXL/PCIe based protocols define the operations supporting cache co-

130

herency between the CPU and I/O devices, the CXL/PCIe protocols define strict rules

for CPU/core and I/O device endpoint specific operations. The Cache Coherent Inter-

connect for Accelerators (CCIX®) CCIX® Consortium Incorp. (2020) (pronounced

“See 6”) is a new interconnect design and protocol definition to seamlessly connect

computing nodes supporting cache coherency (see Fig. 3.14(a)).

Another distinguishing CCIS feature (with respect to CXL/PCIe) is that the CCIX

defines a non-proprietary protocol and interconnect design that can be readily adopted

by processors and accelerator manufacturers. The CCIX protocol layer is similar to

the CXL in terms of the physical and data link layers which are enabled by the PCIe

specification; whereas, the transactions layer distinguishes between CCIX and PCIe

transactions. While the cache coherency of the CXL protocol is managed by invoking

CXL.cache instructions, the CCIX protocol automatically synchronizes the caches

such that the operations are driver-less (no software intervention) and interrupt-less

(i.e., no CPU attention required). The automatic synchronization reduces latencies

and improves the overall application performance. The CCIX version 1.1 supports

the maximum bandwidth of the PCIe 5.0 physical layer specification of up to 32 Giga

Transactions per second (GT/s). Figure 3.14(a) illustrates the protocol layer operations

in coexistence with the PCIe, and shows the different possible CCIX system topologies

to flexibly interconnect processors and accelerators.

Generation-Z (Gen-Z) The Gen-Z Consortium ? (see Fig 3.14(b)) has proposed an

extensible interconnect that supports on-chip, chip-to-chip, and platform-to-platform

communication. As opposed to the CXL and CCIX, Gen-Z has defined: i) direct

connect, ii) switched, and iii) fabric technologies for homogeneously connecting

compute, memory, and I/O devices. For cross-platform connections, Gen-Z utilizes

networking protocols, such as InfiniBand, to enable connections via traditional optical

131

Ethernet links. More specifically, Gen-Z supports DRAM memory extensions through

persistent memory modules with data access in the form of byte addressable load/store,

messaging (put/get), and I/O block memory. Gen-Z provides management services for

memory disaggregation and pooling of shared memory, allowing flexible resource slicing

and allocations to the OS and applications. In contrast to other interconnects, Gen-Z

inherently supports data encryption as well as authentication for access control methods

to facilitate the long-haul of data between platforms. Gen-Z preserves security and

privacy through Authenticated Encryption with Associated Data (AEAD), whereby

AEAD encryption is supported by the AES-GCM-256 algorithm. To support a wide

range of connections, the Gen-Z interconnect supports variable speeds ranging from

32 GB/s to more than 400 GB/s.

Open Coherent Accelerator Processor Interface (OpenCAPI) The Open

Coherent Accelerator Processor Interface (OpenCAPI) Stuecheli et al. (2018) (see

Fig. 3.14(c) and (d)) is a host-agnostic standard that defines procedures to coher-

ently connect devices (e.g., hardware accelerator, network controller, memory module,

storage controller) with the host platform. A common protocol is applied across all

the coherently connected device memories to synchronize with the system memory to

facilitate accelerator functions with reduced latency. In addition to cache coherency,

OpenCAPI supports direct memory access, atomic operations to host memory, mes-

sages across devices, and interrupts to the host platform. High frequency differential

signaling technology Zhang et al. (2009) is employed to achieve high bandwidth and low

latency connections between hardware accelerators and CPU. The address translation

and coherency cache access constructs are encapsulated by OpenCAPI through serial-

ization which is implemented on the platform hardware (e.g., CPU socket) to minimize

the latency and computation overhead on the accelerator device. As compared to the

132

CXL, CCIX, and Gen-Z, the transaction as well as link and physical layer attributes

in OpenCAPI are aligned with high-speed Serializer/Deserializer (SerDes) concept to

exploit parallel communication paths on the silicon. Another aspect of OpenCAPI

is the support for virtual addressing, whereby the translations between virtual to

physical addresses occur on the host CPU. OpenCAPI supports speeds up to 25 Gbps

per lane, with extensions up to 32 lanes on a single interface. The CXL, CCIX®, and

OpenCAPI interconnects are compared in Table ??.

Summary of Interconnects and Interfaces

Interconnects provide a physical path for communication between multiple hardware

components. The characteristics of on-chip interconnects are very different from chip-

to-chip interconnects. NF designers should consider the aspects of function placement,

either on the CPU die or on an external chip. For instance, an NoC provides a scalable

on-chip fabric to connect the CPU with accelerator components, and also to run a

custom protocol for device-to-device or device-to-CPU communication on top of the

NoC transport and physical communication layers. The PCIe provides a universal

physical interconnection system that is widely supported and accepted; whereas, the

CXL provides cache coherency functionalities if needed at the device (i.e., accelerator

component).

One of the key shortcomings of existing interconnects and interfaces is the resource

reservation and run-time reconfiguration. As the density of platform hardware com-

ponents, such as cores, memory modules (i.e., DRAM), and I/O devices, increases,

the interconnects and interfaces that enable physical connections are multiplexed

and shared to increase the overall link utilization. However, shared links can cause

performance variations at run-time, and can result in interconnect and interface

resource saturation during high workloads. Current enabling technologies do not

133

provide a mechanism to enforce Quality-of-Service (QoS) for the shared interconnect

and interface resources. Resource reservation strategies based on workload (i.e., ap-

plication) requirements and link availability should be developed in future work to

provide guaranteed interconnect and interface services to workloads.

3.3.3 Memory

Although the expectation with high-speed NICs, large CPU compute power, as

well as large and fast memory is to achieve improved network performance, in reality

the network performance does not scale linearly on GPC platforms. The white

paper Intel Corp. (2019e) has presented a performance bottleneck analysis of high-

speed NFs running on a server CPU. The analysis has identified the following primary

reasons for performance saturation: i) interrupt handling, buffer management, and

OS transitions between kernel and user applications, ii) TCP stack code processing,

and iii) packet data moves between memory regions and related CPU stalls. Towards

addressing these bottlenecks, factors that should be considered in conjunction with

memory optimizations that relate to data transfers between I/O devices and system

memory are: a) interrupt moderation, b) TCP checksum offloading and TCP Offload

Engine (TOE), and c) large packet transfer offloading. We proceed to survey efficient

strategies for memory access (i.e., read and write) which can mitigate the performance

degradations caused by packet data moves.

Direct Memory Access (DMA)

Memory transactions often take many CPU cycles for routine read and write operations

from or to main memory. The Direct Memory Access (DMA) alleviates the problem

of CPU overhead for moving data between memory regions, i.e., within a RAM, or

between RAM and an I/O device, such as a disk or a PCIe device (e.g., an accelerator).

134

The DMA offloads the job of moving data between memory regions to a dedicated

memory controller and engine. The DMA supports the data movement from the

main system memory to I/O devices, such as PCIe endpoints as follows. The system

configures a region of the memory address space as Memory Mapped I/O (MMIO)

region. A read or write request to the MMIO region results in an I/O read and write

action; thereby supporting the I/O operations of write and read to and from external

devices.

I/O Acceleration Technology (I/OAT) The Intel® I/O Acceleration Technology

(I/OAT), as part of the Intel® QuickData Technology (QDT) Nagaraj and Gianos

(2015), advances the memory read and write operations over I/O, specifically targeted

for NIC data transfers. I/OAT provides the NIC direct access to the system DMA

for read write access in the main memory region. When a packet arrives to the NIC,

traditionally, the packet is copied by the NIC DMA to the system memory (typically

at the kernel space). Note that this DMA is present on the I/O device/endpoint (an

external entity) and then an interrupt is sent to the CPU. The CPU then copies the

packet into application memory, which could be achieved by initiating a second DMA

request, this time on the system DMA, for which the packet is intended. With the

proposed QDT, the NIC can request that the system DMA further copies the data onto

the application memory without CPU intervention, thus reducing a critical bottleneck

in the packet processing pipeline. DMA optimizations have also been presented as

part of the Intel® QuickData Technology (QDT) Nagaraj and Gianos (2015).

Dual Data Rate 5 (DDR5)

As technologies that enable NFs, such as NICs, increase their network connectivity data

speeds to as high as 100–400 Gbps, data processing by multiple CPUs requires very

135

Table 3.3: Summary of Double Data Rates (Ddr) Synchronous Data Random Access

Memory (Sdram) Rates. The Buffer Size Indicates The Multiplying Factor to the

Single Data Rate Sdram Prefetch Buffer Size. The Chip Density Corresponds to the

Total Number Of Memory-cells per Unit Chip Area, Whereby Each Memory Cell Can

Hold A Bit. The Ddr Rates Are in Mega Transfers per Second (Mt/S). For Ddr4

and Ddr5, the Access to Dram Can Be Performed in the Group Of Memory Cells

Which Are Logically Referred to as Memory Banks. That Is, a Single Read/Write

Transaction to Dram Can Access the Entire Data Present in a Memory Bank.

DDR Ver. DDR1 DDR2 DDR3 DDR4 DDR5

Release Date 2000 2003 2007 2012 2019

Vol. (V) 2.5 1.8 1.5 1.2 1.1

Buffer Size 2 4 8 8 16

Chip Den. (Gb) 0.128–1 0.128–4 0.512–8 2–16 8–64

Data Rate (MT/s) 200–400 400–800 800–2133 1600–3200 3200–6400

Bank Groups 0 0 0 4 8

fast main memory access. Synchronous Dynamic Random Access Memory (SDRAM)

enables a main system memory that offers high-speed data access as compared to

storage I/O devices. SDRAM is a volatile memory which requires a clock refresh

to keep the stored data persistently in the memory. The Dual Data Rate (DDR)

improves the SDRAM by allowing memory access on both the rise and fall edges of

the clock, thus doubling the data rate compared to the baseline SDRAM. The DDR

5th Generation is the current technology of DDR-SDRAM that is optimized for low

latency and high bandwidth, see Table 3.3. The DDR5 addresses the limitations of

the DDR4 mainly on the bandwidth per core, as multiple cores share the bandwidth

to the DDR.

136

The higher DDR5 data rate is achieved through several improvements, including

improvements of the Duty Cycle Adjuster (DCA) circuit, oscillator circuit, internal

reference voltages, and read training patterns with dedicated mode registers Rooney

and Koyle (2019). The DDR5 also increases the total number of memory bank groups

to twice of the DDR4, see Table 3.3. Overall, the DDR5 maximum data rate is twice

the DDR4 maximum data rate, see Table 3.3. The DDRs are connected to a platform

in the form of Dual In-line Memory Module (DIMM) cards with 168-pins to 288-pins.

In addition to memory modules, DIMMs are a common form of connectors for high

speed storage modules to CPU cores.

Non-Volatile NAND (NV-NAND)

In general, memory (i.e., DRAM) is expensive, provides fast read/write access by

the CPU, and offers only small capacities; whereas, storage (i.e., disk) is relatively

cheap, offers large capacities, but only slow read/write access by the CPU. Read/write

access by the CPU to DRAM is referred to as memory access; while disk read/write

access follows the procedures of I/O mechanisms requiring more CPU cycles. The

slow disk read/write access introduces an I/O bottleneck in the overall NF processing

pipeline, if the NF is storage and memory intensive. Some NF examples that require

intensive memory and storage access are Content Distribution Networks (CDN) and

MEC applications, such as Video-on-Demand and Edge-Live media content delivery.

The Non-Volatile NAND (NV-NAND) technology Weiland et al. (2018) strives

to address this bottleneck through so-called Persistent Memory (PM), whereas NV-

RAM is a type of Random Access Memory (RAM) that uses NV-NAND to provide

data-persistence. In contrast to DRAM, which requires a synchronous refresh to keep

the memory active (persistent) on the memory cells, NV-NAND technology retains

the data in the memory cells in the absence of a clock refresh. Therefore, NV-NAND

137

technology has been seen as solution to growing demand for larger DRAM and faster

access to disk storage. Non-Volatile DIMMs (NVDIMMs) in conjunction with the 3D

crosspoint technology can create NAND cells with high memory cell density in a given

package Burr et al. (2014), achieving memory cell densities that are many folds higher

as compared to the baseline 2D NAND layout design. PM can be broadly categorized

into: i) Storage Class Memory (SCM) 1 Level Memory (1LM), i.e., PM as a linear

extension of DRAM, ii) Storage Class Memory (SCM) 2 Level Memory (2LM), i.e.,

PM as main memory and DRAM as cache, iii) Application-Direct mode (DAX), i.e.,

PM as storage in NVDIMM form, and iv) PM as external storage, i.e., disk.

NVDIMMs can operate as both modes of memory, i.e., DRAM and storage, based

on the application use. As opposed to actual storage, the Storage Class Memory

(SCM) is a memory featured in NVDIMMs that provides the DRAM class operational

speeds at storage size. SCM targets memory-intensive applications, such as Artificial

Intelligence (AI) training and media content caching. The memory needs could further

differ in terms of use, for instance, AI applications are transactions-driven due to

CPU computations, while media content caching is storage driven. Therefore, SCM is

further categorized into 1LM and 2LM.

1 Level Memory (1LM) In the 1LM memory Ray et al. (2017); Intel Corp. (2019b)

operational mode, the OS sees NVDIMM PM memory as an available range of memory

space for reads and writes. The CPU uses normal load and store instructions that are

used for DRAM-access to access the PM NVDIMM memory. However, the data reads

and writes over the PM are significantly slower compared to the DDR DRAM access.

2 Level Memory (2LM) In the 2LM Intel Corp. (2019b) mode (see Fig. 3.15), the

DRAM is used as cache which only stores the most frequently accessed data, while

138

the NVDIMM memory is seen as larger capacity alternative to the DRAM with the

Byte-Addressable Persistent Memory (B-APM) technique. The caching operation and

management are provided by the memory controller of the CPU unit. Although data

stored in NVDIMM is persistent, the memory controller invalidates the memory upon

power loss or at an OS restart while operating in memory mode. 2LM technologies

are also the type of Storage Class Memory (SCM) that is used for data-persistent

storage usage of memory, as they provide the large capacity of disks while operating

at close to memory speeds.

External Storage In contrast to PM, NVM express (NVMe) is also NAND based

storage which exists in a PCIe form factor and has an on-device memory controller

along with I/O DMA. Since NVMe operates as an external device to the CPU, the

OS has to follow the normal process of calling kernel procedures to read the external

device data Xu et al. (2015). Therefore, storage devices in the NVDIMM form factors

outperform NAND based Solid State Disks (SSDs) because of utilizing the DDR link

instead of the standard PCIe based I/O interface, as well as the proximity of the

DIMMs to the CPU cores.

Asynchronous DRAM Refresh (ADR) Asynchronous DRAM Refresh (ADR) Han

et al. (2018) is a platform feature in which the DRAM content can be backed up within

a momentary time duration powered through super capacitors and batteries just before

and after the power state is down on the system platform. The ADR feature targets

DDR-SDRAM DIMMs to save the last-instant data by flushing the data present in

buffers and cache onto SDRAM and putting the SDRAM on self-refresh through power

from batteries or super capacitors. The ADR is an OS-aware feature, where the data

is recovered for the analysis of a catastrophic error which brought down the system,

139

or to update the data back to the main memory when the power is restored by the

OS. There types of data need to be saved in case of a catastrophic error or power

outage are: i) CPU cache ii) data in the memory controller, and iii) I/O device cache,

which will be saved to the DRAM during the ADR process. In case of NVDIMMs,

the DRAM contents can be flushed to PM storage such that the data can be restored

even after an extended power-down state.

Summary of Memory

The networking workloads that run on GPC platforms depend on memory for both

compute and storage actions. The overall NF performance can be compromised due

to saturation on the memory I/O bus and high read/write latencies. Therefore, in

this section we have surveyed state-of-art strategies that directly improve the NF

performance that directly improve the memory performance so as to aid NFs. DMA

strategies help haul packets that arrive at the NIC (an external component) to memory,

and DDR memory offers DIMMs based high-speed low-latency access to the CPU

for compute actions on the packet data. For storage and caching based network

applications, the PM based NVDIMM can offer very large memory for storage at close

to DRAM speeds.

The pitfalls that should be considered in the NF design are the asymmetric memory

latency speeds between DRAM and NVDIMM PM. Also, the 2LM memory mode of

operations needs to be carefully considered, when there is no requirement for caching,

but a need for very low latency transactions.

The shortcomings of memory enabling technologies include asymmetric address

translation and memory read latencies arising from the non-linear characteristics of

address caching (Translation Lookahead Buffers [TLB]) and data caching (e.g., L3).

The asymmetric read and write latencies cause over-provisioning of DRAM and cache

140

resources (for VM deployments) to ensure a minimum performance guarantee. In

addition, the memory controller is commonly shared among all the cores on a die,

whereby the read/write requests are buffered to operate and serve the requester (CPU

or I/O devices) at the DDR rates. Hence, as an enhancement to current enabling

technologies, there is a need for memory controller based resource reservation and

prioritization according to the workload (application) requirements.

3.3.4 Custom Accelerators

This section surveys hardware accelerator devices that are embedded on the

platforms or infrastructures to speed up NF processing; typically, these hardware

accelerators relieve the CPU of some of the NF related processing tasks. The major

part of the NF software still runs on the CPU, however, a characteristic, i.e., a small

part of the NF (e.g., compression or cryptography) is offloaded to the hardware

accelerator, i.e., the hardware accelerator implements a small part of the NF as a

characteristic. In a custom accelerator, a software program is typically loaded on

a GPU or FPGA to perform a specific acceleration function (e.g., a cryptography

algorithm), which is a small part of the overall NF software.

Accelerator Placement

Hardware accelerator devices (including GPU and FPGA) can be embedded on the

platforms and infrastructures with various placements based on the design requirements.

The hardware design of an acceleration device includes an Intellectual Property of

the Register Transistor Logic (RTL) logic circuit, processors (e.g., RISC) for general

purpose computing, along with firmware and microcodes to control and configure the

acceleration device, as well as internal memory and cache components. In general, all

the components that realize an acceleration function in a hardware acceleration device

141

are commonly referred to as “acceleration IP”.

The acceleration IP (a blue print of the hardware accelerator device) can be

embedded on a silicon chip with different placements: i) on-core, ii) on-CPU-die, iii)

on-package (socket chip), iv) on-memory, or v) on-I/O device (e.g., PCIe or USB),

as illustrated in Figure 3.16. The on-core, on-CPU-die, and on-package accelerator

placements are referred to as an “integrated I/O device”. Regardless of the accelerator

device placement, the CPU views the hardware accelerator as an I/O device (during

OS enumeration of the accelerator function) to maintain the application and software

flexibility.

The placement of a hardware accelerator is governed by i) the original ownership

of the acceleration IP, and ii) the IP availability and technical merit to the CPU

and memory manufacturers to have an integrated device embedded with the CPU

or memory module. The placement of an accelerator I/O device as an external

component to the CPU has the disadvantages of longer latencies and lower bandwidths

as compared to the on-core, on-die, on-package, or on-memory placement of a hardware

acceleration device as an integrated I/O device. On the other hand, the integrated

I/O device requires area and power on the core, die, or package.

Graphic Processing Unit (GPU)

CPUs have traditionally been designed to work on a serial set of instructions on data

to accomplish a task. Although the computing requirements of most applications

fit the computation method of CPUs. i.e., the serial execution of instructions, some

applications require a high degree of parallel executions. For instance, in graphic pro-

cessing, the display rendering across the time and spatial dimensions are independent

for the display data for each pixel. Serialized execution of instructions to perform

computations on each independent pixel would be inefficient, especially in the time

142

dimension.

Therefore, a new type of processing unit, namely, the General-Purpose Graphic

Processing Unit (GP-GPU) was introduced to perform a large number of independent

tasks in parallel, for brevity, we refer to a GP-GPU as a “GPU”. A GPU has a

large a number of cores, supported by dedicated cache and memory for a set of cores;

moreover, a global memory provides shared data access, see Fig. 3.17. Each GPU core

is equipped with integer and floating point operational blocks, which are efficient for

arithmetic and logic computations on vectored data. CPUs are generally classified

into RISC and CISC in terms of their IS features. In contrast, GPUs have a finite

set of arithmetic and logic functions that are abstracted into functions and are not

classified in terms of RISC or CISC. A GPU is generally considered as an independent

type of computing device.

To get a general idea of GPU computing, we present an overview of the GPU

architecture from Nvidia NVidia Fermi (2009) (see Fig. 3.17) which consists of Stream-

ing Multiprocessors (SMs), Compute Unified Device Architecture (CUDA) Core,

Load/Store (LD/ST) units, and Special Function Units (SFUs). A GPU is essentially

a set of SMs that are configured to execute independent tasks, and there exist several

SMs (e.g., 16 SMs) in a single GPU. An SM is an individual block of the execution

entity consisting of a group of cores (e.g., 32 cores) with a common register space

(e.g., 1024 registers), and shared memory (e.g., 64KB) and L1 cache. A core within an

SM can execute multiple threads (e.g., 48 threads). Each SM has multiple (e.g., 16)

Load/Store (LD/ST) units which allow multiple threads to perform LD/ST memory

actions per clock cycle. A GPU thread is an independent execution sequence on data.

A group of threads is typically executed in a thread block, whereby the individual

threads within the group can be synchronized and can cooperate among themselves

and with a common register space and memory.

143

For GPU programming, the CPU builds a functional unit called “kernel” which

is then sent to the GPU for instantiation on compute blocks. A kernel is a group of

threads working together to implement a function, and these kernels are mapped to

thread blocks. Threads within a block are grouped (e.g., 32 threads) into warps and

an SM schedules these warps on cores. The results are written to a global memory

(e.g., 16 GB per GPU) which can be then copied back to the system memory.

Special Function Units (SFUs) execute structured arithmetic or mathematical

functions, such as sine, cosine, reciprocal, and square root, on vectored data with

high efficiency. An SFU can execute only one function per clock cycle, per thread,

and hence should be shared among multiple threads. In addition to SFUs, a Texture

Mapping Unit (TMU) performs application specific functions, such as image rotate,

resize, add distortion and noise, and performs 3D plane object movements.

Packet processing is generally a serialized execution process because of the tempo-

rally ordered processing of packets. However, with several ongoing flows whereby each

flow is an independent packet sequence, GPUs can be used for parallelized execution of

multiple flows. Therefore, NF applications which operate on large numbers of packet

flows that require data intensive arithmetic and logic operations can benefit from

GPU acceleration.

Traditionally, GPUs have been connected through a PCIe interface, which can be

a bottleneck in the overall system utilization of the GPU for parallel task comput-

ing Li et al. (2019a). Therefore, Nvidia has proposed a new NVlink interconnect to

connect multiple GPUs to a CPU. Additionally, the NVSwitch is a fabric of intercon-

nects that can connect large numbers of GPUs for GPU-to-GPU and GPU-to-CPU

communication.

144

Field Programmable Gate Arrays (FPGA)

CPUs and GPUs provide a high degree of flexibility through programming frameworks

and through executing compiled executable code at run-time. To support such

programming frameworks, CPUs and GPUs are built to perform general-purpose

computing. However, in certain applications, in addition to programming flexibility

there is a greater requirement for performance which is typically achieved by dedicated

hardware. Field Programmable Gate Array (FPGA) architectures attempt to address

both requirements of programmability and performance Farooq et al. (2012). As

illustrated in Fig. 3.18, the main architectural FPGA blocks are: i) logic blocks, ii)

routing units, and iii) I/O blocks. Logic blocks are implemented as Compute Logic

Blocks (CLBs) which consist of Look-up Tables (LUTs) and flip-flops. These CLBs

are internally connected to form a matrix of compute units with a programmable

switching and routing network which eventually terminates at the I/O blocks. The

I/O blocks, in turn, connect to external system interconnects, such as the PCIe, to

communicate with the CPU and other system components.

The FPGA programming technology determines the type of device and the relative

benefits and disadvantages. The standard programming technologies are: i) Static

RAM, ii) flash, and iii) anti-fuse. Static-RAM (SRAM) is the most commonly

implemented and preferred programming technology because of its programming

flexibility and CMOS silicon design process for the FPGA hardware. In SRAM based

FPGA, static memory cells are arranged as an array of latches which should be

programmed on power up. The SRAM FPGAs are volatile and hence the main system

must load a program and configure the FPGA computing block to start the task

execution.

The flash technique employs non-volatile memory cells, which do not require the

145

main system to load the configuration after a power reset. Compared to SRAM

FPGAs, flash-based FPGAs are more power efficient and radiation tolerant. However,

flash FPGAs are cost ineffective since flash does not use standard CMOS silicon design

technology.

In contrast to the SRAM and flash techniques, the anti-fuse FPGA can be pro-

grammed only once, and offers lower size and power efficiency. Anti-fuse refers to the

programming method, where the logic gates have to be burned to conduct electricity;

while “fuse” indicates conduction, anti-fuse indicates the initial FPGA state in which

logic units do not exhibit conduction.

The programmable switching and routing network inside an FPGA realizes connec-

tivity among all the involved CLBs to complete a desired task through a complex logic

operation. As illustrated in Fig. 3.18, the FPGA switching network can be categorized

into two basic forms: i) island-style routing (Fig. 3.18(b)), and ii) hierarchical routing

(Fig. 3.18(c)). In island-style routing, Switch Boxes (SBs) configure the interconnect-

ing wires, and connect to a Connection Box (CB). CBs connect CLBs, whereas SBs

connect CBs. In a hierarchical network, multiple levels of CLBs connect to a first level

of SBs, and then to second level in a hierarchical manner. For better performance and

throughput, the island-style is commonly used. State-of-the-art FPGA designs have

transceiver I/O speeds above 28 Gbps, RAM blocks, and Digital Signal Processing

(DSP) engines to implement signal processing routines for packet processing.

NFs can significantly benefit from FPGAs due to their high degree of flexibility.

An FPGA can be programmed to accelerate multiple protocols or part of a protocol

in hardware, thereby reducing the overall CPU load. However, the data transactions

between the FPGA, NIC, and CPU need to be carefully coordinated. Importantly,

the performance gain from FPGA acceleration should exceed the overhead of packet

movement through the multiple hardware components.

146

Summary of Custom Accelerators

Custom accelerators provide the flexibility of programmability while striving to achieve

the hardware performance. Though there is gap in the degree of flexibility and

performance, technological progress has produced hybrid solutions that approach the

best of both worlds.

The GPU implementation Lee et al. (2010a) of NF applications is prudent when

there are numerous independent concurrent threads working on independent data. It

is important to keep in mind that GPU implementation involves a synchronization

overhead when threads want to interact with each other. A new GPU compute request

involves a kernel termination and the start of a new kernel by the CPU which can

add significant delays if the application was to terminate and restart frequently, or

regularly triggered for each packet event.

FPGA implementation provides a high degree of flexibility to define a custom

logic on hardware. However, most FPGAs are connected to the CPU through the

PCIe, which can be a bottleneck for large interactive computing between host CPU

and FPGA Koehler et al. (2008). The choice of programming technology, I/O

bandwidth, compute speed, and memory requirements of the FPGA determines which

NF applications can be accelerated on an FPGA to outperform the CPU.

A critical shortcoming of current custom accelerator technologies is their limited

effective utilization of GPUs and FPGAs on the platform during the runtime of

application tasks resulting from the heterogeneous application requirements. The

custom accelerators that are programmed with a characteristic (small part of an

overall NF) to assist the NF (e.g., TCP NF acceleration) are limited to perform the

programmed acceleration until they are reprogrammed with a different characteristic

(e.g., HTTPS NF acceleration). Therefore, static and dynamic reconfigurations of

147

custom accelerators can result in varying hardware accelerator utilization. One possi-

ble solution is to establish an open-source marketplace for the acceleration libraries,

software-packages, and application-specific binaries, to enable programmable accelera-

tors which can be reconfigured at runtime to begin acceleration based on dynamic

workload demands. One effort in this direction are the FPGA designs to support

dynamic run-time reconfiguration through binary files which are commonly referred

to as partial reconfiguration Intel Corporation (2020c) for run-time reconfiguration

processes, and personas Vipin and Fahmy (2018) for binary files. A further extension

of partial reconfiguration and personas is to enable applications to dynamically choose

personas based on application-specific hardware acceleration requirements for both

FPGAs and GPUs, and to have common task scheduling between CPUs and custom

accelerators.

3.3.5 Dedicated Accelerators

Custom GPU and FPGA accelerators provide a platform to dynamically design,

program, and configure the accelerator functionalities during the system run-time. In

contrast, the functionalities of dedicated accelerators are fixed and built to perform

a unique set of tasks with very high efficiency. Dedicated accelerators often exceed

the power efficiency and performance characteristics of CPU, GPU, and FPGA imple-

mentations. Therefore, if efficiency is of highest priority for an NF implementation,

then the NF computations should be offloaded to dedicated accelerators. Dedicated

hardware accelerators are implemented as an Application Specific Integrated Circuit

(ASIC) to form a system-on-chip. ASIC is a general technology for silicon design which

is also used in the FPGA silicon design; therefore, ASICs can be categorized as: i)

full-custom, which has pre-designed logic circuits for the entire function acceleration,

and ii) semi-custom, where only certain logic blocks are designed as an ASIC while

148

allowing programmability to connect and configure these logic blocks, e.g., through an

FPGA.

A dedicated accelerator offers no programming flexibility due to the hardware

ASIC implementation. Therefore, dedicated accelerators generally implement a set of

characteristics (small parts of overall NFs) that can used by heterogeneous applications.

For instance, for hardware acceleration of the AES-GCM encryption algorithm, this

specific algorithm can be programmed on an FPGA or GPU; in contrast, on a dedicated

accelerator there would be a list of algorithms that are supported, and we select a

specific algorithm based on the application demands.

A wide variety of dedicated hardware accelerators have been developed to accelerate

a wide range of general computing functions, e.g., simulations Xiao et al. (2019) and

graph processing Gui et al. (2019). To the best of our knowledge, there is no prior

survey of dedicated hardware accelerators for NFs. This section comprehensively

surveys dedicated NF hardware accelerators.

Cryptography and Compression Accelerator (CCA)

Cryptography encodes clear (plain-text) data into cipher-text with a key such that the

cipher-text is almost impossible to decode into clear data without the key. As data

communication has become an indispensable part of everyday living (e.g., medical care

and business activities), two aspects of data protection have become highly important:

i) privacy, to protect data from eavesdropping, and to protect the sender and receiver

information; and ii) data integrity to ensure the data was not modified by anyone other

than sender or receiver. One of the most widely known cryptography applications

in NF development is HTTPS Scheitle et al. (2018) for securing transmissions of

content between two NFs, such as VNF to VNF, Container Network Function (CNF)

to CNF, and CNF to VNF. While cryptography mechanisms address privacy and

149

integrity, compression addresses the data sparsity in binary form to reduce the size

of data by exploiting the source entropy. Data compression is widely used from

local storage to end-to-end communication for reducing disk space usage and link

bandwidth usage, respectively. Therefore, cryptography and compression have become

of vital importance in NF deployment. However, the downside of cryptography and

compression are the resulting computing requirement, processing latency, and data

size increase due to encryption.

Cavium Nitrox® Nitrox Marvell (2020) is a hardware accelerator from Cavium

(now Marvell) that is external to the CPU and connects via the PCIe to the CPU for

accelerating cryptography and compression NFs. The acceleration is enabled through

a software library that interfaces via APIs with the device driver and applications.

The APIs are specifically designed to support application and network protocol specific

security and compression software libraries, such as OpenSSL, OpenSSH, IPSec, and

ZLib. In a typical end-to-end implementation, an application makes a function call

(during process/thread execution on CPUs) to an application-specific library API,

which then generates an API call to the accelerator-specific library, which offloads

the task to the accelerator with the help of an accelerator-device driver on the OS.

Nitrox consists of 64 general-purpose RISC processors that can be programmed for

different application-specific algorithms. The processor cores are interconnected with

an on-chip interconnect (see Sec. 3.3.2) with several compression engine instances

to achieve concurrent processing. Nitrox acceleration per device achieves 40 Gbps

for IPsec, 300K Rivest-Shamir-Adleman (RSA) Operations/second (Ops/s) for 1024

bit keys, and 25 Gbps for GZIP/LZS compression along with support for single root

input/output virtualization (SR-IOV) ?Pitaev et al. (2018) virtualization.

150

Intel® Quick Assist Technology® Similarly, to address the cryptography and

compression computing needs, the Intel® Quick Assist Technology® (QAT) Intel

Corp. (2020b) provides a hardware acceleration for both cryptography and com-

pression specifically focusing on network security, i.e., encryption and decryption,

routing, storage, and big data processing. The QAT has been specially designed to

perform symmetric encryption and authentication, asymmetric encryption, digital

signatures, Rivest-Shamir-Adleman (RSA), Diffie-Hellman (DH), and Elliptic-curve

cryptography (ECC), lossless data compression (such as DEFLATE), and wireless

standards encryption (such as KASUMI, Snow3G and ZUC) Intel Corp. (2019c). The

QAT is also used for L3 protocol accelerations, such as IPSec, whereby the packet

processing for encryption and decryption of each packet is performed by the QAT.

A key differentiation of the QAT from Nitrox is the QAT support for CPU on-die

integrated device acceleration, such that the power efficiency and I/O performance

can be higher with the QAT as compared to the CPU-external Nitrox accelerator.

Data Streaming Accelerator (DSA)

The management of softwarized NF entities depends mainly on the orchestration

framework for the management of softwarized NFs. The management of softwarized

NFs typically includes the instantiation, migration, and tear-down (termination) of

NFs on GPC infrastructures. These NF management tasks are highly data driven as

the management process involves the movement of an NF image in the form of an

application executable, Virtual Machine (VM) image, or a container image from a

GPC node to another GPC node. Such an NF image movement essentially results

in a memory transaction operation on a large block of data, such as copy, duplicate,

and move, which is traditionally performed by a CPU. Therefore, to assist in these

CPU intensive memory operations, a dedicated hardware Data Streaming Accelerator

151

Table 3.4: Summary of Data Stream Accelerator (Dsa) Opcodes.

Operations Type Description

Move

Memory Transfer data from src. to dst. (range: main memory or MIMO)

CRC Generation Generate CRC checksum on the transferred data

DIF
Data Integrity Field (DIF) check

DIF insert, strip or update while data transfer

Dualcast Copy data simultaneously to two destination locations

Compare

Memory Two source buffers and return whether the buffers are identical

Delta Record Creator Contains the difference between the original and modified buffers

Delta Record Merge
Merge delta record with the original source buffer to produce a

copy of the modified buffer at the destination location

Pattern/Zero Detect
Special case of compare where instead of the second input buffer,

an 8-byte pattern is specified.

Flush Cache Evict all lines in given address range from all levels of CPU caches

(DSA) Intel Corp. (2019a) has been introduced. The DSA functions are summarized

in Table 3.4, and the internal DSA blocks have been illustrated in Fig. 3.20.

The DSA functions that are most relevant for NF management are:

i) The memory move function helps with moving an NF image from one memory

location to another within the DRAM of a system, or on an external disk

location.

ii) The dualcast function helps with simultaneously copying a NF image on memory

to multiple locations, for instance, for scaling up of VMs or containers to multiple

locations for load balancing.

iii) The memory compare function compares two memory regions and provides

feedback on whether the two regions match or not, and where (memory location)

the first mismatch occurs. This feature is useful for checking if a VM or container

152

image has been modified or updated before saving or moving the image to a

different location.

iv) The delta record creator function creates a record of differences between two

memory regions, which helps with capturing the changes between two VM

images. For instance, the delta record function can compare a running VM or

container with an offline base image on a disk. The offline base image will be

made to run by the OS, which has the running context. Then, we can save

the VM or container as a new “base” image, so as to capture changes during

run-time to be used later.

v) The delta record merge function applies the delta-record generated by the delta

record create function consisting of differences between two memory regions to

equate two of the involved memory regions. This function helps with VM and

container migration, whereby the generated delta-record can be applied to the

VM/Container base image to equate between running image at one node/location

to another, essentially migrating a VM/container.

High Bandwidth Memory (HBM)

The memory unit (i.e., DDR) is the closest external component to the CPU. The

memory unit typically connects to the CPU with a very high speed interconnect as

compared to all other external interconnects (e.g., PCIe) on the platform. While the

scaling of computing by adding more cores is relatively easy to design, the utilization

of larger memory hardware is fundamentally limited by the memory access speed over

the interconnect. Therefore, increasing the bandwidth and reducing the latency of the

interconnect determines the effective utilization of the CPU computing capabilities.

High Bandwidth Memory (HBM) Macri (2015) has been introduced by AMD® to

153

increase the total capacity as well the total access bandwidth between the CPU and

memory. For instance, the DDR5 with two memory channels supports peak speeds

of 51.2 GB/s per DRAM module; whereas, the latest HBM2E version is expected to

reach peak speeds of 460 GB/s. The increase in memory density and speed is achieved

through vertical DRAM die-stacking, up to 8 DRAM dies high. The resulting 3D

memory store cube is interconnected by a novel Through-Silicon Vias (TSVs) Jeddeloh

and Keeth (2012) technology.

Hardware Queue Manager (HQM)

The normal OS and application operations involve interactions of multiple processes

and threads to exchange information. The communication between processes and

threads involves shared memory, queues, and dedicated software communication

frameworks. NF applications share the packet data between multiple threads to

process multiple layers of the networking protocol stack and applications. For instance,

the TCP/IP protocol functions are processed by one process, while the packet data

is typically exchanged between these processes through dedicated or shared queues.

Dedicated queues require large memory along with queue management mechanisms.

On the other hand, shared queues require synchronization between multiple threads

and processes while writing and reading from the shared queue. Allocating a dedicated

queue to every process and thread is practically impossible; therefore, in practice,

despite the synchronization requirement, shared queues are extensively used because

of their relatively easy implementation and efficient memory usage. However, as

the number of threads and processes accessing a single shared queue increases, the

synchronization among the threads to write and read in sequence incurs significant

delays and management overhead.

The Hardware Queue Manager (HQM) accelerator Power et al. (2019); Wang

154

et al. (2017b) proposed by Intel® implements the shared and dedicated queues in

hardware to exchange data and information between threads and processes. The

HQM implements hardware queue instances as required by the applications such

that multiple producer threads/processes write to queues, and multiple consumer

threads/processes read from queues. Producer threads/processes generate the data

that can be intended for multiple consumer threads/processes. The HQM delivers

the data then to the consumer threads for data consumption following policies that

optimize the consumer thread selection based on power utilization McDonnell et al.

(2019), workload balancing, and availability. The HQM can also assist in the scheduling

of accelerator tasks by the CPU threads and processes among multiple instances of

hardware accelerators.

Summary of Dedicated Accelerators

Dedicated accelerators provide the highest performance both in terms of throughput

and latency along with power savings due to the efficient ASIC hardware imple-

mentation as compared to software execution. The common downsides of hardware

acceleration are the cost of the accelerator support and the lack of flexibility in terms

of programming the accelerator function.

A critical pitfall of dedicated accelerators is the limitation of hardware capabilities.

For instance, a dedicated cryptography and compression accelerator only supports

a finite set of encryption and compression algorithms. If an application demands a

specific algorithm that is not supported by the hardware, then acceleration has to

fallback to software execution which may increase the total execution cost even with

the accelerator.

Another key pitfall is to overlook the overhead of the hardware offloading process

which involves memory transactions from the DRAM to the accelerator for computing

155

and for storing the result. If the data computation that is being scheduled on an

accelerator is very small, then the total overhead of moving the data between the

accelerator and memory might outweigh the offloading benefit. Therefore, an offload

engine has to determine whether it is worthwhile to use an accelerator for a particular

computation.

Dedicated accelerators perform a finite set of operations very efficiently in hardware

as opposed to software implementations running on the CPU. Therefore, the limitations

of current dedicated accelerators are: i) acceleration support for only a finite set of

operations, and ii) finite acceleration capacity (i.e., static hardware resources). One

way to address these limitations is to design heterogeneous modules within a dedicated

hardware accelerator device to support a large set of operations. Also, the dedicated

hardware accelerator device should have increased hardware resources; however, the

actually utilized hardware modules (within the device) should be selected at run-time

based on the application requirements to operate within supported I/O link capacities

(e.g., PCIe).

3.3.6 Infrastructure

SmartNIC

The Network Interface Card (NIC, which is also referred to as Network Interface

Controller) is responsible for transmitting and receiving packets to and from the

network, along with the processing of the IP packets before they are delivered to the

OS network driver for further processing prior to being handed over to the application

data interpretation. Typical network infrastructures of server platforms connect a

GPC node with multiple NICs. The NICs are external hardware components that

are connected to the platform via the PCIe interfaces. NICs implement standard

156

physical (PHY, Layer 1), data link (MAC, Layer 2), and Internet Protocol (IP, Layer

3) protocol layer functions. The IP packets are transported from the local memory of

the PCIe device to the system memory as PCIe transactions in the network downlink

direction (i.e., from the network to the application).

If there is an accelerator in the packet processing pipeline, e.g., for decrypting an

IP Security (IPSec) or MAC Security (MACSec) packet, the packet needs to be copied

from the system memory to the accelerator memory once the PCIe DMA transfer to

the system memory is completed. The system memory to accelerator memory copying

adds an additional memory transfer step which contributes towards the overhead in

the overall processing pipeline. Embedding an acceleration function into the NIC

allows the packets to be processed as they arrive from the network at the NIC while

avoiding this additional memory transfer step, thereby improving the overall packet

processing efficiency.

A Smart-Network Interface Controller (SmartNIC) Le et al. (2017); Eran et al.

(2019) not only implements dedicated hardware acceleration at the NIC, but also

general-purpose custom accelerators, such as FPGA units, which can be programmed

to perform user defined acceleration on arriving packets. FPGAs on SmartNICs can

also be configured at run-time, resulting in a dynamically adaptive packet processing

engine that the responsive to application needs. An embedded-Switch (eSwitch) is

another acceleration function that implements a data link layer (Layer 2) switch

function on the SmartNIC to forward MAC frames between NIC ports. This method

of processing the packets as they arrive at the NIC is also termed “in-line” processing,

whereas the traditional method with the additional memory transfer to the accelerator

memory is termed “look-aside” processing. In addition to programmability, the current

state-of-the-art SmartNICs are capable of very high-speed packet processing on the

order of 400 Gbps Choi et al. (2019b) while supporting advanced protocols, such as

157

Infiniband and Remote-DMA (RDMA) Chen et al. (2016).

Non-Transparent Bridge (NTB)

A PCIe bridge (or switch) connects different PCIe buses and forwards PCIe packets

between buses, whereby buses are typically terminated with an endpoint. As opposed

to a PCIe bridge, a Non-Transparent Bridge (NTB) Regula (2004) extends the PCIe

connectivity to external platforms by allowing two different platforms to communicate

with each other. The “Non-Transparent” properties are associated with the NTB in

that CPUs that connect to an NTB appear as endpoints to each other More specifically,

for the regular bridge, all components, e.g., memory, I/O devices, and system details,

on either side of the regular bridge are visible to either side across the regular bridge.

In contrast, with the non-transparent bridge, one side can only interact with the CPU

on other side; CPUs on either side do not see any I/O devices, nor the Root Ports

(RPs) at the other side. However, the “non-transparent bridge” itself is visible to the

OS running on either side.

A PCIe memory read or write instruction translates to a memory access from a

peer node, thereby enabling platform-to-platform communication. The NTB driver

on an OS can be made aware to use doorbell (i.e., interrupt) notifications through

registers to gain the remote CPU’s attention. A set of common registers are available

to each NTB endpoint as shared memory for management.

The NTB benefits extend beyond the support of the PCIe connectivity across

multiple platforms; more generally, NTB provides a low-cost implementation of remote

memory access, can seek CPU attention on another platform, can offload computations

from one CPU to another CPU, and gain indirect access to remote peer resources,

including accelerators and network connectivity. The NTB communication over the

underlying PCIe supports higher line-rate speeds and is more power efficient than

158

traditional Ethernet/IP connectivity enabled by NICs; therefore NTB provides an

economical solution for short distance communication via the PCIe interfaces. One of

the key application of NTB for NF applications is to extend the NTB to support RDMA

and Infiniband protocols by running as a Non-Transparent RDMA (NTRDMA).

Summary of Infrastructure

Infrastructure enables platforms to communicate with external computing entities

through Ethernet/IP, SmartNIC, and NTB connections. As NF applications highly

dependent on communication with other nodes, the communication infrastructure

should be able to flexibly reconfigure the communications characteristics to the

changing needs of applications. The SmartNIC is able to provide support for both NIC

configurability and acceleration to offload CPU computations to the NIC. However,

the SmartNIC should still be cost efficient in improving overall adaptability. The

programmability of custom acceleration at the NIC should not incur excessive hardware

cost to support a wide range of functions ranging from security to switching, and to

packet filtering applications

In contrast to the SmartNIC, the NTB is a fixed implementation that runs

on the PCIe protocol which supports much higher bandwidth than point-to-point

Ethernet connections; however, the NTB is limited to a very short range due to the

limited PCIe bus lengths. Additional pitfalls of acceleration at the SmartNIC include

misconfiguration and offload costs for small payloads.

Traditionally, infrastructure design has been viewed as an independent development

domain that is decoupled from the platform components, mainly CPU, interconnects,

memory, and accelerators. For instance, SmartNIC design considerations, such as

supported bandwidth and protocol technologies (e.g., Infiniband), traditionally do

not consider the CPU architectural features, such as Instruction Set Acceleration

159

(ISAcc, Section 3.3.1), or system memory capabilities, such as NV-NAND persistent

memory (Section 3.3.3). As a result, there is a heterogeneous landscape of platform

and infrastructure designs, whereby future infrastructure designs are mainly focused

on programmable data paths and supporting higher bandwidth with lower latencies.

An interesting future development direction is to exploit synergies between platform

component and infrastructure designs to achieve cross-component optimizations. Cross-

component design optimizations, e.g., in-memory infrastructure processing or ISAcc

for packet and protocol processing, could potentially improve the flexibility, latency,

bandwidth, and power efficiencies.

3.3.7 Summary and Discussion

In Sec. 3.3 we have surveyed enabling technologies for platform and infrastructure

components for the deployment of NFs on GPC infrastructures. A critical pitfall of NF

softwarization is to overlook strict QoS constraints in the designs; QoS constraints are

critical as software entities dependent on OSs and hypervisors for resource allocation

to meet performance demands. OSs are traditionally designed to provide best effort

services to applications which could severely impede the QoS of NF applications in

the presence of saturated workloads on the OS.

CPU strategies, such as ISAcc, CPU pinning, and CPU clock frequency speed-

ups enable NFs to achieve adequate performance characteristics on GPC platforms.

Along with CPU processing enhancements, memory access to load and store data for

processing by the CPU can impact the overall throughput and latency performance.

Memory access can be improved with caching and higher CPU-to-memory interconnect

bandwidth. Cache coherency is a strategy in which caches at various locations, such as

multiple cache levels across cores and PCIe device caches, are updated with the latest

updates of modified data across all the caches. Cache coherency across multiple cores

160

within the same socket is maintained by 2D mesh interconnects (in case of Intel®) and

Scalable Data Fabric (SDF) (in case of AMD®). Whereas, coherency across sockets is

achieved through UPI interconnects, and for I/O devices through AXI ACL or CXL

links.

The DDR5 and PCIe Gen5 provide high bandwidths for large data transactions

to effectively utilize compute resources at CPUs as well as custom and dedicated

accelerators. NV-NAND technology provides cost effective solutions for fast non-

volatile memory that can be used as an extension to DRAM, second-level memory for

DRAM, or as a storage unit assisting both CPU and accelerators in their computing

needs. In-Memory accelerators extend the memory device to include accelerator

functions to save the data transfer time between accelerator and memory device. A

custom accelerator GPU provides programmability for high performance computing for

concurrent tasks, while an FPGA provides close to hardware level performance along

with high degrees of configurability and flexibility. In contrast to custom accelerators,

dedicated accelerators provide the best performance at the cost of reduced flexibility.

Based on all the enabling technologies offered on a platform, an NF function design

should comprehensively consider the hardware support to effectively run the application

to achieve the best performance.

3.4 Research Studies on Hardware-Accelerated Platforms and Infrastructures for NF

Implementation

This section surveys the research studies on hardware-accelerated platforms and

infrastructures for implementing NFs. While the enabling technologies provide the

underlying state-of-the-art techniques to accelerate NFs, we survey the enhancements

to the enabling technologies and the investigations of the related fundamental trade-

offs in the research domain in this section. The structure of this section follows our

161

classification of the research studies as illustrated in Fig. 3.23.

3.4.1 Computing Architecture

The computing architecture advances in both CISC and RISC directly impact the

execution of software, such as applications and VMs that implement NFs. The CISC

architecture research has mainly focused on enhancing performance, while the RISC

architecture research has mainly focused on the power consumption, size of the chip,

and cost of the overall system.

CISC

Generally, computing architecture advances are driven by corporations that dominate

the design and development of computing processors, such as AMD®, Intel®, and

ARM®. One such enhancement was presented by Clark et al. of AMD® Clark (2016);

? who designed a new Zen computing architecture to advance the capabilities of the x86

CISC architecture, primarily targeting Instruction Set (IS) computing enhancements.

The Zen architecture aims to improve CPU operations with floating point computations

and frequent cache accesses. The Zen architecture includes improvements to the core

engine, cache system, and power management which improve the instruction per cycle

(IPC) performance up to 40%. Architecturally, the Zen architecture core comprises

one floating point unit and one integer engine per core. The integer clusters have

six pipes which connect to four Arithmetic Logic Units (ALUs) and two Address

Generation Units (AGUs), see Fig. 3.24.

The ALUs collaborate with the L1-Data (L1D) cache to perform the data computa-

tions, while the Address Generation Units (AGUs) collaborate with the L1-Instruction

(L1-I) cache to perform the address computations. Table 3.5 compares the cache sizes

and access ways of different state-of-the-art x86 CISC architectures. The enhancements

162

of the Zen architecture are applied to the predecessor family of cores referred to as

AMD® Bulldozer; the Zen implements address computing to access system memory

based on AGUs with two 16-byte loads and one 16-byte store per cycle via a 32 KB

8-way set associative write-back L1D cache. The load/store cache operations in the

Zen architecture have exhibited lower latency compared to the AMD® Bulldozer cores.

This unique Zen cache design allows NF workloads to run in both high precision and

low precision arithmetic based on the packet processing computing needs. For instance,

applications involving low precision computations, such as packet scheduling, load

balancing, and randomization can utilize the integer based ALU; while high precession

computing for traffic shaping can run on the floating point ALUs.

RISC

In contrast to the CISC architectures which focus typically on large-scale general-

purpose computations, e.g., for laptop, desktop, and server processors, the RISC

architectures have typically been adopted for low-power processors for applications

that run on hand-held and other entertainment devices. Concomitantly, the RISC

architecture has typically, also been adopted for small auxiliary computing units

for module controllers and acceleration devices. The RISC architecture provides a

supportive computing framework for designing acceleration computing units that are

traditionally implemented as custom accelerators, such as the Intel® QAT® and DSA

(see Sec. 3.3.5), due to the power and space efficient RISC architectural characteristics.

Typically, network applications involve direct packet processing at the NIC to

support line-rate speeds. To address the present needs of NFs, specifically with the

proliferation of Software Defined Networking (SDN), reconfigurable compute hardware

is almost a necessity. However, reconfigurable computing infrastructures reserve a

fraction of the hardware resources to support flexibility while dedicated computing

163

Table 3.5: Cache Technologies Directly Impact the Memory Access Times Which Are

Critical for Latency-sensitive Networking Applications As Well as for Delivering Ultra

Low Latencies (Ull) as Outlined in The 5g Standards. The State-of-art Enhancements

to Cache Technologies Are Compared in the Table, Whereby Larger Cache Sizes and

Larger Cache Access Ways, Improve the Capabilities of the Processor To Support Low

Latency Workloads. The L1 Instruction (L1i) Cache Allows the Instructions That

Correspond to Nf Application Tasks To Be Fetched, Cached, and Executed Locally on

the Core, While the L1 Data (L1d) Cache Supports the Corresponding Data Caching.

Cache

Level

Bulldozer®

FX-8150
ZEN®

Broadwell-E®

i7-6950X

Skylake®

i7-6700K

L1l
64 KB 2-Way

per module
64 KB 4−Way 32 KB 8−way 32 KB 8−way

L1D
16 KB 2-Way

Write Through

32 KB 2-Way

Write Back

32 KB 8-Way

Write Back

32 KB 8-Way

Write Back

L2
2 MB 16-Way

per module
512 KB 8-way 256 KB 8-way 256 KB 4-way

L3
1 MB/core

64-way

1/2 MB/core

16-way

2.5 MB/core

16/20-way

2 MB/core

16-way

infrastructures (i.e., proprietary networking switches and gateways) utilize the entire

hardware resources for computing purposes. To address this challenge of retaining

flexibility to reconfigure as well as achieving effective hardware resource utilization,

Pontarelli et al. Pontarelli et al. (2019) have proposed a Packet Manipulation Processor

(PMP) specifically targeting line-rate processing based on the RISC architecture. The

RISC compute architecture is adapted to perform fast match operations in an atomic

164

way, while still being able to reconfigure (update) the matching table, thus allowing

programmability of routing and forwarding functions. Fig. 3.25 illustrates the RISC

based PMP processor functional blocks tailored to perform packet processing. A

given packet is parsed and passed through several matching tables before finally being

processed by the PMP array to be transmitted over the link. The PMP array feeds

back the criteria for matching and selection to the ingress input mixer.

Moving routine software tasks, such as NF packet processing, from the CPU to

dedicated hardware lowers overheads and frees up system resources for general-purpose

applications. However, large scale distributed applications, such as big data analysis

and data replications, are considered as user space applications, and decoupled from

the packet processing framework (e.g., Ethernet, switches and routers). As a result,

the replication of data across a large number of compute and storage network platforms

would consume large amounts of network bandwidth and computing resources on the

given platform involved in data replication, storage, and processing tasks. To address

this problem, Choi et al. Choi et al. (2019a) have proposed a data-plane data replication

technique that utilizes RISC based processors to perform the data replication. More

specifically, a SmartNIC consisting of 56 RISC processors implements data plane

functions to assist in the overall end-to-end data-replication at the application layer.

The proposed framework involves three components: i) a master node that requests

replications using store and retrieve, ii) a client node that assists in maintaining

connections, and iii) data plane witnesses that store and retrieve the actual data.

The RISC computations are optimized to perform the simultaneous operations of

replication, concurrent with packet parsing, hashing, matching, and forwarding. A

testbed implementation showed significant benefits from the RISC based SmartNIC

approach as compared to software implementation: the data path latency is reduced

to nearly half and the overall system throughput is increased 6.7-fold.

165

Focusing on validation and function verification of NF application hardware archi-

tectures, Herdt et al. Herdt et al. (2019) have proposed a framework to test software

functions (which can be extended to NFs) on RISC architectures. The proposed

Concolic Testing Engine (CTE) enumerates the parameters for the software functions

which can be executed over an instruction set simulator on a virtual prototype emu-

lated as a compute processor. The evaluations in Herdt et al. (2019) employed the

FreeROTS TCP/IP network protocol layer stack for NF testing to effectively identify

security vulnerabilities related to buffer overflows.

NFs are supported by OS services to meet their demands for packet processing. As

a result, NF applications running on computing hardware (i.e., a CPU) rely on OS task

scheduling services. However, as the number of tasks increases, there is an increased

overhead to align the tasks for scheduling to be run on CPU based on scheduling

policies, especially in meeting strict latency deadlines for packet processing. Some

of the mitigation techniques of scheduling overhead involve using simple scheduling

strategies, such as round robin and random selection, or to accelerate the scheduling

in hardware. While hardware accelerations are promising, the communication between

the CPU and the acceleration component would be a limiting factor. One way to reduce

the communication burden between the CPU and the acceleration component is to

enable the CPU to implement scheduling using Instruction Set (IS) based accelerations

as proposed by Morais et al. Morais et al. (2019). Morais et al. Morais et al. (2019)

have designed a RISC based CPU architecture with a custom instruction as part of

the IS to perform scheduling operations for the tasks to be run by the OS on the CPU.

A test-bed implementation demonstrated latency reductions to one fifth for an 8-core

CPU compared to serial task executions. NF applications typically run in containers

and VMs on a common infrastructure that require highly parallel hardware executions.

The proposed IS based optimization of task scheduling can help in enforcing time

166

critical latency deadlines of tasks to run on CPUs with low overhead.

Multi-Core Optimization

Most systems that execute complex software functions are designed to run executions

in concurrent and parallel fashion on both single and multiple computing hardware

components (i.e., multi-core processors). A key aspect of efficient multi-core systems

is to effectively schedule and utilize resources. Optimization techniques are necessary

for the effective resource allocation based on the system and application needs. On a

given single core, Single Instruction Multiple Data (SIMD) instructions within a given

compute architecture (i.e., RISC or CISC) allow the CPU to operate on multiple data

sets with a single instruction. SIMD instructions are highly effective in the designs

of ultra-fast Bloom filters which are used in NF applications, such as matching and

detecting operations relevant to the packet processing Lu et al. (2018). Due to the

nature of multiple data sets in the SIMD instruction, the execution latency is relatively

longer compared to single datasets.

In an effort to reduce the execution latency, Zhou et al. Zhou et al. (2018) have

proposed a latency optimization for SIMD operations in multi-core systems based on

Ant-Colony Optimization (ACO). The Zhou et al. Zhou et al. (2018) ACO maps each

core to an ant while the tour construction is accelerated by vector instructions. A

proportionate selection approach named Vector-based Roulette Wheel (VRW) allows

the grouping of SIMD lanes. The prefix sum for data computations is evaluated in

vector-parallel mode, such that the overall performance execution time can be reduced

across multiple cores for SIMD operations. The evaluations in Zhou et al. (2018)

indicate 50-fold improvements of the processing speed in comparison to single-thread

CPU execution. NF applications can greatly benefit from SIMD instructions to achieve

ultra-low latency in packet processing pipelines.

167

Latencies in multi-core systems affect the overall system performance, especially

for latency-critical packet processing functions. In multi-core systems, the processing

latencies typically vary among applications and cores as well as across time. The

latencies in multi-core systems depend strongly on the last level cache (LLC). Therefore,

the LLC design is a very important issue in multi-core systems. Wang et al. Wang

et al. (2016b) have proposed a latency sensitivity-based cache partitioning (LSP)

framework. The LSP framework, evaluates a latency-sensitivity metric at runtime to

adapt the cache partitioning. The latency-sensitivity metric considers both the cache

hit rates as well as the latencies for obtaining data from off-chip (in case of cache

misses) in conjunction with the sensitivity levels of applications to latencies. The LLC

partitioning based on this metric improves the overall throughput by an average of

8% compared to prior state-of-the-art cache partitioning mechanisms.

Core Power and Performance

While it is obvious that multi-core systems consume higher power compared to single-

core systems, the system management and resource allocation between multiple cores

often results in inefficient power usage on multi-core systems. Power saving strategies,

such as power gating and low power modes to put cores with no activity into sleep

states, can mitigate energy wastage. NF applications require short response times

for processing the incoming packets. Short response times can only be ensured if the

processing core is in an active state to immediately start the processing; whereas, from

a sleep state, a core would have to go through a wake-up that would consume several

clock cycles.

The energy saving technique proposed by Papadimitriou et al. Papadimitriou et al.

(2017) pro-actively reduces the voltage supplied to the CPUs (specifically, ARM®

based cores) of a multi-core system without compromising the operational system

168

characteristics. In the case of too aggressive reduction of the voltage level supplied

to CPUs, uncorrectable system errors would lead to system crashes. Therefore, a

sustainable level of voltage reduction just to keep the core active at all times even

when there is no application processing can be an identified by analyzing the system

characterizations. The evaluations in Papadimitriou et al. (2017) based on system

characterizations show that energy savings close to 20% can be achieved, and close to

40% savings can be achieved if a 25% performance reduction is tolerated.

A more robust way to control the power characteristics is through dynamic fine-

grained reconfiguration of voltage and frequency. However, the main challenge in

dynamic reconfiguration is that different applications demand different power scaling

and hence the requirements should be averaged across all applications running on a

core. Dynamic runtime reconfiguration of voltage and frequency is typically controlled

by the OS and the system software (i.e., BIOS, in case of thermal run-off). On top of

reconfiguration based on averaged requirements, there would still be some scope to

improve the overall voltage and frequency if the run-time load can be characterized in

advance before the processes are scheduled to run on the cores. Bao et al. Bao et al.

(2016) have proposed several such techniques where the power profile is characterized

specifically for each core, which is then used for voltage and frequency estimations

based on the application needs. Subsequently, Bao et al. Bao et al. (2016) have

evaluated power savings based on profiling of both core power characterizations and

the application run-time requirements. The evaluations have shown significant benefits

compared to the standard Linux power control mechanism.

More comprehensive search and select algorithms for the optimal voltage and

frequency settings for a given core have been examined by Begum et al. Begum et al.

(2016). Begum et al. Begum et al. (2016) have broadly classified the algorithms

into: i) search methods: exhaustive and relative, and ii) selection methods: best

169

performance and adaptive. Exhaustive search sweeps through the entire configuration

space to evaluate the performance. Relative search modifies the current configuration

and monitors the relative performance changes with the overall goal to incrementally

improve the performance. In the best performing selection, the configuration is tuned

in a loop to identify the configuration that results in the best performance; whereas,

in adaptive selection, the tuning is skipped, and configuration values are applied

to achieve a performance within tolerable limits. NF applications can utilize these

techniques based on the application needs so as to meet either a strict or a relaxed

deadline for packet processing.

Other strategies to support the power and performance characteristics of NF

applications, in addition to dynamic voltage and frequency include CPU pinning, as

well as horizontal and vertical scaling. CPU pinning corresponds to the static pinning

of applications and workloads to a specific core (i.e., no OS scheduling of process).

Horizontal scaling increases the resources in terms of the number of allocated systems

(e.g., number of allocated VMs), while vertical scaling increases the resources for a given

system (e.g., VM) in terms of allocated CPU core, memory, and storage. Krzywda

et al. Krzywda et al. (2018) have evaluated the relative power and performance

characteristics for a deterministic workload across voltage, frequency, CPU pinning,

as well as horizontal and vertical scaling. Their evaluations showed a marginal power

improvement of about 5% for dynamic voltage and frequency in underloaded servers;

whereas on saturated servers, 20% power savings can be achieved at the cost of

compromised performance. Similarly, CPU pinning was able to reduce the power

consumption by 7% at the cost of compromised performance. The horizontal and

vertical scaling reduced latencies, however only for disproportionately large amounts

of added resources. Krzywda et al. also found that load balancing strategies have a

relatively large impact on the tail latencies when horizontal scaling (i.e., more VMs)

170

are employed.

Power and performance is a critical aspect to NF applications in meeting the latency

demands, and therefore should be carefully considered while balancing between power

savings and achieving the highest performance. Aggressive power saving strategies can

lead to system errors due to voltage variations, which will cause the system to hang

or reboot. Allowing applications to control the platform power can create isolation

issues. For instance, a power control strategy applied by one application, can affect

the performance of other applications. This vulnerability could lead to catastrophic

failures of services as multiple isolated environments, such as containers and VMs,

could fail due to an overall system failure.

CPU-FPGA

Reconfigurable computing allows compute logic to be modified according to the

workload (application) needs to achieve higher efficiency as compared to instruction

set (IS) based software execution on a general-purpose processor. Matthews et

al. Matthews and Shannon (2017) (see Fig. 3.26) have proposed a design enhancement

called Taiga for the RISC-V (pronounced “RISC-Five”) architecture, an open source

RISC design. In their design enhancement, the IS processor core is integrated with

programmable custom compute logic (i.e., FPGA) units, which are referred to as

reconfigurable function units. The processor supports a 32 bit base IS capable of

multiply and divide operations. Reconfigurable function units can be programmed

to have multiple functions that can be defined during run time, and can then be

interfaced with the main processors. This approach can lead to a high degree of

Instruction Level Parallelism (ILP) supported by a fetch logic and load store unit that

are designed with translation look-aside buffers (TLBs) and internal cache support.

Different variants have been proposed, e.g., a full configuration version which has

171

1.5× the minimum configuration version resources based on the overall density of

Look Up Tables (LUTs), hardware logic slices, RAM size, and DSP blocks. The

evaluations in Matthews and Shannon (2017) successfully validated the processor

configurations and identified the critical paths in the design: The write-back data

path is the critical path in the minimum configuration system, and the tag hit circuit

for address translations through the TLB is the critical path for the full configuration

version.

An FPGA component can be interfaced with the main compute component (i.e.,

core) in the CPU through multiple interfaces. If the FPGA is placed on the fabric that

connects to the core, then the applications can benefit from the data locality and cache

coherency with the DRAM and CPU. If the FPGA is interfaced with the compute

component (core) through a PCIe interface, then there is a memory decoupling, i.e.,

the device-specific FPGA internal memory is decoupled from CPU core memory

(system memory DRAM). Hence, there are significant latency implications in each

model of FPGA interfacing with the CPU based on FPGA presence on the core-mesh

fabric or I/O interfaces, such as PCIe and USB. Choi et al. Choi et al. (2016) have

quantitatively studied the impact of the FPGA memory access delay on the end-to-end

processing latency. Their study considers the Quick Path Interconnect (QPI) as

FPGA-to-core communication path in case of FPGA presence on the processor die

(coherent shared memory between CPU and FPGA) and the PCIe interface (private

independent memory for both CPU and FPGA) for the external (FPGA) device

connectivity. Their evaluations provide insights into latency considerations for meeting

application demands. In summary, for the PCIe case, the device to CPU DMA latency

is consistently around 160 µs. For the QPI case, the data access through the (shared)

cache results in latencies of 70 ns and 60 ns for read and write hits, respectively.

The read and write misses correspond to system memory accesses which result in

172

355 ns and 360 ns for read and write miss, respectively. The latency reduction from

160 µs down to the order of 70 to 360 ns is a significant improvement to support NF

applications, especially NF applications that require ultra-low latencies on the order

of sub-microseconds.

Abdallah et al. Abdallah et al. (2019) (see Fig. 3.27) have proposed an interesting

approach to commonly schedule the tasks among heterogeneous compute components,

such as CPU and FPGA. This approach allows a software component to use the

compute resources based on the relative deadlines and compute requirements of the

applications. Genetic algorithms, such as chromosome assignment strategies and

a Modified Genetic Algorithm Approach (MGAA), have been utilized to arrive at

combinatorial optimization solutions. The goal of the optimization is to allocate tasks

across Multi-Processor SoC (MPSoC) for maximizing the resource utilization and

minimizing the processing latency of each task. Their evaluations show that common

scheduling across heterogeneous compute processors not only improves the application

performance, but also achieves better utilization of the computing resources. Their

work can be extended to different types of computing resources other than FPGA,

such as GPU and ASICs.

NF applications are particularly diverse in nature with requirements spanning from

high throughput to short latency requirements; effectively utilizing the heterogeneous

computing resources is a key aspect in meeting these diverse NF demands. For

instance, Owa et al. Owaida et al. (2019) have proposed an FPGA based web search

engine hardware acceleration framework, which implements the scoring function as a

decision tree ensemble. A web search engine involves processing pipelined functions of

computing, scoring, and ranking potential results. The optimization of these pipelines

involves reducing intermediate data transfers and accelerating processes through

hardware. Evaluations based on optimizations on FPGA based hardware accelerations

173

show a two-fold performance improvement compared to CPU solutions.

In another example, Kekely et al. Kekely et al. (2020) proposed an FPGA based

packet classification (matching) hardware acceleration to increase the system through-

put. Typically, the packet processing pipelines are implemented in parallel to match

several packets in one clock cycle so as to decrease the process latency. However,

parallel computations require dedicated resources when accelerating on FPGA, de-

creasing the overall system throughput. Therefore, Kekely et al. Kekely et al. (2020)

have implemented a hashing based exact match classification on FPGA which can

match packets in parallel while utilizing less resources (e.g., memory). As compared

to the baseline FPGA implementation, the results show up to 40% memory savings

while achieving 99.7% of the baseline throughput.

The performance of an end-to-end application running on an FPGA accelerated

system depends on both software and hardware interactions. The overall performance is

dictated by the bottlenecked functions which may exist in both software and hardware

sub-components. Since it is challenging to run an application and then profile the

performance metrics across various processing stages, Karandikar et al. Karandikar

et al. (2020) have proposed FirePerf, an FPGA-Accelerated hardware simulation

framework. FirePerf performs a hardware and software performance profiling by

inserting performance counters in function pipelines such that processing hot spots can

be identified so as to find the system bottleneck. FirePerf is an out-of-band approach

in which the actual simulation process does not impact the running application.

The capabilities of FirePerf were demonstrated for an RISC-V Linux kernel-based

optimization process which achieved eight-fold improved network bandwidth in terms

of application packet processing.

174

CPU-GPU

Similar to the study by Abdallah et al. Abdallah et al. (2019), Nie et al. Nie et al.

(2019) (see Fig. 3.28) have proposed a task allocation strategy to schedule tasks

between heterogeneous computing resources, specifically, CPU and GPU. While a

GPU is a general-purpose compute processor designed to execute parallel threads that

are independent of each other, not all workloads (application requirements) are suited

for parallel execution. For instance, NF applications that simultaneously perform

relatively simple operations on multiple packet flows can run in parallel processing

threads entirely on GPUs Yi et al. (2017). However, the performance characterizations

by Yi et al. Yi et al. (2017) considered the performance of a GPU alone to show the

benefits in comparison to a CPU (but not the performance of the GPU in conjunction

with a CPU).

Generally, a given workload cannot be categorized into either fully parallel threaded

or fully single threaded in a strict sense. Therefore, there is a scope for task parti-

tioning into parallel and single-threaded sub-tasks Mardani et al. (2013); whereby a

given task is split into two different task types, namely task types suitable for GPU

(parallel threaded) execution and task types for CPU (single-threaded) execution. The

evaluation of the task partitioning method proposed in Mardani et al. (2013) considers

adaptive Sparse Matrix-Vector multiplication (SpMV). A given task is divided into

multiple slave processes and these slave processes are scheduled to run either on

a CPU or on a GPU depending on the needs of these slave processes. The task

computing on the GPU is limited by the data movement speeds between CPU system

memory (DRAM) and GPU global memory. To overcome this limitation, the proposed

architecture involves double buffering in either direction of the data flow (into and

out of the GPU) as well as on either side of the memory regions, i.e., CPU DRAM

175

and GPU global memory. The evaluations indicate 25% increases in the total number

of (floating point) operations. Sparse matrix computations are widely used in NF

applications, specifically for anomaly detection in traffic analysis Mardani et al. (2013)

which is applied in packet filtering and DoS attack mitigation.

Summary of Computing Architectures

The computing architecture of a platform defines its computing performance for given

power characteristics. Some applications, such as data collection and storage, can

tolerate some performance degradations (resulting from CPU load) and are not latency

sensitive; whereas, other applications, e.g., the sensor data processing for monitoring

a critical event, are both latency and performance sensitive. Generally, the power

constraints on the platform are decoupled from the applications. More specifically, the

platform initiatives, such as changes of the CPU characteristics, e.g., reduction of the

CPU operational frequency to conserve battery power, are generally not transparent

to applications running on the CPU. As a result, the applications may suffer from

sudden changes of the platform computing performance without any prior notifications

from the platform or the OS. Future research should make the platform performance

characteristics transparent for the application such that applications could plan ahead

to adapt to changing platform characteristics.

Typically, the platform cores are designed following a homogeneous computing ar-

chitecture type, i.e., either CISC or RISC. Accordingly, the applications are commonly

compiled to run optimally on a specific architecture type. Several studies Venkat

et al. (2019); Venkat and Tullsen (2014); Pan and Naeemi (2015) have investigated

heterogeneous architectures that combine both CISC and RISC computing in a single

CPU, resulting in a composite instruction set architecture CPU. While heterogeneous

architectures attempt to achieve the best of both the RISC (power) and CISC (per-

176

formance) architecture types, identifying threads based on their requirements and

scheduling the threads appropriately on the desired type of core is critical for achieving

optimal performance. Therefore, multi-core optimizations should consider extensions

to heterogeneous CPUs, as well as GPUs and FPGAs.

3.4.2 Interconnects

Interconnects allow both on-chip and chip-to-chip components to communicate with

short latencies and high bandwidth. To put in perspective, the I/O data rate per lane

on the DDR1 was 1 Gbps and for the DDR5 it is 5 Gbps (see Table 3.3), whereby there

are 16 lanes per DDR chip. These data rates are scaled significantly with 3D stacking

of memory [as in the case of High Bandwidth Memory (HBM), see Section 3.3.5]; for

example, the total bandwidth scales up to 512 Gbps for a 4 stack die with 128 Gbps

bandwidth per die Lee et al. (2014). Therefore, the support for these speeds on-chip

and chip-to-chip in an energy-efficient manner is of utmost importance. Towards this

goal, Mahajan et al. Mahajan et al. (2019b,a) have proposed a Embedded Multi-Die

Interconnect Bridge (EMIB) to support high die-to-die interconnect bandwidth within

a given package. The key differentiator of EMIB is the confined interconnect area

usage inside the package. EMIB allows interconnects to be run densely between silicon

endpoints, enabling very high data rates (i.e., aggregated bandwidth). EMIB uses thin

pieces of silicon with multi-layer Back-End-Of-Line (BEOL) which could be embedded

within a substrate to enable localized dense interconnects. NF applications benefit

from highly efficient interconnects in supporting both high throughput and short

latencies. For instance, Gonzalez et al. Gonzalez et al. (2017) have adapted PCIe links

to flexibly interface the accelerators with the compute nodes (25 Gb/s) to support NF

applications, such as cognitive computing.

177

Reconfigurable Interconnect

Existing interconnect designs do not support configurability, mainly due to per-

formance issues and design complexities. The compiler complexity increases when

translating programs onto reconfigurable functional units (FUs) on an underlying

static fabric (which imposes constraints on the placement of inter-communicating FUs).

Karunaratne et al. Karunaratne et al. (2017) have proposed HyCUBE, a reconfigurable

multi-hop interconnect, see Fig. 3.29. HyCUBE is based on a Coarse-Grained Reconfig-

urable Array (CGRA), which consists of a large array of function units (FUs) that are

interconnected by a mesh fabric Ansaloni et al. (2010). An interconnect register based

communication, in place of buffer queues, can provide single cycle communication

between distant FUs. HyCUBE achieves 1.5× the performance-per-watt as compared

to a standard NoC and 3× as compared to a static CGRA. The reconfigurability of

the interconnect in HyCUBE allows application-based interconnect design between the

FUs to be captured through the compiler and scaled according to the NF application

needs.

One way to improve the reconfigurable computing efficiency of FPGAs is to

effectively manage the data flow between the FUs on the FPGAs. Jain et al. Jain

et al. (2016a) have proposed a low-overhead interconnect design to improve the data

movement efficiency. The design reduces overheads by re-balancing the FU placement

based on Data Flow Graph (DFG) strategies. Also, the design exploits interconnect

flexibility (i.e., programmability) to effectively counter the data move inefficiencies,

e.g., by funneling data flows through linearized processing layers, i.e., in a single

direction, either horizontal or vertical, with a minimum number of hops. The proposed

design has been applied to develop a DSP compute acceleration methodology, namely

a DSP-based efficient Compute Overlay (DeCO). DeCO evaluations indicate up to

178

96% reduced Look Up Table (LUT) requirements as compared to standard DSP based

FPGA implementation, which translates to reduced interconnect usage between FUs.

Most NF applications that involve data processing, such as traffic analysis, event

prediction, and routing path computation, would require DSP operations. Therefore,

DSP function acceleration is an important aspect of NF application deployment.

Yazdanshenas et al. Yazdanshenas and Betz (2018) have studied the impact of

interconnect technologies in the case of virtualization of FPGAs in data centers. NF

applications in cloud-native deployments use FPGAs in virtualized environments,

therefore understanding the relative interconnect performances helps in designing

virtualized NF deployments on FPGA based computing nodes with desired interconnect

features. Typical challenges in the virtualization of FPGAs are the inherent FPGA

features, such as board-specific characteristics, system-level integration differences, and

I/O timing, which should be abstracted and hidden from the applications. Towards

this end, a shell based approach abstracts all the FPGA component, except the

FUs and interconnect fabric, which results in an easy and common interface for

virtualization and resource allocation to applications. More specifically, a shell consists

of components, such as external memory controller, PCIe controller, Ethernet, power

and subsystem management units. Several interconnect technologies, such as soft (i.e.

programmable) NoC and hard (i.e., non-programmable) NoC, have been considered

in the performance evaluation of shell virtualization in Yazdanshenas and Betz (2018).

The evaluations show that shell based virtualization of the traditional bus-based

FPGA interconnects results in a 24% reduction of the operating frequency and a

2.78× increase of the wire demand as well as significant routing congestion. With

the soft NoC, the operating frequency can be increased compared to the traditional

bus-based implementation, but the increased wire demand and routing congestion

remain. However, the hard NoC system outperforms both the soft NoC and the

179

bus-based FPGA implementation. The hard NoC is therefore recommended for data

center deployments.

3D On-Chip Interconnect

3D chip design allows for the compact packaging of SoCs to effectively utilize the

available chip area. However, the higher density of chip components in a SoC comes

at the cost of complex interconnect designs. Through Silicon Vias (TVS) is an

interconnect technology that runs between stacked chip components. Using TVS

technology, Kang et al. Kang et al. (2016b) have proposed a new 3D Mesh-of-Tree

(MoT) interconnect design to support the 3D stacking of L2 cache layers in a multi-core

system, see Fig. 3.30. The 3D MoT switches and interconnects are designed to be

reconfigurable in supporting the power-gating (i.e., turn off/on voltage supply to the

component) of on-chip components, such as cores, memory blocks, and the routing

switches themselves. The adaptability of 3D MoT allows the on-chip components (e.g.,

L2 cache) to be modulated as the application demands vary with time. The evaluations

in Kang et al. (2016b) demonstrate that the reconfigurable 3D MoT interconnect

design can reduce the energy-delay product by up to 77%. As with the dynamic

nature of traffic arrivals for the NF processing, the hardware scaling of resources as

the demand scales up and the power gating of components as demand falls can provide

an efficient platform to design power-efficient NF processing strategies.

NoC

As the core count of the traditional computing nodes and Multiprocessor System

on Chips (MPSoCs) increases to accommodate higher computing requirements of

the applications, the interconnects pose a critical limiting path for overall perfor-

mance increases. Typically, the core-to-core communication is established through

180

high-bandwidth single- and multi-layer bus architecture interconnects. The present

state-of-the-art core-to-core communication involves mesh architecture-based intercon-

nects. However, for mesh interconnects, core-to-core communications have not been

specifically designed to support other computing components, such as memory, cache,

and I/O devices (e.g., GPU and FPGA). A Network-on-Chip (NoC) is able to support

both core-to-core communications and other computing components through standard

interconnects and switches.

The cost-efficient design of NoC interconnects has been comprehensively discussed

in Coppola et al. Coppola et al. (2018), where the programmability has been extended to

interconnects in addition to compute units, resulting in an Interconnect Programming

Unit (IPU). However, traditional NoCs have static bandwidth for the interconnects

which can cause performance bottlenecks. Addressing this issue, Tsai et al. Tsai

et al. (2012) have proposed a Bi-directional NoC (BiNoC) architecture which supports

dynamically self-reconfigurable bidirectional channels. The BiNoC architecture involves

common in-out ports fed by data in either direction with a self-loop-path through the

internal crossbars while the input flow is supported by an input buffer. This BiNoC

design allows the traffic to loop-back within the same switch and port. For a given

workload, the bandwidth utilization over the BiNoC is typically significantly lower

than over a traditional NoC. NF applications that require high data-rate processing

can benefit from the high data-rate I/O through the compute components provided

by the BiNoC.

Goehringer et al. Goehringer et al. (2011) have proposed an adaptive memory

access design to facilitate data movements between multiple FPGA compute processors

(cores). Typically, memory access to the system memory is serialized, resulting in

increased memory read and write latencies when many clients try to simultaneously

access the memory. In the adaptive memory access design, the adaptive memory-core

181

manages the resource allocation to each FPGA core. Each FPGA core (client) is

allocated a priority, whereby the priority of each processor can be changed dynamically.

Additionally, the number of processors connected to the adaptive memory-core can

vary based on the application demands. The adaptive memory-core separates the

memory into regions that are core-specific individually accessed by the NoC fabric.

Also, the adaptive memory-core maintains a separate address generator for each core,

thereby allowing multiple FPGA cores to simultaneously access memory regions.

3D NoC

Traditional NoCs connect compute nodes on a 2D planar routing and switching grid,

thus limiting the total number of compute notes that can be supported for a given

surface area. A 3D NoC extends the switching network to the third dimension, thus

supporting several 2D planar girds for a given surface area dimension, increasing the

density of the total number of compute nodes. However, one of the challenges of the

3D NoC design is the performance degradation over time due to the aging of circuits

primarily from Bias Temperature Instability (BTI) causing gate-delay degradation.

Furthermore, continued operations of a 3D NoC with higher gate-delays could result

in the failure of the interconnect fabric. A potential solution to retain the 3D NoC

performance is to increase the voltage; however, an increased voltage accelerates

the circuit aging process. In addition to an increased voltage, electro-migration

(gradual movement of charged particles due to momentum transfer) on the 3D Power

Delivery Network (PDN) also reduces the chip lifetime. Raparti et al. Raparti et al.

(2017) have evaluated the aging process of the interconnect circuit as well as PDN

network, and proposed a run time framework, ARTEMIS, for application mapping

and voltage-scaling to extend the overall chip lifetime. Typically, the use of an 3D

NoC is asymmetric due to uneven scheduling of computing tasks, leading to uneven

182

aging of the 3D NoC, as illustrated in Fig. 3.31. ARTEMIS enables the application to

use 3D NoC symmetrically through an optimization process, thereby spreading out

the aging process evenly throughout the 3D NoC grid. ARTEMIS evaluations show

that the chip lifetime can be extended by 25% as compared to uneven aging of 3D

NoC.

Similar to the uneven aging of circuits and PDN network, a single transistor failure

in a 3D NoC impacts the performance of the entire chip due to the tight coupling of

networks in a 3D NoC. Therefore, a 3D NoC design should include resilient features

for a large number of transient, intermittent, and permanent faults in the 3D NoC

grid. To this end, Ahmed et al. Ahmed and Abdallah (2016) have presented a novel

routing algorithm and an adaptive fault-tolerant architecture for multi-core 3D NoC

systems. More specifically, the architecture proposed by Ahmed et al. Ahmed and

Abdallah (2016) implements a Random-Access-Buffer mechanism to identify the faulty

buffers on the switching network and to isolate them in a routing algorithm that

avoids invalid paths. Though the reliability of the 3D NoC is improved, the design

costs 28% in terms of area and 12.5% in power overhead.

Wireless NoC

A Heterogeneous System Architecture (HSA) allows different computing components,

such as CPU, GPU, and FPGA, to co-exist on the same platform to realize a single

system. These heterogeneous components require heterogeneous connectivities. Also,

the run-time interconnect requirements typically change dynamically with the load.

Moreover, when the distance (number of hops in mesh) between two heterogeneous

components increases, the communication latency often increases. Gade at al. Gade

and Deb (2016) have proposed a Hybrid Wireless NoC (HyWin), as illustrated in

Fig. 3.32, to address the latency and flexibility of NoC interconnects for an HSA. The

183

HyWin architecture consists of sandboxed (i.e., inside a securely isolated environment)

heterogeneous sub-networks, which are connected at a first (underlying) level through

a regular NoC. Processing subsystems are then interconnected through a second level

over millimeter (mm) wave wireless links. The resource usage of a physical (wired)

link at the underlying level avoids conflicts with the wireless layer. The wireless link

is especially helpful in establishing long-range low-latency low-energy inter-subsystem

connectivity, which can facilitate access to system memory and lower level caches by

the processing subsystems. The CPU-GPU HSA testbed evaluations in Gade and Deb

(2016) show application performance gains of 29% and latency reductions to one half

with HyWin as compared to a baseline mesh architecture. Moreover, HyWin reduces

the energy consumption by approximately 65% and the total area by about 17%. A

related hybrid wireless NoC architecture has been proposed in Bahrami et al. (2019),

while other recent related studies have examined scalability Mnejja et al. (2020),

low-latency Ouyang et al. (2020), and energy efficiency Catania et al. (2017).

Similarly, for planar interconnected circuits (commonly used for chip-to-chip

packaging), Yu et al. Yu et al. (2016) have proposed a wide-bandwidth G (millimeter)

band interconnect with minimized insertion loss. The proposed interconnect design

is compatible with standard packaging techniques, and can be extended to THz

frequencies supported by a low insertion loss of 4.9 dB with a 9.7 GHz frequency

and 1 dB bandwidth. Further advances in millimeter wave NoCs have recently been

reviewed in Gade et al. (2019).

A common pitfall for wireless NoC design is to not consider the wireless errors,

as the errors can increase the end-to-end latency over wireless links, resulting from

retransmissions. More specifically, the protocols to correct the transmission errors

beyond the forward error corrections require higher layer flow control, with acknowl-

edgment mode operations (e.g., Automatic Repeat Request protocols or TCP). The

184

reporting of errors back to the source and receiving the retransmissions would increase

the overall memory-to-memory transactions (moves or copies) of data through a

wireless NoC.

Software Defined NoC (SD-NoC)

Software Defined Networking (SDN) separates the control plane from the data plane

of routing and forwarding elements. The control plane is further (logically) centralized

to dynamically evaluate the routing policies Andreades et al. (2019). The extension

of the SDN principles to an NoC is referred to as Software Defined NoC (SD-NoC).

Application needs can be captured by the control plane of the NoC routers, which

then program the data-plane routing policies across the interconnects between the

compute components. One of the bottlenecks in SDN designs is the control plane

complexity when there are many routing elements.

In the case of Chip Multi-Processors (CMP) with several thousand cores, the

SD-NoC design becomes particularly challenging. Additionally, when the threads

running on each of these cores try to exchange data with each other, the interconnect

usage can saturate, reducing the overall CMP benefits. Addressing this problem,

Scionti et al. Scionti et al. (2016, 2018) have presented an SD-NoC architecture based

on data-driven Program eXecution Models (PXMs) to reconfigure the interconnect

while retaining the hard-wired 2D mesh topology. More specifically, virtual topologies,

such as local and global rings Li et al. (2019c), are generated and overlayed on the

hard-wired 2D mesh to support changing application demands. This approach has

resulted in power savings of over 70% while the chip area was reduced by nearly

40%. A related SD-NoC based on the Integrated Processing NoC System (IPNoCSys)

execution model Fernandes et al. (2009a,b) has been examined in Nunes and Kreutz

(2019).

185

Generally, the SD-NoC designs are configured to be specific to an application in

use, and cannot be reused across multiple applications. To overcome this limitation,

Sandoval et al. Sandoval-Arechiga et al. (2016) have proposed an SD-NoC architecture

that enables on-the-fly reconfiguration of the interconnect fabric. This on-the-fly

reconfiguration design can be adapted to other applications with minimal changes,

reducing the non-recurring engineering cost. The main feature of their architecture is

configurable routing which is achieved through a two-stage pipeline that can buffer and

route in one clock cycle, and arbitrate and forward in the other cycle. The controller

and switch were designed to support flow-based routing with flow IDs. Global average

delay, throughput, and configuration time were evaluated for various simple routing

algorithms and a wide range of packet inject rate patterns. Deterministic/fixed routing

between processing elements was shown to perform better than adaptive routing.

Deterministic/fixed routing has a map of the routing path between every source and

destination pair; the routing paths are programmed into the NoC fabric and remain

active for the entire system life time. In contrast, fully adaptive routing dynamically

adapts the packet routing based on the injection rates. For high packet inject rates,

the path evaluations select longer and disjoint paths to effectively spread the packets

throughout the fabric so as to accommodate the increasing traffic; which may not

result in a efficient end-to-end path for packet flow. In both cases, deterministic/fixed

routing and adaptive routing, the on-the-fly reconfiguration enables the NoC to be

programmed, i.e., the fabric logic to change according to the traffic demands, so that

even the deterministic/fixed paths are reconfigured based on need. A distributed SDN

architecture for controlling the reconfigurations in an efficient scalable manner has

been examined in Ruaro et al. (2019).

These advanced reconfigurations of on-chip interconnects allow NF applications to

adapt to varying networking loads in order to achieve desired processing responses

186

latencies for arriving packet while employing restrictive resource usage to save power

and improve overall efficiency.

Optical Interconnects

Interconnects based on Silicon Photonic (SiPh) technologies achieve—for the same

power consumption—several orders of magnitude higher throughput than electrical

interconnects. Therefore, optical interconnects are seen as a potential solution for

meeting the demands of applications requiring large data transactions between com-

puting elements Bashir et al. (2019); Reza (2017); Yahya et al. (2020). SiPh offers

solutions for both on-chip and chip-to-chip interconnects. For instance, Hsu et al. Hsu

et al. (2018) have proposed a 2.6 Tbits/sec on-chip interconnect with Mode-Division

Multiplexing (MDM) with a Pulse-Amplitude Modulation (PAM) signal. To achieve

the speeds of 2.6 Tbits/sec, 14 wavelengths in three modes supporting 64 Gbps are

aggregated with hard decision forward-error-correction threshold decoding.

Gu et al. Gu et al. (2017) have proposed a circuit-switched on-chip Optical NoC

(ONoC) architecture providing an optical interconnect grid with reuse of optical

resources. As compared to a traditional NoC, an ONoC does not inherently support

buffers within routers to store and forward; therefore, the transmissions have to be

circuit switched. The ONoC disadvantages include high setup-time overhead and

contention for the circuit-switched paths. Gu et al. Gu et al. (2017) have proposed a

Multiple Ring-based Optical NoC (MRONoC) design which uses ring based routing,

as well as redundant paths to re-use the wavelength resources without contentions.

(A related circuit-switched ONoC with a hierarchical structure based on a Clos-Benes

topology has been examined in Yao and Ye (2020).) The MRONoC thus enables

ultra-low cost, scalable, and contention-free communication between nodes.

Wavelength Division Multiplexing (WDM) allocates different modulated wave-

187

lengths to each communicating node to reduce the contention. Hence, in general, an

ONoC system based on WDM is limited by the number of wavelengths; the wave-

length reuse in MRONoC mitigates this limitation. The simulation evaluations in Gu

et al. (2017) indicate a 133% improvement of the saturated bandwidth compared

to a traditional mesh ONoC. Related statistical multiplexing strategies for ONoC

channels have been investigated in Wang et al. (2019a), while NoC wavelength routing

has been studied in Huang et al. (2020). Moreover, recent studies have explored the

thermal characteristics of ONoCs Ye et al. (2020), the interference characteristics in

optical wireless NoCs Dehkordi and Tralli (2019), and the SDN control for optical

interconnects Chandna et al. (2019).

Further evolutions of integrated photonics and optical interconnects have been

applied in quantum computing technologies. Wang et al. Wang et al. (2016a) have

developed a novel chip-to-chip Quantum Photonic Interconnect (QPI) which enables

the communication between quantum compute nodes. The QPI meets the demands of

very high speed interconnects that are beyond the limits of single-wafer and multi-chip

systems offered by state-of-the-art optical interconnects. The main challenge that is

overcome in QPI is to maintain the same path-entangled states on either chip. To

achieve this, a two-dimensional grating coupler on each chip transports the path-

entangled states between the communicating nodes. The simulation evaluations show

an acceptable stability of the QPI on quantum systems with a high degree of flexibility.

As NF applications are ready to exploit quantum technologies capable of very large

computations, the research efforts on interconnects enable platform designers to build

heterogeneous systems that exploit the benefits of diverse hardware infrastructures.

188

Summary of Interconnects

In conjunction with computing architecture advancements of CPUs and I/O devices,

whereby both the core numbers and the processing capacities (operations per second)

have been increasing, the interconnects and interfaces that establish communication

among (and within) I/O devices and CPUs play an important role in determining the

overall platform performance Zhezlov et al. (2020). Therefore, future interconnect

designs should focus not only on the individual performance of an interconnect in terms

of bandwidth and latency, but also the flexibility in terms of supporting topologies

(e.g., mesh, star, and bus) and reconfigurability in terms of resource reservation. 3D

interconnects enable vertical stacking of the on-chip components so as to support high

density processing and memory nodes. However, the high density 3D SoC components

may have relatively higher failure rates as compared to 2D planar designs, due to

aging and asymmetric interconnects usage.

While physical (wired) interconnects exhibit aging properties, wireless and optical

interconnects appears to be a promising solution against aging. Wireless interconnects

reach across longer distances and are not limited by the end-to-end metallic and

silicon wires between interconnected components. However, the downsides of wireless

interconnects include the design, operation, and management of wireless transceivers

that include decisions on wireless link parameters, such as carrier frequencies, line-

of-sight operation, and spectrum bandwidth. Similarly, optical interconnects have

promising features in terms of supporting high bandwidth and short latencies using

Visible Light Communications (VLC) and guided optical paths Zhang et al. (2019c).

The design of optical interconnects is challenging as it requires extreme precision in

terms of transceiver design and placements which is integrated into SoC components

such that there is a guided light path or line-of-sight operation.

189

In addition to data path enhancements of the interconnects, future interconnect

designs should address the management of interconnect resources through dedicated

control plane designs. To this end, Software-Defined Network-on-Chip (SD-NoC) Ruaro

et al. (2019) designs include a dedicated controller. The dedicated controller could

be employed in future research to reconfigure the NoC fabric in terms of packet

(interconnect data) routing and link resource reservations so as to achieve multi-

interconnect reconfiguration that spans across multiple segments, e.g., CPU and

memory. While such reconfiguration is not supported today, SD-NoC provides a

general framework to enable demand based interconnect resource allocation between

processing (CPUs), memory (DRAM), and I/O devices (e.g., storage) components.

A related future research direction is to develop Software Defined Wireless NoC

(SD-WNoC), whereby the wireless link properties are configured based on decisions

made by the SDN controller to meet application requirements and available wireless

interconnect resources.

3.4.3 Memory

DRAM

Understanding the latency components of DRAM memory accesses facilitates the

effective design of NF applications to exploit the locality of data within DRAM system

memory with reduced latency. Chang et al. Chang et al. (2016a) have comprehensively

investigated the DRAM access latency components, which are: i) activation, ii)

precharge, and iii) restoration. The latency variations across these components are

due to manufacturing irregularities, which result in memory cells with asymmetric

latency within the same DRAM chip. A shortcoming of the traditional DRAM

memory access approaches is to assume that all memory cells are accessible with

190

uniform latency. Chang et al. Chang et al. (2016a) have performed a quantitative

study of DRAM chips to characterize the access latencies across memory cells, and

then to exploit their relative latency characteristics to meet the application needs.

Interestingly, the memory cells that exhibit longer latencies also exhibit spatial locality.

Thus, the long-latency memory cells are in some localized memory regions that can

be isolated and demarcated. Based on this insight, Chang et al. Chang et al. (2016a)

proposed a Flexible-LatencY DRAM (FLY-DRAM) mechanism that dynamically

changes the access to memory regions based on the application’s latency requirements.

The evaluations in Chang et al. (2016a) have shown nearly 20% reduction of the

average latencies.

Utilizing similar techniques to reduce DRAM access latency, Hassan et al. Hassan

et al. (2016) have proposed a DRAM access strategy based on the memory controller

timing changes so as to achieve latency reductions up to 9%. Conventionally, DRAM

is accessed row by row. After an initial memory access in a row, other locations in the

same memory row can be accessed faster due to the precharge (applied during the

initial access) than locations in other rows. The ChargeCache mechanism proposed

in Hassan et al. (2016) tracks the previously accessed memory addresses in a table.

Then, any new address locations that map to the same row are accessed with tight

timing constraints, resulting in reduced access latencies.

In terms of increasing the DRAM memory density and performance, 3D package

technology allows memory cells to be stacked in the third dimension and interconnected

by Through Silicon Vias (TSVs). Jeddeloh et al. Jeddeloh and Keeth (2012) have

proposed such a 3D stacking technology to stack heterogeneous dies close to each

other with numerous interconnects between stack layers, reducing the latencies due to

the short distances that signals propagate.

Bulk transfers of data blocks are common in data processing applications. However,

191

data transfers are generally implemented through the CPU, whereby, data is first

moved from the DRAM source to the CPU and then moved back to a new DRAM

destination. As a result, the applications suffer from degraded performance due to i)

limited DDR link capacity (whereby the DDR link connects the DRAM to the CPU

bus), and ii) CPU usage for moving the data. Existing connectivity wires within

a DRAM array can provide a wide internal DRAM bandwidth for data transfers.

However, these data transfers are not possible out of DRAM arrays. Overcoming this

limitation, Chang et al. Chang et al. (2016b) have proposed a Low-cost Inter-Linked

SubArrays (LISA) scheme to enable fast inter-subarray data transfers across large

memory ranges. LISA utilizes the existing internal wires, such as bitlines, to support

data transfers across multiple subarrays with a minuscule space overhead of 0.8%

of DRAM area. Experiments showed that LISA improves the energy efficiency for

memory accesses and reduces the latency of workloads that involve data movements.

The performance of NF applications depends directly on the DRAM throughput

and latency. The DRAM latency and throughput are degraded by data-dependent

failures, whereby the data stored in the DRAM memory cells are corrupted due to

the interference, especially when the DRAM has long refresh intervals. The DRAM-

internal scramble and remapping of the system level address space makes it challenging

to characterize the data-dependent failures based on the existing data and system

address space. To address this challenge, several techniques have been proposed

based on the observed pre-existing data and failures Khan et al. (2017, 2016). In

addition to the mapping of data-dependent failures, it is also critical to dynamically

map the failures with respect to the memory regions with a short time scale (high

time resolution) so that applications as well as the OS and hypervisors can adapt to

the failure characteristics. Hence, to enhance the performance of NF applications,

the memory access reliability should be improved by minimizing the data-dependent

192

failures.

Non-Volatile Memory (NVM)

In contrast to DRAM, the Non-Volatile Memory (NVM) retains memory values without

having to refresh the memory cells. NVM is traditionally based on NAND technology.

Emerging technologies that offer superior performance of NVM in terms of read and

write speeds, memory density, area, and cost have been discussed by Chen et al. Chen

(2016). Some of the NVM technologies that are being considered as potential solution

to the growing needs of applications, such as neuromorphic computing and hardware

security, include Phase Change Memory (PCM), Spin-Transfer-Torque Random Access

Memory (STTRAM) Wang et al. (2018b), Resistive Random Access Memory (RRAM),

and Ferroelectric Field Effect Transistor (FeFET). The investigative study of Chen

et al. Chen (2016) indicated that a scalable selector of the memory module is a

critical component in the architecture design. The NVM challenges include high-yield

manufacturing, material and device engineering, as well as the memory allocation

optimization considering both the NVM technology constraints and application needs.

As compared to 2D planar NAND technology, 3D Vertical-NAND (V-NAND)

technology supports higher density memory cells and provides faster read/write access

speeds. However, the challenges of further scaling of V-NAND include poor Word

Line (WL) resistance, poor cell characteristics, as well as poor WL-WL coupling,

which degrades performance. Overcoming these challenges, Kang et al. Kang et al.

(2016a) have proposed a 3rd generation V-NAND technology that supports 256 Gb

with 3 b/cell flash memory with 48 stacked WLs. In particular, Kang et al. Kang et al.

(2016a) have implemented the V-NAND with reduced number of external components;

also, an external resistor component is replaced by an on-chip resistor to provide

I/O strength uniformity. A temperature sensing circuit was designed to counter the

193

resistor temperature variation such that resistance characteristics are maintained

relatively constant. Compared to the previous V-NAND implementation generation, a

performance gain of 40% was observed, with the write throughput reaching 53.3 MB/s

and a read throughput of 178 MB/s.

Summary of Memory

The NF performance on GPC infrastructures is closely correlated with the memory

sizes and access speeds (latency). Therefore, both research and enabling technology

development (Sec. 3.3.3) efforts have been focused on increasing memory cell density

in a given silicon area, and improving the access (read and write) speeds of memory

cells. Towards this end, 3D NAND technology improves the memory cell density

through 3D vertical stacking of memory cells as compared to 2D planar linear scaling.

The relatively recent NV-NAND technology defines persistent memory blocks that—

in contrast to DRAM—retain data without a clock refresh (i.e., without a power

supply) Choi et al. (2020). Without a clock refresh, the NV-NAND memory cells can

be packed more densely than DRAM, resulting in large (by many folds compared

to regular DRAM) persistent memory blocks. However, the main downsides of NV-

NAND memory components are the slower read and write access speeds as compared

to DRAM.

In addition to the physical aspects of memory, other considerations for memory

performance include address translation, caching, paging, virtualization, and I/O

device to memory accesses. Close examinations of accessing data from DRAM memory

cells have found asymmetric latencies, whereby the data belonging to the same row

of the memory cells can be accessed faster than rows that have not been accessed

in recent DRAM refresh cycles. These asymmetric latencies can result in varying

(non-deterministic) read and write latencies for applications with memory-intensive

194

operations, such as media processing.

The proximity of the DRAM to the CPU determines the overall computing latency

of the applications, therefore, memory blocks should be integrated in close proximity

of the CPU. For instance, memory blocks can be integrated within the socket, i.e.,

on-package, and possibly even on-die. The tight integration of the DRAM with the

CPU impacts the application performance when there is a inter-die and inter-socket

memory transactions due to Non-Uniform Memory Access (NUMA) Broquedis et al.

(2009). Illustrating the benefits of integrated DRAM, Zhang et al. Zhang et al. (2020)

have proposed a method to integrate memory cells into compute modules (i.e., CPUs

and accelerators) based on phase change memory (PRAM) modules Durai et al. (2020).

PRAM is a memory storage cell type that can be incorporated in the DRAM, but

also directly inside the accelerators and CPUs. For DRAM-less designs, the PRAM

memory cells are integrated inside the accelerators and CPUs, resulting in a DRAM-

less acceleration framework that achieves an improvement of 47% as compared to

acceleration involving DMAs to DRAM Zhang et al. (2020).

An important memory-related bottleneck that needs to be addressed in future

research is to improve the effective utilization of system memory when shared by

multiple platform components, such as CPUs (inter- and intra-socket) and I/O devices

(e.g., hardware accelerators and storage). More specifically, the interactions between

CPUs, I/O devices, and system memory (DRAM) are shared by a common memory

controller and system bus (DDR). The DRAM allows a single path data read and write

into memory cells, whereby the memory requests (from both CPUs and I/O devices)

are buffered and serialized at the memory controller when data is written to and read

from the DRAM. One possible future research direction is to design a parallel request

handler, which enables concurrent reads and writes with the DRAM memory cells. The

concurrent reads and writes enable multiple CPUs and I/O devices to simultaneously

195

interact with the memory cells, improving the overall throughput of the memory

access. A key challenge to overcome with this concurrent memory access approach is

to ensure synchronization when the same memory location is concurrently accessed

by multiple components (i.e., memory accesses collide) and to avoid data corruption.

Colliding memory accesses need to be arbitrated by serializing the memory accesses

in a synchronization module. On the other hand, non-colliding concurrent memory

accesses by multiple components to different memory locations, i.e., concurrent reads

and writes to different DRAM locations, can improve the memory utilization.

3.4.4 Accelerators

Data Processing Accelerators

Specialized hardware accelerators can significantly improve the performance and power

efficiency of NFs. Ozdal et al. Ozdal et al. (2016) have designed and evaluated a

hardware accelerator for graph analytics, which is needed, e.g., for network traffic

routing, source tracing for security, distributed resource allocation and monitoring,

peer-to-peer traffic monitoring, and grid computing. The proposed architecture

processes multiple graph vertices (on the order of tens of vertices) and edges (on

the order of hundreds of edges) in parallel, whereby partial computing states are

maintained for vertices and edges that depend on time-consuming computations.

The computations for the different vertices and edges are dynamically distributed

to computation execution states depending on the computational demands for the

different vertices and edges. Moreover, the parallel computations for the different

vertices and edges are synchronized through a specialized synchronization unit for

graph analytics. Evaluations indicate that the developed graph analytics accelerator

achieves three times higher graph analytics performance than a 24 core CPU while

196

requiring less than one tenth of the energy.

While the accelerator of Ozdal et al. Ozdal et al. (2016) is specifically designed

for graph analytics, a generalized reconfigurable accelerator FPGA logic referred to

as Configurable Cloud for arbitrary packet NFs as well as data center applications

has been proposed by Caulfield et al. Caulfield et al. (2020); Caulfield et al. (2018).

The Configurable Cloud structure inserts a layer of reconfigurable logic between

the network switches and the servers. This reconfigurable logic layer can flexibly

transform data flows at line rate. For instance, the FPGA layer can encrypt and

decrypt 40 Gb/s data packet flows without loading the CPU. The FPGA layer can

also execute packet operations for Software-Defined Networking (SDN). Aside from

these packet networking related acceleration functions, the FPGA layer can accelerate

some of the data center processing tasks that are ordinarily executed by the data

center CPUs, such as higher-order network management functions.

Gray Gray (2016) has proposed a parallel processor and accelerator array framework

called Phalanx. In Phalanx, groups of processors and accelerators form shared

memory clusters. Phalanx is an efficient FPGA implementation of the RISC-V IS

(an open source instruction set RISC processor design), achieving high throughput

and I/O bandwidth. The clusters are interconnected with a very-high-speed Hoplite

NoC Kapre and Gray (2015). The Hoplite NoC is a 2D switching fabric that is

reconfigurable (for routing), torus (circular ring), and directional. Compared to a

traditional FPGA routing fabric, Hoplite provides a better area × delay product.

The Phalanx FPGA processor design was successfully implemented to boot with

400 cores, run a display monitor, perform billions of I/O operations, as well as run AES

encryption. Platforms with large numbers of parallel processors and high interconnect

bandwidth can perform both many independent tasks as well as handle large amounts

of inter-thread communications. Such architectures are uniquely positioned to run NF

197

applications that operate on a flow basis. Thereby, one or more cores can be dedicated

to process a single packet flow, and scale up the resources based on dynamic flow

requirements.

MapReduce performs two operations on a data set: i) map one form of data to

another, and ii) reduce the data size (e.g., by hashing) and store the reduced data

as key-value pairs (tuples) in a database. MapReduce typically operates on large

data sets and employs a large number of distributed computing nodes. Networking

applications use MapReduce for various data analysis functions, such as traffic (packet

and flow statistics) analysis Lee et al. (2010b) and network data analytics (e.g., related

to users, nodes, as well as cost and efficiency of end-to-end paths) Song et al. (2016),

especially in the centralized decision making of SDN controllers. Therefore, hardware

acceleration of MapReduce in a platform further enhances the performance of NF

applications that perform network traffic and data analytics. Towards this goal,

Neshatpour et al. Neshatpour et al. (2018) have proposed the implementation of big

data analytics applications in a heterogeneous CPU+FPGA accelerator architecture.

Neshatpour et al. have developed the full implementation of the HW+SW mappers

on the Zynq FPGA platform. The performance characterization with respect to

core processing requirements for small cores (e.g., Intel® Atom) and big cores (e.g.,

Intel® i7) interacting with hardware accelerators that implement MapReduce has

been quantified. In case of small cores, both SW and HW accelerations are required

to achieve high benchmarking scores; while in case of big cores, HW acceleration alone

yields improved energy efficiency.

Deep-Learning Accelerator

Neural Networks (NNs) have been widely used in applications that need to learn

inference from existing data, and predict an event of interest based on the learned

198

inference. NF applications that use NNs for their evaluations include traffic analysis

NFs, such as classification, forecasting, anomaly detection, and Quality-of-Service

(QoS) estimation Lotfollahi et al. (2020). Generally, NN computations require large

memory and very high computing power to obtain results in a short time-frame. To this

end, Zhang et al. Zhang et al. (2016) have proposed a novel accelerator, Cambricon-X,

which exploits the sparsity and irregularity of NN models to achieve increased compute

efficiency. Cambricon-X implements a Buffer Controller (BC) module to manage the

data in terms of indexing and assembling to feed into Processing Elements (PE) that

compute the NN functions. With sparse connections, Cambricon-X achieves 544 Giga

Operations Per second (GOP/s), which is 7.2× the throughput of the state-of-the-art

DianNao implementation Chen et al. (2014), while Cambricon-X is 6.4× more energy

efficient.

Deep learning and NN based applications require large numbers of parallel compute

nodes to run their inference and prediction models. To meet this demand, massive

numbers of high performance CPUs, custom accelerator GPUs and FPGAs, as well as

dedicated accelerators, such as Cambricon-X Zhang et al. (2016) have been utilized by

the software models. However, a critical component that limits the scaling of computing

is memory in terms of both the number of I/O transactions and the capacity. The

I/O bound transactions that originate collectively from the large number of threads

running on numerous cores in CPUs, GPUs, and FPGAs use a Message Passing

Interface (MPI) for inter-thread communications. In some cases, such as large-scale

combinatorial optimization applications, each thread needs to communicate with every

other thread, resulting in a mesh connection that overloads the MPI infrastructure.

Mahdi et al. Bojnordi and Ipek (2016) have proposed a dedicated hardware accelerator

to overcome the memory I/O and capacity bottlenecks that arise with the scaling

of computing resources. In particular, a hardware accelerator is designed based

199

on the Resistive Random Access Memory (RRAM) technology Akinaga and Shima

(2010) to support the compute and memory requirements of large-scale combinatorial

optimizations and deep learning applications based on Boltzmann machines. The

RRAM based accelerator is capable of fine-grained parallel in-memory computations

that can achieve 57-fold compute performance improvements and 25-fold energy

savings as compared to traditional multi-core systems. In comparison to Processing

In-Memory (PIM) systems (see Sec. ??), the RRAM based accelerator shows 6.9-fold

and 5.2-fold performance improvement and energy savings, respectively.

Traditional CISC based IS architecture CPUs are not optimized to run compute-

intensive workloads with massive data parallelism, e.g., deep learning and data analyt-

ics. Therefore, to supplement the specialized and dedicated computing infrastructures

in the parallel processing of large data, hardware offloading based on FPGA and

GPU can employed. However, hardware offloading generally comes with the following

challenges: i) application specific for a given configuration, ii) memory offloading,

and iii) reconfiguration delay. The present reconfigurable hardware components,

such as FPGA and GPU, require a standardized programming model, synthesis, and

configuration of FPGA and GPU; this hardware reconfiguration does not support

short (near run-time) time scales. As application requirements change much faster

than the typical FPGA and GPU configuration cycles, a CPU based acceleration

could offer faster adaption to changing needs. The Configurable Spatial Accelerator

(CSA) (CSA) ? architecture (see Fig. 3.33) was proposed to accelerate large parallel

computations. The CSA consists of high density floating point and integer arithmetic

logic units that are interconnected by a switching fabric. The main CSA advantages

are: i) the support of standard compilers, such as C and C++, which are commonly

used for CPUs, and ii) short reconfiguration times on the order of nanoseconds to a few

microseconds Zhang (2019). The CSA can directly augment existing CPUs, whereby

200

the CSA can use the CPU memory without having to maintain a separate local memory

for computing as compared to external accelerators. In particular, the CSA can be

adopted as an integrated accelerator in the form of a CSA die next to the CPU die

in the same socket and package; CSA memory read/write requests will be forwarded

through inter-die interconnects and (intra-CPU die) 2D mesh to the CPU memory

controller. Figure 3.33 illustrates the architectural CSA components consisting of a

switching network, Integer Processing Elements (Int PEs), and Fused Multiply-Add

(FMA) PEs. A large number of Int PEs and FMA PEs are interconnected via switches

to form a hardware component that can support compute-intensive workloads. The

CSA adapts quickly to varying traffic demands at fine-grained time-scales so that

NF applications can adapt to changing requirement through hardware acceleration

reconfiguration.

In terms of stress on the interconnects, deep learning and inference software models

implement large numbers of inter-communicating threads, resulting in significant

interconnect usage. Typically, the thread communication is enabled by a Message

Passing Interface (MPI) provided by the OS kernel. However, as the numbers of threads

and compute nodes increase, the OS management of the MPI becomes challenging.

Dos et al. Dosanjh et al. (2019) have proposed a hardware acceleration framework

for the MPI to assist the CPU with the inter-thread communications. The MPI

hardware acceleration includes a fuzzy matching of source and destination to enable

the communication links with a probable partial truth rather than exact (deterministic)

connections at all times. Fuzzy based hardware acceleration for link creation reduces

the overhead on the interconnect with reduced usage of communication links for

both control and actual data message exchanges between threads. Evaluations of the

hardware-accelerated MPI have shown 1.13 GB in memory (DRAM) savings, and a

matching time improvement of 96% as compared to a software-based MPI library.

201

GPU-RDMA Accelerator

Remote Direct Memory Access (RDMA) enables system memory access (i.e., DRAM)

on a remote platform, usually either via the PCIe-based NTB (see Sec. 3.3.6) or

Ethernet-based network connections. The Infiniband protocol embedded in the NIC

defines the RDMA procedures for transferring data between the platforms. Typically,

the CPU interacts with the NIC to establish end-to-end RDMA connections, whereby

the data transfers are transparent to applications. That is, the external memory is

exposed as a self-memory of the CPU such that if a GPU wants to access the remote

system memory, the GPU requests the data transfer from the CPU. This process

is inefficient as the CPU is involved in the data transfer for the GPU. In an effort

to reduce the burden on the CPU, Daoud et al. Daoud et al. (2016) have proposed

a GPU-side library, GPUrdma, that enables the GPU to directly interact with the

NIC to perform RDMA across the network, as shown in Fig. 3.34(c). The GPUrdma

implements a Global address-space Programming Interface (GPI). The GPUrdma has

been evaluated for ping-pong and multi–matrix-vector product applications in Daoud

et al. (2016). The evaluations showed 4.5-fold faster processing as compared to the

CPU managing the remote data for the GPU.

Crypto Accelerator

Cryptography functions, such as encryption and decryption, are computationally

intensive processes that require large amounts of ALU and branching operations on

the CPU. Therefore, cryptography functions cause high CPU utilizations, especially

in platforms with relatively low computing power. In mobile network infrastructures,

such as in-vehicle networks, the computing power is relatively lower compared to

traditional servers. In-vehicle networks require secure on-board data transactions

202

between the sensors and computing notes, whereby this communications is critical due

to vehicle safety concerns. While cryptography is commonly adopted in platforms with

low computing resources, hardware cryptography acceleration is essential. In-vehicle

networks also require near-real-time responses to sensor data, which further motivates

hardware-based acceleration of cryptography functions to meet the throughput and

latency need of the overall system. An in-vehicle network design proposed by Baldanzi

et al. Baldanzi et al. (2019) includes a hardware acceleration for the AES-128/256

data encryption and decryption. The AES accelerator was implemented on an FPGA

and on 45 nm CMOS technology. The latency of both implementations was around

15 clock cycles, whereby the throughput of the FPGA was 1.69 Gbps and the CMOS

achieved 5.35 Gbps.

Similarly, Intrusion Detection Systems (IDSs) perform security operations by

monitoring and matching the sensor data. In case of NF applications, this is applicable

to network traffic monitoring. Denial-of-Service attacks target a system (network

node) with numerous requests so that genuine requests are denied due to resource

unavailability. A CPU-based software IDS implementation involves i) monitoring of

traffic, and ii) matching the traffic signature for an anomaly, which is computationally

expensive. Aldwairi et.al Aldwairi et al. (2005) have proposed a configurable network

processor with string matching accelerators for IDS implementation. In particular, the

hardware accelerator architecture includes multiple string-matching accelerators on

the network processor to match different flows. Simulation results showed an overall

performance up to 14 Gbps at run-time wire speed while supporting reconfiguration.

Although encryption and decryption hardware acceleration improve the overall

CPU utilization, the performance of hardware offload is significant only for large

data (packet) sizes. For small data sizes, the offload cost can outweigh the gains of

hardware accelerations. To address this trade-off, Zhong et al. Zhong et al. (2019)

203

have proposed a Self-Adaptive Encryption and Decryption Architecture (SAED) to

balance the asymmetric hardware offload cost by scheduling the crypto computing

requests between CPU and Intel® Quick Assist Technology® (a hardware accelerator,

see Sec. 3.3.5). SAED steers the traffic to processing either by the CPU or the

hardware accelerator based on the packet size. SAED improves the overall system

performance for security application in terms of both throughput and energy savings,

achieving around 80% improvement compared to CPU processing alone, and around

10% improvement compared to hardware accelerator processing alone.

In-Memory Accelerator

An in-memory accelerator utilizes DRAM memory cells to implement logical and

arithmetic functions, thus entirely avoiding data movements between the accelerator

device and DRAM (i.e., system memory). The CPU can utilize the high bandwidth

DDR to communicate with the acceleration function residing at DRAM memory

regions. While it is challenging to design complex arithmetic functions inside the

DRAM, simple logic functions, such as bitwise AND and OR operations, can be

implemented with minimal changes to existing DRAM designs. Seshadri et al. Seshadri

et al. (2017) have proposed a mechanism to perform bulk bitwise operations on a

commodity DRAM using a sense amplifier circuit which is already present in DRAM

chips. In addition, inverters present in the sense amplifiers can be extended to perform

bitwise NOT operations. These modifications to DRAM require only minor changes

(1% of chip area) to the existing designs. The simulation evaluations in Seshadri

et al. (2017) showed that performance characteristics are stable, even with these

process variations. In-memory acceleration for bulk bitwise operations showed 32-fold

performance improvements and 35-fold energy consumption savings. High Bandwidth

Memory (HBM) with 3D stacking of DRAM memory cells has shown nearly ten-fold

204

improvements. Bulk bitwise operations are necessary for NF applications that rely

heavily on database functions (search and lookup). Thus, in-memory acceleration

provides a significant acceleration potential to meet the latency and energy savings

demands of NFs relying on database functions.

Generally, the DRAM capacity is limited and therefore the in-memory acceleration

capabilities in terms of supporting large datasets for data-intensive applications fall

short in DRAM. Non-Volatile Memory (NVM) is seen as a potential extension of

existing DRAM memory to support larger system memory. It is therefore worthwhile

to investigate in-memory acceleration in NVM memory cells. Li et al. Li et al. (2019b)

have presented an overview of NVM based in-memory based acceleration techniques.

NVM can support wider function acceleration, such as logic, arithmetic, associative,

vector. and matrix-vector multiplications, as compared DRAM due to the increased

NVM memory and space availability.

For instance, Li et al. Li et al. (2016b) have proposed the Pinatubo processing-

in-memory architecture for bulk bitwise operations in NVM technologies. Pinatubo

reuses the existing circuitry to implement computations in memory as opposed to new

embedded logic circuits. In addition to bitwise logic operations between one or two

memory rows, Pinatubo also supports one-step multi-row operations which can be used

for vector processing. As a result, Pinatubo achieves 1.12× overall latency reductions

and 1.11× energy savings compared to a conventional CPU for data intensive graph

processing and database applications.

Summary of Accelerators

Custom accelerators, such as FPGA and GPU, provide high degrees of flexibility

in terms of programming the function of the accelerators. In contrast, dedicated

accelerators implement specific sets of functions on the hardware which limits the

205

flexibility. NFs have diverse sets of function acceleration requirements, ranging for

instance from security algorithm implementation to packet header lookup, which results

in heterogeneous characteristics in terms of supporting parallel executions and compute-

intensive tasks. Regardless of all the options available for hardware acceleration, the

overall accelerator offloading efficiency depends on memory transactions and tasks

scheduling. One possible future research direction towards increasing accelerator

utilization is to compile the application with “accelerator awareness” such that a

given task can be readily decomposed into subtasks that are specific to FPGAs,

GPUs, and dedicated accelerators. Accelerator-specific subtasks can be independently

scheduled to run on the hardware accelerators to coordinate with the main task

(application) running on the CPU. Future research should develop common task

scheduling strategies between hardware accelerators and CPU, which could improve

the utilization of hardware accelerators but also enable applications to reap the

individual benefits of each accelerator component.

Other open research challenges in the design of accelerators include supporting

software definable interconnects and logic blocks Zhang et al. (2019b) with run-time

reconfiguration and dynamic resource allocation. In contrast to an FPGA, a GPU

can switch between threads at run-time and thus can be instantaneously reconfigured

to run different tasks. However, the GPU requires a memory context change for every

thread scheduling change. To overcome this GPU memory context change requirement,

High Bandwidth Memory (HBM) modules integrated with a GPU can eliminate the

memory transactions overhead during the GPU processing by coping the entire data

required for computing to the GPU’s local memory. HBM also enables the GPUs to

be used as a remote accelerator over the network Stunkel et al. (2020); Hamidouche

and LeBeane (2020); Sharkawi and Chochia (2020). However, one limitation of remote

accelerator computing is that results are locally evaluated (e.g., analytics) on a remote

206

node in a non-encrypted format. The non-encrypted format could raise security and

privacy concerns as most GPU applications involve database and analytics applications

that share the data with remote execution nodes.

Dedicated accelerators provide an efficient way of accelerating NFs in terms of

energy consumption and hardware accelerator processing latency. However, the

downsides of dedicated accelerators include: i) the common task offloading overheads

from CPU, i.e., copying data to accelerator internal memory and waiting for results

through polling or interrupts, and ii) the management of the accelerators, i.e., sharing

across multiple CPUs, threads, and processes. To eliminate these overheads, in-

memory accelerators have been proposed to include (embed) the logic operations

within the DRAM memory internals such that a write action to specific memory cells

will result in compute operations on the input data and results are available to be read

instantaneously. While this approach seems to be efficient for fulfilling the acceleration

requirements of an application, the design of in-memory accelerators that are capable

of arithmetic (integer and floating point) operations is highly challenging Reis et al.

(2020); Sebastian et al. (2020). Arithmetic Logic Units (ALUs) would require large

silicon areas within the DRAM and to include ALUs at microscopic scale of memory

cells is spatially challenging. Another important future direction is to extend the

in-memory acceleration to 3D stacked memory cells Zhu et al. (2013) supporting

HBM-in-memory acceleration.

3.4.5 Infrastructure

SmartNIC

SmartNICs enable programmability of the NICs to assist NFs by enabling hardware

acceleration in the packet processing pipeline. Ni et al. Ni et al. (2019) have outlined

207

performance benefits of SmartNIC acceleration for NF applications. However, the

accessing and sharing of hardware functions on a SmartNIC by multiple applications

is still challenging due to software overheads (e.g., resource slicing and virtualization).

Yan et al. Yan et al. (2019) have proposed a UniSec method that allows software

applications to uniformly access the hardware-accelerated functions on SmartNICs.

More specifically, UniSec provides an unified Application Programming Interface (API)

designed to access the high-speed security functions implemented on the SmartNIC

hardware. The security functions required by NF applications include for instance

Packet Filtering Firewall (PFW) and Intrusion Detection System (IDS). The im-

plementation of UniSec is classified into control (e.g., rule and log management)

and data (i.e., packet processing) modules. Data modules parse packets and match

the header to filter packets. UniSec considers stateless, stateful, and payload based

security detection on the packet flows on a hardware Security Function (hSF). A

virtual Security Function (vSF) is generated through Security Function (SF) libraries,

as illustrated in Fig. 3.35. UniSec reduces the overall code for hardware re-use by

65%, and improves the code execution (CPU utilization) by 76% as compared to a

software-only implementation.

Traditionally hardware acceleration of software components is enabled through

custom accelerators, such as GPUs and FPGAs. However, in large-scale accelerator

deployments, the CPU and NIC become the bottlenecks due to increased I/O bound

transactions. To reduce the load on the CPU, SmartNICs can be utilized to process the

network requests to perform acceleration on the hardware (e.g., GPU). Tor et al. Tork

et al. (2020) have proposed a SmartNIC architecture, Lynx, that processes the service

requests (instead of the CPU), and delivers the service requests to accelerators (e.g.,

GPU), thereby reducing the I/O load on the CPU. Figure 3.36 illustrates the Lynx

architecture in comparison to the traditional approach in which the CPU processes the

208

accelerator service requests. Lynx evaluations conducted by Tor et al. Tork et al. (2020)

where GPUs communicate with an external (remote) database through SmartNICs

show 25% system throughput increases for a neural network workload as compared to

the traditional CPU service requests to the GPU accelerator.

Summary of Infrastructures

Infrastructures consist of NICs, physical links, and network components to enable

platforms to communicate with external compute nodes, such as peer platforms, the

cloud, and edge servers. SmartNICs enhance existing NICs with hardware accelerators

(e.g., FPGAs and cryptography accelerators) and general purpose processing compo-

nents (e.g., RISC processors) so that functional tasks related to packet processing

that typically run on CPUs can be offloaded to SmartNICs. For instance, Li et al. Li

et al. (2020) have implemented a programmable Intrusion Detection System (IDS) and

packet firewall based on an FPGA embedded in the SmartNIC. Belocchi et al. Belocchi

et al. (2020) have discussed the protocol accelerations on programmable SmartNICs.

Although state-of-the-art SmartNIC solutions focus on improving application

acceleration capabilities, the processing on the SmartNICs is still coordinated by the

CPU. Therefore, a interesting future research directions is to improve the independent

executions on the SmartNICs with minimized interactions with the CPU. Independent

executions would allow the SmartNICs to perform execution and respond to requests

from remote nodes without CPU involvement.

3.4.6 Summary and Discussion of Research Studies

Research studies on infrastructures and platforms provide perspectives on how

system software and NF applications should adapt to the changing hardware capabili-

ties. Towards this end, it is important to critically understand both the advantages

209

and disadvantages of the recent advances of hardware capabilities so as to avoid the

pitfalls which may negatively impact the overall NF application performance.

In terms of computing, there is a clear distinction between CISC and RISC

architectures: CISC processors are more suitable for large-scale computing and capable

of supporting high-performing platforms, such as servers. In contrast, RISC processors

are mainly seen as an auxiliary computing option to CISC, such as for accelerator

components. Therefore, NF applications should decouple their computing requirements

into CISC-based and RISC-based computing requirements such that the respective

strengths of CISC- and RISC-based computing can be harnessed in heterogeneous

platforms.

As the number of cores increases, the management of threads that run on different

cores becomes more complex. If not optimally managed, the overheads of operating

multiple cores may subdue the overall benefit achieved from multiple cores. In

addition, extensive inter-thread communication stresses the core-to-core interconnects,

resulting in communication delay, which in turn decreases the application performance.

Therefore, applications that run on multiple cores should consider thread management

and inter-thread communication to achieve the best performance.

The power control of platform components is essential to save power. However,

severe power control strategies that operate on long time-scales can degrade the

performance and induce uncorrectable errors inside the system. Therefore, power and

frequency control strategies should carefully consider their time-scale of operation

so as not to impact the response times for the NF applications. A long-time-scale

power control would take numerous clock cycles to recover from low performance

states to high performance states. Conversely, a short-time-scale power control is

highly reactive to the changing requirements of NF applications (e.g., changing traffic

arrivals); however, short time-scales result in more overheads to evaluate requirements

210

and control states.

While several existing strategies can increase both on-chip and chip-to-chip intercon-

nect capabilities, future designs should reduce the cost and implementation complexity.

The Network-on-Chip (NoC) provides a common platform, but an NoC increases the

latency as the number of components increases. In contrast, 2D mesh interconnects

provide more disjoint links for the communications between the components. Mil-

limeter wireless and optical interconnects provide high-bandwidth, long-range, and

low-latency interconnects, but the design of embedded wireless and optical transceivers

on-chip increases the chip size and area. A 3D NoC provides more space due to the

vertical stacking of compute components, but power delivery and heat dissipation

become challenging, which can reduce the chip lifespan.

3.5 Open Challenges and Future Research Directions

Building on the survey of the existing hardware-accelerated platforms and infras-

tructures for processing softwarized NFs, this section summarizes the main remaining

open challenges and outlines future research directions to address these challenges.

Optimizing hardware-accelerated platforms and infrastructures, while meeting and

exceeding the requirements of flexibility, scalability, security, cost, power consumption,

and performance, of NF applications poses enormous challenges. We believe that

the following future directions should be pursued with priority to address the most

immediate challenges of hardware-accelerated platforms and infrastructures for NF

applications. The future designs and methods for hardware-accelerated platforms and

infrastructures can ultimately improve the performance and efficiency of softwarized

NF applications.

We first outline overarching grand challenges for the field of hardware-accelerated

platforms and infrastructures, followed by specific open technical challenges and future

211

directions for the main survey categories of CPUs, memory, interconnects, accelerators,

and infrastructure. We close this section with an outlook to accelerations outside of

the immediate realm of platforms and infrastructures; specifically, we briefly note the

related fields of accelerations for OSs and hypervisors as well as orchestration and

protocols.

3.5.1 Overarching Grand Challenges

Complexity

As the demands for computing increase, two approaches can be applied to increase

the computing resources: i) horizontal scaling and ii) vertical scaling. In horizontal

scaling, the amount of computing resources are increased, such as increasing the

number of cores (in case of multi processors) and number of platforms. The main

challenges associated with horizontal scaling are the application management that

runs on multiple cores to maintain data coherency (i.e., cache and memory locality),

synchronization issues, as well as the scheduling of distributed systems in large scale

infrastructures. In vertical scaling, the platform capacities are improved, e.g., with

higher core computing capabilities, larger memory, and acceleration components.

The main challenges of vertical scaling are the power management of the higher

computing capabilities, the management of large memories while preserving locality

(see Sec. 3.4.3), and accelerator scheduling. In summary, when improving the platform

and infrastructure capabilities, the complexity of the overall system should still be

reasonable.

Cost

The cost of platforms and infrastructures should be significantly lowered in order to

facilitate the NF softwarization. For instance, the 3D stacking of memory within

212

compute processors incurs significant fabrication costs, as well as reduced chip re-

liability due to mechanical and electrical issues due to the compact packaging of

hardware components Guo et al. (2018). Hardware upgrades generally replace existing

hardware partially or completely with new hardware, incurring significant cost. Large

compute infrastructures also demand high heat sinking capacities with exhausts and

air circulation, increasing the operational cost. Therefore, future research and design

needs to carefully examine and balance the higher performance-higher cost trade-offs.

Flexibility

Hardware flexibility is essential to support the diverse requirements of NF applications.

That is, an accelerator should support a wide range of requirements and support a

function that is common to multiple NF applications such that a single hardware

accelerator can be reused for different applications, leading to increased utilization and

reduced overall infrastructure cost. A hybrid interconnect technology that can flexibly

support different technologies, such as optical and quantum communications, could

allow application designers to abstract and exploit the faster inter-core communications

for meeting the NF application deadlines. For instance, a common protocol and

interface definition for interconnect resource allocation in a reconfigurable hardware

would help application designers to use Application-Specific Interfaces (APIs) to

interact with the interconnect resource manager for allocations, modification, and

deallocations.

Power and Performance

Zhang et al. Zhang et al. (2019a) have extensively evaluated the performance of

software implementations of switches. Their evaluations show that performance is

highly variable with applications (e.g., firewall, DoS), packet processing libraries (e.g.,

213

DPDK), and OS strategies (e.g., kernel bypass). As a result, a reasonable latency

attribution to the actions of the switching function in the software cannot be reasonably

made for a collection of multiple scenarios (but is individually possible). While there

exist several function parameter tuning approaches, such as increasing the descriptor

ring (circular queue) sizes, disabling flow control, and eliminating MAC learning in

the software switches, hardware acceleration provides better confidence in terms of

performance limitations of any given function.

Software implementations also consume more power as compared to dedicated

hardware implementations due to the execution on CPUs. Therefore, software imple-

mentations of NF applications are in general more power expensive than hardware

implementations. Nevertheless, it is challenging to maintain the uniformity in switch-

ing and forwarding latency of a software switch (an example of NF application). Hence

a pitfall to avoid is to assume uniform switching and forwarding latencies of software

switches when serving NF applications with strict deadline requirements.

On the other hand, hardware implementations generally do not perform well if

offloading is mismanaged, e.g., through inefficient memory allocation. Also, it is

generally inefficient to offload relatively small tasks whose offloading incurs more

overhead than can be gained from the offloading.

3.5.2 CPU and Computing Architecture

Hardware based Polling

As the number of accelerator devices increases on a platform, individually managing

hardware resources becomes cumbersome to the OS as well as the application. In

particular, the software overheads in the OS kernel and hypervisor (except for pass-

through) increase with the task offloading to increasing numbers of accelerator devices;

214

moreover, increasing amounts of CPU resources are needed for hardware resource

and power management. One of the software overheads is attributed to polling based

task offloading. With polling based task offloading, the CPU continuously monitors

the accelerator status for task completion, which wastes many CPU cycles for idle

polling (i.e., polling that fetches a no task completion result). Also, as the number of

applications that interact with the accelerator devices increases, there is an enormous

burden on the CPU. A solution to this problem would be to embed a hardware-based

polling logic in the CPU such that the ALU and opcode pipelines are not used by the

hardware polling logic. Although this hardware polling logic solution would achieve

short latencies due to the presence of the hardware logic inside CPU, a significant

amount of interconnect fabric would still be used up for the polling.

CPU based Hardware Acceleration Manager

The current state-of-the-art management techniques for accelerating an NF application

through utilization of a hardware resource (component) involve the following steps: the

OS has to be aware of the hardware component, a driver has to initialize and manage

the hardware component, and the application has to interact with user-space libraries

to schedule tasks on the hardware component. A major downside to this management

approach is that there are multiple levels of abstraction and hardware management.

An optimized way is to enable applications to directly call an instruction set (IS) to

forward requests to the hardware accelerator component. Although, this optimization

exists today (e.g., MOVDIR and ENQCMD ISs from Intel Intel Corporation (2020d)), the

hardware management is still managed by the OS, whereby only the task submission is

performed directly through the CPU IS. A future enhancement to the task submission

would be to allow the CPU to completely manage the hardware resources. That is,

an acceleration manager component in the CPU could keep track of the hardware

215

resources, their allocations to NF applications, and the task management on behalf of

the OS and hypervisors. Such a CPU based management approach would also help

the CPU to switch between execution on the hardware accelerator or on the CPU

according to a comprehensive evaluation to optimize NF application performance.

Thermal Balancing

In the present computing architectures, the spatial characteristics of the chip and

package (e.g., the socket) are not considered in the heterogeneous scheduling (see

Sec. 3.4.1) of processes and tasks. As a result, on a platform with an on-chip integrated

accelerator (i.e., accelerator connected to CPU switching fabric, e.g., 2D mesh), a blind

scheduling of tasks to accelerators can lead to a thermal imbalance on the chip. For

instance, if the core always selects an accelerator in its closest proximity, then the core

and accelerator will be susceptible to the same thermal characteristics. A potential

future solution is to consider the spatial characteristics of the usage of CPUs and

accelerators in the heterogeneous task scheduling. A pitfall is to avoid the selection of

accelerators and CPUs that create lot of cross-fabric traffic. Therefore, the spatial

balancing of the on-chip thermal characteristics has to be traded off with the fabric

utilization while performing CPU and accelerator task scheduling.

API based Resource Control

Although there exists frequency control technologies and strategies (see Sec. 3.3.1),

the resource allocation is typically determined by the OS. For instance, the DVFS

technique to control the voltage and CPU clock is in response to chip characteristics

(e.g., temperature) and application load. However, there are no common software

Application Programming Interfaces (APIs) for user space applications to request

resources based on changing requirements. A future API design could create a

216

framework for NF applications to meet strict deadlines. A pitfall to avoid in API

based resource control is to ensure isolation between applications. This application

isolation can be achieved through fixed maximum limits on allocated resources and

categorizing applications with respect to different (priority) classes of services along

with a best effort (lowest priority) service class.

3.5.3 Interconnects

Cross-Chip Interconnect Reconfiguration

In accelerator offload designs, the path between CPU and accelerator device for task

offloading and data transfer may cross several interconnects (see Sec. 3.3.2). The

multiple segments of interconnects may involve both on-chip switching fabrics and

chip-to-chip interconnects of variable capacities. For instance, an accelerator I/O

interacting with a CPU can encompass the following interconnects: i) accelerator

on-chip switching fabric, ii) core-to-core interconnect (e.g., 2D mesh), iii) CPU to

memory interconnect (i.e., DDR). In addition to interconnects, the processing nodes,

such as CPU and memory controllers, are also shared resources that are shared by

other system components and applications. A critical open challenge is to ensure a

dedicated interconnect service to NF applications across various interconnects and

processing elements. One of the potential future solutions is to centrally control the

resources in software-defined manner. Such a software-defined central interconnect

control requires monitoring and allocation of interconnect resources and assumes that

interconnect technologies support reconfigurability. However, a pitfall to avoid would

be a large control overhead for managing the interconnect resources.

217

3.5.4 Memory

Heterogeneous Non-Uniform Memory Access (NUMA)

Sieber et al. ? have presented several strategies applied to cache, memory access, core

utilization, and I/O devices to overcome the hardware level limitations of the NFV

performance. The main challenge that has been stressed is to ensure the performance

guarantees of a softwarized NF. Specific to NUMA node strategies, there can be I/O

devices in addition to memory components that can be connected to CPU nodes.

The cross node traffic accessed by I/O devices can significantly impact the overall

performance. That is, a NIC connected to CPU1 (socket 1), trying to interact with

the cores of CPU2 (socket 2) would have lower effective throughput as compared to a

NIC that is connected to CPU1 and communicates with the CPU1 cores. Therefore,

not only the I/O device interrupts need to be balanced among the available cores to

distribute the processing load across available cores, but balancing has to be specific

to the CPU that the NIC has been connected into. An important future research

direction is to design hardware enhancements that can reduce the impact of NUMA,

whereby a common fabric extends to connect with CPUs, memory, and I/O devices.

In-Memory Networking

Processing In-Memory (PIM) has enabled applications to compute simple operations,

such as bit-wise computations (e.g., AND, OR, XOR), inside the memory component,

without moving data between CPU and memory. However, current PIM technologies

are limited by their computing capabilities as there is no support for ALUs and

floating point processors in-memory. While there are hardware limitations in terms of

size (area) and latency of memory access if a memory module is implemented with

complex logic circuits, many applications (see Sec. 3.4.4) are currently considering

218

to offload bit-wise operations, which are a small portion of complex functions, such

as data analytics. On the other hand, most NF packet processing applications, e.g.,

header lookup, table match to find port id, and hash lookup, are bit-wise dominant

operations; nevertheless, packet processing application are not generally considered

as in-memory applications as they involve I/O dominant operations. That is, in a

typical packet processing application scenario, packets are in transit from one port to

another port in a physical network switch, which inhibits in-memory acceleration since

the data is in transit. Potential applications for packet based in-memory computing

could be virtual switches and routers. In virtual switches and routers, the packets are

moved from one memory location to another memory location which is an in-memory

operation. Hence, exploring in-memory acceleration for virtual switches and routers is

an interesting future research direction.

3.5.5 Accelerators

Common Accelerator Context

As the demands for computing and acceleration grow, platforms are expected to

include more accelerators. For example, a CPU socket (see Sec. 3.3.2) can have four

integrated acceleration devices (of the same type), balancing the design such that

an accelerator can be embedded on each socket quadrant, interfacing directly with

CPU interconnect fabric. On a typical four-socket system, there are then a total

of 16 acceleration devices of the same type (e.g., QAT®). In terms of the PCIe

devices, a physical device function can be further split into many virtual functions of

similar types. All of these developments attribute to a large number of accelerator

devices of the same type on a given platform. A future accelerator resource allocation

management approach with a low impact on existing implementation methods could

219

share the accelerator context among all other devices once an application has registered

with one of these accelerator functions (whereby an accelerator function corresponds

to either a physical or virtual accelerator device). A shared context would allow the

application to submit an offload request to any accelerator function. A pitfall to

avoid is to consider the security concerns of the application and accelerator due to the

shared context either through hardware enhancements, such as the Trusted Execution

Environment (TEE) or Software Guard eXtensions (SGX) Jain et al. (2016b).

As hardware accelerators are more widely adopted for accelerating softwarized NFs,

the platforms will likely contain many heterogeneous accelerator devices, e.g., GPU,

FPGA, and QAT® (see Secs. 3.3.4 and 3.3.5). In large deployments of platforms

and infrastructures, such as data centers, the workload across multiple platforms

often fluctuates. Provided there is sufficient bandwidth and low latency connectivity

between platforms with high and low accelerator resource utilization, there can be

inter-platform accelerator sharing through a network link. This provides a framework

for multi-platform accelerator sharing, whereby the accelerators are seen as a pool of

resources with latency cost associated with each accelerator in the pool. A software

defined acceleration resource allocation and management can facilitate the balancing

of loads between higher and lower utilization platforms while still meeting application

demands.

Context based Resource Allocation

In terms of the software execution flow, an NF application which intends to com-

municate with an accelerator device for task offloading is required to register with

the accelerator, upon which a context is given to the application. A “context” is a

data-structure that consists of an acknowledgment to the acceleration request with ac-

celerator information, such as accelerator specific parameters, policies, and supported

220

capabilities. An open challenge to overcome in future accelerator design and usage is to

allocate the system resources based on context. Device virtualization techniques, such

as Scalable I/O virtualization (SIOV) ?, outline the principles for I/O device resource

allocation, but do not extend such capabilities to system-wide resource allocation.

When an application registers with the accelerator device, the accelerator device can

make further requests to system components, such as the CPU (for cache allocation)

and memory controller (for memory I/O allocation), on behalf of application. To

note, applications are typically not provided with information about the accelerators

and system-wide utilization for security concerns, and therefore cannot directly make

reservation requests based on utilization factors. Therefore, the accelerator device (i.e.,

driver) has to anchor the reservation requests made by the application, to coordinate

with the accelerator device, CPU, and other components (such as interconnects and

memory) to confirm back to the application with the accepted class of service levels.

The NF application makes request to the accelerator during registration and the

accepted class of service will be provided in the “context” message returned to the

NF application.

3.5.6 Infrastructure

SmartNIC Offline Processing Without CPU

Traditional systems process packets in two modes (see Sec. 3.2.6): i) polling mode,

such as DPDK Poll Mode Driver (PMD), and ii) interrupt mode. Most of the widely

adopted strategies for network performance enhancement focus on improving the

network throughput by: i) batching of packets in the NIC during each batch-period

before notifying the poller, and ii) deferring the interrupt generation for a batch-period

by the NIC (e.g., New API [NAPI] of Linux).

221

The basic trade-offs between state-of-art based interrupts and polling methods

are: i) Polling wastes CPU cycle resources when there are no packets arriving at

the NIC; however, when a packet arrives, the CPU is ready to process the packet

almost instantaneously. The polling method achieves low latency and high throughput.

However, the polling by the application/network-driver is agnostic to the traffic class,

as the driver has no context of what type of traffic and whose traffic is arriving over

the link (in the upstream direction) to the NIC. ii) Interrupts create overhead at

the CPU through context switches, thereby reducing the overall system efficiency,

especially for high-throughout scenarios. Although, there exist packet steering and

flow steering strategies, such as Receive Side Scaling (RSS) at the NIC, interrupt

generation results in significant overheads for heavy network traffic. To note, either

through polling-alone or interrupts-alone, or through hybrid approaches: The common

approach of the NICs keeping the CPUs alive for delay tolerant traffic imposes an

enormous burden on the overall power consumption for servers and clients Gobriel

(2012). Thus, future SmartNICs should recognize the packets of delay-tolerant traffic,

and decide not to disturb the CPUs for those specific packet arrivals while allowing

the CPU to reside in sleep states, if the CPU is already in sleep states. The packets

can directly be written to memory for offline processing. Extending this concept,

future SmartNICs should be empowered with more responsibilities of higher network

protocol layers (transport and above), such that the CPUs intervention is minimal in

the packet processing. A pitfall to consider in the design is to ensure the security of

offline packet processing by the SmartNIC such that the CPU is not distracted (or

disrupted) by the SmartNIC and memory I/O operations, as most security features

on the platform are coordinated by the CPU to enable isolation between the processes

and threads.

222

3.5.7 NF Acceleration Beyond Platforms and Infrastructures

Operating Systems and Hypervisors

The Operating System (OS) manages the hardware resources for multiple applications

with the goal to share the platform and infrastructure hardware resources and to

improve their utilization. The OS components, e.g., kernel, process scheduler, memory

manager, and I/O device drivers, themselves consume computing resources while

managing the platform and infrastructure hardware resources for the NF applications.

For instance, moving packet data from a NIC I/O device to application memory

requires the OS to handle the transactions (e.g., kernel copies) on behalf of the

applications. While the OS management of the packet transaction provides isolation

from operations of other applications, this OS management results in an overhead

when application throughput and hardware utilization is considered Yasukata et al.

(2016). Therefore, several software optimizations, such as zero copy and kernel bypass,

as well as hardware acceleration strategies, such as in-line processing Eran et al. (2019),

have been developed to reduce the OS overhead.

Similarly for hypervisors, the overhead of virtualization severely impacts the perfor-

mance. Virtualization technologies, such as single root and scalable I/O Virtualization

(IOV) ?Pitaev et al. (2018), mitigate the virtualization latency and processing overhead

by directly allocating fixed hardware device resources to applications and VMs. That

is, applications and VMs are able to directly interact with the I/O device—without

OS or hypervisor intervention—for data transactions between the I/O device (e.g.,

NIC) and system memory of the virtualized entity (e.g., VM). In addition to the

data, the interrupt and error management in terms of delivering external I/O device

interrupts and errors to VMs through the hypervisors (VMM) should be optimized

to achieve short application response times (interrupt processing and error recovery

223

latencies) for an event from the external I/O devices. For instance, external interrupts

that are delivered by the I/O devices are typically processed by the hypervisor, and

then delivered to VMs as software based message interrupts. This technique generates

several transitions from the VM to the hypervisor (known as VM exits) to process the

interrupts. Therefore, the mechanism to process the interrupts to the VM significantly

impacts the performance of applications running on a VM.

A comprehensive up-to-date survey of both the software strategies and hardware

technologies to accelerate the functions of the OS and hypervisors supporting NF

applications would be a worthwhile future addition to the NF performance literature.

Orchestration and Protocols

Typically, applications running on top of the OS are scheduled in a best-effort manner

on the platform and infrastructure resources, with static or dynamic priority classes.

However, NF applications are susceptible to interference (e.g., cache and memory

I/O interference) from other applications running on the same OS and platform

hardware. Applications can interfere even when software optimizations and hardware

acceleration are employed, as these optimization and acceleration resources are shared

among applications. Therefore, platform resource management technologies, such

as the Resource Director Technology (RDT) Intel Corp. (2019d), enable the OS

and hypervisors to assign fixed platform resources, such as cache and memory I/O,

for applications to prevent interference. Moreover, the availability of heterogeneous

compute nodes, such as FPGAs, GPUs, and accelerators, in addition to CPUs results

in complex orchestration of resources to NF applications. OneAPI Intel Corp. (2020a)

is an enabling technology in which applications can use a common library and APIs

to utilize the hardware resources based on the application needs. Another technology

enabling efficient orchestration is Enhanced Platform Awareness (EPA) Ge et al. (2014);

224

Nehama et al. (2014). EPA exposes the platform features, such as supported hardware

accelerations along with memory, storage, computing, and networking capabilities.

The orchestrator can then choose to run a specific workload on a platform that meets

the requirements.

In general, an orchestrator can be viewed as a logically centralized entity for

decision making, and orchestration is the process of delivering control information to

the platforms. As in the case of the logically centralized control decisions in Software

Defined Networking (SDN) Zilberman et al. (2015), protocol operations (e.g., NF

application protocols, such as HTTP and REST, as well as higher layer protocol

operations, such as firewalls Fiessler et al. (2017), IPSec, and TCP) can be optimized

through dynamic reconfigurations. The orchestration functions can be accelerated in

hardware through i) compute offloading of workloads, and ii) reconfiguration processes

that monitor and apply the actions on other nodes. Contrary to the centralized decision

making in orchestration, decentralized operations of protocols, such as TCP (between

source and destination), OSPF, and BGP, coordinate the optimization processes which

requires additional computations on the platforms to improve the data forwarding.

Thus, hardware acceleration can benefit the protocol function acceleration in multiple

ways, including computation offloading and parameter optimizations (e.g., buffer sizes)

for improved performance.

In addition to orchestration, there are plenty of protocol-specific software optimiza-

tions, such as Quick UDP Internet Connections (QUIC) Langley et al. (2017), and

hardware accelerations Moon et al. (2020); Ruiz et al. (2019) that should be covered in

a future survey focused specifically on the acceleration of orchestration and protocols.

225

3.6 Conclusions

This article has provided a comprehensive up-to-date survey of hardware-accelerated

platforms and infrastructures for enhancing the execution performance of softwarized

network functions (NFs). This survey has covered both enabling technologies that

have been developed in the form of commercial products (mainly by commercial orga-

nizations) as well as research studies that have mainly been conducted by academically

oriented institutions to gain fundamental understanding. We have categorized the sur-

vey of the enabling technologies and research studies according to the main categories

CPU (or computing architecture), interconnects, memory, hardware accelerators, and

infrastructure.

Overall, our survey has found that the field of hardware-accelerated platforms

and infrastructures has been dominated by the commercial development of enabling

technology products, while academic research on hardware-accelerated platforms and

infrastructures has been conducted by relatively few research groups. This overall

commercially-dominated landscape of the hardware-accelerated platforms and infras-

tructures field may be due to the relatively high threshold of entry. Research on

platforms and infrastructures often requires an expensive laboratory or research envi-

ronment with extensive engineering staff support. We believe that closer interactions

between technology development by commercial organizations and research by aca-

demic institutions would benefit the future advances in this field. We believe that one

potential avenue for fostering such collaborations and for lowering the threshold of en-

try into this field could be open-source hardware designs. For instance, programmable

switching hardware, e.g., in the form of SmartNICs and custom FPGAs, could allow for

open-source hardware designs for NF acceleration. Such open-source based hardware

designs could form the foundation for a marketplace of open-source designs and public

226

repositories that promote the distribution of NF acceleration designs among researchers

as well as users and service providers to reduce the costs of conducting original research

as well as technology development and deployment. Recent projects, such as RISC-V,

already provide open-source advanced hardware designs for processors and I/O devices.

Such open-source hardware designs could be developed into an open-source research

and technology development framework that enables academic research labs with

limited budgets to conducted meaningful original research on hardware-accelerated

platforms and infrastructures for NFs. Broadening the research and development

base can aid in accelerating the progress towards hardware designs that improve

the flexibility in terms of supporting integrated dedicated acceleration computation

(on-chip), while achieving high efficiency in terms of performance and cost.

Despite the extensive existing enabling technologies and research studies in the

area of hardware-accelerated platforms and infrastructures, there is a wide range of

open challenges that should be addressed in future developments of refined enabling

technologies as well as future research studies. The open challenges range from

hardware based polling in the CPUs and CPU based hardware acceleration management

to open challenges in reconfigurable cross-chip interconnects as well as improved

heterogeneous memory access. Moreover, future technology development and research

efforts should improve the accelerator operation through creating a common context for

accelerator devices and allocating accelerator resources based on the context. We hope

that the thorough survey of current hardware-accelerated platforms and infrastructures

that we have provided in this article will be helpful in informing future technology

development and research efforts. Based on our survey, we believe that near-to-mid

term future development and research should address the key open challenges that we

have outlined in Section 3.5.

More broadly, we hope that our survey article will inform future designs of OS

227

and hypervisor mechanisms as well as future designs of orchestration and protocol

mechanisms. As outlined in Section 3.5.7, these mechanisms should optimally exploit

the capabilities of the hardware-accelerated platforms and infrastructures, which can

only be achieved based on a thorough understanding of the state-of-the-art hardware-

accelerated platforms and infrastructures for NFs.

Moreover, we believe that it is important to understand the state-of-the-art

hardware-accelerated platforms and infrastructures for NFs as a basis for design-

ing NF applications with awareness of the platform and infrastructure capabilities.

Such an awareness can help to efficiently utilize the platform and infrastructure

capabilities so as to enhance the NF application performance on a given platform

and infrastructure. For instance, CPU instructions, such as MOVDIR and ENQCMD Intel

Corporation (2020d), enable applications to submit acceleration tasks directly to

hardware accelerators, eliminating the software management (abstraction) overhead

and latency.

3.7 Introduction

3.7.1 Motivation

In traditional implementation of Network Functions (NFs) where the dedicated

(non-programmable) compute infrastructures process the packets, the packet processing

latency and overall system throughput could be deterministically characterizable.

Hence, the Quality-of-Service (QoS) of an end-to-end link could be strictly estimated.

However, due to the nature of vendor specific design of dedicated (non-programmable)

compute infrastructures, the network processing nodes (e.g., switches, routes, and

gateways) are typically in the form of closed black-boxes and proprietary. In addition,

the NF implementation on the dedicated infrastructures were also non-reconfigurable

228

and non-programmable for redefining the NFs limiting the scalability and flexibility.

To this end, the recent trends in the NFs design and implementation have focused on

utilizing the General Purpose Compute (GPC), e.g., x84 (Intel), x64, AMD, and ARM

processors. The packet processing is implemented on the GPC infrastructures that run

the Operating Systems (OS) and HyperVisors (HV) which hosts applications defining

the NFs. Hence, the application development provides a great degrees of freedom in

terms of flexibility and scalability in designing a NF while achieving programmability

and reconfigurability.

The need for configurable and programmable networks has grown in significant

demand in recent network infrastructure development. To this end, the paradigm of

Software Defined Networking (SDN) has been widely adopted to enable high degrees

of configurability and programmability. Whereas, the technology of Network Function

Virtualization (NFV) has been adopted to for enabling scalability and flexibility.

Therefore in conjunction to softwarization of NFs implemented as applications on

a OS/HV running on a GPC infrastructures, the SDN and NFV have presented

unprecedented opportunities for the future network designs, while bringing numerous

challenges to the GPC infrastructures and OS/HV to offer efficient packet processing

strategies.

A close examination into the characteristics of packet processing by the OS/HV

on the GPC infrastructure provides insights into the optimization scope for platform

hardware and OS/HV design principles (e.g., memory management). The challenges

of packet processing in the GPC infrastructures arises from the traditional methods

of hardware resource management principles of OS/HV, such as memory abstraction

(user and kernel spaces). The primary requirements of OS/HV were to share the

hardware resources among multiple tenants (i.e., applications) and provide isolation.

229

Characteristics of Packet Processing on General Purpose Compute (GPC)

When a packet processing NF is implemented as an application on an OS/HV us-

ing traditional approaches, i.e., without any OS/HV optimizations and hardware

accelerations, following challenges may arise depending on the packet arrival rate:

i) I/O intensive: Packet arrival to the Network Interface Card (NIC) at the line rate

results is an overwhelming I/O activity in the OS/HV system. The I/O activity

would impose burden on the interconnects for data hauling between processing

elements in the GPC platform, both on-chip (e.g., Advanced eXtensible Interface

[AXI]) and chip-to-chip (e.g., Peripheral Component Interconnect extended

[PCIe]).

ii) Compute intensive: The wide range of packet processing type i.e., from a

simple header-lookup to relatively larger compute such as packet encryption

(e.g., IPSec), and deep packet inspection involving both arithmetic and logical

operations would impose large burden on CPU. In addition, the packet size,

packet rate [bit/sec], and inter-packet arrival duration determine the overall load

on the CPU.

iii) Repeated and routine operations : The compute on the packets by the cores, are

routine in nature and repeated for every packet arrival. For instance, the L2

forwarding (switching) NF application would inspect the header, and identify

the forwarding port for every incoming packet.

iv) Latency sensitive: As processes and threads are scheduled on the core for

processing based on their relative priorities, there is room for variation in the

processing latencies which would inducing jitters in the packet flow. Therefore,

the softwarize NF system should consider minimizing delay variations, in addition

230

to the traditional buffering and queuing delays.

v) Dedicated capacity : Softwarized NF that are designed to operate at line rate,

e.g., 10 Gbps for each port, should reserve hardware resources such as number

of cores, and memory to support dedicated capacity.

iv) Large memory : Softwarized NFs that implement gateway functions need to

reserve large system memory to buffer the data from multiple ports. For instance,

an aggregation gateway node that multiplexes traffic from N links to one outgoing

port in N:1 fashion.

Characteristics of OS/HV on General Purpose Compute (GPC)

Softwarized NF for packet processing on GPC platforms imposes restrictions on the

OS/HV strategies to achieve latency and throughput requirements. The goal since the

inception of OS/HV were to maximize the utilization of platform hardware resources

(e.g., CPU, memory, and I/O devices) by running multiple applications concurrently.

Hence the characteristics of OS/HV in terms of running multiple application on a

common hardware platform can be summarized as:

i) Compute: Hyper-threading, C/P states (turbo), processes and thread scheduling,

priorities, context switching, caches, and thermal characteristics

ii) Memory : NUMA, abstractions, and traditional OS memory management, kernel

space, user-space

iii) I/O devices : NIC, Accelerators and Storage: interrupts, polling, memory move-

ment, power management

iv) Virtualization: Hypervisors, CPU, memory, I/O device virtualization.

231

This paper surveys the enabling technologies and research studies on OS and hy-

pervisor aspects that directly impact the performance of NFs. The NF softwarization

relies on OS services, hardware control, and resource management for the implemen-

tation and deployment of NFs as applications hosted on the OS. A hypervisor, on

the other hand, provides an abstraction layer of the hardware to aggregate and slice

resources for an isolated abstracted environment. In practice, a hypervisor can be

considered as a fully functional OS which is built to host applications as well as other

OSs. As discussed in Sec. 3.2, NF applications can be in developed in the form of

applications hosted directly on an OS interacting with hardware, on a container, or a

VM. Therefore, NF performance directly relates to the OS and hypervisor management

as well as the allocation of hardware resources to the applications.

3.8 Enabling Technologies

3.8.1 Abstraction Layer

The abstraction layer manages the hardware resources and provides hardware

access services to applications running on the OS (or guest OS in case of hypervisors).

For NF applications, reducing the overhead of hardware access and reducing the

memory access latency by the CPU are primary concerns for improving the overall

performance.

OS The traditional OS kernel involves several software overheads resulting from the

isolation of user and kernel space in the system memory, paging process, and security

protection methods that incur memory copies as well as process and transactional

latencies for applications. For instance, a packet that arrives to the NIC from the

physical link is processed as follows: i) the packet is DMAed into kernel memory

space managed by the NIC driver, ii) the CPU moves the packet from the kernel

232

space to user-space NF application memory, iii) the CPU moves the packet into

the kernel-space of the accelerator driver, iv) packet data is moved from the kernel

space of the accelerator driver to the hardware accelerator memory, v) the accelerator

writes back the packet to the kernel-space after processing, vi) the CPU moves the

packet from the kernel-space to the user-space memory of the application, vii) the

CPU writes the packet again into the NIC driver kernel-space memory region, and

viii) the packet is DMAed into the NIC memory, and the packet is sent out onto the

link, as illustrated in Fig. 3.39. In addition to memory transaction overheads, the

synchronization of threads and processes between the common queue increases wait

times resulting from the locking and unlocking of resources. Thus, traditional OS

packet processing methods are inefficient to achieve high throughput and low latencies

for NF applications.

Several OSs optimized for NF applications have been recently proposed, such as

OSv OSv (2020) to address the overheads resulting from synchronization and locking

through spin-lock free implementation and NFVTime Telco Systems, A Bath Company

(2020) to address overheads arising from virtualization and memory access. A OS

can host multiple NF applications which many need traffic communication paths

between NFs, in traditional designs, a packet from a source NF would traverse to

an external switch and be received back before reaching the destination NF on the

same host. To reduce such traffic loop-back through an external switch, the kernel

can implement a virtual switch function as a kernel component. The Open vSwitch

(OvS) is an open source implementation of a virtual switch that forwards traffic

between multiple applications within the OS kernel. OvS is supported by the extended

Berkeley Packet Filter (eBPF) Fleming (2017) developed by the project IO Visor Linux

Foundation (2020) of the Linux Foundation. The eBPF implements efficient packet

in-kernel processing methods through a graph based approach to reduce the number

233

of computations required for packet matching and filtering. In the case of SDN based

virtual switches, eBPF is employed to implement packet analytics, monitoring and

inspection, and debugging of packets by filtering and forwarding the packets to an

SDN controller.

If communication between NFs spreads across multiple hosts, a Logical Distributed

Switch (LDS) can be implemented as a part of a kernel-module as extension to virtual

switches. An LDS spans across multiple hosts where traffic is tunneled between LDS

switch components for dedicated logical L2 connectivity using protocols, such as

VxLAN and Generic Routing Encapsulation (GRE) protocols for within host and

host-to-host packet transactions within L2 and L3 domains.

The Address Family eXpress Data Path (AF-XDP) Hohlfeld et al. (2019) is a

method for high speed packet processing aiming to reduce memory copying overhead

through a common memory region for both application and device driver, effectively

resulting in zero-copy processing. An application reserves a part of contiguous virtual

memory, referred to as UMEM, as an array and shares the address of the UMEM with

the driver. The NIC can then directly write into system memory into the UMEM for

packet receptions and read from the UMEM for packet transmissions.

Hypervisors The virtualization of hardware resources provides a framework to

multiplex multiple OS workloads (Virtual Machines [VMs]) onto a single set of

hardware resources, improving the overall utilization of the physical resources. The

multiplexing of OS workloads is achieved by the hypervisors, whereby each VM is

assigned independent abstracted (virtualized) resources while maintaining isolation

between the VMs. The main downside of virtualization is the overhead of memory,

CPU, and I/O device abstraction, which requires multi-level page walks, virtual

to physical mapping of CPU, I/O device DMA, and interrupt remapping. As the

234

number of CPUs and I/O devices, size of memory, and number of VMs increase, a

hypervisor incurs a large overhead to map between physical and abstracted hardware

resources. Generally, NF applications are memory and I/O intensive workloads with

a large number of recurring events generated by packet reception, processing, and

transmissions which results in large overheads, reducing the overall system throughput.

Therefore, hardware assisted virtualization provides enhanced features for VMs

to interact directly with the hardware. For instance, for CPU virtualization, VMX

instruction described in Sec. 3.3.1 allow VMs to directly execute CPU instructions

on the physical CPUs. In the traditional methods, VM to Hypervisor (i.e., Virtual

Machine Monitor [VMM]) control transitions were managed through TLB flushing Shah

and Patil (2013) and reestablishment of page translation caching, which increased

memory access latencies. To avoid the TLB flush process during VM and VMM

transitions, a virtual-MMU (vMMU) Yang (2008) supported by hardware has been

designed to allocate an independent memory management context to VMs. The vMMU

uses a Virtual Processor IDentifier (VPID) to identify the TLB cache lines utilized by

both VMs and VMM, thus avoiding the TLB cache flush during VM-VMM transitions

with an Extended Page-Table (EPT) Merrifield and Taheri (2016) mechanism whereby

hardware based nested address translation is employed.

Containers Containers are an abstraction at the application layer that packages

code and dependencies together. A Container Engine, such as Docker and CRI-

O Rodriguez and Buyya (2019), manages the containers at run-time for instantiation,

resource allocation, isolation, saving contexts and tear-down. In general, hypervisor

and VM implementations target the isolation property in the infrastructure and

application deployment, while container implementations target the flexibility and

scalability.

235

The traditional implementation of containers and VMs involves multiple levels

of abstraction for effective management of the hardware resources and application

demands. Multi-level abstractions with nested VMs and containers are particularly

necessary for network and resource slicing in MEC, where high degrees of isolation

and flexibility are needed. For instance, VMs running on an MEC can provide service

provider level isolation, whereas containers running inside VMs can provide application

level isolation for the CNFs. Moreover, the dynamic nature of NFs requires flexibility

and agility in terms of network service instantiation, service migration, and scalability

which makes containers an ideal choice for the NF softwarization.

Clear Linux Hardware acceleration of containers provides enhanced features to

further optimize the application deployment in terms of scalability and isolation. In-

tel® Clear Linux Intel Corporation (2020a) containers optimize kernel and application

execution on Intel® CPUs with AVX instructions and optimized libraries for software

APIs along with kernel configurations, compilers, and auto-select of hardware enhanced

features for applications, such as Intel® Virtualization Technologies (VT) Van Doorn

(2006). Clear Linux also utilizes hardware features to separate the file systems for

user data, operating systems, and system configuration for easy management Bahena

and de Alba (2014).

Kata Container In an effort to get the best of both VMs and containers, Kata

containers present the combination of Clear Linux and Hyper RunV projects to achieve

the flexibility and speed of containers while still preserving the VM level isolation

and security. More specifically, Kata containers can achieve the performance of Clear

Linux, e.g., < 100 ms boot time while supporting heterogeneous CPU architectures

and hypervisors. This is achieved by exploiting hardware enhanced features, such

as CPU AXI and VT technologies. As opposed to multiple containers on a VM, the

Kata container model involves only a single container per VM. Each VM instantiates

236

a Clear Linux container on a virtualized hardware by the Linux kernel (acting as a

hypervisor) as illustrated in Fig. 3.41.

Summary of Abstraction Layers Abstraction is necessary to provide security,

flexibility, and scalability to NF applications. However, the more abstraction layers,

the larger is the overhead as the control and data messages have to traverse through

each abstraction layer, resulting in multiple copies of messages as they are moved

through the abstraction layers. Each abstraction layer is also associated with resource

management, which incurs further overhead. Therefore, the NF performance is

significantly reduced compared to native bare metal as the number of abstraction

layers increases. To overcome the hypervisor overhead, lightweight containers have

been developed to alleviate the problems of full abstraction to shared abstraction

(whereby shared abstraction reuses the resources or arbitrates the access to the

abstracted resources). Clear Linux and Kata containers utilize hardware enhanced

features to achieve the best of both container and VM. While there exit multiple

deployment options, it is important to carefully consider the pitfalls of abstraction

which could impede the overall performance, such as, resource allocation for slicing and

management, application level isolation and security, and access control as well as policy

management in heterogeneous deployments involving containers, VMs, hypervisors,

and hardware.

3.8.2 Memory Access

Non-Uniform Memory Access (NUMA) In the initial GPC generations, the

system memory (i.e., DRAM) was connected to a common system bus which gave

all CPUs equal memory accessibility in terms of throughput and latency. Thus,

the CPU access characteristics to memory were uniform regardless of the relative

237

locations of core and CPU in terms of socket, and the memory access method was

referred to as Uniform Memory Access (UMA). However, in the recent designs with the

increasing numbers of cores per CPU, the system memory is partitioned into memory

nodes, whereby each memory node corresponds to one CPU (or socket). The CPU

memory access characteristics to their respective memory nodes are faster relative to

the memory nodes that are not directly connected to their socket. Fig. 3.42 shows

the local and remote memory access methods by the CPU, resulting in asymmetric

memory access characteristics for different memory nodes, referred to as Non-Uniform

Memory Access (NUMA). With the support from the OS, NF application designs

should consider the memory access based on the NUMA configuration such that

there is no performance impact due to non-NUMA node memory access. That is,

non-NUMA memory access should be avoided since a non-uniform memory access

would degrade performance. Therefore, the data should be maintained with locality

in place such that memory access is uniform.

Similar to NUMA nodes which define socket-specific memory regions, the NIC and

other devices, such as accelerators, which are based on PCIe, could also be connected

to CPUs through socket-specific nodes. The access characteristics to these devices

by the CPU are faster if they are connected directly to the CPU socket. Hence, NF

applications require NUMA knowledge from the OS to achieve high performance levels

from NICs and accelerators.

Continuous Memory Allocation Each memory node in NUMA is further divided

into continuous memory chunks (also referred to as pages) in the system memory.

The OS accesses the system memory in terms of pages as opposed to bytes of data.

The typical page size during normal operation is 4 Kbytes. Therefore, for each CPU

memory access, the data which belongs to a block of 4 Kbytes is entirely copied from

238

the secondary storage to system memory for the application processing. Each page

is accessed through a page index to which each address is mapped to by translating

virtual addresses used by the OS to physical addresses in system memory. The CPU

evaluates the page index during the run-time of application every time there is a

request for memory access and performs a look-up for the page index in Translation

Lookahead Buffers (TLB). The TLB caches all the page index mappings from virtual

to physical memory addresses. If there is a TLB miss, then the CPU searches through

an elaborated page table for the virtual to physical address mapping of the page index

which incurs a significant performance overhead.

For NF applications, the TLB misses would result in non-deterministic performance

characteristics in terms overall throughput and latencies of packet processing. To avoid

TLB misses, large continuous memory regions can be allocated to NF applications by

allocating a large page (� 4 Kbyte) from the OS. With a large page, the page index

mapping is available with high probability as cached entity in the TLB. Typically, NF

application, such as DPDK, allocate huge pages of 1 Gbyte, compared to 4 Kbyte

allocations for traditional OS applications. However, the downside of huge pages are

memory wastage, as a complete page may not be used by the application, reducing

the overall OS memory utilization. Therefore, NF applications should consider the

memory requirements when allocating the page size to avoid system memory wastage.

IO Memory Management Unit (IOMMU) The MMU is responsible for the

translation of the virtual address of the OS to the physical address of the system

memory when requested by the CPU. In the case of I/O devices, system memory

access can be enabled in two ways: i) direct physical address memory assignment,

or ii) address translation via the MMU which takes additional steps for the CPU to

coordinate the address translation for the devices. Direct physical address access can

239

result in security vulnerabilities, e.g., a device can access memory regions that are

not related to the device. Avoiding such vulnerabilities, the IO Memory Management

Unit (IOMMU) Advanced Micro Devices Inc. (2016) has been designed to enable the

virtual to physical address translations. A traditional IOMMU maintains its own page

tables through IO Virtual Addressing (IOVA) which is different from CPU page tables,

whereby the I/O device and CPU maintain their own TLB and page fault resolution

mechanisms.

To further enhance the memory access performance, Shared Virtual Memory (SVM)

has been introduced to obtain a common memory view across both I/O device and

CPU, such that a pointer to memory allocated by an application in user space can be

passed to the device for memory access. In SVM, both system MMU and IOMMU

are coherent at all times and are in coordination to ensure consistent translations

between virtual and physical addresses. The OS provides applications with unique

virtual addresses, which are common to other applications, but map to independent

physical addresses in memory. That is, the same virtual addresses could be used

by multiple processes, but are still independent in physical memory. OS and MMU

would identify the processes based on address space identifiers. Therefore, for SVM,

the Process Address Space IDentifiers (PASID) context must be passed down to the

device along with the virtual addresses of the applications such that the IOMMU can

perform the address resolution specific to each application based on the PASID. In

case of hypervisors, the PASID is used for the guest OS address space resolution by

the IO devices.

Summary of Memory Access Memory intensive NF applications depend on

strategies and technologies that overcome the traditional bottleneck in the memory

access. Edge applications, such as a Content Distribution Networks (CDNs), frequently

240

receive and forward data that needs to temporarily stored at edge nodes. At the

system level, the data arriving at the NIC (I/O device) is copied to several memory

regions before the application can process the data. As the number of processor

sockets increases on a platform, an access can fall into a region that is part of the

current socket or a region that is part of a different socket. The memory access

latency differs between these two cases, which can result in asymmetrical performance.

Additionally, the memory fragmentation by the OS for paging process is susceptible

to TLB thrashing and page faults causing additional overheads.

Memory access strategies try to overcome these limitations through memory pinning

of applications for NUMA, as well as contiguous memory allocations and large pages

for memory fragmentation and TLB thrashing. Also, IOMMU and Shared Virtual

Memory (SVM) have been developed to assist I/O devices in reading and writing

data from system memory. Cache coherency mechanisms further mitigate the memory

access latency experienced by the CPU by keeping the updated data in caches. Thus,

memory access plays an important role in the overall NF application development and

deployments.

3.8.3 Accelerator Offload Designs

Accelerators are typically enumerated in the OS as PCIe devices. Physically, the

PCIe accelerator devices can be on-chip within the CPU die, or connected externally

through a PCIe bus and on-board connectors. In either case, the PCIe protocol

defines the procedures to send instructions to the accelerator to read data from the

DRAM, perform computations on data, and write back data to the DRAM. The

accelerator driver component of the OS, in conjunction with the PCIe driver, takes

care of the protocol operations and transactions. An application that needs to utilize

the accelerator services has to interact with the accelerator service drivers of the

241

OS. A typical control flow for task offloading to the accelerator includes registering

of the application with the accelerator device, task submission to the accelerator

worker-queue, monitoring for a response from the accelerator device, and access the

results. This section presents an overview of the different methods applied by the OS

and applications to interact with a hardware accelerator.

For the NF acceleration which involves packet processing, the function task offload-

ing can be performed in two ways: i) In-line processing, whereby tasks are offloaded to

an acceleration module inside the NIC itself as packets arrive to the NIC I/O device,

or ii) Look-aside processing, where tasks are offloaded to an additional acceleration

device that is external to the NIC.

In-Line Processing (ILP) Task acceleration that involves the processing of packets

inside the NIC as packets arrive at the NIC is referred to as In-Line Processing

(ILP) Eran et al. (2019). ILP is an effective method of acceleration in terms of latency

and memory transactions to-and-from DRAM and an accelerator for NF application

as the benefits of function processing are achieved at the packet origination and

termination points (for packet transmission and reception over a link). However, the

downsides and pitfalls of implementing the acceleration component at the NIC for ILP

are the cost of integrating specific complex function accelerations, such as HTTP load

balancing on the NIC, and the reduced flexibility for using accelerators for applications

that involve packet processing. The acceleration of complex functions, such as HTTP

load balancing, requires the NIC to maintain application states in order to be able to

analyze the incoming packets beyond the traditional IP layer processing. Therefore,

the ILP should be applied only to simple packet processing tasks, such as tunneling,

MACSec, and IPSec protocol processing of L2 and L3 processing tasks, which do not

impose restrictions, nor increase the complexity of the overall NIC functionality.

242

Look-Aside Processing (LAP) In contrast to ILP, Look-Aside Processing (LAP)

is a traditional method of accelerator task offloading to an external (to CPU) PCIe

component. In LAP, upon receiving the packets from the NIC, the NF application is

required to send dedicated instructions to the accelerator to read the packet data into

the accelerator device, processes the data on the accelerator, and write the data back

to the desired memory location that can be read by the application. The application

can then further process the accelerator data or interpret the result. As opposed to

ILP, LAP does not require any specialized hardware design nor software changes. The

main downside of LAP is the large overhead to move packet data between the kernel

and user space regions of the DRAM memory, as well as to-and-from the PCIe devices

(i.e., NIC and accelerator device). For small packets, the memory movement overhead,

i.e., the offloading cost is higher than the acceleration benefit, resulting in overall

reduced application performance.

Interrupt Mode When a task is offloaded to an accelerator, the CPU can either

choose to poll the accelerator status for task completion or ask for an interrupt to be

sent to the CPU (in response to the interrupt, the CPU can then further process the

results from the accelerator). The interrupt generation and the CPU response to the

interrupt can be of various forms. Physical interrupts via dedicated interrupt lines,

such as INTA, INTB, INTC, and INTD (i.e., INTx), are used to get the attention of

the CPU for highest priority interrupts. Physical interrupt lines are limited and need

to multiplexed for sharing interrupts between multiple I/O devices. To overcome this

limitation, the PCIe specification introduced Messaged Signaled Interrupts (MSI) Tu

et al. (2015), which replace the physical interrupts with a standard memory write

process, whereby the memory address is mapped to the interrupt type and the data

value written to memory is the message conveying the interrupt details. While the

243

physical INTx interrupts are limited to 4, the MSI extend the interrupt capability

to 32 interrupt vectors per PCIe function. To further enhance the MSI capabilities,

MSI-eXtensions (MSI-X) have been designed to extend the interrupt vector size to

2048 MSI-X interrupts per PCIe functions. MSI-X consists of a unique memory

address for each interrupt and data value to indicate the interrupt details.

The interrupts generated by a device in the form of MSI and MSI-X are sent

to the PCIe Root Port (RP). The RP forwards the MSI-X messages to the I/O

Advance Interrupt Controller (I/O APIC) which is mapped to the indicated MSIx

address. Each CPU core has a local APIC as indicated in Fig. 3.44. The I/O

APIC identifies to which local APIC the MSI-X interrupt needs to be delivered. The

APIC is also responsible for handling the interrupts generated by timers, performance

monitors, and thermal sensors. The APIC also considers interrupt forwarding between

cores through Inter-Processor Interrupts (IPI) for load balancing, handling software

generated self-interrupts, and preemptive scheduling.

NF applications can use the APIC controller and IPI strategies for efficient packet

processing methods, such as Receive Side Scaling (RSS), Receive Packet Steering

(RPS), Receive Flow Steering (RFS), and Receive Side Coalescing (RSC). RSS is

primarily intended to distribute interrupts across multiple cores for packet processing.

Without RSS, all packets for a given socket connection arrive to a single processing

core which could increase the overall processing time. RSS uses hardware queues

to distribute the packets among multiple cores. On the other hand, RPS uses IPI

mechanisms and software queues to distribute the packets to different cores based

on protocol needs. RFS targets a specific core based on the application running on

the CPU to increase the cache hit rate such that the processing latency is decreased.

In contrast, RSC coalesces the TCP/IP packets which belong to the same socket

connection into a single packet, effectively reducing the interrupts between NIC and

244

CPU as well as the per-packet processing overhead.

Figure 3.45 illustrates the interrupt delivery mechanisms to the Guest OS running

on a VMM (hypervisor). Traditional methods of interrupt delivery by the VMM to the

Guest OS involve a software management of the external interrupts on the VMM. The

VMM management of the external interrupts by the software component results in VM

exits (transfer of CPU “privileged mode” control) between the Guest OS and VMM.

The trapping of the VM exits by the VMM and delivering the interrupts to the Guest

OS incurs significant delay because of VM exits. The CPU hardware virtualization of

the APICv allows the APICv context to be allocated to the Guest OS, and external

interrupts can be delivered directly to the hardware APICv by the VMM, without

a VM exit. Although this mechanism reduces the number of VMM exits between

the VM and VMM, the software delivery of interrupts that are not registered by the

APICv would still result in VM exits. An improved version of the hardware based

APICv is to enable posted mode interrupts, whereby an external interrupt is delivered

as a message written into a dedicated memory region. Posted interrupts eliminate the

requirement of VMM, as the VMM is transparent to the external interrupts except

for the hardware based APICv registered interrupts. The posted interrupt benefits

include fewer VM exits (for hardware APICv), easier migration of interrupt contexts

(whereby the context resides in a VM as opposed to a VMM), and support for I/O

virtualization technologies (see Sec. 3.8.3) for delivering I/O device based interrupts.

Polling Mode In contrast to the CPU registering an interrupt from an accelerator,

the CPU can choose to poll the status of completion of the accelerator. Polling

typically involves a repeated (periodic or aperiodic) memory read operation of a

specific address (e.g., designated completion status address) in the memory region

where an accelerator updates the status of task completion. More generally, the CPU

245

offloads the task with the submission of a descriptor to the worker queues of the

accelerator. The descriptor includes the details of the memory regions where the

completion status and result should be written back once the accelerator completes

the task. After task completion, the accelerator DMAs the results to the system

memory (i.e., DRAM) and updates the completion status to the address provided by

the CPU. The software polling thread recognizes the completion status value during

the next polling read operation and notifies the relevant process thread in the OS for

the result interpretation.

For NF application development, the Data Plane Development Kit (DPDK) includes

a Poll Mode Driver (PMD) Cerrato et al. (2014). The PMD continuously monitors

(i.e., polls) the NIC for a packet arrival such that the CPU can process the packets

almost instantaneously. In contrast, waiting for an interrupt and then invoking

interrupt service routines generally incurs additional packet processing latencies since

the packet processing threads will be put to wait states after timeouts when there

are no packets (and waking up a thread from a wait state incurs delays). Also, the

raising of the interrupt by the NIC to the CPU incurs latencies, and the CPU has

to preempt currently ongoing executions to service the interrupt. PMD avoids these

additional latencies as the PMD thread is always ready for packet processing. The

PMD maximizes the throughput from an overall system perspective, however, each

PMD thread is pinned to a core to monitor and service packets from the NIC. The

continuous polling of the PMD thread fully (100%) utilizes the core. Hence, one

core is completely occupied by the PMD for an NIC port. Thus, the PMD improves

the system throughput and latency at the expense of high power consumption (as

compared to interrupt mode) since the CPU is continuously active, even when there

are no packets.

246

Summary of Accelerator Offload Designs Hardware acceleration is associated

with two main offload costs: i) moving input and output data through the accelerator

and system memory, and ii) notification of task completion by the accelerator. The

data movement among application user space, accelerator kernel space, and accelerator

device memory requires in-memory copying, increasing the overall processing duration

of the accelerator; this traditional method of offloading is referred to as “Look-Aside

Processing”. In contrast, for NF applications, packets can be processed by accelerators

at the NIC as they arrive, without requiring the packets to be moved between system

and accelerator memories; this accelerator processing approach is referred to as “In-Line

Processing”.

Notification of accelerator task completion to the CPU can be achieved through a)

interrupt, or b) polling. In the interrupt mode, the accelerator I/O device generates

an interrupt to the CPU to check the accelerator output at a predetermined memory

location. The interrupt method incurs overhead, especially when the CPU is in a

sleep state and requires a recovery time for wake-up to start processing the accelerator

output. In contrast, the polling mode keeps the CPU awake and constantly checks the

accelerator for completion, which minimizes the delay for processing the accelerator

output by the CPU. However, polling is energy-inefficient, as the CPU is kept awake

for the entire duration of the accelerator offload processing.

Hardware Assisted I/O Virtualization

Beyond the traditional IT server infrastructure management, virtualization is particu-

larly important in MEC environments as MEC infrastructure resources are typically

shared among multiple tenants. MECs are usually owned by private third party

businesses, such as coffee shops, shopping malls, schools, and universities. Third party

infrastructures are then leased by multiple service providers, whereby the MEC infras-

247

tructures are resource sliced to provide isolated environments through virtualization.

Thus, virtualization plays a vital role in MEC deployments.

If an NF requires limited OS support, for instance to establish a packet filtering

mechanism, a lightweight container could host the function capabilities for the NF. In

contrast, complex NFs may require access to the full host OS capabilities. For example,

enforcing QoS through time synchronization, load balancing at the application layer,

and traffic shaping require full host OS access in isolation for complete hardware

control by the NF applications.

Para-virtualization Orthogonal to device virtualization techniques, the concept

of para-virtualization is to specifically design the virtualized entities to run on a

specific abstraction layer (physical device or software environment), rather than being

agnostic to the hardware and software layers that implement the virtualized entity.

That is, in para-virtualization, the software is specifically adapted to interact either

with a physical device or with a virtual (software) environment. This technique takes

advantage of prior knowledge of the physical device and virtual environment such

that the appropriate software can be run on the OS to optimally interact with the

physical device or virtual environment. In traditional virtualization techniques, the

software is agnostic to the virtualization, i.e., the same software would interact with

both physical devices and virtual environments.

I/O devices NFs primarily depend on two types of I/O devices for accomplishing

their tasks: i) NICs to communicate with external nodes through physical network

interfaces, and ii) accelerators for NF application task offloading. Therefore, I/O device

virtualization is a key aspect of designing NFVs in a virtualized platform. I/O device

virtualization can be achieved in different forms, namely through i) software emulation,

ii) hardware based virtualization, or iii) hardware assisted software virtualization.

i) Software emulation: An accelerator function can be implemented in software

248

by emulating accelerator functions that are typically implemented in hardware.

Software emulation helps NFs in two ways: a) saving of accelerator context

during service migration of NFs over virtualized infrastructures, and b) sharing

of a hardware accelerator function among multiple VMs through abstraction.

Software emulation provides continuity of NF application migration when a VM is

migrated to a platform, but no hardware acceleration is found. However, software

emulation results in an additional overhead for emulation and abstraction.

ii) Hardware based virtualization: With hardware based virtualization, a hardware

accelerator function is programmed to operate as multiple virtual functions with

static resource slicing. For instance, a single physical I/O device exposes itself to

the OS as multiple virtual functions that are pre-defined in the hardware. These

virtual functions are then assigned to VMs and application to operate in isolation.

Single Root I/O Virtualization (SR-IOV) Dong et al. (2008) technology defines

the specification for hardware based virtualization.

iii) Hardware assisted software virtualization: In hardware assisted software virtu-

alization, a single I/O device is both emulated in software and hardware. The

emulated device is sliced into a flexible number of virtual functions to provide a

higher resolution of resource slicing as opposed to a fixed number of slices in

hardware based virtualization. Thus, hardware assisted software virtualization

has more degrees of freedom in terms of resource slicing of accelerator hardware

and allocation of virtual functions to VMs and applications. Scalable-I/O Vir-

tualization (S-IOV) Jani et al. (2019) technology defines the specification for

hardware based virtualization.

249

Single-Root I/O Virtualization (SR-IOV) The PCIe specification defines a

hardware based virtualization technique that extends a single Physical Function (PF)

of a device into multiple Virtual Functions (VFs) that can be assigned to VMs and

applications Kutch (2011). The extension of a PF to multiple VFs can only be made to

a single Root Port (RP); in other words, VFs from a single device cannot communicate

with multiple RPs. All VFs respond to requests and report errors to a single RP and

this virtualization concept is therefore referred to as Single-Root I/O Virtualization

(SR-IOV). SR-IOV manages the application requests from multiple virtualized entities

and applications into a single work queue by multiplexing and managing the result

distribution to requesters. An SR-IOV device maintains a different work queue and

command processing pipeline individually for each VF within an IO device. The

number of VFs for an I/O device is fixed in SR-IOV for an I/O device as the resources

per VF are fixed and statically defined. In case of hypervisors, an SR-IOV VF function

can directly DMA the I/O data to the VM’s physical memory without having the

hypervisor/VMM manage the data transfers. This bypassing of the VMM control of

the I/O enhances the efficiency as compared to the VMM managing the I/O device.

However, a downside is the context loss when a VM is migrated to another node. Due

to the context loss, a VMM lacks information about the state of the I/O device to

ensure the continuity of application interactions with the I/O device.

Scalable I/O Virtualization (S-IOV) The Scalable-IOV (S-IOV) Intel Corp.

(2018) virtualization technology targets two primary downsides of SR-IOV: i) fixed

allocation of resources for each VF, and ii) preserving context of an I/O device to

facilitate VM migration. In S-IOV, the resource slicing and allocation to VMs and

applications are performed through Assignable Device Interfaces (ADIs). Each ADI

is an instance of a I/O device, fully capable of receiving worker queue tasks and

250

commands for accelerator offloading. The S-IOV implements an interrupt posting

hardware unit and an Interrupt Message Store (IMS) for providing interrupt support

to ADIs. The IMS interrupts, which are posted as messages, can be directed towards

a physical, virtual (load balanced among multiple cores), or logical (remapped from

physical) core.

S-IOV technology also supports Process Address Space IDentifier (PASID) (See

Sec. 3.8.2) which allows ADIs to directly read and write data to application and VM

memories without transitioning through OS and hypervisors. Another differentiation

of S-IOV from SR-IOV is the implementation of the Virtual Device Composition

Module (VDCM) which is an emulated instance of an IO device within the OS or

hypervisor. The VDCM decouples the hardware interaction for infrequent I/O device

accesses, thus avoiding congestion in the hardware resources which are freed up for the

usage from applications that demand more frequent usage. Thus, the VDCM separates

the “slow-path” from the “fast-path” for efficient hardware resource management. In

addition, the VDCM facilitates the live migration of VMs by preserving the device

contexts within the emulated hardware instance. The potential downsides of S-IOV

from SR-IOV include software complexity and memory requirements by the VDCM

in the S-IOV.

Summary of Hardware Assisted I/O Virtualization In summary, an OS or

hypervisor (VMM) would support both SR-IOV and S-IOV technologies for I/O

device (i.e., accelerator) virtualization. However, application usage requirements

may determine the level of flexibility that is required for accelerator offloading. For

example, IO emulation may be best suited for supporting missing hardware features

that applications are expecting. Fixed IO assignment—as in the case of SR-IOV—may

provide the best performance when hosting I/O-intensive workloads, such as packet

251

inspection and forwarding. Although, the S-IOV adds the software complexity of

the VDCM, the “fast-path” access allows applications to directly interact with the

device. Also, the IMS enables the device to send interrupts to the cores that the

application or VM is running on. As a result, the S-IOV allows I/O device sharing with

isolation in multiple scenarios from 1-to-1, 1-to-N , over-provisioning, and emulating for

compatibility mapping of hardware ADIs to VDCM based Virtual DEVices (VDEV),

as illustrated in Fig 3.47.

Alternative to the direct assignment of I/O devices to the VMs and applications

(which is also referred to as “pass-through”), implementing an NF as a virtualized

entity, and using a virtualized I/O device by the NF should be carefully considered to

avoid pitfalls. Common virtualization pitfalls are:

1) Overhead: The main concern about the virtualization is the software overhead.

During the virtualization process, the hypervisor itself consumes resources to

manage the virtualization processes to host virtualized entities on the hypervisor.

The overhead can originate due to multiple levels of virtualization implemen-

tation, i.e., first level hypervisor, second level, and so on. Levels equivalently

correspond to the software abstraction of the infrastructure, whereby each level

abstracts the lower level implementation to higher layers. This could impact the

overall latency in terms of translating the instructions at each layer, originating

from the network applications and terminating at the physical hardware.

2) Isolation: Virtualization should provide a high degree of resource isolation, i.e.,

the activities of one VNF should not impact the activities of another VNF on

the same physical infrastructure. For instance, the cache activities of one VNF

should not compromise the cache activities of another VNF. Similarly, the data

stored on the file system of one VNF should not be modified by another VNF,

252

unless granted permission to do so. Poor isolation properties can lead to security

vulnerabilities.

3) Migration: One of the key benefits of virtualization is the dynamic migration of

the virtualized entities, such as the VNFs. VM migration has been widely studied

in the cloud native environment Strunk (2012); however, the VM migration

still needs to be explored in the MEC context. The VM migration in the MEC

context is much more complex than in the cloud native environment because of

resource constraints, both in terms of the target compute resource availability

and the connectivity bit rate (i.e., throughput) restrictions. Another challenge of

VNF migration is to transfer the hardware context from one physical hardware to

another. Pass-through technology for virtualization bypasses the hypervisor for

hardware assignment to VNFs. Hence, transferring the pass-through hardware

context from one physical infrastructure to another while maintaining same

hardware configuration is challenging.

Summary of Enabling Technologies

Hardware abstraction strategies determine the effective utilization of hardware by NF

applications. The OS, VM, and container, each view the hardware differently, and

hence the hardware interactions of the applications running on these abstraction layers

differ, whereby these differences have performance implications. Application on an OS

provide the most native performance of hardware due to direct access; however, the

OS cannot provide isolation to interference from other applications. Applications on a

VM provide the highest degree of isolation due to resource slicing; however, the VM

suffers from increased overhead due to memory transactions and resource scheduling.

Memory access strategies provide methods to reduce overhead arising from isolation

253

due to memory copies. Zero copy, kernel bypass, and PASID avoid data copies as the

data is moved between hardware components and system memory. Additionally, Data

Direct I/O (DDIO) (see Sec. ??) can write the data on the I/O device directly to the

CPU cache, effectively reducing the memory hops.

Accelerator task offloading can be achieved in two forms: look aside and in-line.

With look aside offloading, the accelerator is considered as an additional I/O device

and data is hauled to the accelerator and back to the system memory. This additional

step of hauling data results in overhead in the look-aside model. In the in-line model,

the data is sent to the acceleration component by the NIC for the acceleration as

the data arrives at the NIC for transmission or after reception. The acceleration

component is located on the NIC hardware designs; both acceleration device and

NIC use a common memory for computations. The downside of the in-line model

is that not all data traverses through the NIC, e.g., disk-only data or memory-only

data does not traverse the NIC; however, applications that depended on the NIC for

data reception and transmission, i.e., packet processing for NFs, can be accelerated

through the in-line model.

The application can be notified about the output of the accelerator task in two

ways: polling and interrupts. Polling requires the CPU to check the status of the

accelerator task completion in every polling period. This periodic checking wastes

CPU cycles but allows the CPU to process the accelerator output almost immediately.

Polling by many threads, processes, and applications results in a large number polling

events, and if there is a common queue that needs to be polled, threads and processes

need to be synchronized. The synchronization can be achieved through locking of the

queue before reads and writes which can severely impact the overall queue management.

In case of interrupts, the CPU may go to sleep states during extended idle periods

which incur then core wakeup times. These pitfalls should be carefully considered for

254

the design and implementation of NF applications with accelerator offloading.

Virtualization strategies impact the way I/O devices are utilized by the applications

running on various abstraction layers. Hardware assisted virtualization technologies

are designed to provide the best performance in case of the SR-IOV and the highest

flexibility in case of the S-IOV. However, the complexity of implementation and

management of virtualization strategies shadow the flexibility of S-IOV. The NF

application design should determine which strategy brings the most benefits for

a considered task. Thus, enabling technologies of OSs and hypervisors related to

hardware-acceleration directly impact the overall NF designs for flexibility, scalability,

and performance.

In this section, we review and report on several recent state of the art proposals and

techniques emphasized in the research community related to the OS and hypervisor

technologies. The general outline and surveyed literature is illustrated in Fig. 3.48.

As highlighted in the enabling technologies section (section ??), traditional OS design

cannot keep up with NF application demands for near line rate processing and

minimal overhead. New designs and architectural concepts needs to be envisioned

for NFV accelerators incorporating several hardware and software changes that can

augment and enhance NF applications. For example, OmniX Silberstein (2017), an

accelerator centric OS for omni-programmable systems, presents a programmable

OS that extends standard OS abstractions across all system processors (multitudes

of CPUs, GPUs, and FPGAs), provides the ability for near-X accelerator units

(NXUs) to communicate more effectively, and reduces the programming development

complexity. These systems run applications (user code) near-X (X being storage,

network, memory). The main objective of OmniX OS is to efficiently execute user

applications on omni-programmable systems, i.e., systems with several independent

hardware NXUs, at low development cost. This type of extensible OS can scale well

255

with increasing NF application performance demands due to the fact that inter-NXU

communication is off-loaded away from the CPUs in centralized OS architectures.

Furthermore, energy consumption under virtualized OSes of portable devices is a

challenge. For example, virtualized clusters of devices with FreeRTOS network stacks

without any hardware optimized acceleration units quickly consume energy since

more CPU cycles and performance degradation due to larger overhead causes more

energy consumption leading to lower device life span. Therefore, hardware assistance

and acceleration for such systems is imperative to drive down CPU instructions per

service Batmaz and Doğan (2019).

Different designs and technological innovations in resource management and access

(memory, I/O, network, storage, compute), and virtualization (hypervisors, virtual

machines, containers), and the unison of both approaches are surveyed in the following

sections that highlight the importance of future OS and hypervisor designs and

implementations that conform to NF application requirements.

Virtualization Approach

Hypervisors One of the cornerstones of server virtualization is the hypervisor (also

known as the virtual machine monitor, VMM). The hypervisor is used to abstract

the hardware resources from tenants or VMs within a computing platform (servers,

clusters, data centers). Several surveys have addressed the notion of hypervisors and

accompanying classification/taxonomy Desai et al. (2013), SDN Blenk et al. (2015a),

and monitoring, analytics, and security Bauman et al. (2015). In this section, we

provide a brief literature survey on recent advancements on acceleration techniques

used in association with hypervisor based computing platforms with emphasis on NF

application.

NFV and NFI deployment typically struggles in achieving line rate processing and

256

throughput due to large overhead on the NIC and general network I/O performance.

Nakajima et al. Nakajima et al. (2015) presents a virtualized NIC (vNIC) framework

that aims to accelerate I/O performance and enable low overhead for hypervisor based

virtualization with DPDK enabled vSwitch. vNIC leverages and extends the virtio-net

framework Russell (2008) that uses a shared memory space for communication between

DPDK based NFV application and a DPDK based vSwitch. Nakajima et al. evaluates

their implementation using the DPDK benchmark application and achieves 122.9

Gbps throughput and over 14.2 massively parallel processors (MPPS) I/O processing

resulting in high performance network I/O.

Efficiently allocating and distributing network resources accurately using SDN

and NFV for large scale virtualized environments is a difficult challenge. Each tenant

in the NFI can receive its own virtual SDN network managed through the network

virtualization layer (also known as the hypervisor) allowing tenants to bring their

own controllers suited for their application needs. Similar to the controller placement

problem in regular SDNs, for virtual SDNs, the placement of the hypervisor that hosts

the SDN for tenants is investigated in Blenk et al. (2015b). Four latency performance

optimization metrics in the hypervisor placement problem is provided and two metrics

are used to quantify the performance per virtual SDN network. Simulations are used

to evaluate the proposal and results show that the hypervisor placement can have a

large impact on the latency values when optimizing on different latency metrics while

numbers and locations of virtual SDNs can affect the results in terms of hypervisor

placement and resulting latency values. The main idea and proposal in Blenk et al.

(2015b) is extended in Blenk et al. (2016) to include multi-layer controllers and

different hypervisor architectures for the evaluating the control plane latencies in NFV

environments.

In terms of 5G cellular environments, Cheng et al. Chang et al. (2018) presents and

257

evaluates Open5GCore which is a SDN-enabled Evolved Packet Core (EPC) using both

NFV approaches to virtualized instances, i) hypervisor (e.g., KVM), and ii) container

(e.g., Docker). Three applications are executed using Open5GCore (VoIP, Video, and

FTP) and metrics under network performance (throughput), memory usage, and CPU

usage are used to compare and contrast the virtualization approaches deployed. Their

results show that both hypervisor and container approaches increase network delay

and can cause disruptions under high volume data traffic, containers use less compute

resources than the hypervisor approach, and similarly, the boot time, recovery time,

and reboot time for the container approach are faster than the hypervisor approach.

The main idea is that the container approach is generally more appealing to processes

and applications that do not require modification to kernel space in the computing

platform. Similarly, the authors in Ricart-Sanchez et al. (2020) presents a hardware

based virtualization framework based on data plane programmability for 5G networks.

More specifically, resource allocation and QoS differentiated services is implemented

using hardware based traffic classification, priority classification, and traffic scheduling.

The framework is implemented on FPGAs and the proposed approach is tested. The

results indicates improved QoS-aware (packet loss, jitter, latency) network slicing at

the data plane.

While metrics such as performance and security is imperative to NFV applications

and technologies, availability including fault tolerance in the case of severe disruptions

for mission critical applications is another aspect of OS and hypervisor research that

was thoroughly investigated and presented in Bressoud and Schneider (1995). More

specifically, Bressoud and Schneider (1995) presents the practicality of using a hypervi-

sor approach to replicate primary VMs with backup VMs using a replica-coordination

protocol. Such protocols are designed with two important performance goals in mind,

namely how epoch lengths and interrupt delays affect system performance. Typically,

258

virtualization and software handling of various system tasks incurs a performance cost

and therefore needs to be optimized and/or accelerated using off-chip hardware that

can augment the process by off-loading some tasks in NFV applications.

In addition to performance degradation due to the virtualization environment

impact, security and privacy concerns are raised when resources are shared under a

converged hardware computing platform. One of the early research into hypervisor

security architectures is in Sailer et al. (2005). The authors present sHype that uses a

security reference monitor interface to enforce information flow constraints between

VMs and leverages the isolation of VMs to contain security breaches. However, security

breaches where VMs can be compromised without detection by the hypervisor is an

appealing form of attack since hypervisors do not necessarily include large security

technologies (e.g., virus scanners, firewalls, etc.) due to their large performance

overhead in high performance carrier-grade QoS and QoE services. Therefore, Trusted

Computing (TC) can be used to provide integrity verification (or remote attestation)

based on trusted and verifiable measurements and calculations for NFV computing

platforms. A hypervisor based TC scheme is implemented in Lauer and Kuntze (2016)

that efficiently applies TC to virtual environments. Trusted Platform Module (TPM),

an external chip attached on the motherboard of the computing platform is presented

and used to collect software (OS, device drivers, etc.) measurements by communicating

with the hypervisor before the instantiation of the VM as a process.

In contrast to TPM based integrity checks which targets VM protection, reliably

assuring that the hypervisor is continuously protected is a challenging problem that is

investigated in Wang and Jiang (2010). The authors present HyperSafe, a bare-metal

hypervisor-based low cost approach to provide lifetime supported control-flow code

integrity even under the assumption that the hypervisor is untrustworthy. The authors

proposes two key techniques that protects the hypervisor from hypervisor attacks (e.g.,

259

VM escape and hypervisor rootkits). The first is non-bypassable memory lockdown

where a memory page is locked down (i.e., enforced read-only attribute) and can

only be modified after unlocking the page under forced supervision using the WP

bit (write protect) used in x86 CPUs. While this can prevent malicious code, it

can also prevent benign code updates. The second technique is restricted pointer

indexing where the software’s runtime execution path is monitored and enforced in

target tables (tables where control data is replaced with a restricted index) preventing

attackers from arbitrarily controlling the code execution. A proof of concept for

HyperSafe is evaluated by measuring runtime overhead with standard benchmarking

software (e.g., LMbench, UnixBench, etc.) with and without the HyperSafe protection.

Overall, HyperSafe introduced about 5% added overhead but can lead to better cache

utilization improvement in situations where multiple target tables and the use of

unnecessary memory reads when performing control flow transfers. Similarly, the

work in Szefer and Lee (2012) presents HyperWall, a hypervisor-secure virtualization

architecture that enables security to guest VMs from an untrusted or even compromised

hypervisor. HyperWall uses the hardware resources, that once allocated are referenced

and managed by hardware in the Confidentiality and Integrity Protection (CIP) table

which protects VMs from unwanted or direct memory access. Another proposed

hypervisor that provides lifetime kernel code integrity is presented in Seshadri et al.

(2007). They propose SecVisor, a low memory footprint hypervisor that ensures

integrity verification for OS kernels. SecVisor enforce integrity checks by only allowing

user approved code to execute in kernel space.

With increasing security concerns in cloud based virtualized environments, and

potentially large attack surface, a complete characterization of the hypervisor vulnera-

bilities is given in Perez-Botero et al. (2013) to provide analysis, recommendation, and

pitfalls to designers and architects of NFI. Three main classification metrics are used

260

to designate a vulnerability, the affected hypervisor functionality, the trigger source,

and the affected target by the security breach. These classification metrics are then

used to show potential attack paths, understand existing attacks, assist in focusing

defenses where needed, and discover potential new attacks.

Energy monitoring and power management in large scale virtualized environments

is a challenging problem due to both the number of users sharing the physical system

and having multiple virtual OSes which are agnostic to the underlying hardware. While

methods that inspect internal data structures of the lowest-level belonging to the

physical computing platform (the privileged hypervisor and host device driver) which

have complete control over the hardware and associated energy consumption provide

energy management, they provide course grained per-VM information. Additionally,

the host OS level has no knowledge of application level energy consumption. To this end,

a hypervisor based power management framework is proposed in Stoess et al. (2007)

enabling enforcement of power and thermal limits for energy aware/unaware guest OSes

and applications running on top of multi-layered distributed virtualized environment.

In particular, the framework uses two main energy management subsystems, i) host

level, and ii) guest level management subsystems. The host level provides course

grained information on allotted and consumed energy but provides both global or

direct and “hidden” energy consumption of VMs and enforces the power allotted to

each VM. The guest level provides fine grained energy information to applications by

regulating the power allotted to virtual devices ensuring they do not use more than

the given energy budget. The proposed method is evaluated against an external data

acquisition tool (DAQ) to demonstrate the effectiveness and precision of regulating

power to individual physical and virtual devices for energy aware or unaware guest

OSes.

261

Containers While hypervisor based NFV architectures offer a wide variety of

services with full fledged OS stacks, less complex applications that utilize such an

approach usually have large operating cost and an unnecessary overhead associated

with VM deployment times. Containers are introduced to provide low memory

footprint for containerized applications using supported virtual memory for isolation

but share some of the underlying OS features. Highlighting and demonstrating the

main performance differences between container based NFV and hypervisor based

NFV, Cziva et al. Cziva et al. (2015) presents a open container based NFV framework

that utilize SDN based OpenFlows enabled switches to deploy NF applications and

services. The framework is designed with a northbound API where NF applications

can be instantiated with different services ranging from traffic steering and workload

balancing functions. The framework’s NFI servers uses an agent (daemon), GLANF

Agent, to instantiate and manage the NFs running on the commodity servers. The use

of Docker container based NFV architecture improves the NF instantiation by up to

68% and achieves sub-milliseconds latency times in data center networks. Moreover,

further evaluations of the framework in data center networks show a throughput

improvement as NF service chaining scale grows.

Similarly, Cziva et al. extends Cziva et al. (2015) in Cziva and Pezaros (2017)

to present Glasgow Network Functions (GNF) architecture which provides generic

lightweight Linux containers to host NF applications and services in network edge

infrastructure closer to user equipment. GNFs offers support for roaming and mobility

that provides consistent and location transparent services. Additionally, transparent

traffic steering through provider edge and core networks without disruptions to current

NFs is implemented. The GNF architecture is composed of the service, orchestration,

NFI management, and infrastructure planes. At the service plane, users can setup

and manage policies through a UI or GNF manager API. According to the policies,

262

different virtual NFs are forwarded towards the GNF manager at the orchestration

plane. The manager (ETSI’s MANO architecture) provides a set of REST APIs to

issue instructions to the virtual NFs according to geographical locations of users.

Hence, the GNF manager has network wide locations of all virtual NFs and load

statistics from edge devices to optimize deployment/placement and enhance utilization.

At the virtual infrastructure management level, the edge devices, NFI servers, and

the SDN controllers are deployed. GNF Agents or daemons are deployed within the

servers at this level to insert OpenFlow rules and migrate containers if necessary. The

NFI management layer is similar to the standard SDN control plane. The last layer is

the infrastructure plane where all the physical network devices are deployed. This

layer acts as the data plane in the SDN paradigm. This proof of concept is evaluated

using case studies using three applications (IoT DDoS mitigation, Distributed, on

demand monitoring and diagnosing, and roaming network functions).

Traditional NFV platforms are usually formed using either VM or container based

approaches that provides a trade-off between security and performance respectively.

Kata Container architecture is introduced to utilize the security features of VM based

hypervisor approach and the performance benefit of containers. Moreover, the Kata

Container is Open Container Initiative (OCI) complainant which indicates that it can

be integrated into industry standards easily. A qualitative comparison between Docker,

the de facto model for containers, runc layer and the Kata Container architecture’s

Kata-runtime layer is investigated in Randazzo and Tinnirello (2019). The qualitative

comparison uses metrics such as live migration, security model, resource constraint

management, boot time, isolation, integration among others to illustrate the differences

in operation between runc and Kata-runtime components. Kata containers still lack

in live migration operation while being significantly better in isolation and security

features.

263

A large trend of NFV research is into replacing VM based hypervisor approaches

with cloud native containers that support agile development and uses the “single

concern” principle that each container has one responsibility and must execute that

responsibility well. However, containers usually have drawbacks related to security

concerns of sharing the same OS. Therefore, containers are usually isolated, i.e., not

allowed to execute any code in the kernel space. This container isolation and OS

platform sharing limits applications that require kernel customization and prevents

developers from tuning and optimizing the OS for their applications. X-containers Shen

et al. (2019) is a library OS (LibOS) based container architecture, that mitigates the

container isolation issue without requiring hardware assisted virtualization support,

and offers a new security paradigm for isolating the X-containers.

The usage of the single concern principle implies a large number of containers

in a single commodity server running numerous tasks. Therefore, as the container

number grows, so does the memory resources needed for each new container image.

CNTR (Center) Thalheim et al. (2018) is a container architecture introduced to

remove unnecessary tools and software that are not required for common use-cases

providing performance benefits of lightweight containers and the functionality of

heavyweight containers when necessary. More specifically, CNTR combines the light

and heavyweight container images using a new nested namespace that is agnostic

to the application allowing high degrees of flexibility and ease of integration. The

proposed approach has been implemented and tested demonstrating reasonable image

compression by an average of 66% with minor performance overhead.

Paravirtualization System calls by VMs and applications running on top can

be expensive and difficult to execute in virtual compared to native environments.

Paravirtualization is a virtualization approach that inserts a software layer between

264

the VM’s guest OS and hypervisor enabling the VM to become aware of the hypervisor

and communicate directly with it. This in turn improves performance compared to

software assisted full virtualization at the cost of modification to guest OSes. In

essence, paravirtualization selectively emulates the hardware devices that a virtualized

OS needs which in turn can minimize overhead similar to the Container virtualization

approach’s goal Vaughan-Nichols (2006).

High Performance Computing (HPC) environments where the virtualization over-

head is highly critical to applications involved in HPC systems is an attractive envi-

ronment where paravirtualization can be utilized to minimize overhead and optimize

performance. An empirical evaluation on the efficacy of using paravirtualization of Xen

hypervisors in HPC environments is investigated in Youseff et al. (2006). Specifically,

a series of comparison runs are executed and results are collected across several bench-

mark tests that comprehensively analyzes the performance implications of using HPC

with and without paravirtualization. The tests are classified as micro-benchmarks,

macro-benchmarks, and real HPC applications. In particular, for micro-benchmarks,

evaluations of specific machine components and protocols such as Message Passing

Interface (MPI) based network bandwidth and latency, CPU, memory, and disk I/O

stress tests on and between HPC cluster nodes. For macro-benchmarks, full system

performance tests are used that evaluate the efficiency of HPC in handling critical

operations (e.g., computational fluid dynamics). Finally, for HPC applications, an

oceanographic and climatology general circulation model to simulate a year’s worth

of oceanographic and climatology data at one second resolution. The comparative

results found indicate that Xen paravirtualization does not impose significant overhead

compared to non-virtualized Linux HPC systems.

Typical Paravirtualization systems directly loads the hypervisor on the underlying

hardware (bare-metal hypervisors) that suffers from a single point of failure if the

265

hypervisor fails. Significant research is being directed towards adding and automating

the failover protection in the event a hypervisor or underlying hardware fails. Landis

et al. Landis et al. (2011) proposes a paravirtualization model that addresses this limi-

tation by logically or virtually partitioning the host system with special infrastructure

partitions that controls resource management and I/O device drivers. The tracking

application “ultravisor” within the special infrastructure partition is used to monitor

and isolate resources used by guest partitions. Moreover, different infrastructure

partitions in different systems can communicate and share hardware resources creating

a virtualized datacenter. Each individual system can have multiple failover infras-

tructure partitions to protect the virtualization process in case of failure. Improving

performance using SR-IOV on a paravirtualized system is not easily accomplished

since no standard way exists to leverage the benefits provided by the virtualization I/O

functions. Solomon et al. Solomon and Hoglund (2012) proposes a specialized driver

that is coupled with the paravirtualization driver to implement I/O virtualization

data transmission for guest OSes.

Using paravirtualization (or full virtualization) on real-time hypervisors on multi-

core systems is a challenging problem due to the added overhead. Hardware assistance

for virtualization is used to streamline the deployment process. However, several

platforms do not feature hardware assisted virtualization and therefore cannot be used.

To address this limitation, Gilles et al. Gilles et al. (2013) presents Proteus real time

bare-metal hypervisor that targets multi-core platforms for both paravirtualization

and full virtualization without the use of hardware assistance as shown in Fig. 3.49.

Proteus ensure spatial and temporal separation of guess VMs. Hypercalls are used

when paravirtualized guest OSes are used. Proteus is evaluated in terms of memory

footprint, interrupt latencies, emulation routines, hypercall execution, and hypervisor

context switches.

266

I/O Virtualization

HW I/O Virtualization While full virtualization allows large computing platform

clusters to share and better utilize resources, it can severely degrade the processing

performance in softwarized I/O device drivers such as virtual NICs and other vir-

tualized PCIe devices, that limit scalability of the overall system. Similarly, using

paravirtualized I/O devices (e.g., direct device assignment or “passthrough I/O”),

while better than full virtualization in terms of performance for I/O intensive work-

loads, introduce scalability limitations and that limits their viability for applications

in carrier grade environments.

Off loading and optimization schemes are heavily researched to adapt techniques,

e.g., SR-IOV and self-assisted devices Raj and Schwan (2007), in an attempt to mitigate

software virtualization overhead by incorporating dedicated hardware assistance.

However, I/O interposition in full virtualization stacks is needed for critical applications

such as live migration, VM replication, and dynamic load balancing among others

that hardware assisted virtualization (paravirtualized I/O) approach prevents Har’El

et al. (2013). In such cases, hardware assisted virtualization has significantly limited

use. Therefore, solutions involving purely hardware assistance essentially evolve to

becoming hardware dependent limiting their applications (e.g., live migration, etc) in

high end virtualization environments. Some commercial closed source virtualization

approaches introduce composability, where simple frequent I/O operations are run on

hardware while more complex operations involving hypervisor I/O interposition on

guest VMs can be emulated in software (e.g., Intel Scalable IOV). This allows flexible

operation of hardware assisted virtualization which address the limitations involved

in direct device assignment (i.e., VMs communicate directly with I/O devices) and

scales well for modern cloud computing environments. Similar to Intel’s scalable IOV,

267

Nakajima et al. Nakajima et al. (2011) presents a hybrid virtualization approach of

taking advantage of both hardware assisted virtualization and paravirtualized I/O

devices. The proposed idea is to run a paravirtualized guest on a hardware assisted VM

maximizing resource utilization and hardware capabilities as shown in Fig. 3.50. Their

experiments demonstrated that the hybrid approach improves paravirtualized systems

by approximately 30% in memory intensive tests and 50% in micro-benchmarks while

showing about 16% improvement in I/O intensive workloads than pure hardware

assisted virtualization solutions.

Focusing on the virtualization overhead incurred by network I/O devices, dong

et al. Dong et al. (2011) presents a software based I/O optimization approach that

leverages both multi-core processors using virtual Receive Side Scaling (RSS) and

aggregating expensive virtual network I/O interrupts using an adaptive multi-layer

interrupt coalescing optimization scheme. For the coalescing or aggregating interrupt

approach, two implementations are presented. i) The frontend virtual interrupt

coalescing (FVIC), and ii) backend virtual interrupt coalescing (BVIC). The FVIC

controls the frequency virtual interrupts within the guest OSes by generating a periodic

timer that polls arriving packets in shared rings (buffers). In contrast,the BVIC

operates in domain 0 (privileged domain in Xen hypervisors) and delays interrupts

by controlling their delivery from domain 0. FVIC is determined to have better

performance since BVIC incurs more context switching than FVIC and requires

an extra timer in domain 0. The multi-layer (physical and virtual interface layers)

interrupt coalescing approach is an optimization scheme used to coordinate interrupt

coalescing policies between the physical to virtual (i.e., domain 0 to the guest domain)

with the goal of minimizing latency and maximizing performance. It is adaptive

since it modifies the design parameters of the scheme to adjust the cost per interrupt

through a coalescing manager running in domain 0. Finally, the last improvement is

268

efficiently using multi-core processors using RSS to effectively load balance incoming

packets to different CPUs so that one CPU does not get saturated while others are

idled. These enhancements are tested on Xen based paravirtualized hypervisors to

demonstrate the performance overhead in terms of CPU utilization and bandwidth.

As the network performance increase (e.g., using 10-Gigabit Ethernet ports),

virtualized I/O intensive workloads related to NF applications scale proportionally. The

main inhibiting factors in network I/O virtualization are inter-domain communication

(I/O interrupts) and extra scheduling overhead (context switching) in the hypervisor.

Investigating the impact of hypervisor scheduling and domain 0 on multi-core compute

platforms, Liao et al. Liao et al. (2008) proposes two optimizations for the default

hypervisor scheduler, i) a cache-aware scheduler and ii) a credit-stealing policy, that

aims to improve the capabilities of NFVs to process high speed network traffic. The

cache-aware scheduler approach provides the guest OS with improved cache locality

(space and/or time) when accessing packets reducing inter-domain communication.

The credit-stealing policy is an approach that scheduled virtual CPUs that process

I/O requests (referred to as I/O VCPUs) in favor of domain 0 which results in reduces

the latency in servicing I/O interrupt requests. The virtualized I/O optimizations are

implemented and evaluated on Linux showing an improvement of 96% servicing I/O

interrupts over the traditional Linux hypervisor and packet processing improvement

with savings of 36% in core utilization per gigabit.

SR-IOV SR-IOV is used for multiplexing a single physical PCIe device into multiple

virtual PCIe devices at the hardware level (i.e., without virtualization intermediary)

allowing for scalability and increased utilization without affecting CPU utilization. In

particular, for virtualized environments, NFV and NFI platforms introduces significant

performance requirements for I/O PCIe devices (e.g., NIC) that require virtualization

269

optimization in order to maximize I/O utilization and reduce resource contention. In

contrast to traditional network devices where software implementations are highly

optimized for the custom hardware platform, NFV architectural implementations in

OS and hypervisors systems adds significant overhead for NF applications (e.g., Deep

Packet Inspection, DPI) in terms of carrier-grade I/O packet processing. Several

new and innovative designs using SR-IOV enabled devices with DPDK demonstrated

in Kourtis et al. (2015) shows that the approach of combining SR-IOV with DPDK

achieves significantly higher throughput than traditional Linux based network stacks

targeting VNF deployments. An open source library, nDPI, is used to implement the

proposed approach, and the approach is tested on an experimental setup comparing

both DPDK and LibPCAP versions of DPI in physical and virtual environments.

The results indicate a promising improvement of the virtualized DPI solution and a

substantial improvement with DPDK.

While throughput is increasingly important for high performance I/O operations

in large capacity networks, controlling latency and packet jitter with real time network

traffic is needed to ensure optimal or satisfiable performance. Challa et al. Challa

(2012) presents a study on various I/O virtualization technologies including SR-IOV

that delivers near native I/O performance. In particular, the main advantages outlined

for SR-IOV are, 1) provides near native performance through hardware assisted

virtualization, 2) provides robust isolation improving security between various NFs,

3) can extend to virtualized adapters and existing I/O protocols with ease allowing

easy integration into modern data centers, and 4) provides higher degree of flexibility

and management for administrators. Main disadvantage, similar to the issues with

hardware assisted virtualization, is that it cannot be used in VM migration applications

and similar NF applications.

270

Memory Access and Management

IOMMU IOMMU connects a DMA capable I/O bus to the system’s main memory

allowing device drivers connected to PCIe components to map devices’ virtual addresses

to physical addresses enabling security, isolation, and memory protection in the event

of faulty or malicious devices. While this technology provides benefits to virtualized

systems using DMA Remapper (DMAR) and Interrupt Remapper (IR), the remapping

process adds address resolution and validation overhead to all I/O requests. For

network I/O applications, mapping translations are more frequent and can bottleneck

system performance. The interaction between an IOMMU, CPU, and the hypervisor is

shown in Fig. 3.52. Unlike a processor’s virtualization and translation activity which

can be intercepted in flight and restarted (e.g., via page faults), I/O virtualization

activity generally is difficult to intercept in flight and restarted.

The IOMMU is used to control and manage guest tenants interfacing with device

drivers for hosts that use typically direct device assignment (gust VM directly interacts

with the I/O device without host intervention). However, several issues are raised

with these MMUs including i) requires pinning all guest pages, and ii) it exposes

the guest memory to failures in the device drivers. An efficient IOMMU, virtualized

IOMMU (vIOMMU) Amit et al. (2011), is designed, implemented, and tested to solve

these issues thereby allowing guest tenants and applications to make full use of I/O

device drivers (e.g., NICs for NFV applications). Similarly, Amit et al. Amit et al.

(2010) illustrates the potential impact of the IOTLB (I/O TLB) used in IOMMUs

and presents enhancements that mitigates cache misses and can accelerate address

resolution rates. In particular, each IOTLB cache miss results in high latency since it

requires physical address resolution performed by a page walk using a DMAR. The

proposed approach uses a software based virtualization layer (using vIOMMU) that

271

reduces IOTLB miss rates.

NUMA NUMA architecture allows processors in multi-core systems to access shared

memory simultaneously by coupling each NUMA node (socket with several cores) with

a local memory space (including local memory controllers) avoiding the performance hit

of having processors waiting for access to the shared memory space. However, coupling

NUMA architecture with NFV environments introduces performance penalties for

packet processing workloads since cache locality is not guaranteed. Investigating

NUMA architecture performance and the cache exhaustion impact in NFV systems,

Sieber et al. ? presents an evaluation criteria, Network Efficiency Index (NEI), that is

used to indicate the efficiency in running a VNF in multi-core NUMA based systems

with emphasis on the packet handling application and in conjunction with DPDK.

Several performance tests are taken with core utilization, cache hit ratio, and socket

memory throughput. The results from experimentation shows that copying packets

between NUMA sockets increases the CPU utilization resulting in penalties that

should be avoided. The NEI, the ratio between the packets accessed by the VNF from

the Last level Cache (LLC) and the total number of packets received by the VNF,

is used to optimize the cost of placement of VNFs in terms of NUMA performance

and cache overhead. The goal is to optimally distribute packets per VNF with respect

to parameters such as NIC queue affinity, core affinity, etc. as shown in Fig. 3.53.

With increasing network capacities, the event of packets being copied across NUMA

nodes (using socket interconnects) increases as the scale of the virtualized environment

increases resulting in more cache exhaustion and more cache misses.

Similarly, mitigating the impact of cross NUMA data exchange (or remote memory

access), Wang et al. Wang (2017) investigates NUMA based system performance

with DPDK based pipelined NFs. More specifically, a thread placement strategy on

272

physical cores is implemented and tested to reduce the latency of processing packets

due to remote socket memory access. The thread placement strategy, Locality First

Mapping algorithm, is implemented on a application-level coordinator that assists

NFs in maximizing the usage of the underlying hardware and increase data locality.

The evaluation on different NFs (flow metering, packet checks, and firewall) shows

reduced latency with the proposed algorithm compared to a balanced distribution

of threads across the cores. Along the same lines, Lachaize et el. Lachaize et al.

(2012) presents MemProf, a profiler that allows programmers to choose and implement

efficient application level optimization for NUMA based systems. Memprof structures

threads and their memory pages building temporal flows of interaction between them.

This assists programmers in identifying why and which memory objects are accessed

using expensive remote memory accessed providing them with the means of optimizing

thread placement and core utilization improving system performance. Moreover,

Majo et al. Majo and Gross (2011) presents an analysis on NUMA based multi-

core Intel Nehalem Singhal (2008) platform where memory management and process

scheduling are coupled and an optimization algorithm is given to maximize data locality

and minimizing cache contention. A scheduling algorithm, NUMA-Multicore-Aware

Scheduling Scheme (N-MASS), is proposed which optimizes data locality and reduces

cache contention. N-MASS extends maximum-local scheduling algorithm that maps

processes (threads) to cores improving performance up to 37% and 7% on average.

Similarly, Vikranth et al. Vikranth et al. (2013) proposes a task stealing scheduling

algorithm that dynamically analyzes the hardware interconnection between CPU and

memory sockets grouping cores and connections as a logical topology tree. These

trees are used to map multiple worker pools, i.e., stealing domains, that restricts

task stealing to such domains improving performance. Focusing on NF applications

in NUMA based multi-core platforms, Blagodurov et al. Blagodurov et al. (2010)

273

proposes a contention-aware scheduling algorithms for NUMA based systems. The

application optimizer schedules threads on cores with the goal of isolating threads

belonging to specific classes of NFs (or virtualized functions in general) minimizing

contention of resources (memory and core utilization). The proposed approach is

compared to similar schedulers in popular application involving Network Attached

Storage (NAS) benchmarks such as Cilk and OpenMP showing on average 1.24 times

improvement.

While none virtualized multi-core systems based on NUMA architecture presents

added challenges such as resource contention and performance degradation for NIC

I/O and memory controllers among others, virtualized systems aggravates the problem

even further introducing virtualization (abstraction) overhead and even more resource

contention. To this end, Rao et al. Rao et al. (2013) proposes a virtualized NUMA-

aware vCPU scheduling that dynamically migrates vCPUs to minimize remote memory

accesses overhead. In particular, a Bias Random vCPU Migration (BRM) is proposed

to schedule vCPUs based on hardware metric latency (aggregated measurement of

several hardware memory access events) improving CPU utilization and reducing

latency. The proposed algorithm is compared to Xen credit scheduler demonstrating

a 31.7% improvement.

Summary on OS and Hypervisor Research Studies

Different design approaches to OSes and hypervisors have a direct impact on NF

applications in terms performance, flexibility, and scalability. Three main approaches

to virtualized platforms hosting NFs are hypervisors (hosted or bare metal), containers,

and paravirtualization with or without hardware assistance. While full virtualized

hypervisors provide a very high degree of flexibility, scalability and performance are

affected. In contrast, containers provide increased scalability but reduced flexibility

274

and performance. Paravirtualization is the approach for high performance since some

native OS functionality is added to the virtualized process, but suffers when it comes

to scalability and flexibility. Generally, each virtualization approach targets a specific

application or deployment environment that serves an application’s Key Performance

Index (KPI) metrics.

NFs are I/O and memory intensive applications that require near line rate pro-

cessing to prevent bottlenecks in the virtualization stack especially in carrier grade

environments such as MEC nodes and eMBB enhancements in 5G environments.

Overhead associated with virtualization scales with network performance. More specif-

ically, network I/O virtualization becomes a serious bottleneck that off loading and

optimization techniques alone are not enough to circumvent these problems.

Efficient memory access and management in HPC platforms hosting carrier-grade

NFs are difficult since many aspects of hardware resource management, e.g., I/O

devices, caches, local/remote memory, thread/CPU mapping and scheduling, strongly

affects the performance. Moreover, utilizing NUMA architecture for modular socket

design grouping compute, local storage, and network resources compounds the issues

faced when optimizing NF performance.

3.9 Overall Summary and Discussions on Operating Systems and Hypervisor

Operating Systems

One of the critical aspects of OS that impact the NF applications is the scheduling

strategies of the applications in a multi-core environment. Application designers utilize

multi-threaded approach to exploit the multi-core resources, whereas the inter-thread

communications result in thread synchronization problems such as lock-unlock during

common queue read/write. Message passing and queue management challenges are

275

in addition to the core-to-core interconnect saturation in the hardware. Therefore,

NF application designers must consider the pitfall of multi-threaded approach and

underlying scheduling policies of the OS.

OS management of platform resources also includes the power and performance

measurements and control strategies, which includes methods to transitions of core

performance (P-states) and power states (C-states). Specifically for NF applications

pitfall here is that, the cores that are operating at opportunistic higher frequency can

result in varying performance behavior for packet processing which might induce jitter

in the packet flow. Power saving strategies of OS could have implications on higher

latency for the core wake-up from deep sleep states. Hence, for high availability NF

applications as well as to operate under strict latency conditions, OS must maintain

constant characteristics of frequency and power.

OS Application Optimizations Reconfigurable hardwares such as accelerators

and computing hardware Guerrieri et al. (2019) provides methods to adapt the

hardware characteristics to the applications requirements for improving the overall

performance. Pitfall to avoid in such reconfigurable hardware for the management

of these resources is to ensure the complex algorithms that are needed to identify

the reconfiguration parameters that works best for the application does not consume

excessive hardware resources. That is, the optimization algorithm (user-space applica-

tion) that needs to evaluate reconfiguration parameters would itself use the compute,

memory and storage resources of the host hardware.

OS Kernel Optimizations OS kernel effectively manages the hardware resources

of the platform with process schedulers (for CPU), memory manager (for DRAM and

cache), and device drivers (for disk and I/O). While OS provide the abstraction of

276

hardware resources and facilitate NF applications to share the common hardware

resources, mutual interferences of these applications while contending for resource

which negatively affects the overall performance is a pitfall that needs to carefully

considered. During OS scheduling of NF application processes over physical cores

should consider the recently cores with hot cache to increase the probability of cache

hits. Other considerations that directly impact the latency of processing are memory

handling between user-space and kernel space, and reducing the kernel overhead in

terms of managing hardware resources.

Hypervisors

Virtualization Strategies Virtualization provides abstraction procedures for the

hardware components with the goal to ensure isolation between software entities

that run on the hardware resources. Virtualization inherently generates overhead

in the process of resource abstraction and allocation to virtualized entities such as

VMs. Overhead could negatively impact overall performance, when resources are

oversubscribed and multi-level abstractions are performed. When there are strict

application requirements and limited hardware resources, it could be best to avoid

virtualization to efficiently manage the hardware resources if a compromise on isolation

between VMs are permitted.

Service Migration Service migration involves the movement of softwarized NFs

from one hardware platform to another, typically on a virtualized infrastructure

(i.e., hypervisor). One of the challenges in the service migration is to preserve the

application context in a hypervisor and hardware domain such that the target platform

in the migration process can be prepared for minimal disruptions. Service migration

is performed to accommodate the NF application deployment in terms of scaling of

277

applications, hardware and software upgrades, user movement etc. Pitfall to avoid in

this process to ensure that the Hardware compatibility in terms of meeting latency

and throughput requirements, transfer of virtualized entities between source and

destination, ensure security and integrity, and finally to ensure safe instantiation of

virtualized entities (i.e., VMs) on target virtualized infrastructures (i.e., hypervisors).

Resource Slicing Hardware resource utilization and management is an important

aspect of OS and hypervisors. OS manages the hardware resources in best effort

manner by sharing the resources, whereas hypervisors tries to enforce strict division

of resources through static allocation of hardware and software resources. Therefore,

hypervisors perform the logical slicing of resources that can be dedicatedly allocated

to VMs. In terms of NF application deployment, virtualization provides an effective

method for network slicing and coexistence of multiple VNFs applications on a

common platform infrastructure. While virtualization provides flexibility, scalability,

and migration capabilities in deployment of VNFs, the shortcomings of virtualization

should be considered to avoid the pitfalls by ensuring the integrity of VNFs during

scaling and migration. It is important to note that, a poor virtualization could lead

to lower resource utilization, high power consumption, and security vulnerabilities.

3.9.1 OPEN CHALLENGES AND FUTURE RESEARCH DIRECTIONS

Application-to-Application QoS SDN based application-to-application stream

reservation Virtualization provides an effective method for resource slicing and co-

existence of multiple VNFs applications on a common GPC platform with isolation.

Although virtualization provides flexibility, scalability, and migration capabilities in

deploying the VNFs, the shortcomings of virtualization should be considered carefully

to ensure the integrity of VNFs. A poor virtualization could lead to lower resource

278

utilization, high power consumption, and security vulnerabilities

Hardware Based Virtualization When virtualization is needed and when we

don’t. For specialized execution, and that does not require changes, we don’t need

virtualization. Like high speed switching, which required dedicated system, fully

efficient, and EPC where the implementation changes very often, as they release new

specs, etc. desires virtualization. So identifying which application required what is a

key part of differentiation. Hybrid networks will still co-exist in the years to come

279

Coherent

Mesh

Net. (CMN)

DDR4

DDR5

GIC, MMU

Virt.

Power

Control Kit

Cryptoisland

Secure

Enclave

HBM

PCIe CCIX GbE

Memory

IO

Arm SoC

Backplane

Arm CPU Neoverse N1

GIC, MMU Virt.

Cryptoisland

Secure Enclave

Power Control

Kit

PCIe
DDR4

 DDR5

Custom

 Acc.

CPU

CMN

CMN

Common Software Platform, SBSA, SBBR, Arm ServerReady Arm Architecture v8.x-A, AMBA

DDR-3200

DMC-620

PCIe PHY

PCIe Ctl

PCIe PHY

PCIe Ctl

DDR-3200

DMC-620

D
D

R
-3

2
0
0

C
M

L

P
C

Ie P
H

Y

C
M

L

D
D

R
-3

2
0
0

D
M

C
-6

2
0

DDR-3200

DMC-620

PCIe PHY

PCIe Ctl

PCIe PHY

PCIe Ctl

DDR-3200

DMC-620

N
o
n

-C
o
h

er
e
n

t
IO

 (
G

B
E

,
U

S
B

,
et

c.
)

S
y
st

em
 M

a
n

a
g

em
en

t
C

P
U

s

Arm Provided Third Party IP

CML

MMU

CCIX Transaction

Layer

PCIe Transaction

Layer

CXS

Byte

Stream

Data Link Layer

PHY (up to 25

Gbps)

Custom Acc.

16

Lanes

3
rd

 Party PCIe/CCIX

Combo Controller

Customer-Specific

Innovation

N1

CPU

N1

CPU

Sys. Level

Cache

Mesh Cross Point (XP)

Armv8.2-A

32b/64b CPU

AdvSIMD- SIMD Engine

Crypto Extensions

64K I-Cache

w/parity

64K D-Cache

w/ECC

Private L2 Cache (512KB/1MB) w/ECC

Direct-Connect to CMN-600 Mesh CHI

Arm CoreSight- Multicore Debug and Trace

(a) ARM Neoversa N1 CPU

(b) N1 CPU Core Layout

(c) 2-tuple N1

CPU Cores

(d) Interconnects

(e) CPU Overview

Figure 3.5: Overview of Arm® Nervosa N1 Architecture Pellegrini et al. (2020): (A)

Illustration Of Arm Cpu Functional Blocks along with Cpu Interconnect, Memory

Management Unit (Mmu), Power Management, and Security Components In Relation

to Third-party Memory and I/O Components. Nervosa N1 Can Be Extended to

Server-scale Deployments with Specifications Of Server Base System Architecture

(Sbsa), Server Base Boot Requirements (Sbbr), and Advanced Microcontroller Bus

Architecture (Amba) ARM Holdings (2019). Arm Neoverse N1 Cpu Sits on the

Arm Soc Backplane (Uncore) along with Coherent Mesh Network (Cmn) And Power

Control Kit. Memory and I/O Are Third-party Modules That Interface with Arm

Designs Through Interfaces (Green and Blue Blocks Are from Arm, While Brown and

Gray Color Blocks Are Third-party Blocks).

280

South

Bridge
PCIe PCIe

IO

Complex Infinity Fabric

(Scalable Data Fabric)

IFIS/

PCIe

IFIS/PCIe/

SATA

UMC

UMC
CCM

IO
M

S

DDR4

Controller

-21.3GB/sec

-2667Mtps

-21.3GB/sec

-2667Mtps

2 Channel

(128-bit)

DDR4

CCM Cache-Coherent Master

UMC Unified Memory Controller

IOMS IO Master/Slave

CAKE Coherent AMD Socket Extender

IFOP Infinity Fabric On-Package

IFIS Infinity Fabric Inter-Socket

L3 Cache

Zen CCX

AMD Zeppelin Die Block Diagram

Low

Speed IOs

Infinity

Fabric or

PCI Express

Infinity

Fabric

or

PCI Express

or

SATA

42.6GB/sec

4B Link

Single-Ended

Clock Forwarding
32GB/sec

2B Link

Differential

CAKECAKECAKE

DDR4

Controller
CAKE CAKE

DRAM

CCM

L3 Cache

Zen CCX

IFOP IFOP

DRAM

IFOP

CPU

Core

CPU

Core

CPU

Core

CPU

Core

CPU

Core

CPU

Core

PCIe

Figure 3.6: Overview of Amd® Zen Core and Infinity Core-to-core Fabric AMD

(2019). The Infinity Fabric Defines a Scalable Data Fabric (Sdf) as On-die Core-

to-core Interconnect. The Sdf Extends the Connectivity from On-die (On-chip) to

Chip-to-chip (I.E., Socket-to-socket) Connectivity Though the Coherent Amd Socket

Extender (Cake), Resulting in An Infinity Fabric Inter-socket (Ifis). An Sdf Extension

To Connect with Multiple I/O Devices Is Enabled Through an I/O Master Slave

Component. Similarly, Cache-coherent Master (Ccm) On The Sdf Directly Connects

the Cores (On-die) That Are Associated With the L3 Caches Coherently, While the

Unified Memory Controller (Umc) Extends the Connectivity to the Dram.

281

DDR

DDR

DDR

2x UPI x20 PCIe x 16

PCIe x 16

DMI x 4
On Pkg

PCIe x16 1x UPI x20

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC CHA/SF/LLC CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

 Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

 Core

CHA/SF/LLC

 Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

DDR

DDR

DDR

MC

1x UPI x20

@ 10.4GT/s

1x16/2x8/4x4

PCIe @ 8GT/s

1x16/2x8/4x4

PCIe @ 8GT/s x4

DMI
2x UPI x20

@10.4GT/s

1x16/2x8/4 x4

PCIe @ 8GT/s

3
x
 D

D
R

3
x
 D

D
R

SNC Domain 0 SNC Domain 1

SNC: Sub-NUMA Cluster MC: Memory Controller SF: Snoop Filter

 DMI: Direct Media Interface CHA: Cache Homing Agent

MC

Core

Die

PCIe x16

Core

Figure 3.7: Intel® Xeon® Cpu Overview Intel (2019a): The Intel® Xeon Cpu in a

Single-socket Package Consisting of Single Die with 22 Cores and 2 Memory Controllers

(Mcs) on Either Side of the Die Extending to Ddr Interfaces. The Cores Are Arranged

in a Rectangular Grid Supported by a 2d Mesh Interconnect That Connects All

Cores Within a Single Socket. Each Core Component Is Interconnected With Uncore

Components, Such as Cache and Homing Agent (Cha) to Apply Cache Policies,

Snooping Filter (Sf) to Detect Cached Addresses At Multiple Caches to Maintain

Coherency, and Last Level Cache (Llc) To Store Data Values.

282

CE

RouterMgr. Core
Computing

Element Link

CE CE CE

CE M CE CE

CE CE CE CE

CE CE CE CE

Figure 3.8: Overview of Network on Chip (Noc) Kumar et al. (2002) Where Each Com-

pute Element (Ce) Connects to a Router: The Noc Comprises a Fabric of Interconnects

That Provides On-chip Communication to Compute and Memory Elements Which

Are Connected To Routers. The Noc Provides Homogeneous Connection Services as

Opposed To Heterogeneous Interconnects Based on Different Technologies, Such As

Ddr and Pcie for On-chip Components. The Noc Fabric Is Extensible and Can Be

Easily Scaled as the Number of Compute Elements Increases.

AXI Slave [7]

AXI Master [0]

AXI Slave [1-6]AXI Slave [0-5]

AXI Slave [1-3]

AXI Interconnect Matrix

EBI

External

Bus Interface AXI2APB

External Memory

(e.g Flash,

EEPROM)

UART

GPIO

Processor

Timer

Watchdog

Timer

12C

SPI

RTC

Figure 3.9: Overview of Advanced Extensible Interface (Axi) ARM Holdings (2019):

The Axi Provides an On-chip Fabric For Communication Between Components. The

Axi Operates in a Master And Slave Model, the Slave Nodes Read and Write Data

Between Components As Directed by Master Nodes. The Axi Also Provide Cache

Coherency With the Axi-coherency Extension (Ace) Specification ARM Holdings

(2019) to Keep the Device Cache Coherent With Cpu Cores.

283

SKL
SP

SKL
SP

SKL
SP

SKL
SP

SKL
SP

SKL
SP

SKL
SP

SKL
SP

SKL
SP

SKL
SP

SKL
SP

SKL
SP

SKL
SP

SKL
SP

SKL
SP

SKL
SP

SKL
SP

SKL
SP

SKL
SP

SKL
SP

2-Way SMP, 3 UPI Links 8-Way SMP, 3 UPI
Links

4-Way SMP, 3 UPI Links

UPI UPI

UPI UPI

UPI UPI

UPI

UPI

UPI

UPI

4-Way SMP, 2 UPI Links

2-Way SMP, 2 UPI Links

U
P

I U
P

I

U
P

I

U
P

I

U
P

I

U
P

I

D
D

R
D

D
R

D
D

R

(a) 2 socket platform with 2 and 3 UPI links per socket

(b) 4 socket platform with 2 and 3 UPI links per socket (c) 8 socket platform with 3 UPI
links per socket

SKL SP: Skylake Scalable Processor CPU Socket

U
P

I

U
P

IU
P

I

U
P

I
U

P
IU

P
I

Figure 3.10: Overview of Skylake Scalable Performance (Sp) Meng et al. (2018); Tam

et al. (2018) With Intel® Ultra Path Interconnect (Upi): The Upi Is a Point-to-

point Processor Interconnect That Enables Socket-to-socket (I.E., Package-to-package)

Communication. Thus, with the Upi, a Single Platform Can Employ Multiple Cpu

Sockets: (A) 2 Socket Platform Inter-connected by 2 Or 3 Upi Links per Cpu Socket,

(B) 4 Socket Platform Interconnected by 2 or 3 Upi Links per Cpu Socket, and (C) 8

Socket Platform Interconnected by 3 Upi Links per Cpu Socket.

284

Scalable Control Fabric

CPUs/GPUs/Accelerators

Scalable Data Fabric

Memory

`

CPU CPU

SCF

CPU CPU

Socket 2

Socket 3

or

CPU Die

GPU Die

Socket 1

or

CPU Die

GPU Die

SCF
SCF

SCF

(a)

(c)

Core 0

Core 1

Core 2

Core 3

L2

L2

L2

L2

L3

L3

(b)

Package

CPU CPU

SCF

CPU CPU

Die 1 Die 2

Die

Package Package

Figure 3.11: Overview of Amd® Infinity Fabric Beck et al. (2018); Lepak et al. (2017);

AMDl (2020); Teich (2017)For On-chip and Chip-to-chip Interconnects An Accelerator

Chip: (A) Shows the Overview of Interconnects Between Cpu and Gpu Through the

Scalable Control Fabric (Scf), (B) Shows The Interconnects from Core-to-core Within

a Die for Relative Comparison, and (C) Shows the Overall Fabric Extensions at The

Socket, Package, and Die Levels.

285

Switch
10 Gb

Ethernet

PCI Express

To PCI

SAS/

SATA

RAID

IEEE

1394

Slots

PCI

Add-In

End Point

10 Gb

Ethernet

End Point

IOH

Uncore

Processor

DDR

DDR

End Point

End Point

Switch

Switch

10 Gb

Ethernet

Add-In

End Point

End Point

10 Gb

Ethernet

End Point

DDR: Direct Data Rate IOH: Input/Output Hub

SATA: Serial Adv. Techn. Attachm. SAS: Serial Attached SCSI

RAID: Red. Array of Inexp. Disks SCSI: Small Computer Sys. Interf.

Root Port

Figure 3.12: Overview of Peripheral Component Interconnect Express (Pcie) McGinnis

(2017) Interface Which Is an Extension To Pci Technology: Pci Operated as a Parallel

Bus with Limited Throughput Due to Signal Synchronization among the Parallel Buses.

The Pcie Implements a Serial Communication per Bus Without Any Synchronization

among Parallel Buses, Resulting in Higher Throughput. The Pcie Is a Universal

Standard for Core-to-i/O Device Communications. The Pcie Protocol Defines a Point-

to-point Link with Transactions to System Memory Reads and Writes by The I/O

Devices, Which Are Referred to as “end Points” And Controlled by the Root Port

(Rp). The Rp Resides at the Processor As an Uncore Component (See Fig. 3.3). The

Pcie Switches Extend a Primary Pcie Bus to Multiple Buses for Connecting Multiple

Devices and Route Messages Between Source And Destination. A Pcie Bridge Extends

the Bus from Pcie to Pci so As To Accommodate Legacy Pci I/O Devices.

286

PCIe Logic
Coherence/
Cache logic

Core
I/O

Device

Host
Memory

Accelerator
Memory

(Optional)

Accelarator logic

Accelerator

CXL.io (PCIe)
Discovery
Register Access
Configuration
Initialization
Interrupts
DMA
ATS
Error Signaling

CXL.cache
Coherent
Requests

CXL. mem
Memory
Flows

Host Processor

Compute Express Link (CXL)

Core

Figure 3.13: Overview of Compute Express Link (Cxl) CXL Consortium (2019)

Interconnect (Which Uses the Pcie as Its Interface): The Cxl Provides a Protocol

Specification over the Pcie Physical Layer To Support Memory Extensions, Caching,

and Data Transactions from I/O Devices, While Concurrently Supporting the Pcie

Protocol. I/O Devices Can Use Either the Pcie Protocol or the Cxl. The Cxl

Transactions Include Cxl.Io Which Provides The Instructions for Traditional Pcie

I/O Transactions, I.E., Memory Mapped I/O (Mmio), Cxl.Cache Which Provides

The Instructions for Cache Coherency and Management, And Cxl.Mem Provides the

Instructions for Memory Read and Write Between I/O Device Memory and System

Memory.

287

CCIX

Protocol

Layer

CCIX

Link Layer

CCIX

Transactions

Layer

PCIe

Transactions

Layer

PCIe Data Link Layer

CCIX/PCIe Physical Layer

CCIX

Messages

PCIe

Packets

TxRx

Processor

CCIX

Acc.

CCIX

Processor

CCIX

Switch

Acc.

CCIX

Acc.

CCIX

Processor

Bridge

CCIX

CCIX

attached

Mem.

CCIX

Processor

CCIX

CCIX

C
C

IX

Acc.

CCIX

C
C

IX

CCIX

C
C

IX

Acc.

CCIX

C
C

IX

CCIX

C
C

IX

Acc.

CCIX

C
C

IX

CCIX

C
C

IX

Acc.

CCIX

C
C

IX

(a) CCIX

DRAM

DRAM

DRAM

DRAM

M
ed

ia
 C

tl
.

Mem.

Bus G
en

-Z

L
o

g
ic

SoCSoC Media Module

DRAM

DRAM

DRAM

DRAM

Media Module

M
ed

ia
 C

tl
.

G
en

-Z

L
o

g
icGen-Z

Fabric

(b) GenZ

SoC

G
en

-Z
 S

w
it

ch

SCM

SCM

SCM

SCMM
ed

ia
 C

tl
.

Media Module
SoC

SoC

SoC

GPU or

FPGA

Media Module

SCM

SCM

DRAM

M
ed

ia
 C

tl
.

Media Module

DRAM M
ed

ia
 C

tl
.

Media Module

DRAM

DRAM

DRAM

DRAM

(c) Gen-Z fabric

Accelerator
 Coherent Net. Ctl.

OpenCAPI 3.0

Adv. Mem

 Coherent

Storage Ctl.

CPU
Std. Mem

OpenCAPI 3.0

PCI Express

Storage

(d) OpenCAPI

Figure 3.14: Overview of Coherent Interconnects for Hardware Accelerators Supporting

Cache Coherency Across Common Switching Fabric: (A) Cache Coherent Interconnect

for Accelerators (Ccix)® CCIX® Consortium Incorp. (2020) Defines a Protocol To

Automatically Synchronizes Caches Between Cpu and I/O Devices. (B) And (C)

Gen-z Gen (2020) Defines a Common Interface and Protocol Supporting Coherency for

Various Topologies Ranging From On-chip And Chip-to-chip to Long-haul Platform-

to-platforms. The Media/Memory Controller Is Moved From the Cpu Complex to the

Media Module Such That Gen-z Can Independently Support Memory Transfers Across

Gen-z Switches and the Gen-z Fabric. (D) Open Coherent Accelerator Processor

Interface (Opencapi) Stuecheli et al. (2018) Homogeneously Connects Devices to a

Host Platform With a Common Protocol To Support Coherency With Memory, Host

Interrupts, and Exchange Messages Across Devices.

288

CPU

16GB128GB

Cache

Memory

Storage

NVRAM

HBW Memory

Memory

Cache

2LM Configuration

1.5TB (16GBx12 + 128GBx12)

Fast Storage

Slow Storage

Persistent NAND Memory

DDR Memory

16GB128GB

128GB

128GB

128GB

128GB

16GB

16GB16GB

16GB

CPU

16GB128GB 16GB128GB

128GB

128GB

128GB

128GB

16GB

16GB16GB

16GB

16GB

128GB

Figure 3.15: Overview of Intel® Optane Dc Persistent Memory Configured as 2

Level Memory (2lm) Where the Dram Is Used As Cache to Store Only the Most

Frequently Accessed Data and Nvdimm Is Used as an Alternative to the Dram with

the Byte-addressable Persistent Memory (B-apm) Technique.

289

Memory Controller

Acc

Socket 1

CPU

Acc.

CPU CPU CPU

CPU CPU CPU CPU

On-Die-CPU

On-Core

PCIe/CCIX/USB

Acc

Socket 2

CPU

Acc.

CPU CPU CPU

CPU CPU CPU CPU

A
c
c.

On-

Package

MemoryAcc On-Memory
I/O

Device
Acc On-I/O Device

Mesh Interconnect On-Die-CPU

Figure 3.16: Hardware Accelerator Devices Can Be Realized on Silicon In Different

Placements: i) On-core, Whereby the Accelerator Device Is Placed Right next to

a Cpu Core; ii) On-cpu-die, Whereby The Accelerator Device Is Placed Around

the Cpu Mesh Interconnects; iii) On-package, Whereby the Accelerator Device Is

Placed Right On-package and External to Cpu-die; iv) On-memory, Whereby The

Accelerator Function Is Placed on the Memory Module; v) On-i/O Device, Whereby

the Accelerator Device Is Placed on an External (To Cpu) I/O Device via a Physical

Interconnect.

290

Control
ALU

ALU

ALU

ALU

 Cache

DRAM

DRAM

L2 Cache

L2

Cache

Shared

Memory

Thread

DRAM

Instruction Cache

Warp Scheduler Warp Scheduler

Dispatch Unit Dispatch Unit

Register File (32,768 x 32 - bit)

Core Core Core Core LD/ST
SFU

Core Core Core Core LD/ST

Core Core Core Core LD/ST

Core Core Core Core LD/ST

Core Core Core Core LD/ST SFU

SFU

Interconnect Network

64 KB Shared Memory / L1 Cache

Uniform Cache

CPU GPU

Thread
Per -Thread

Private

Local Memory

Thread Block

Per - Block

Shared

Memory

Grid 0

Grid 1

Per

App.

Context

Global

Memory

CUDA hierarchy of threads, blocks and grids with corresponding

per-thread private, per-block shared, and per- application global

memory spaces.

SP: Streaming Processor

LD/ST: Load/Store Unit

SFU Special Function Unit

Dispatch Port

Operand Collector

FP Unit FP Unit

Result Queue

CUDA Core

(a) CPU vs GPU ALU Density

(b) Fermi Mem. Hierarchy

(c) Fermi Streaming Multiprocessor (FSM)

(d)

Figure 3.17: Overview of Typical Graphics Processing Unit (Gpu) Architecture: (A)

Illustration of Arithmetic Logic Units (Alus) Specific to Each Core in a Cpu as Com-

pared to a Gpu; A Gpu Has A High Density of Cores with Alus with Relatively Simple

Capabilities as Opposed to the More Capable Alus in the Relatively Few Cpu Cores,

and (B) Overview of Memory Subsystem of Fermi Architecture with a Single Unified

Memory Request Path for Loads And Stores, One L1 Cache per Sm Multiprocessor,

and a Unified L2 Cache. (C) Overview of Fermi Streaming Microprocessor (Fsm)

Which Implements the Ieee 754–2008 Floating-point Standard, With a Fused Multiply-

add (Fma) Instruction for Single and Double Precision Arithmetic. (D) Overview

of Cuda Architecture That Enables Nvidia Gpus to Execute C, C++, and Other

Programs. Threads Are Organized in Thread Blocks, Which in Turn Are Organized

into Grids NVidia Fermi (2009).

291

I/OI/O

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

I/O

I/O

I/O

I/O

I/O I/O I/O I/O

I/O I/O

SB CB SB CB SB CB SB

CB CLB CB CLB CB CLB CB

SB CB SB CB SB CB SB

CB CLB CB CLB CB CLB CB

SB CB SB CB SB CB SB

CB CLB CB CLB CB CLB CB

SB CB SB CB SB CB SB

Channel

Width

(W)

I/O BLOCK

Config.

Logic Block

(CLB)

Horizontal

Routing Channel

Vertical Routing

Channel

Switch Box (SB)

Connection Box

SBOX

Wi-1

Cluster0_Level_i-1

SBOX

Wi-1

Cluster1_Level_i-1

SBOX

Wi-1

Clusteri-1_Level_i-1

SBOX

CLB CLB CLB CLB CLB CLB CLB CLB CLB

(a)

(b)

(c)

Figure 3.18: (A) Overview of Fpga Architecture: Configurable Logic Blocks (Clbs) Are

Interconnected in a Two-dimensional Programmable Routing Grid, with I/O Blocks at

the Grid Periphery. (B) Illustration of a Traditional Island-style (Mesh Based) Fpga

Architecture with Clbs; The Clbs Are “islands in a Sea of Routing Interconnects”.

The Horizontal and Vertical Routing Tracks Are Interconnected Through Switch

Boxes (Sb) and Connection Boxes (Cb) Connect Logic Blocks in the Programmable

Routing Network, Which Connects to I/O Blocks. (C) Illustration of Hierarchical

Fpga (Hfpga) with Recursively Grouped Clusters of Logic Blocks, Whereby Sboxes

Ensure Routability Depending on The Topologies Farooq et al. (2012).

SEEPROM
Key

RAM
RING

TWSI PLL/Reset

PCIe V2 x16 SRIOV

Giga

Cipher

Core

Interconnect

Giga

Cipher

Core

Giga

Cipher

Core

Up to 64

Cores

Comp.

Engine

Comp.

Engine

Comp.

Engine

Figure 3.19: Block Diagram of Nitrox Cryptography and Compression Accelerator Mar-

vell (2020): 64 giga Cipher Cores Offer High Throughput Due to Parallel Processing,

Coupled with Dedicated Compression Engines. The Nitrox Hardware Accelerator Is

External To The Cpu and Interfaces with the Cpu via a Pcie Interconnect.

292

A
r
b

it
e
r

Bd_wd1

Batch

Processing

Unit

Bd0

wd0

Work

Descriptor

Processing Unit

Engine 0

Engine 1
Engine N

Address

Translation

Cache

Data R/W
A

r
b

it
e
r

S

0

S

1

.

.
S

n

S

0

.

.

WQ

Config

IO Fabric Interface

IO Fabric

WQ 0

WQ 1

S

1

S

n

Bd_wd2

Bd_wd3

Bd_wd0

Figure 3.20: Illustration of High-level Blocks Within The Intel® Dsa Device at

a Conceptual Level. In Dsa, The Receiving of Downstream Work Requests from

Clients and Upstream Work Requests, Such as Read, Write and Address Translation

Operations, Are Accessed with the Help of I/O Fabric Interfaces. The Inclusion Of

Configuration Registers and Work Queues (Wq) Helps in Holding Of Descriptors by

Software, While Arbiters Implement Qos and Fairness Policies. Batch Descriptors Are

Processed Through the Batch Processing Unit by Reading the Array of Descriptors

from the Memory And the Work Descriptor Is Composed of Multiple Stages to Read

Memory, Perform Data Operations, and Write Data OutputIntel Corp. (2019a).

293

HBM

DRAM Die

TSV
Microbump

HBM

DRAM Die

Logic Die

Interposer

PHY GPU/CPU/Soc

Die
PHY

HBM

DRAM Die

HBM

DRAM Die

Package Substrate

Figure 3.21: Illustration of High-bandwidth Memory (Hbm) with Low Power Con-

sumption and Ultra-wide Bus Width. Several Hbm Dram Dies Are Vertically Stacked

(to Shorten the Propagation Distance) And Interconnected by “through-silicon Vias

(Tsv)”, While “microbumps” Connect Multiple Dram Chips Macri (2015) The Verti-

cally Stacked Hbms Are Plugged into an Interposer, I.E., An Ultra-fast Interconnect,

Which Connects to a Cpu Or Gpu Macri (2015).

294

DMA

RP NTB

CPU

M
E

M

M
E

M

M
E

M

DMA

RP NTB

CPU

M
E

M

M
E

M

M
E

M

IO
 D

e
v
ic

e

IO
 D

e
v
ic

e

IO
 D

e
v
ic

e

DMA

RP NTB

CPU

M
E

M

M
E

M

M
E

M

DMA

RP NTB

CPU

M
E

M

M
E

M

M
E

M

IO
 D

e
v
ic

e

IO
 D

e
v
ic

e

IO
 D

e
v
ic

e

sw

IO
 D

e
v
ic

e

IO
 D

e
v
ic

e

IO
 D

e
v
ic

e

IO
 D

e
v
ic

e

IO
 D

e
v
ic

e

IO
 D

e
v
ic

e

Server A Server B

swswsw

Figure 3.22: Overview of Linux Server with Non-transparent Bridges (Ntbs) Regula

(2004): The Memory Regions of Servers a And b Can Be Inter-mapped Across

Platforms to Appear as Their Own Physically Addressed Memory Regions. An Ntb

Physically Interconnects Platforms in 1 : 1 Fashion Through a Pcie Physical Interface.

In Contrast to the Traditional Pcie Root Port (Rp) And Switch (Sw) Based I/O Device

Connectivity, the Ntb from One Platform Connects Non-transparently to the Ntb

Interface On Another Platform, Which Means That Either Side of the Ntb Appears As

End-point to Each Other, Supporting Memory Read and Write Operations, Without

Having Transparency on Either Side. In Contrast, a Normal Pcie Switch Functions

Essentially as A Non-non-transparent-bridge, I.E., As a Transparent Bridge, By Giving

Transparent Views (to Cpu) of I/O Devices, Pcie Root Port, And Switches. On the

Other Hand, the Ntb Hides What Is Connected Beyond the Ntb, a Remote Node

Only Sees the Ntb, and the Services Offered by the Ntb, Such as Reading and Writing

to System Memory (Dram) or Disk (Ssd Pcie Endpoint) Without Exposure of the

Device Itself.

295

Figure 3.23: Classification Taxonomy of Research Studies On Hardware-accelerated

Platforms and Infrastructures for Processing Softwarized Nfs.

296

64K I-Cache

Decode Micro-op Queue Op Cache

Branch Pred.

4 Instruction/Cycle Micro-ops

Integer Rename

ALU

Load/Store

Queues

32K D-Cache

8 Way

512K

L2(I+D) Cache

Floating Point Rename

Scheduler

FP Register File

MUL MUL MUL

Floating PointInteger

512K

L2(I+D)

 Cache

8-Way

64K

I-Cache

4-Way

64K

I-Cache

4-Way

32B/

32B/

32B

2x16B Load

1x16B Store

8M L3

I+D

Cache

16-Way

Core 0

(a) ZEN Micro Architecture

(b) ZEN Cache Hierarchy

ALU ALU ALU AGU AGU

Sch. Sch. Sch. Sch. Sch. Sch.

Int. Phy. Reg.

Fetch

Cycle

Cycle

32B/
Cycle

32B/
Cycle

Figure 3.24: (A) Overview of Zen Micro ArchitectureClark (2016); AMD (2020):

The Zen Micro Architecture Has 3 Modules: i) Front End Module, ii) Integer And

Floating-point Modules, and iii) Memory Subsystem Module. Each Core Performs

Instruction Fetching, Decoding (Decodes 4 Instructions/Cycle into the Micro-op

Queue), and Generating Micro-operation (Micro-ops) in the Front End Module. Each

Core Is Independent with Its Own Floating-point and Integer Units. The Zen Micro

Architecture Has Split Pipeline Design at the Micro-op Queue Which Runs Separately

to the Integer and Floating Point Units, Which Have Separate Schedulers, Queues, and

Execution Units. The Integer Unit Has Multiple Individual Schedulers Which Splits

The Micro-ops and Feeds Them to the Various Alu Units. The Floating-point Unit

Has a Single Scheduler That Handles All The Micro-ops. In the Memory Subsystem

Module, the Data from The Address Generation Units (Agus) Is Fed into the Execution

Units Via the Load and Store Queue. (B) the Zen Architecture Has A Single Pipeline

Cache Hierarchy for Each Core Which Reduces The Overall Memory Access Latency.

297

Input

Mixer
Parser

MAT

1

MAT

n
Que.

MAT

1
MAT

n

PMP Element

PMP Element

PMP Array
Egress PipelineIngress Pipeline

Clone/Recirculate to egressClone/Recirculate to ingress

Figure 3.25: An Overview of the Risc Based Packet Manipulation Processor

(Pmp) Pontarelli et al. (2019) Which Implements a Programmable Packet Header

Matching Table Based on Atomic Operations. The Table Can Be Dynamically Up-

dated by Multiple Processes Running on the Cpu Without Impacting the Matching

Operations.

Fetch

BR ALU CSR MUL DIV LS
1 2 3 2/34 3/4

1

1

1 2 1 2/34 1+

+

Decode/Issue

Register File

Regs
Issue

ID

Inuse

Bit

Instruction Tracking

ID

Gen

Inst

Q

Reg

File
WB

Fetch Block

TLB

MMU

BRAM

BR PRED

Inst Cache

Load Store Unit

TLB

MMU

BRAM

Data Cache

Bus Master

L
1

 A
rb

iter

M
e
m

 In
terfa

c
e

System Bus

Processor Pipeline

Figure 3.26: Taiga Computing Architecture with Reconfigurable Design Using

Fpga Matthews and Shannon (2017). The Compute Logic Units, Such As Alu,

Branch Unit (Br), Multiply (Mul), and Division (Div), Are Implemented with Inde-

pendent Circuitry, I.E, with Instruction Level Parallelism (Ilp). Block Ram (Bram)

and Branch Prediction (Br Pred) Assist in the Ilp Opcode Fetch. The Numbers on

Top of the Logic Units Are Processing Latencies in Terms Clock Cycles, and below

Are The Throughputs in Number of Instructions per Clock Cycle. The + Indicates

That Numbers Shown Are Minimum Latency and Throughput Values, Whereas /

Indicates Dual Instruction Flow Paths For Execution.

298

T7

T6

T5

T1

T2 T4 T3

0 5 10 15 2520 30 4035 45 50 55

CPU 1

CPU 2

CPU 3

FPGA

T5

T6

T2

T4

T3

0 5 10 15 2520 30 4035 45 50 55

CPU 1

CPU 2

CPU 3

FPGA

T1

T7

6060

Solution 1 Solution 2

Figure 3.27: Illustration of Heterogeneous Scheduling Between Cpu and Fpga Where

Different Tasks Are Commonly Scheduled Relative to Number Of Clock Cycles Abdal-

lah et al. (2019): Solutions 1 and 2 Are Possible Scheduling Paths for Tasks (T1–t7)

among Cpus and Fpga Homogeneously. The Optimization Algorithm Evaluates All

Possible Paths and Estimates the Best Path in Terms of Lowest Overall Processing

Latency and Power.

Task

Pool

Sparse

Matrix

Task

Scheduler

Streams Slave

Processes

Task

Generator

Figure 3.28: Overview of Dynamic Task Scheduling Framework Nie et al. (2019)

for Cpu-gpu Heterogeneous Architecture: Tasks Are Partitioned into Parallel (Gpu)

Execution Tasks and Single-threaded (Cpu) Execution Tasks and Are Then Scheduled

as Gpu and Cpu Slave Processes. The Streams Organize The Tasks Such That the

Inter-scheduling Intervals of Tasks Are Minimized.

299

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

N N

S S

E

E

W

W

D
a

ta
 M

em
o

ry

ALU

N E W S

N E W S

RF

O/P Reg.C
o

n
fi

g
Word Size Wires From Neighbors

Switch

F0
Switch

F1

Switch

F2
Switch

F3

L02
L20 L31

L13

L01

L10

L23

L32

F0Cycle i F1 F2 F3

Routing Fabric

F0 F1 F2 F3

Routing Fabric

Cycle i+1

F0 F1 F2F3

L01 L13 L32 L20L20

L10 L31 L23 L02L02

F0 F1 F2F3

R
o
u

ti
n

g
 F

a
b

ri
c

R
o
u

ti
n

g
 F

a
b

ri
c

(a) (b) (c) (d)

To/From Links

From Registers

Figure 3.29: HyCUBE Karunaratne et al. (2017) Is an Extension To Coarse-grained

Reconfigurable Arrays (Cgras) to Support Multi-hop (Distant) Single Clock Cycle

Routing Between Functional Units (Fu): (A) Illustration of 4× 4 Cgra Interconnected

by 2d Mesh, (B) Fu Placement on Routing Fabric with Bidirectional Link Support. (C)

Logical Overview of Routing Fabric Between the Fus In Hycube, Where Each Fu Node

Can Communicate with Every Other Node Within 1 Clock Cycle. (D) Illustration

of Routing Fabric Internals Showing Interconnect Links (E.G., L20, L02), and Their

Interfaces to Fus. The Direct Paths from Top Fus to Bottom Fus Are Register Paths,

and the Paths Between Link Interconnects And Fus Are “to” and “from” Interfaces

to Link and Fus.

300

L1

DC

Core

L1

DC

Core

L1

DC

Core

M
o
T

 In
terco

n
n

ect

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

Bank n

M
iss B

u
s

TSVs

Traditional

DRAM

Or

3-D W/O

DRAM

DRAM

Controller

Multi-Core Cluster
Off-Cluster

DRAM

(a)

TSVs

MoT

(b)

Core k-1 Core k

Bank nBank n-1

Core 0 Core 1

Bank 0 Bank 1

Bank 0 Bank 1

Bank nBank n-1

Figure 3.30: (A) Overview of Mesh-of-trees (Mot) Based Interconnect Over 3d Multi-

core Cluster with L2 Cache Stacking Facilitated By Tsvs. Each Simple Core in the

Multi-core Cluster Contains Its Own L1 Instruction Cache and Data Cache (Dc).

Multiple Sram Banks That Are Connected with the 3d Mot Interconnect Through a

Tsv Bus Form a Multi-bank Stacked L2 Cache. The Miss Bus Handles Instruction

Misses in a round Robin Manner. (B) Geometric View Of 3d Multi-core Cluster

Which Balances the Memory Access Latency From Each Core by Placing the Mot

Interconnect in the Center Of The Cores Kang et al. (2016b).

301

Power Pins

PDN Branches with

Low PDN Degrad.

Region with High

Volt. Degrad.

Existing 4 Thread

Application

Region with Low

Volt. Degrad.

PDN Branches

with High PDN

Degrad.

Figure 3.31: An Example of a 3d Package of a 12 (2× 2× 3)-core Chip Multiprocessor

(Cmp) with a Regular 3d Power Grid: A 4-thread Application Is Running in the Four

Bottom Layer Cores and a New 1-thread Application Is to Be Mapped. Suppose a

High Power Delivery Network (Pdn) Degradation (High Resistance of Pdn Pillars Due

to High Currents That Supported Prior Workloads), but Also a Low Circuit-threshold

Voltage Degradation (I.E., Little Circuit Slowdown Due to Little Bias Temperature

Instability Circuit Aging) Exists in the Red (Right Front) Region of the Middle

Layer; Whereas the Green Region Has A Low Pdn Degradation, but High Voltage

Degradation. The Artemis Aging-aware Runtime Application Mapping Framework

for 3d Noc-based Chip Multiprocessors Raparti et al. (2017) Considers Both Pdn And

Voltage Degradations.

302

L2 WI

Core

Core

Core

Core

EU

EU

EU EU

EU EU

EU

EU

L2
L2 L2 L2

L2 L2 L2

L2 L2 L2

L3

0

L3

1

L3

2

L3

3

GPU L3 Crossbar

LLC Crossbar

WI

L3

0

L3

1

L3

2

L3

3

Main Memory Crossbar

MC 0 MC 1 On Package Memory

(a)

(b)

(c)

(d)

CPU Core+L1

GPU Execution Unit+L1

Cache Node (CPU L2/GPU L3/LLC)

WI Gateway

GPU L2

Cluster for Cache/Memory

Memory Node

Antenna

Figure 3.32: Illustration of Wireless Noc Hywin Gade and Deb (2016): (A) The Cpu

Subsystem with Cpu Cores (along with Their Respective L1 Caches) Is Connected

to a Bus Interface; The L2 Cache Is Shared Between All Cpu Cores. (B) the Gpu

Subsystem with Shared L2 Cache At the Center Connects Multiple Execution Units

in a Star Topology; All Shared L2 Caches Are Connected Through a Mesh Topology.

The Wi Gateway at the Center Initiates the Communication Between The Blocks. (C)

and (D) the Required Program Data Are Stored in The Shared Cache Subsystem and

Main Memory Subsystem.

303

Int PE

Buffer

Buffer

Switch Switch Switch

Int PE

Buffer

Buffer

Switch

FMA PE

Buffer

Buffer

Memory/Cache I/F

Int PE

Buffer

Buffer

Switch Switch Switch

Int PE

Buffer

Buffer

Switch

FMA PE

Buffer

Buffer

Switch Switch Switch Switch

FMA PE: Fused Multiply and Add Processing Engine
Int PE: Integer Processing Engine

Figure 3.33: Overview of Configurable Spatial Accelerator (Csa) For Supporting

Cpus with Large Data Graph Computations as Required For Nf Applications Related

to Deep Learning, Data Analytics, And Database Management Intel Corporation

(2020b): Highly Energy-efficient Data-flow Processing Elements (for Integer and Fused

Multiply-add (Fma) Operations) with Independent Buffers Are Interconnected By

Multiple Layers of Switches.

GPU

GPU

RAM

CPU

CPU

RAM

NIC

GPU

GPU

RAM

CPU

CPU

RAM

NIC

GPU

GPU

RAM

CPU

CPU

RAM

NIC

Traditional GPUDirect RDMA GPUrdma

(a) (b) (c)

Control Path Data Path

Figure 3.34: Evolution of Gpu-rdma Techniques Daoud et al. (2016): (A) Traditional

Method of Gpu Accessing Rdma with Assistance from Cpu, (B) Gpu Accesses Rdma

Directly from Nic, but Cpu Still Performs The Connection Management for the Gpu,

and (C) Gpu Interacts with Nic Independent of Cpu, Thereby Reducing the Cpu Load

for Gpu Rdma Purposes.

304

vSF 1

SF lib

vSF 2

SF lib

vSF 3

SF lib

Agent

Controller

vSwitch

hSF 1 hSF 2 hSF 3Pkt
in

Pkt
out

SmartNIC

rule

Control flow

Data flow

CPU

Network Server

Network I/O

CPU

Request Processing

Accelerators

(e.g., GPU)

NIC

Accelarator I/O

Accelarator I/O

Service

Smart NIC

Accelerators

(e.g., GPU)

(a) Traditional host-centric approach

(b) Lynx: Accelerator-

centric

Request Processing

Network Server

Network I/O

Figure 3.35: Unisec Implements a Unified Programming Interface To Configure and

Utilize the Security Functions Implemented On Smartnics Yan et al. (2019). Smartnics

Implement Hardware Security Functions (Hsf) Which Are Exposed to Applications

by Virtual Security Functions (Vsf) Through a Unisec Security Function (Sf) Library.

Network Server

Network I/O

CPU

Request Processing

Accelerators

(e.g., GPU)

NIC

Accelerator I/O

Accelerator I/O

Service

SmartNIC

Accelerators

(e.g., GPU)

(a) Traditional host-centric approach

(b) Lynx: Accelerator-

centric

Request Processing

Network Server

Network I/O

Figure 3.36: (A) Overview of Traditional Host-centric Approach: Cpu Runs the

Software That Implements Network-server Function (For Interacting with Remote

Client Nodes) to Process the Requests From A Remote Node (over the Network). Cpu

Also Runs the Network I/O, Which Implements the Network Stack Processing; (B)

Overview Of Lynx Architecture Tork et al. (2020): Smartnic Implements The Network-

server (Remote Requests Processing), Network-i/O (Network Stack Processing), and

Accelerator I/O Service (Accelerator Scheduling) Such That the Cpu Resources Are

Freed From Network-server, Network I/O, and Accelerator I/O Services.

305

CPUs

FPGAs
Dedicated

Accelerators
Compute

Spatial Arrays
GPUs

Programmable Compute Logic

Binaries Firmware
GPU

Kernel

Kernel
Space

Kernel
Module

Kernel
Module

Kernel
Module

General Purpose Compute

Programmable
Compute
Threads

Program
(Code) Dynamic

Library

Static
Library

User Space

Compile
Application
(executable)

Platform
Hardware

SmartNIC

Packet
Flow
Logic

Softwarized
Network Function

APIs Network Function
Applications

 Network Function
Acceleration CodeCompile

Operating System/Hypervisor
Process Scheduling, Memory
Management, and I/O device

management

CPUs run all the Network
Function executables (processes

and threads) as well as the
Operating Systems (OS) and

Hypervisor itself

CPUs can offload compute and
request part of network function
acceleration to external (to CPU

core) hardware components

Figure 3.37: Software Components in the Softwarized Network Component.

Figure 3.38: Classification Taxonomy of Survey of Research Studies on Os and

Hypervisors

306

Pkt.

In/Out

NIC HW

Memory
1

2
3

4

5

6

7

8

User

Space

Kernal

Space

Acc. Driver

Driver

App. Memory

Acc. HW

Memory

Figure 3.39: Packet Data Traversal Through Memory of Nic Device, Kernel And User

Space of System Memory, and Accelerator Device in Tradition Application Processing

by the Os.

VM VM VM VM VM VM

VM VM VM VM VM VM

Distributed Switch

Figure 3.40: Logical Distributed Switch (Lds) Spans Across Multiple Compute Nodes,

Where Vms Across Multiple Compute Node Belonging to Same Network Are Able

to Communicate over a Logical Switch Transparently. Each Compute Node Has the

Context of Lds Which Integrates with Lds Component on Other Compute Nodes to

Extend as a Distributed Switch.

307

Process A

Namespaces

Linux Kernel

A

HW Virtualization

Process B

Namespaces

Linux Kernel

B

Linux Kernel

Process A

Filter:

• Seccomp

• MAC

• CAPS

Namespaces

Process B

Namespaces

Filter:

• Seccomp

• MAC

• CAPS

Linux Kernel

CPU Memory Network Storage

Katacontainers Traditional Containers

HW Virtualization

Virtual Machine Virtual Machine

Additional isolation with a lightweight

VM and individual kernels

Isolation by namespaces, cgroups

with shared kernal

Figure 3.41: Kata Containers Achieves the Benefits of Both Virtual Machine (Vm)

and Containers by Extending the Vm Level Isolation to Containers.

Memory Memory

Local

Access
Remote

Access

Memory

Channel

Memory

Channel

Interconnect

MC
CPU

1
MC

CPU

2

Figure 3.42: Non-uniform Memory Access (Numa) Memory Access Types: i) Local

Memory Access Which Corresponds to Memory Access On The Same Socket of Cpu,

and ii) Remote Access Which Corresponds To Memory Access on a Different Socket

of Cpu.

308

vIOMMU

Driver

vIOMMU

VFID
IOMMU

Driver

IOMMUHW

Host

Kernel

Host

User

Guest Translation Cache

Invalidation

vIOMMU

Fault

Bind

PASID
CPU Page

Table

Cache

Invalidatior

vIOMMU

Fault

Figure 3.43: Shared Virtual Memory Enabled Vm to Share User Space Memory

Location with an I/O Device Based on Iommu Feature. [Bottom up] Iommu Performs

the First Level Translation from Physical Memory To Guest-physical (Host-virtual)

at the Vmm Level, and Viommu Performs The Second Level Translation from Guest-

physical to Guest-virtual. Process Address Space Identifiers (Pasid) Are Used to

Isolate The Share Virtual Memory Between Different Vms.

309

CPU

Local APIC Local APIC Local APIC

Interrupt

Messages
IPIs

CPU CPU

Interrupt

Messages
IPIs

Interrupt

Messages
IPIs

Processor #1 Processor #2 Processor #3

I/O APIC
External

Interrupts

Interrupt

Messages

System Chip Set

3-wire APIC Bus

Figure 3.44: Overview of Local Advanced Programmable Interrupt Controller (Aipc)

and I/O-aipc: Local Apic Is Core Specific and Enables Local Interrupt Pints(Lint0

And Lint1). Inter-process Interrupts (Ipi) Use System Bus to Forward An Incoming

Interrupt or to Generate New Interrupt Targeted to Another Local Apic for Applica-

tions, Such as High Resolution Timer, Performance Monitoring Counters, and Thermal

Sensors. I/O Apic Extends the Interrupts to External I/O Devices.

Guest OS

SW Delivery via

APIC-V

VM

VM Exists

VMM

External Interrupts

Guest OSVM

Fewer

VM

Exists

APIC in CPU

HW

SW Delivery via

APIC-VVMM

Configure

Guest OSVM

Fewer

VM

Exists

APIC in CPU

HW

VMM

Configure

Posted Int. in HW

Delivered Directly w/o

SW Intercept

External InterruptsExternal Interrupts

VMM Based Interrupt

Handling
With APIC-V With Posted Interrupts

(a) (b) (c)

Figure 3.45: Interrupt Delivery Methods to Guest Os Running on A Vmm Corporation

and Mulnix (2020): (A) in Traditional Methods, External Interrupts Are Captured by

Advanced Programmable Interrupt Controller Virtualized (Apicv) on the Hypervisor

and Send A Software Interrupt to the Guest Os. (B) Cpu Implements Apicv Hardware

Which Is Assigned to Guest Os, External Interrupts Captured By Vmm Are Delivered

to Apicv of the Guest Os. (C) External Interrupts Are Directly Captured by Guest

Os Without Any Software Intervention (of Vmm) in the Form of Message Writes to A

Memory Region Resulting in Posted Interrupts.

310

Device Partitioning and

Assignment

VMs and Containers

VMM/Host

OS

PF Driver

Physical

Function

Virtual

Fn. 1

Virtual

Fn. 2

Virtual

Fn. n

SR-IOV Device

Virtual

Device 1

Guest 1

VDCM

ADI

1

ADI

2

BR 1 BR 2

S
lo

w
 P

a
th

F
a

st P
a

th

F
a

st P
a

th

Virtual

Device 1

Guest 1

VDCM

ADI

3

BR 3 BR 4

S
lo

w
 P

a
th

F
a

st P
a

th

Virtual

Device n

Guest 1

VDCM

ADI

n

BR k

S
lo

w
 P

a
th

F
a

st P
a

th

Host VMM

SW

 SIOV Device

VDCM: Virtual Device Composition Module

ADI: Assignable Device Interface

SR-IOV: Single-Root I/O Virtulization

VMM: Virtual Machine Moniter

SIOV: Scalable I/O Virtulization

BR: Backend Resources

Figure 3.46: Single Root I/O Virtualization (Sriov) And Scalable I/O Virtualization

(Siov) Overview Intel Corp. (2018). Sriov Provides Fixed Resource Splitting for

Virtualizing Hardware Functions, Whereas Siov Provides a More General And Flexible

Resource Splitting Ways for Virtualizing Of Hardware Resources.

VM 1

VDEV 2

VM 2

VDEV 2

VM n

VDEV n

Q Q Q Q Q Q Q Q Q Q Q

Device

Process
Process

Syscall

VM

VDEV 1

Container

VDEV 2

Q Q Q Q Q Q Q Q Q Q Q

Device

VDEV 1 VDEV 2

Q Q Q Q Q Q Q Q Q Q Q

Device

VDEV 2

VM

VDEV 2

VM

Q Q Q Q

Device Gen 1

Q Q Q Q

Device Gen 2

Live

Migration

Generational CompatibilityOver - ProvisioningFlexibilityScalability

Figure 3.47: Siov Hardware Virtualization Enables Resource Slicing That Is, i) Scalable

with Respect to the Number of Virtual Functions, ii) Flexible in Terms Allocating

Virtualized Resources To Different Software Entities Such as Processes, Threads,

Applications, and Vms, iii) Over-provisioning with Respect To Resource Sharing

and Re-use, and iv) Compatibility with Respect To Live-migration of Services and

Vm Intel Corp. (2018).

311

Figure 3.48: Classification Research Studies for Os and Hypervisor Architectures and

Concepts Towards Nf Applications

Full

Virtualized

App.

Para-

Virtualized

App.

Untrusted

VMP

Modules

ISA

Emulator

Dispatcher

Hypercall

Hnadler

Program

IRQ

Syscall

IRQ

IPCM

VM Sch.

Syscall

IRQ

External

IRQ

IRQ Handler

Hypercalls

Hardware

S
u

p
er

v
is

o
r

M
o
d

e
P

ro
b

le
m

M
o
d

e

Figure 3.49: Proteus Architecture Where Privileged Code Is Executed in the Supervisor

Mode Layer While the Problem Mode Handles Vm Related Communication Such as

I/O Device Drivers, Etc. Gilles et al. (2013)

312

PV Linux

PV Xen API

User Space

Kernel Space

PV Linux

PV Xen API

User Space

Kernel Space Ring0

HAP Support (e.g. EPT)

PVM Hybrid PVM
Active HAP Support

HVM Container

Unmodified

Linux

User Space

Kernel Space

Guest BIOS

Virtual Plt.

HVM Container

HVM

Unmodified

Linux

User Space

Kernel Space

Guest BIOS*

Virtual Plt.*

HVM Container

PV Xen API

pv_ops

Hybrid HVM

Import PV Components

* : Native APIC and Platform from Domain 0

Ring1

Figure 3.50: Hybrid Virtualization Architecture: (A) Adding Hardware Assisted Paging

(Hap) Support to a Paravirtualized Linux Vm, and (B) Showing the Hardware Assisted

Virtualization Modifications to Import Paravirtualization Components Nakajima et al.

(2011).

User Space

DPI

VM

DPDK

Kernel

VF Driver

Virtual Hyp.

L2 Switch

Kernel Stack

VF VF VF

SR-IOV Enabled Net.

Interface

F
o
rw

a
rd

in
g
 R

a
te

Figure 3.51: Sr-iov Combined with Dpdk Allowing High Throughput For Virtual Nf

Applications Kourtis et al. (2015).

313

App App

Guest OS

App App

Guest OS

App App

Guest OS

Virtual Machine Monitor (VMM)

DMA
CPU

Accesses

Physical Memory

I/O

Devices DMA

Mapping
CPU Memory

Virtualization

Logical

Proc.

Figure 3.52: Interaction Between I/O, Processor, and Hypervisor Virtualization

System.

NEI
Set of

VNFs

Traffic

Distribution

Server

Specification

Maximizes by adjusting

Optimizes

VNF Affinity

TX/TX Core

Affinity

TX/TX Core

Affinity

TX/TX Core

Affinity

Pareto Optimal Solution

Figure 3.53: Optimization Illustration That Shows the Procedure of Optimizing Nei to

Measures the Cost of Vnf Placement on Numa Based Virtualized Systems for Packet

Processing Workloads Sieber et al. (2017).

314

Cloud Client

Cloud
Microservices

Edge

Client
Microservices

Edge
Microservices

Cloud-to-Edge
service migration

Cloud/Edge- to- Client
service migration

Figure 4.1: Illustration of Cloud-to-edge and Cloud/Edge-to-client Service Migrations.

Containers Can Implement the Micro-services, And Multiple Micro-services Can Be

Interconnected to Form a Fully Functional Service. Micro-services Are Typically

Moved From Cloud-to-edge or Cloud/Edge-to-client so as to Achieve the Required

Service Response Times.

Chapter 4

HARDWARE ACCELERATION FOR RESOURCE CONSTRAINED PLATFORMS

4.1 Introduction

4.1.1 Motivation and Background

Containers provide a light-weight cloud-native framework for implementing services

that can be separated into several micro-services Kratzke and Quint (2017); Sharma

et al. (2016); Sotomayor et al. (2006). The micro-services can be scaled to demand and

migrated between nodes according to application needs Abdah et al. (2019); Addad

et al. (2020); Bellavista et al. (2019); Bulkan et al. (2018); Ma et al. (2020); Wang

et al. (2018).

Client devices with extensive computing capabilities and fast high-bandwidth

315

5G wireless connectivity are becoming ubiquitous. However, there is also a trend

towards ultra-low latency (ULL) user applications Huang et al. (2020); Nasrallah

et al. (2018); Sharma et al. (2020); Xiang et al. (2019). One strategy to support ULL

applications is to migrate some of the container based micro-service computing to the

computationally powerful client devices. Essentially, the cloud and the Multi-access

Edge Computing (MEC) Shah et al. (2020); Shantharama et al. (2018b); Zhang et al.

(2020) are extended by the client devices Ferrer et al. (2019); Goyal (2014); Mehrabi

et al. (2019); Xie et al. (2020), as illustrated in Fig. 4.1. This participation of the

client devices in the micro-service computing requires flexible container migrations

between cloud, MEC, and client devices Morabito (2016); Cepa (2005).

Container storage images (for brevity “container images”) are instantiated and

migrated by a Container Engine (CE), which is a container management framework.

The container images transition through so-called storage registries Littley et al.

(2019), which are memory regions on a file system, either on a local system or on

a remote server. The storage registry stores the container images in compressed

form. Accordingly, the CE has to compress container images before storage them;

also, the CE has to decompress container images after retrieving them from a storage

registry. If the storage registry is on a remote server, then in addition compressing

and decompressing the container images, the GE also has to (i) encrypt the container

images before sending them over the network to the storage registry, and (ii) decrypt

the container images received over the network. Typically, the connection between

the storage registry on a remote server and the CE is secured through RESTful

connections, such as HTTPS.

Client devices are typically resource constrained for workloads that require large

I/O transactions, e.g., NFV packet processing and virtualization (abstraction), for the

resource sharing among multiple isolated environments, such as VMs and containers.

316

Hence, applications on client devices depend on limited computing, memory, network-

ing, and power resources to meet the resource needs of the specialized workloads,

such as NFV requiring both large I/O transactions and virtualization. While client

devices typically do not run workloads that demands large compute, memory, and I/O

requirements, specialized applications, such as softwarized network functions often

exceed the requirements for resources on the client devices. Dedicated (e.g., ASIC)

and custom (e.g., GPU and FPGA) accelerators are specialized hardware designs that

can be integrated onto client platforms to enhance the platform resources on-demand

to meet application requirements. However, the downsides of using an accelerator are:

i) offload overhead involving memory transactions (i.e., copies) resulting in increased

processing latency, ii) CPU overheads for coordinating the task offload, e.g., polling

the accelerator for task completion (memory copy operations are covered in [i]), and

iii) I/O [Double Data Rate (DDR)] bandwidth resource overhead from the increased

memory transactions. In contrast to client devices, server platforms typically have

enough resources to accommodate accelerator offload overheads. Running large work-

loads on accelerators can achieve high efficiency gains, thus reducing the impact of

overheads. Therefore, challenges of accelerator adoption include: i) limited CPU and

I/O bandwidth resources, and ii) small workloads on the client platforms. To this

end, we comprehensively investigate the application performance gains, compute and

I/O bandwidth requirements, along with power implications on the client devices in

the context of the container migration framework.

4.1.2 Use-Case Examples

The container migration framework on client devices is expected to play an impor-

tant role in Multi-Access Edge Computing (MEC). Generally, client devices should

leverage local computing on the client devices whenever possible on opportunistic

317

chances, especially when there are enough computing and networking resources. An ef-

ficient container migration framework can assist client devices to manage the resources

during instantiation and tear-down of container sessions, as well as state updates to a

logically centralized database (e.g., edge or cloud servers).

Speech/Text Recognition

Applications that depend on learning and inference, such as Natural Language Pro-

cessing (NLP) and handwriting recognition, requires large computing and memory

resources as well as privacy due to user data association. If client devices were to

operate on large data sizes with frequent interactions to edge or cloud servers, it may

be economical to containerize the server operations, transfer the container image to

the client device, and run the container image locally on the client device, provided

that there are enough client resources to support the containerized application.

Enterprise Remote Desktop

Enterprise client devices are diverse and heterogeneous, whereby an employee of an

enterprise or large corporation will typically interact with multiple devices at different

locations such as home, office, and in transit. The challenge here is to synchronize the

applications and device states across multiple devices. One way to synchronize is to

containerize the applications and migrate the container images to the device of choice

based on the user request.

4.1.3 Related Work

Today, most Internet services are supported by cloud-native applications Kratzke

and Quint (2017). The cloud-native applications are typically implemented on a

virtualized data center environment, such as virtual machines (VMs) or containers.

318

VMs have relatively high overheads Kratzke and Quint (2017); Scheepers (2014);

Sharma et al. (2016); Sotomayor et al. (2006) and are therefore not considered in

detail in this study; instead we focus on low-overhead container implementations.

Virtualized environments, e.g., the virtualization of data center hardware resources

are enabled by abstraction technologies, such as Intel Virtualization Technologies

(VT) Neiger et al. (2006), that reduce the overhead from software virtualization. While

there exist techniques to mitigate the overhead arising from virtualization abstraction,

there exists no support from the platform or hardware to reduce the overhead on the

containers.

Traditional service migration between the edge and cloud moves VMs, which incurs

relatively high computing and networking overheads. A container based framework

is better suited for client devices with limited computing and network resources.

While there exist soft-handoffs of VM based services through live-migration strategies;

to the best of our knowledge, there is currently no method that natively supports

live container migration. Therefore, container migration currently requires hard

handoffs with offline store-and-forward of container images through storage registries.

Ma et al. Ma et al. (2017) have addressed this limitation by proposing a migration

through a layered storage system that reduces the file system synchronization overhead.

Evaluations from Ma et al. Ma et al. (2017) show 80% reduction of the handoff latency.

Nadgowda et al. Nadgowda et al. (2017) proposed a complete state container migration

with Checkpoint/Restore In Userspace (CRIU)-based memory migration, minimizing

the overhead to be less than 3% of the actual workload.

The service migration from cloud to MEC, cloud to client, MEC to client, and

client to client requires the movement of VMs and containers among cloud, MEC,

and clients in a heterogeneous cloud-first computing approach. Shen et al. Shen

et al. (2016) have presented VM based application migration methods based on the

319

geographical movement of workloads.

Aside from short handoff latencies, low energy consumption is a key goal for VM

or container migration. Kaur et al. Kaur et al. (2017) have examined the energy

consumption of migrations and found that utilizing containers instead of VMs reduced

the energy consumption by 21.75%. Overall, container based services currently achieve

the lowest overhead, shortest latency, and lowest energy consumption.

Several hardware and software strategies can accelerate cloud services Linguaglossa

et al. (2019); Shantharama et al. (2020). Hardware acceleration can employ custom

accelerators, such as FPGA Lallet et al. (2018) and GPU Giunta et al. (2010), and

dedicated accelerators for service-specific hardware functions, such as DLBoost on

Intel Cascade Lake processors Arafa et al. (2019), which can accelerate deep learning

algorithms on both containers and VMs. While container based services provide

significant benefits over VM based services, containers do not strongly isolate the

services. The vulnerability of containers for both cloud and client devices has been

assessed in Martin et al. (2018).

In contrast to containers, Container Engine (CE) accelerations speed up the man-

agement of containers, including the storage, retrieval, instantiation, building, and

tear-down of container images. Lu et al. Lu et al. (2019) have developed an acceleration

method for container image updates across different versions on the CE by avoiding the

duplication of container data between image versions, achieving a 7-fold improved CE

image update performance. The container instantiation time depends on the residency

of the container image in the system memory, hence Gu et al. Gu et al. (2019) have

developed a method to store container image layers on Non-Volatile Memory (NVM)

so as to accelerate container deployments. Huang et al. Huang et al. (2019) have accel-

erated the building of containers by caching the necessary files for incremental builds,

reducing data download times up to 70%. Importantly, all of these approaches require

320

CPU
Hardware

Accelerators

Hypervisors

Guest OS

Container Engine (CE)

Cloud/Edge Server platforms

CPU
Hardware

Accelerators

Client platforms

OS

Container Engine (CE)

Containers

Containers

 Container Engine
(Logical) Registry

Push

Pull

Pull

Push

https://remote-
server/registry1:50000

Figure 4.2: Container Migration Through a Container Engine (Ce) Registry: Container

Images Are Pushed from a Node to a Registry, and Pulled From the Registry by

Another Node. The Pushing of a Container Image To the Registry Involves Saving the

Running Container Context as A New Container Image, Compressing the Image, and

Then Uploading The Image to the Registry. Pulling a Container from the Registry

Involves Downloading the Image from the Registry and Running It on A Container to

Resume the Service.

the compression/decompression and encryption/decryptionAkhilesh S. Thyagaturu

(2021) of container images; the acceleration of the compression/decompression and en-

cryption/decryption of container images is therefore critical for efficiently transitioning

container between computing nodes.

4.1.4 Contributions

Although several existing strategies can accelerate CE container management

functions, such as the storage, instantiation, and building of container images, the

critical aspect of CE acceleration for encryption and compression of container images

has not yet been investigated in detail. We address the open topic area by evaluating

the CE acceleration for compression and decompression of container images for

transitioning through CE storage registries. More specifically, we compare the CPU

utilization for CE processes for executing compression and decompression in software

(SW) on the CPU and for executing compression and decompression in an Intel

321

QuickAssist Technology (QAT) hardware accelerator. To understand the implications

of accelerator offloading on memory and I/O interactions, we quantify the relative

memory read/write activity for compression and decompression of container images.

We also quantify the overall task completion performance with and without hardware

acceleration. We believe that the quantitative evaluation data presented in this article

will serve as an important reference benchmark for container migration framework

designs as well as for container management involving compression and decompression

of container images on client devices.

To investigate the implications of network bandwidth on the use of hardware

acceleration, we employ a container migration framework between two client devices

connected over a network. The access network (e.g., cellular, cable, WLAN) that

connects client devices to an external network are typically unreliable. For instance,

even with 5G connectivity, mobility scenarios and loss of line-of-sight with base

stations could significantly impact bandwidth and latency of the network connectivity.

We quantify the performance implications of container migrations with and without

hardware acceleration as a function of the network bandwidth. Our evaluations

indicate that hardware accelerations with low network bandwidth can negatively

impact the overall application performance. Additionally, we quantify the power

consumption for applications with and without hardware accelerations as a function of

the network bandwidth. We find that hardware accelerations show significant power

savings which is critical for client devices. Our results serve as a reference profile

for future designs of client devices in adopting hardware accelerators, especially in

resource-constrained environments.

322

4.2 System Model

4.2.1 Cloud and Client Nodes

In the cloud context, micro-services and applications are deployed as containers

in an isolated environment managed by a CE, such as Docker or CRI-O. The data

center server platforms are typically virtualized by a hypervisor, such as Hyper-V

or VMware ESXi; the hypervisor abstracts and slices hardware for the guest OSs.

Containers typically run on Guest OSs and are managed by CEs. Virtualization can

be nested to achieve multi-level abstractions and desired levels of isolation between

different services and guest OSs. Server platforms can be equipped with hardware

accelerators to assist software functions through custom (e.g., GPU, FPGA) and

dedicated hardware (e.g., Intel QuickAssist Technology (QAT)). Hypervisors, guest

OSs, and containers commonly access the hardware accelerators through abstraction

methods and IO virtualization technologies, such as Single Root-IO Virtualization

(SR-IOV) Kutch (2011) and S-IOV ?. To avoid overheads from the abstractions and

IO virtualization, an accelerator can also be statically allocated to a hypervisor, guest

OS, or container through so-called fixed or pass-through allocation.

In contrast to the cloud, client devices have generally only limited by CPU and

hardware resources, including very limited support for general hardware acceleration.

Container workloads have traditionally been developed to run on cloud server platforms

and are therefore not optimized to run on client devices. Applications and services on

client devices typically operate directly (in bare metal fashion, without virtualization)

on the hardware to achieve high efficiency. As a result, applications and containers

running on client devices should be aware of the hardware resource constraints.

Therefore, hardware acceleration on client devices is strongly recommended. Hardware

acceleration on client devices can help to minimize disruptions and to mitigate workload

323

congestions when computing container-based micro-services, which require frequent

container instantiations and tear-downs. In order to understand the impact of hardware

acceleration, we evaluate the implications of container migration workloads on client

devices operating with and without hardware acceleration.

4.2.2 Container Migration

The service deployment for latency sensitive applications can implement a micro-

service on a client device. This client based implementation logically extends the cloud

end-to-end service to the client device. The client based micro-service implementation

requires the migration of containers that contribute to the cloud service to client

nodes. After some client updates, the container may migrate back to the cloud/edge.

Thus, the implementation of container based micro-services requires client devices to

perform the container migration functions.

We evaluate the offline container migration method which transports container

images between nodes; this offline container migration results in a hard service handoff.

The hand-off process and the service interruption delays are not our main concern

and we do not propose a novel container migration strategy. Instead, our goal is

to evaluate the implications of the hardware acceleration for container migration on

the computing and I/O characteristics on client devices. We model the container

migration based on the logical registry method. As shown in Fig. 4.2, each node (i.e.,

client and server) implements a physical registry specific to each node and exposes

secure connections to external nodes for the pushing and pulling of the containers to

and from the registry. For example, migrating a container from the cloud to a client

proceeds as follows: i) the cloud server pushes the currently running container to a

remote (relative to the cloud server) physical registry of the client (that is local to the

client), and ii) the client pulls the container from the local (to the client) registry and

324

executes the container.

A drawback of the registry based container migration is that all nodes must

implement a physical registry and maintain a dictionary of external HTTPS connections

to each node’s registry for the pushing and pulling of containers. This requires a full

mesh topology, which severely limits the scalability. Our evaluation focuses on one

client device that connects to one cloud (server) node, resulting in an elementary 1:1

topology. Thus, the full-mesh requirement does not impact our evaluation and the

registry method of container migration is well suited for evaluating the computing

implications due to container migration on a single client device.

4.2.3 Acceleration of Container Engine (CE)

At microscopic levels, the instantiation of a container (either through migration

or for the first time) proceeds as follows. The CE downloads the container image

(which is in a compressed form, and encrypted if downloaded from a remote server),

decrypts the image (if downloaded from a remote server), uncompresses the image, and

schedules the (decrypted and) uncompressed image to run. This container instantiation

effectively requires two CPU intensive tasks: i) the decryption of a container image

that arrives through a network interface, and ii) the decompression of the container

image. Conversely, for uploading a container image, the clients needs to compress

and encrypt the container image. In general, both compression (and decompression)

as well as encryption (and decryption) are highly CPU intensive tasks which impose

both heavy power consumption and computing loads on the client devices. Hence, we

believe that encryption/decryption and compression/decompression acceleration are

critical for client devices.

Usually, encryption and decryption of a container image are provided by an

application layer security framework, such as TLS/SSL through HTTPS. End-to-

325

end TLS/SSL and HTTPS connections typically employ the AES-GCM encryption

algorithm, which is highly optimized through CPU instruction set acceleration, such as

AES-NI Hofemeier and Chesebrough (2012). However, compression and decompression

accelerations are not natively provided by the CPU instruction set. Therefore, client

devices have to depend on auxiliary acceleration, e.g., custom hardware accelerators

(e.g., FPGA) or dedicated hardware accelerators (e.g., Intel QAT), to speed up the

compression and decompression.

4.2.4 Compression/Decompression Acceleration

Compression/decompression acceleration can be achieved in both software and

hardware.

Software Implementation

GZIP Deutsch (1996) efficiently compresses and decompresses on single-core computers.

PIGZ Adler (2014) parallelizes GZIP so that multiple threads running on different

cores can exploit parallel computing capabilities. However, PIGZ implements only the

decompression functionality, complimentary to GZIP for compression. There exist 10

compression levels, L0–L9, whereby L0 indicates no-compression, and L9 indicates

the maximum compression level. The default compression level for GZIP is L6. The

implications of the compression level on the computing are the resource requirements;

whereby, the higher the compression level, the higher is the compression ratio, but

also the larger are the computing and memory requirements, and hence the longer

the duration for completing the compression task in resource-constrained devices. For

network applications, higher compression levels could result in lower data sizes for

transmissions over the network as compared to lower compression levels.

326

Container
Engine Memory

NIC Driver
Memory

Pkt.
In/Out

NIC Driver

Memory
1

2

3

5

6

7

User
Space

Kernel
Space

QAT (HW Acc.)

Memory QAT Driver
Memory

QZIP App.
Memory

Docker pull
(Decompression)

Path

HTTPS
session

4

8

Figure 4.3: Overhead Illustration of Memory Transaction for Hardware Acceleration

of Decompression for Docker Pull Operation Using Qat. The Data from Https Session

Is Decompressed by Qzip Application Using Qat Driver and Delivers Uncompressed

Data To Docker Container Engine (Ce) for Container Image Instantiation.

Hardware Acceleration

The Intel QuickAssist Technology (QAT) Intel Corp. (2019c); Lin (2018) is an ASIC

based dedicated hardware accelerator for cryptographic and compression computations.

We use the QATzip (QZIP) qatzip (2020) software library to interact and forward

the compression and decompression CPU calls from the CE to the QAT hardware.

The default compression in the QZIP is L1 to which the hardware accelerator QAT is

initialized with based on recommended configuration from the open-source library. We

employ both default configuration, i.e., L1 and maximum supported compression level

L4 for QZIP, whereas the default configuration of software is L6 during the evaluations

of hardware acceleration of CE.

Acceleration Overhead

The downside of hardware acceleration is the overhead associated with the offloading to

the hardware accelerator. The primary overhead components are the data transactions

327

between applications, accelerator drivers, and accelerator device-internal memory.

Figure 4.3 illustrates the data movements across the various components involved in

hardware acceleration for the Docker pull (decompression) processing. The container

image, which is stored in the registry in compressed form, is transferred to the Docker

host through a network interface and HTTPS session. HTTPS employs transport layer

security using TLS/SSL which involves encryption using the Advanced Encryption

Standard (AES), such as AES-GCM-128 algorithms. Once the data is decrypted by

the CE application, the data is transferred to the QAT and the computing is offloaded

to the QAT for decompressing the data. This processes involves two main overhead

components due to OS and HV principles: i) data copy from Docker context to QAT

context, and ii) CPU context switching between Docker and QZIP applications for

data processing.

Memory Transactions For illustration, we have considered the data transactions

of the Docker pull operation in Fig. 4.3 as logical Steps 1–8 between the different

memory regions of the Docker and hardware accelerator (QZIP) applications. The

container image, which is stored in compressed form at the registry, is transferred

through the network interface, and hence the data is copied from the network driver

kernel space memory region to the Docker CE application space. Once SSL/TLC

decryption of the data is completed, QZIP is invoked to perform the decompression.

The data is not only copied from application-to-application, i.e., Docker CE to QZIP,

but once again copied from the user-space to the kernel space of the QAT hardware

driver, and the other-way once the QAT computing is completed. As a result, each

QZIP request for decompression involves four extra data copies due to the use of a

hardware accelerator (whereas only four copies would be required for a conventional

SW implementation). before the final data can be interpreted by the CE. That is,

328

overall, the use of an accelerator device requires eight copies compared to four copies

for a conventional SW implementation. Although data copying from the kernel space

memory to the user space memory can be avoided using advanced data processing

techniques, such as kernel bypass Høiland-Jørgensen et al. (2018); Lettieri et al. (2017),

shared virtual memory using Process Address Space ID (PASID) Huang et al. (2016),

and Poll Mode Drivers (PMD) (e.g., Data Plane Development Kit (DPDK)), these

mechanisms require application and OS/hypervisor kernel modifications which are

typically not considered in the networking stack on resource-constrained client devices.

Therefore, our evaluations are based on standard techniques and mechanisms that

are typically used in resource-constrained client devices. Techniques, such as PMD,

do not fit well for client devices due to the required dedicated core assignments for

the continuous polling of network interfaces; this polling is both compute and power

inefficient.

Process/Thread Context Switching The concurrent processing of multiple ap-

plications results in CPU context switching between processes and threads. As the

number of applications and contexts increases, especially from the hardware accelera-

tion components, the overall context switching overhead can become significant. For

instance, the Docker CE application requests the QZIP application to processes the

data for compression and decompression, resulting in the context switching between

the threads and processes of the Docker CE application and the QAT hardware

accelerator. These context switches reducing the overall acceleration gain from the

hardware accelerator. Therefore, in this study we focus on the effects of hardware

accelerator offload overhead especially for network links with low bandwidth and high

latencies which regulate the instantaneous amount of compute (data) offloading from

the CPU to the QAT hardware.

329

4.2.5 Container Engine Modifications

We employ the Docker code of the open source project Moby Moby (2020). Due

to the structural implementation of the serialized compression framework in the Moby

Docker, we have retained GZIP for compression. However, for decompression, we

employ the PIGZ software library, which utilizes multiple parallel threads for the

decompressing the downloaded container image. The code changes for the QAT

adaptation for Docker are freely available from Github Akhilesh (2020).

4.2.6 Execution Algorithm

Algorithm 6 illustrates the execution flow for the SW and QAT (hardware accelera-

tor) implementations of the Docker CE migration. We consider two different evaluation

methods: i) Local network interface, where the container registry is implemented on

the same client device, as considered in the preliminary study Chhajer et al. (2020),

and ii) External network (over-the-network) interface, where the container registry is

implemented on a different client device connected via an Ethernet link. The local

network interface evaluations focus on the impact of the hardware acceleration on the

container migration processing without any network link constraints. In contrast, the

external network interface evaluations focus primarily on the impact of the network

link (bandwidth and latency) characteristics on the hardware acceleration.

4.3 Evaluations over Local Network Interface

4.3.1 Experimental Setup

Figure 4.4 illustrates the two compared experimental conditions: the benchmark

software (SW) implementation compresses with GZIP and decompresses with PIGZ

on the client device CPU; the QAT implementation employs the QATzip library to

330

Algorithm 6: Execution sequence flow for software and hardware acceleration

of CE for compression and decompression.
Input : iter = N , Disable: Turbo, Hyper Threading, and fixed CPU frequency (2.3 and

4.2 GHz).

1 while N ≥ 0 do

Input : Initialize Docker CE

2 if run == QAT then

3 Compile Docker with QAT adaptation;

4 Instantiate new Docker with QAT adaptation;

5 else if run == SW then

6 Instantiate default Docker;

7 Setup link bandwidth and latency settings;

8 Start local/remote registry;

9 Delete all preexisting containers;

10 Download and run Fedora 26 container image;

11 Create desired size data layer;

12 Append the data layer to base container layer;

13 if run == Local Network Interface then

14 Tag the container to local registry (https://localhost/registry1:50000);

15 else if run == External Network Interface then

16 Tag the container to remote registry (https://192.168.1.3/registry:50000);

17 Start timer and SoCWatch;

18 if run == Compression then

19 Delete all preexisting remote containers;

20 Push the container to the registry;

21 else if run == Decompression then

22 Delete all preexisting local containers;

23 Pull the container from the registry;

24 Stop timer and SoCWatch;

25 Collect statistics();

26 iter ← iter−1;

27 end

331

Client Device
(QAT)

Docker

Containers

QAT
Accelerator

QAT ZIP
(Softw. Lib.)

GZIP/PIGZ
(Softw. Lib.)

CPU

Local Registry
(Local file-system)

Push

Pull

https://localhost/
registry1:50000Client Device

(SW)

Figure 4.4: Test Setup Overview: Docker Engine Is Modified to Use Intel Quick Assist

Technology (Qat) Hardware Accelerator for Compression and Decompression Tasks

During Push and Pull of Container Images to the Docker Registry.

Table 4.1: Test Setup Parameters.

Setup Env. Details

CPU Info. Intel Core� i7− 7700K

Num. Cores 4C/8T

Microcode Ver. 0xd6

Base Freq. 4.2 GHz

DRAM 32 GB (DDR4)

LLC Size 8192 KB (L3)

Storage 2 TB HDD

OS 4.15.0− 74/Ubuntu(16.04.1)

Docker 19.03.4, build 9013bf583a

QAT HW Ver. 82C628/QAT1.7.L.4.5.0− 00034

offload compression and decompression to the QAT hardware accelerator on the client

device. We have evaluated the performance on an Intel Core� i7 − 7700K client

platform with traditional Linux kernel of version 4.15.0 − 74 on Ubuntu (16.04.1).

The performance evaluations for this study have been conducted in accordance with

the guidelines presented in Intel (2019b).

332

We implemented the Docker local registry within the same client device and

performed repeated container push and pull operations using a local network interface

(e.g., https://localhost/registry1:50000) such that there is minimal to no impact

from the external network characteristics on our evaluations. The push and pull

operations of containers to and from the registry are performed more than 10 times for

a given container size to record the completion times, CPU core utilization, and memory

access rates with statistical reliability. Over 97% of the thus sampled performance

values are within 5% of the plotted sample means. We performed the push, pull, and

registry interactions with a script to simulate the synchronized behaviors of offline

container migration on the same node without any additional management overhead,

such as end-to-end connection setup, migration trigger, integrity check, or tear-down

migration.

We vary the container sizes from 100 MB – 1 GB with a step size of 100 MB

to evaluate the performance for small container sizes, and 1 GB – 10 GB with

steps of 1 GB to evaluate the performance for large container sizes. We maintained

uniformity in the compression and decompression across the various container sizes

by synthetically generating the containers from a single base container image. In

particular, we generate a text file with the English dictionary package on Linux for

the size determined by the step size of the container sizes, and recursively append to

the data layer of the container to obtain the desired container image size. With this

method, we aim to retain the entropy of the containers linear with their incremental

versions such that the amount of computing required for compressing the container

sizes varies linearly. The achieved compression ratio is around 48%.

We have measured the CPU residency durations (for task completion time), CPU

core utilization, and memory access (DDR IO) bitrates with the SoCWatch tool. To

minimize the variability of the system characteristics during our measurements, we

333

have disabled Hyper Threading (HT) and turbo frequency in the system BIOS. We

have set the system core to a fixed frequency of 2.3 GHz throughout the local network

interface evaluations. The Docker process is pinned to a single physical core, namely

core 0 to avoid context switches with OS internals and other application processes of

the system. The QAT accelerator is an add-on PCIe card plugged into the platform

board with the capability of 8 lanes width. The applications and system software

on the OS access the QAT natively (no virtualization) through direct interactions

with the device. Also, the Intel Virtualization Technologies for Directed IO (VT-D) is

turned off in the BIOS to avoid IO-Memory Management Unit (IO-MMU) transactions.

Table 4.1 summarizes the configuration of the test setup.

4.3.2 Results

Completion Times

Figure 4.5 (a) shows the compression completion time as a function of the container size

for the GZIP software (SW) and for the QAT hardware acceleration, while Fig. 4.5(d)

shows the decompression completion times. For the compression evaluations, the

Docker process compresses the container image and pushes the compressed image

to a local registry. The completion times are evaluated based on the total CPU

residency time for the Docker process on the core C0. As expected, we observe a

linearly increase in the completion time with increasing container sizes. The higher

linear slope of approximately 100 s/GB for SW compared to the slope of 13 s/GB

for QAT indicates that QAT hardware compression acceleration achieves significant

reductions of the completion times. Likewise, for decompression acceleration, the SW

slope of approximately 20 s/GB compared to 12 s/GB for QAT indicates a substantial

decompression time reduction with the QAT hardware acceleration compared to the

334

Figure 4.5: (A) and (D) Completion Time of Docker Registry Push (Compression)

and Pull (Decompression) as a Function of Container Size with Software (Sw) Imple-

mentation and with Hardware (Qat) Acceleration (B) and (E) Cpu Core Utilization

[Percent] of Docker Registry Push (Compression) and Pull (Decompression) as a

Function Of Container Size for Software (Sw) Implementation and for Hardware (Qat)

Acceleration. (C) and (F) Memory Bandwidth Consumption From Cpu Core and Io

Devices (Qat, Network Interface) for Docker Registry Push (Compression) and Pull

(Decompression) as a Function Of Container Size for Software (Sw) Implementation

and for Hardware (Qat) Acceleration. Lower Values Are Better for Both Completion

Times and Cpu Utilizations. The Memory Access Rate Is an Observable Characteristic

Due to Changes in the Completion times and Cpu Utilizations, I.E., Both Higher and

Lower Memory Access Rate Values Are Neither Better nor Worse.

multi-thread PIGZ software implementation. Importantly, our results indicate that

hardware acceleration is especially critical to keep the compression times for small to

moderate sized container images below 100 seconds.

335

Core Utilization

Figs. 4.5 (b) and (e) present the CPU core utilization for compression and decompres-

sion, respectively, whereby the core C0 utilization includes all the PIGZ threads. We

observe a rapid increase of the CPU utilization as we increase the container sizes up to

about 500–600 MB, with software based compression showing greater CPU utilization

as compared to QAT. For instance, for a container size around 500– 600 MB (where

the QAT core utilization peaks), the SW CPU utilization is approximately 15% higher

than the QAT CPU utilization. As the container sizes are increased above 600 MB,

we observe that the QAT CPU utilization tapers off to values below 75% while the

SW utilization saturates near 98%.

For decompression, we observe a non-linear behavior in the CPU utilization

originating from the parallelized implementation of the decompression through the

PIGZ library. For container sizes up to around 1.4 GB, PIGZ decompression has only

very slightly higher core utilization than QAT. For container sizes above 1.4 GB, the

QAT utilization tapers rapidly down to nearly 65% while the SW utilization stays

above 80% for large container sizes approaching 12 GB. The CPU utilization is defined

as the CPU execution time to the total execution time (= accelerator execution time

+ CPU execution time). For larger container sizes, the accelerator execution time

is significantly longer than the CPU execution time, reducing the CPU utilization.

Essentially, the CPU off-loads the task to the accelerator and waits idle for completion.

Overall, it is important to interpret these CPU utilization results in conjunction

with the completion time results: the QAT dramatically reduces the completion time

compared to SW (see Fig. 4.5), and during this dramatically shorter QAT completion

time, the CPU utilization is still somewhat lower than with SW (see Fig. 4.5). These

CPU utilization results provide guidelines for the required CPU capacity for achieving

336

the acceleration benefits.

Memory Access

Figs. 4.5 (c) and (f) present the memory (DDR) read and write access bitrates of the

CPU and the IO devices. The IO devices include hardware accelerators, e.g., QAT,

and disks. We observe that in the tests with the QAT, the IO memory access rates for

compression and decompression are below 900 MB/s and thus well within the access

rates supported by contemporary memory technology. These QAT IO memory access

rates are mainly due to the QAT accessing the container image data as an IO device.

On the other hand, the IO accesses for the SW case are mainly due to background

tasks that are not directly related to the compression/decompression.

We also observe from Figs. 4.5 (c) and (f) that the QAT CPU memory access rates

are generally higher (roughly 9 times higher for compression, and 3 times higher for

decompression) than the corresponding SW rates. The higher QAT CPU memory

access rates are mainly due to the CPU feeding the container image data to the QAT

as well as receiving and processing the QAT results. We further observe from Figs. 4.5

(c) and (f) that the QAT memory access rates for decompression are roughly twice

the rates for compression; whereas the SW memory access rates for decompression are

roughly four times the rates for compression. This indicates that the data processing

memory transactions for the decompression are substantially more demanding than

for compression. The memory transactions complexity increase of decompression is

relatively more pronounced for SW processing. The presented memory access rates

can inform future hardware acceleration designs, e.g., whether inline or lookaside

acceleration should be pursued to operate within the chip-to-chip interconnect and IO

fabric limits.

337

QAT
(PCIe)

Docker

Client A

Ethernet
NIC (1Gbps)

Linux Traffic
Shaping (HTB/

QDISC)

GZIP/
PIGZ

QZIP

Container
A

Container
B

Docker

Client B

Ethernet
NIC (1Gbps)

GZIP/
PIGZ

Container
C

Registry
 D

QAT SW

Docker
Push (Compression)/
Pull (Decompression)

SW

Linux Traffic
Shaping (HTB/

QDISC)

HTTPSHTTPS

https://192.168.1.3:registry1:50000

Change network
characteristics to emulate
slower connection speeds
(10, 50, 80, and 200 Mbps)

Change network
characteristics to emulate
slower connection speeds
(10, 50, 80, and 200 Mbps)

Figure 4.6: Test Setup Overview for Network Interface Based Evaluation: i) Registry

Implementation Is Moved from the Local Host (Resource-constrained Client a) to an

External Node (Client b With Abundant Resources) via a Network Interface (Ethernet

Lan), ii) The Hierarchical Token Bucket (Htb) of Linux Is Used to Throttle The

Network Bandwidths for 10, 50, 80, and 200 mbps, While The Default Link Bandwidth

Is 1 gbps, and iii) the Queuing Discipline (Qdisc) of Linux Is Used to Control the

End-to-end Latencies to 50, 100 ms in Either Direction of the Link (I.E., 50 ms Is

Equal to 100 ms of round Trip Time [Rt]).

Table 4.2: Comparisons of Sw and Qat Hardware Acceleration Compression Ratios:

Total Container Size = Base Container Layer (Fedora 26) + Data Layer (Random

Dictionary Words); Compression Ratio = Compressed Size / Total Container Size.

Compre.

Engine

Data Layer

Size [MB]

Total Cont.

Size [MB]

Compre.

Size [MB]

Compre.

Ratio [%]

QAT L4 200 419 198 44.5

GZIP L6 200 419 173 41.3

QAT L4 1024 1328 652.4 49.1

GZIP L6 1024 1328 605.4 45.6

4.4 Evaluations over External Network Interface

4.4.1 Experimental Setup

Figure 4.6 illustrates the overall setup for the external network interface (over-

the-network) evaluations. To understand the performance implications of the net-338

work characteristics (such as effective bandwidth and latency) on the hardware

acceleration, the container registry is moved from the local host (Client A) to an

external host (Client B) that is connected over an Ethernet LAN. The Ethernet

Network Interface Card (NIC) and the physical Ethernet link support a bandwidth of

1 Gbps and latency of < 1 ms. The external host that implements the registry (e.g.,

https://192.168.1.3/registry:50000) is also a client device (Client B in Fig. 4.6),

but not constrained with abundant resources, and hence can support the registry

services for the requesting Client A with QAT without creating a bottleneck.

Network Characteristics The client devices are typically connected to access

networks that are unreliable due to (device) mobility, subscriptions, and shared

resources (e.g., best effort Ethernet services), which results in constrained network

resources impacting the effective end-to-end bandwidth and latencies. To understand

the impact of the network characteristics on the hardware acceleration, based on the

standard broadband connectivity profiles Xu et al. (2019), we consider 5 levels of

bandwidth: 10, 50, 80, 200 Mbps, and 1 Gbps (i.e., default link speed) and 3 levels of

latency: < 1, 50, and 100 ms in either direction (downlink and uplink) of the link.

We use the Linux based Queuing Discipline (QDISC) and Hierarchal Token Bucket

(HTB) Devera and Cohen (2002); Balan and Potorac (2009) to emulate the network

traffic speeds and latencies on the client devices. Container migrations between Docker

CE (Client A) and registry (Client B) are performed over the emulated network speeds

over HTTPS connections.

Container Sizes In a typically deployment of containerized micro-services Taher-

izadeh and Grobelnik (2020), container sizes vary dynamically based on changes in

the container contexts involving multiple layers of data as well as a base layer of the

339

container. Table 4.2 compares the container sizes used in our evaluations in their de-

fault and compressed forms, along with the compression ratios achieved from software

(GZIP L6) and QAT (QAT L4) based compressions. For instance, a total container size

of 419 MB results from the base layer Fedora 26 of 219 MB and data layer of 200 MB.

Docker compresses these individual layers (base and data) independently, and transfers

these layers to a registry. In an actual container deployment and migration processes,

layer-aware mechanisms, such as caching and data movements, are performed to

improve the efficiency Junping et al. (2020). However, in our evaluations we delete all

the cached container layers before the container is migrated to and from the registry

to quantify the actual gains from the hardware accelerations relative to the container

size. We consider two data layer sizes, 200 MB and 1 GB, specifying a small and

a large data container layer relative to the base container layer (i.e., Fedora 26 of

219 MB).

In contrast to Sec 4.3, in this section we present the network bandwidth and

latency implications on the hardware acceleration of container migration. The setup

parameters are maintained constant between the evaluations of local and external

network interfaces, except for the operational CPU frequency which is fixed at 4.2 GHz

(a base frequency of 2.3 GHz was used for the local interface evaluations) to support the

requirements for hardware accelerations overhead and emulating networking bandwidth

speeds and latencies.

4.4.2 Bandwidth and Latency Evaluations

Completion Time

Figure 4.7(a) presents the completion time as a function of the network bandwidth

for Docker push (compression) operations for container data layer sizes of 200 MB

340

 0

 100

 200

 300

 400

 500

 600

10 50 80 200 1000

Co
m

pl
et

io
n

Ti
m

e
(s

ec
s)

Network Bandwidth (Mbps)

SW, 200 MB
QAT 200 MB

SW 1 GB
QAT 1 GB

 0

 100

 200

 300

 400

 500

 600

10 50 80 200 1000

Co
m

pl
et

io
n

Ti
m

e
(s

ec
s)

Network Bandwidth (Mbps)

SW, 200 MB
QAT, 200 MB

SW, 1 GB
QAT, 1 GB

(a) Compression (b) Decompression

 0

 25

 50

 75

 100

10 50 80 200 1000

Co
re

 U
til

iz
at

io
n

(C
0)

Network Bandwidth (Mbps)

SW, 200 MB
QAT, 200 MB

SW, 1 GB
QAT, 1 GB

 0

 25

 50

 75

 100

10 50 80 200 1000

Co
re

 U
til

iz
at

io
n

(C
0)

Network Bandwidth (Mbps)

SW, 200 MB
QAT, 200 MB

SW, 1GB
QAT, 1GB

(c) Compression (d) Decompression

Figure 4.7: Container Migration Performance Comparison as a Function Of Network

Bandwidth (Mbps) for Container Data Layer Sizes 200 Mb And 1 Gb with Software

(Sw) Implementation and with Qat Hardware Acceleration. (A) Completion Time

[Seconds] of Docker Registry Push (Compression); (B) Completion Time [Seconds]

of Docker Registry Pull (Decompression); (C) Cpu Utilization [Percent] of Docker

Registry Push (Compression); (D) Cpu Utilization [Percent] of Docker Registry

Pull (Decompression); Lower Values Are Better for Both Completion Times And

Cpu Utilizations. The Memory Access Rate Is an Observable Characteristic Due to

Changes in the Completion times and Cpu Utilizations, I.E., Both Higher and Lower

Memory Access Rate Values Are Neither Better nor Worse.

341

 0

 150

 300

 450

 600

 750

10 50 80 200 1000

M
em

or
y

Ac
ce

ss
 (

M
B/

s)

Network Bandwidth (Mbps)

SW, IO
QAT, IO
SW, CPU

QAT, CPU

 0

 150

 300

 450

 600

 750

10 50 80 200 1000

M
em

or
y

Ac
ce

ss
 (

M
B/

s)

Network Bandwidth (Mbps)

SW, IO
QAT, IO
SW, CPU

QAT, CPU

(e) Compression, 200 MB (f) Decompression, 200 MB

 0

 150

 300

 450

 600

 750

10 50 80 200 1000

M
em

or
y

Ac
ce

ss
 (

M
B/

s)

Network Bandwidth (Mbps)

SW, IO
QAT, IO
SW, CPU

QAT, CPU

 0

 150

 300

 450

 600

 750

10 50 80 200 1000

M
em

or
y

Ac
ce

ss
 (

M
B/

s)

Network Bandwidth (Mbps)

SW, IO
QAT, IO
SW, CPU

QAT, CPU

(g) Compression, 1 GB (h) Decompression, 1 GB

Figure 4.8: Container Migration Performance Comparison as a Function Of Network

Bandwidth (Mbps) for Container Data Layer Sizes 200 Mb And 1 Gb with Software

(Sw) Implementation and with Qat Hardware Acceleration. (E) and (G) Memory

Access by Cpu and Qat (And Network Interface) of Docker Registry Push (Compres-

sion), For 200 mb and 1 gb, Respectively; And (F) and (H) Memory Access By Cpu

and Qat (and Network Interface) of Docker Registry Pull (Decompression). Lower

Values Are Better for Both Completion Times And Cpu Utilizations. The Memory

Access Rate Is an Observable Characteristic Due to Changes in the Completion times

and Cpu Utilizations, I.E., Both Higher and Lower Memory Access Rate Values Are

Neither Better nor Worse.

342

-20

 0

 20

 40

 60

 80

 100

10 50 80 200 1000

Ac
ce

le
ra

tio
n

G
ai

n
(%

)

Network Bandwidth (Mbps)

Push, Comp.
Pull, Comp.

Push, Core Util.
Pull, Core Util.

-20

 0

 20

 40

 60

 80

 100

10 50 80 200 1000

Ac
ce

le
ra

tio
n

G
ai

n
(%

)

Network Bandwidth (Mbps)

Push, Comp.
Pull, Comp.

Push, Core Util.
Pull, Core Util.

(a) 200 MB (b) 1 GB

Figure 4.9: Summary of Hardware Acceleration (Qat) Gains as a Function Of Network

Bandwidth: (A) for 200 mb, and (B) 1 gb Container Data Layer Sizes. Hardware

Acceleration Results in Negative Performance Gains for Low Network Speeds, <

80 mbps. Larger and Positive Values Are Better for Acceleration Gains.

Table 4.3: Power Consump.: Push

(Comp.), 200 MB.

B/W

(Mbps)

QAT

(mW)

SW

(mW)

QAT

(Hrs.)

SW

(Hrs.)

Bat. Sav.

(Hrs.)

10 50009.49 6951.8 7.98 5.75 2.23

50 7462.23 15399.85 5.36 2.60 2.76

80 7937.9 19316.13 5.04 2.07 2.97

200 10446.22 19436.41 3.83 2.06 1.77

1000 14321.38 19405.99 2.79 2.06 0.73

Table 4.4: Power Consump.: Pull

(Decomp.), 200 MB.

B/W

(Mbps)

QAT

(mW)

SW

(mW)

QAT

(Hrs.)

SW

(Hrs.)

Bat. Sav.

(Hrs.)

10 5623.97 5858.32 7.11 6.83 0.28

50 12030.12 12740.81 3.32 3.14 0.19

80 12812.35 13884.32 3.12 2.88 0.24

200 14531.14 15734.84 2.75 2.54 0.21

1000 15712.86 17115.62 2.55 2.34 0.21

Table 4.5: Power Consump.: Push

(Comp.), 1 GB.

B/W

(Mbps)

QAT

(mW)

SW

(mW)

QAT

(Hrs.)

SW

(Hrs.)

Bat. Sav.

(Hrs.)

10 4754.71 6772.3 8.41 5.91 2.51

50 6665.36 15737.87 6.00 2.54 3.46

80 7683.24 19717.66 5.21 2.03 3.18

200 9442.32 19779.24 4.24 2.02 2.21

1000 12971.61 19738.47 3.08 2.03 1.06

Table 4.6: Power Consump.: Pull

(Decomp.), 1 GB.

B/W

(Mbps)

QAT

(mW)

SW

(mW)

QAT

(Hrs.)

SW

(Hrs.)

Bat. Sav.

(Hrs.)

10 5754.3 5708.8 6.95 7.01 −0.06

50 9785.47 10801.39 4.09 3.70 0.38

80 10811.59 11716.92 3.70 3.41 0.29

200 12658.16 13746.31 3.16 2.91 0.25

1000 17073.72 18415.16 2.34 2.17 0.17

343

Table 4.7: Impact of Link Latency on Com-

pletion Time, 200 MB.

B/WLat.
SW (secs) QAT (secs) Time Sav. (secs)

Push Pull Push Pull Push Pull

50

< 1 30.39 31.91 31.83 32.98 −1.44 −1.07

50 32.79 33.16 34.87 34.13 −2.08 −0.97

100 35.95 35.97 37.71 38.27 −1.76 −2.30

200

< 1 21.46 10.03 9.35 9.51 12.11 0.52

50 24.42 13.46 11.94 12.51 12.47 0.94

100 27.26 15.45 16.75 13.65 10.51 1.80

Table 4.8: Impact of Link Latency on

Core Utilization, 200 MB.

B/WLat.
SW (secs) QAT (secs) Core Sav. (%)

Push Pull Push Pull Push Pull

50

< 1 73.99 43.18 28.31 38.42 45.68 4.76

50 73.19 40.75 38.07 35.96 35.12 4.79

100 67.77 35.67 34.71 34.34 33.06 3.33

200

< 1 96.97 69.51 43.95 57.73 53.02 11.78

50 87.57 56.04 47.27 45.17 40.3 10.87

100 78.48 49.32 36.16 41.11 42.32 8.32

Table 4.9: Impact of Link Latency on

Completion Time, 1 GB.

B/WLat.
SW (secs) QAT (secs) Time Sav. (secs)

Push Pull Push Pull Push Pull

50

< 1 102.02 112.84 110.04 115.13 −8.02 −2.29

50 104.79 116.32 113.02 117.74 −8.23 −1.42

100 107.88 115.69 116.13 117.74 −8.25 −2.05

200

< 1 74.77 38.16 31.92 33.18 42.85 4.98

50 77.90 39.55 33.94 34.57 43.96 4.97

100 80.69 56.96 49.10 54.95 31.58 2.00

Table 4.10: Impact of Link Latency on

Core Utilization, 1 GB.

B/WLat.
SW (secs) QAT (secs) Core Sav. (%)

Push Pull Push Pull Push Pull

50

< 1 75.92 37.33 23.83 31.54 52.09 5.79

50 78.74 37.34 39.82 32.66 38.92 4.68

100 81.12 37.92 40.61 33.4 40.51 4.52

200

< 1 99.04 59.41 38.52 49.9 60.52 9.51

50 95.58 56.90 50.37 47.46 45.21 9.44

100 92.45 47.22 41.06 40.13 51.39 7.09

and 1 GB. The completion time of the 200 MB (actual [data+base layers] size =

419 MB) container size is 505.045/146.534 = 3.46 times of the completion time of

the 1 GB (actual size = 1328 MB) container size. The ratio of actual container sizes

is 1328/416 = 3.19, which indicates that the completion time for compression scales

approximately linearly with the container size.

Comparing the completion times of SW and QAT for compression, we observe

344

that QAT performs worse as compared to SW for low bandwidths (< 80 Mbps),

and QAT starts performing better as the bandwidth increases (≥ 80 Mbps). For

instance, with 10 Mbps bandwidth, the QAT completion time for the Docker push is

156.91− 146.53 = 10.38 seconds longer than the SW completion time for the 200 MB

container size, and correspondingly 546.21 − 507.04 = 39.17 seconds longer for the

1 GB container size. Whereas, with the 200 Mbps bandwidth, the QAT completion

time is 30− 3.71 = 17.29 seconds faster (shorter) than the SW completion time for the

200 MB container size, and 74.77−31.92 = 42.85 seconds faster for the 1 GB container

size. Hence, hardware acceleration is more effective when the link bandwidth is

sufficient enough to utilize the benefits of the hardware accelerator. Higher completion

times with QAT as compared to SW for low bandwidth (< 80 Mbps) are associated

with the overhead of memory copies and context switching, see Sec. 4.2.4.

The docker pull (decompression) completion times are presented in Figure 4.7(b)

for the container sizes 200 MB and 1 GB. The completion times for Docker pull

(decompression) with QAT are similar to Docker push (compression) in terms of

hardware acceleration as a function of network bandwidth. Whereby, lower bandwidth

results in worse performance, i.e., longer times completion for QAT as compared to

SW. For instance, with 10 Mbps bandwidth, the QAT completion time for Docker

pull is 158.498− 148.852 = 9.646 seconds higher than SW for the 200 MB container

size, and 551.727− 518.09 = 33.637 seconds for the 1 GB container size.

In general, Docker push (compression) achieves shorter completion times than

Docker push (decompression) because of the algorithmic complexity of compression.

Hence, in general compression benefits more than decompression from hardware

acceleration. However, a hardware accelerator roughly takes the same time for

compression and decompression, whereas, SW takes longer for compression than

for decompression. For example, Docker push (compression) at 1 Gbps takes 77.26

345

seconds with SW for the 1 GB container size, while it takes only 18 seconds with SW

for Docker pull (decompression). Whereas, QAT takes nearly 13 seconds for both

compression and decompression for the same execution. Therefore, to optimize the

completion times to be lower, a hybrid approach of SW execution for slower network

speeds, and hardware acceleration for higher network speeds appears prudent.

Core Utilization

Figs. 4.7(c) and (d) show the core utilization as a function of network bandwidth for

QAT and SW based compression and decompression for container (data layer) sizes

of 200 MB and 1 GB. The core utilization is the percentage of the core active time

to the total execution duration, and core utilization savings is difference from SW to

QAT. Due to the compute offloading to the hardware accelerator, we observe positive

core utilization savings regardless of the network bandwidth and container sizes for

both Docker push (compression) and Docker pull (decompression).

The margin of the core utilization savings is lowered as the network bandwidth

gets lower. This is due to the fact that for the slower network speeds, the overall

acceleration again is reduced when averaged over longer upload and download times.

The CPU utilization is evaluated over the total duration of the Docker push/pull op-

erations, which includes upload/download time as well as compression/decompression

time. For example, for the 10 Mbps network speed, we see 11.92 and 1.2% of core

utilization savings for the compression and decompression of the 1 GB container size,

respectively. However, when the network speeds are increased, we observe higher

core utilization savings, resulting from the balanced upload/download time relative

to the compression/decompression times. For instance, when the network speed is

200 Mbps, we observe core utilization savings of 68.52 and 9.51% for the compression

and decompression of the 1 GB container size, respectively.

346

When the network speeds are very high, i.e., 1 Gbps, the download/upload times are

very short, and the CPU utilizations are dominated by the compression/ decompression

operations. Whereby, during the compression/decompression accelerations, the core

is actively engaged in hardware offloading operations, which results in higher core

utilizations during the shorter (see Figs. 4.7(a) and (b)) duration of the Docker

push/pull operations.

Overall, we observe that the effective core utilization savings from the hardware

acceleration can vary based on the available network bandwidth.

Summary of Completion Times and Core Utilization

In Figs. 4.9(a) and 4.9(b) we present the overall gain summary of the completion times

and core utilization as a function of the network bandwidth. To understand the impact

of the QAT hardware acceleration on the Docker push (compression) and Docker

(pull), we define the parameter Acceleration Gain as (1-(QAT/SW))×100). A positive

acceleration gain indicates that the QAT performs better than the SW, whereas

a negative acceleration gain indicates the QAT performing worse than SW. From

these charts, we can observe the following key characteristics of hardware acceleration

relative to the network bandwidth.

i) For low network speeds, i.e., < 80 Mbps, negative acceleration gains are ob-

served for completion times of both Docker push (compression) and Docker pull

(decompression). Gains improve as the network bandwidth increases, and we

observe maximum acceleration gain in the completion times for 1 Gbps, and a

marginal gain (nearly zero) for 80 Mbps.

ii) The core utilization exhibits positive gains for all evaluated network bandwidths,

which shows that hardware accelerator can spare the core resources and thus

347

free up core resources for general computing. For low network speeds, the core

utilization gain is lower, but increases with the network bandwidth and then

tapers off as the network bandwidth is further increased. We observe maximum

core utilization gains for 80 Mbps.

iii) The gains for the 200 MB and 1 GB container sizes are very similar, whereby

the behaviors of both completion time and core utilization are consistent with

the container sizes. Hence, the behaviors indicate that the acceleration gain is

independent of the container size.

Memory Access

Figures 4.7(e) and 4.7(f) show the DDR transaction rate [MB per second] from the

IO devices (QAT, disk, network interface) and the CPU for both SW and QAT as a

function of the network bandwidth for Docker push (compression) and Docker pull

(decompression), for the 200 MB container size. Likewise, Figs. 4.7(g) and 4.7(h)

show the transaction rate for the 1 GB container size. We observe a linear increase in

the memory access rate with increasing network bandwidth which can be associated

with the increase in the amount of data offloaded relative to total duration of Docker

push/pull (compression/decompression) (whereby total duration = upload or download

time + compression or decompression time). For instance, if the download time is

short (for a high network bandwidth), the observed average memory access rate over

the total duration is dominated by the hardware offload components whereby the

QAT processing is much faster relative to the SW execution, thereby increasing the

overall memory access rate.

For the container size of 200 MB, when the network bandwidth is 10 Mbps the

CPU memory access rate is 56.6 MB/s and when the bandwidth is 200 Mbps, the

348

CPU memory access rate is 259.85 MB/s. In general, QAT IO and QAT CPU memory

access rates are higher than the SW IO and SW CPU memory access rates, which

can be associated with the fact that the QAT performs a higher number of operations

per second, effectively reducing the overall completion time relative to SW. The

behavior of memory access rates between container sizes of 200 MB (Figs. 4.7(e)

and 4.7(f)) and 1 GB (Figs. 4.7(g) and 4.7(h)) are similar to each other, indicating

that the memory access rates roughly remain the same for different container sizes.

Likewise, the memory access rates of compression and decompression are similar,

with decompression memory access rates being larger compared to compression. The

maximum memory access rate is observed for decompression of the 200 MB container

size with the network speed of 1 Gbps, resulting in a CPU memory access rate of

742.2 MB/s. This indicates that to effectively utilize the acceleration benefits, the DDR

bandwidth of nearly 742.2 MB/s must be dedicated to the accelerator application.

Power Consumption

To understand the power implications of hardware acceleration, we present the total

power consumption of Docker push (compression) and Docker pull (decompression) for

both QAT and SW implementation. Tables 4.3 and 4.4 present the power consumption

of QAT and SW for different network bandwidths for compression and decompression,

respectively, for the container size of 200 MB. Likewise, Tables 4.5 and 4.6 present the

power consumption for the 1 GB container size. With instantaneous power observed

during the Docker operations, we estimate the total duration of battery savings that

can be achieved with hardware acceleration relative to SW implementation based on

the typical battery power source capacity of 40000 mWH. In general, QAT consumes

less power when compared to SW for both compression and decompression for the

different container sizes of 200 MB and 1 GB due to the compute offloading. For

349

instance, when network bandwidth is 200 Mbps, QAT consumes 10446.22 mW of power

for compression acceleration (i.e., the complete Docker push operation), while SW

consumes 19436.41 mW which is nearly twice the QAT power consumption. However,

for the same experiment but for decompression, we observe power consumption of

14531.14 mW for QAT and 15734.84 mW for SW showing a marginal improvement in

consumption for the QAT. In terms of total power savings of battery (i.e., QAT − SW

[Hour]), we observe 1.77 hours of savings for compression, whereas for decompression,

we observe the savings of 0.21 hours.

We observe the following distinctive behavior in terms of power savings:

i) For low bandwidths and for compression, we observe high power savings because

of increased opportunities for the core to sleep without having to offload or

monitor the hardware accelerator very frequently.

ii) For decompression, the power savings is marginal, especially when the network

bandwidth is low; this is commensurate with the lower decompression acceleration

gain relative to compression. The power consumption is dominated by the

overheads from the hardware offloading, which can be inferred from the 1 GB

container size, where QAT shows negative power savings for the 10 Mbps network

bandwidth in Table 4.6, indicating that the QAT consumes more power.

iii) As the bandwidth increases, the power savings improve because of more effective

utilization of the hardware acceleration in terms of data availability to offload

into the accelerator. For instance, for the 1 GB container size and compression

operations, the battery savings is improved from 2.51 hours at 10 Mbps to 3.18

hours at 80 Mbps.

iv) However, when the bandwidth is further increased to 200 Mbps and 1 Gbps,

the power savings start to reduce due to the large amount of instantaneous

350

transactions relative to the total duration of the Docker push/pull operations

due to the reduced upload/download time. This behavior is in line with the

acceleration gains, as seen in Figs. 4.9(a) and 4.9(b), where the gain reduces as

the bandwidth is increased to 1 Gbps.

Link Latency

The results showing the impact of the link latency on the hardware acceleration are

summarized in Tables 4.7–4.10. Tables 4.7 and 4.8 present the completion times and

CPU utilization as functions of the link latency for the container size of 200 MB;

Tables 4.9 and 4.10 show the corresponding results for the 1 GB container size. We

consider two network bandwidths, namely 50 and 200 Mbps, and vary the link latencies

to < 1 (link default), 50, and 100 ms. In the evaluations, latency values indicate the

unidirectional link latency such that 50 ms of latency indicates 100 ms of Round Trip

Time (RTT).

In general, we observe that the completion times and core utilizations are relatively

constant, with a minor increase in values as the link latency increases. For instance,

when the network bandwidth is 50 Mbps, the completion times for Docker push

(compression) are 30.39, 32.79, and 35.95 seconds for the < 1 (link default), 50, and

100 ms link latencies, respectively. The Docker push (compression) completion times

for the 50 Mbps network bandwidth show negative acceleration time savings. When

the link latency is modified while keeping other parameters constant, we observe that

the negative savings are consistent across the different link latencies. In contrast, for

the 1 GB container size and bandwidth of 200 Mbps, the acceleration time savings

are consistently positive for all link latencies.

The core utilizations show positive acceleration gains (savings); we observe that

these gains are consistent even as the link latency is modified. For instance, when

351

the network bandwidth is 50 Mbps and the container size is 1 GB (Table 4.9), we

observe core utilization savings of roughly 40% for all latency values for the Docker

push operations. Whereas, for pull operations we observe CPU utilization savings in

the typically in the 5–10% range. Overall, these results indicate that the end-to-end

latency variations on resource-constrained devices do not strongly impact the overall

acceleration gains.

4.5 Conclusions

We have quantified the performance of hardware acceleration for the compression

and decompression of container images as required for container migration to and

from client devices. Our extensive evaluations demonstrate that the Intel Quick Assist

Technology (QAT) hardware acceleration of the container image compression and

decompression achieves substantial speed-ups compared to software based compression

(7 times) and decompression (1.6 times) with a local container registry. With a remote

container registry, the compression gains reach 80% for high network bandwidths,

while the decompression gains level out around 65% for moderately high network

bandwidths. The QAT hardware acceleration also achieves some CPU core utilization

reductions (even during the dramatically shorter time of utilizing the CPU) and has

readily tolerable memory bandwidth consumption. Moreover, CPU memory access

bitrates with QAT are approximately by factor of 9 higher than for GZIP compression

and up to 3 times higher than for PIGZ decompression for a local container registry.

There are several important future research directions that can build on the results

of this benchmark performance study of hardware accelerated container migration.

One direction is to optimize the benefits of hardware acceleration with an orchestrator.

The orchestrator could optimize the performance by dynamically and adaptively

switching between execution on the CPU or on the hardware accelerators. The

352

adaptive switched needs to satisfy the required task completion deadlines according to

the quality of service stipulated by the application, under the constraints of available

computing and energy resources at the client devices.

353

REFERENCES

Abbas, N., Y. Zhang, A. Taherkordi and T. Skeie, “Mobile edge computing: A survey”,
IEEE Internet of Things Journal 5, 1, 450–465 (2017).

Abdah, H., J. P. Barraca and R. L. Aguiar, “QoS-aware service continuity in the
virtualized edge”, IEEE Access 7, 51570–51588 (2019).

Abdallah, F., C. Tanougast, I. Kacem, C. Diou and D. Singer, “Genetic algorithms
for scheduling in a CPU/FPGA architecture with heterogeneous communication
delays”, Computers & Industrial Engineering 137, 106006.1–106006.13 (2019).

Acevedo, J., R. Scheffel, S. Wunderlich, M. Hasler, S. Pandi, J. Cabrera, F. H. Fitzek,
G. Fettweis and M. Reisslein, “Hardware acceleration for RLNC: A case study based
on the Xtensa processor with the Tensilica instruction-set extension”, Electronics 7,
9, 180 (2018).

Adamic, L. A. and B. A. Huberman, “Zipf’s law and the Internet”, Glottometrics 3,
1, 143–150 (2002).

Addad, R. A., D. L. C. Dutra, M. Bagaa, T. Taleb and H. Flinck, “Fast service
migration in 5G trends and scenarios”, IEEE Network 34, 2, 92–98 (2020).

Adler, M., “PIGZ: Parallel GZIP”, (2014).

Advanced Micro Devices Inc., “AMD I/O Virtualization Technology (IOMMU) Speci-
fication, Rev. 3.00”, (2016).

Afolabi, I., T. Taleb, K. Samdanis, A. Ksentini and H. Flinck, “Network slicing and
softwarization: A survey on principles, enabling technologies, and solutions”, IEEE
Commun. Surveys & Tutorials 20, 3, 2429–2453 (2018).

Ahmed, A. B. and A. B. Abdallah, “Adaptive fault-tolerant architecture and rout-
ing algorithm for reliable many-core 3D-NoC systems”, Journal of Parallel and
Distributed Computing 93, 30–43 (2016).

Akdemir, K., M. Dixon, W. Feghali, P. Fay, V. Gopal, J. Guilford,
E. Ozturk, G. Wolrich and R. Zohar, “Breakthrough AES perfor-
mance with Intel AES new instructions, Intel White Paper”, URL
https://software.intel.com/sites/default/files/m/d/4/1/d/8/10TB24
Breakthrough AES Performance with Intel AES New Instructions.
final.secure.pdf, last accessed June 8, 2020 (2010).

Akhilesh, “Code base for a general discrete-event simulation framework for LayBack
architecture”, URL https://github.com/athyagat/layback.html (2020).

Akhilesh S. Thyagaturu, V. G., “Efficient encryption in vpn sessions”, Patent, URL
https://patents.google.com/patent/US20210314359A1/en (2021).

354

Akhilesh Thyagaturu, L. T., Hassnaa Moustafa, “Network flow-based hardware alloca-
tion”, Patent, URL https://patents.google.com/patent/US20210328933A1/en
(2021).

Akinaga, H. and H. Shima, “Resistive random access memory (ReRAM) based on
metal oxides”, Proceedings of the IEEE 98, 12, 2237–2251 (2010).

Alberti, A. M., M. A. S. Santos, R. Souza, H. D. L. Da Silva, J. R. Carneiro, V. A. C.
Figueiredo and J. J. P. C. Rodrigues, “Platforms for smart environments and future
internet design: A survey”, IEEE Access 7, 165748–165778 (2019).

Aldwairi, M., T. Conte and P. Franzon, “Configurable string matching hardware for
speeding up intrusion detection”, ACM SIGARCH Computer Architecture News
33, 1, 99–107 (2005).

Alharbi, Z., A. S. Thyagaturu, M. Reisslein, H. ElBakoury and R. Zheng, “Performance
comparison of r-phy and r-macphy modular cable access network architectures”,
IEEE Transactions on Broadcasting 64, 1, 128–145 (2017).

Ali, A., G. A. Shah and J. Arshad, “Energy efficient resource allocation for m2m
devices in 5g”, Sensors 19, 8, URL http://www.mdpi.com/1424-8220/19/8/1830
(2019).

Alimi, I. A., A. L. Teixeira and P. P. Monteiro, “Toward an efficient C-RAN optical
fronthaul for the future networks: A tutorial on technologies, requirements, chal-
lenges, and solutions”, IEEE Communications Surveys & Tutorials 20, 1, 708–769
(2018).

Allen, A. O., “Statistics and queuing theory with computer science applications, vol.
2”, (1990).

Alsaeedi, M., M. M. Mohamad and A. A. Al-Roubaiey, “Toward adaptive and scalable
OpenFlow-SDN flow control: A survey”, IEEE Access 7, 107346–107379 (2019).

Altman, E., K. Avrachenkov and S. Ramanath, “Multiscale fairness and its application
to resource allocation in wireless networks”, Comput. Commun. 35, 7, 820–828
(2012).

Amazon Web Services, Inc., “AWS Graviton Processor”,
Https://aws.amazon.com/ec2/graviton/, last accessed June 2, 2020 (2020).

AMD, “ZEN Zeppelin block diagram”, URL https://pc.watch.impress.co.jp/video/
pcw/docs/1108/270/p6.pdf, last accessed Apr. 4, 2020 (2019).

AMD, “Zen Microarchitectures AMD”, Https://en.wikichip.org/wiki/amd/
microarchitectures/zen, last accessed June 2, 2020. (2020).

AMDl, “Infinity Fabric (IF) – AMD”, URL https://en.wikichip.org/wiki/amd/
infinity fabric, last accessed June 2, 2020 (2020).

355

Ameigeiras, P., J. Ramos-Munoz, L. Schumacher, J. Prados-Garzon, J. Navarro-Ortiz
and J. Lopez-Soler, “Link-level access cloud architecture design based on SDN for
5G networks”, IEEE Network 29, 2, 24–31 (2015).

Amin, R., M. Reisslein and N. Shah, “Hybrid SDN networks: A survey of existing
approaches”, IEEE Commun. Surv. & Tut. 20, 4, 3259–3306 (2018).

Amit, N., M. Ben-Yehuda, D. Tsafrir and A. Schuster, “vIOMMU: efficient IOMMU
emulation”, in “Proc. USENIX Ann. Techn. Conf. (ATC)”, pp. 73–86 (2011).

Amit, N., M. Ben-Yehuda and B.-A. Yassour, “Iommu: Strategies for mitigating the
iotlb bottleneck”, in “International Symposium on Computer Architecture”, pp.
256–274 (Springer, 2010).

Anderson, J., H. Hu, U. Agarwal, C. Lowery, H. Li and A. Apon, “Performance
considerations of network functions virtualization using containers”, in “Proc. IEEE
Int. Conf. on Computing, Net. and Commun.”, pp. 1–7 (2016).

Andreades, P., K. Clark, P. M. Watts and G. Zervas, “Experimental demonstration
of an ultra-low latency control plane for optical packet switching in data center
networks”, Optical Switching and Networking 32, 51–60 (2019).

Andrews, J., S. Singh, Q. Ye, X. Lin and H. Dhillon, “An overview of load balancing
in HetNets: Old myths and open problems”, IEEE Wireless Communications 21, 2,
18–25 (2014).

Ansaloni, G., P. Bonzini and L. Pozzi, “EGRA: A coarse grained reconfigurable
architectural template”, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 19, 6, 1062–1074 (2010).

Arafa, M., B. Fahim, S. Kottapalli, A. Kumar, L. P. Looi, S. Mandava, A. Rudoff,
I. M. Steiner, B. Valentine, G. Vedaraman et al., “Cascade Lake®: Next generation
Intel Xeon® scalable processor”, IEEE Micro 39, 2, 29–36 (2019).

Arena, F. and G. Pau, “An overview of vehicular communications”, Future Internet
11, 2, URL http://www.mdpi.com/1999-5903/11/2/27 (2019).

ARM Holdings, “AMBA AXI and ACE Protocol Specification”, URL
https://static.docs.arm.com/ihi0022/g/IHI0022G amba axi protocol spec.pdf,
last accessed June 9, 2020 (2019).

Arnold, O., S. Haas, G. P. Fettweis, B. Schlegel, T. Kissinger, T. Karnagel and
W. Lehner, “HASHI: An Application Specific Instruction Set Extension for Hash-
ing.”, in “ADMS@ VLDB”, pp. 25–33 (2014a).

Arnold, O., E. Matus, B. Noethen, M. Winter, T. Limberg and G. Fettweis, “Toma-
hawk: Parallelism and heterogeneity in communications signal processing MPSoCs”,
ACM Transactions on Embedded Computing Systems 13, 3s, 107.1–107.24 (2014b).

356

Arnold, O., B. Noethen and G. Fettweis, “Instruction set architecture extensions for a
dynamic task scheduling unit”, in “Proc. IEEE Computer Society Annual Symp.
on VLSI”, pp. 249–254 (2012).

Auroux, S., M. Dräxler, A. Morelli and V. Mancuso, “Dynamic network reconfiguration
in wireless DenseNets with the CROWD SDN architecture”, in “Proc. Eu. Conf. on
Netw. and Commun. (EuCNC)”, pp. 144–148 (2015).

Bahena, V. R. and M. de Alba, “Embedded distributed systems: A case
of study with Clear Linux Project for Intel® architecture”, Available
from https://www.overleaf.com/articles/embedded-distributed-systems-a-case-of-
study-with-clear-linux-projectfor-intel-r-architecture/wpcgjhykxdmj (2014).

Bahrami, B., M. A. J. Jamali and S. Saeidi, “A hierarchical architecture based on
traveling salesman problem for hybrid wireless network-on-chip”, Wireless Networks
25, 2187–2200 (2019).

Baktir, A. C., A. Ozgovde and C. Ersoy, “How can edge computing benefit from
software-defined networking: A survey, use cases, and future directions”, IEEE
Commun. Surveys & Tutorials 19, 4, 2359–2391 (2017).

Balan, D. G. and D. A. Potorac, “Linux HTB queuing discipline implementations”, in
“Proc. IEEE Int. Conf. on Networked Digital Techn.”, pp. 122–126 (2009).

Balasubramanian, V., M. Aloqaily and M. Reisslein, “An SDN architecture for time
sensitive industrial IoT”, Computer Networks 186, 107739 (2021a).

Balasubramanian, V., M. Aloqaily, M. Reisslein and A. Scaglione, “Intelligent resource
management at the edge for ubiquitous IoT: An SDN-based federated learning
approach”, IEEE Network 35, 5, 114–121 (2021b).

Baldanzi, L., L. Crocetti, M. Bertolucci, L. Fanucci and S. Saponara, “Analysis of
cybersecurity weakness in automotive in-vehicle networking and hardware accelera-
tors”, in “Applications in Electronics Pervading Industry, Environment and Society,
LNEE, Vol. 573”, pp. 11–18 (Springer, Cham, Switzerland, 2019).

Ball, M. O., T. Magnanti, C. Monma and G. Nemhauser, Network Routing (Elsevier,
Amsterdam, 1995).

Ballani, H., P. Costa, C. Gkantsidis, M. P. Grosvenor, T. Karagiannis, L. Koromilas
and G. O’Shea, “Enabling end-host network functions”, ACM SIGCOMM Computer
Commun. Rev. 45, 4, 493–507 (2015).

Banirazi, R., E. Jonckheere and B. Krishnamachari, “Heat diffusion algorithm for
resource allocation and routing in multihop wireless networks”, in “Proc. IEEE
GLOBECOM”, pp. 5693–5698 (2012).

Bao, W., C. Hong, S. Chunduri, S. Krishnamoorthy, L.-N. Pouchet, F. Rastello and
P. Sadayappan, “Static and dynamic frequency scaling on multicore CPUs”, ACM
Transactions on Architecture and Code Optimization (TACO) 13, 4, 51:1–51:26
(2016).

357

Barach, D., L. Linguaglossa, D. Marion, P. Pfister, S. Pontarelli, D. Rossi and J. Tollet,
“Batched packet processing for high-speed software data plane functions”, in “Proc.
IEEE Conf. on Computer Commun. Wkshps”, pp. 1–2 (2018).

Barakabitze, A. A., A. Ahmad, A. Hines and R. Mijumbi, “5G network slicing
using SDN and NFV: A survey of taxonomy, architectures and future challenges”,
Computer Networks 167, 1–40 (2020).

Bari, M. F., R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G. Rabbani,
Q. Zhang and M. F. Zhani, “Data center network virtualization: A survey”, IEEE
Communications Surveys & Tutorials 15, 2, 909–928 (2013).

Bartelt, J., N. Vucic, D. Camps-Mur, E. Garcia-Villegas, I. Demirkol, A. Fehske,
M. Grieger, A. Tzanakaki, J. Gutiérrez, E. Grass, G. Lyberopoulos and G. Fettweis,
“5G transport network requirements for the next generation fronthaul interface”,
EURASIP J. Wireless Commun. and Netw. 2017, 89, 1–12 (2017).

Bashir, J., E. Peter and S. R. Sarangi, “A survey of on-chip optical interconnects”,
ACM Computing Surveys (CSUR) 51, 6, 115.1–115.34 (2019).

Batmaz, B. and A. Doğan, “Hardware acceleration of FreeRTOS network stack for
IoT edge devices”, in “Proc. IEEE Int. Conf. on Electrical and Electronics Eng.
(ELECO)”, pp. 484–487 (2019).

Bauman, E., G. Ayoade and Z. Lin, “A survey on hypervisor-based monitoring:
approaches, applications, and evolutions”, ACM Computing Surveys (CSUR) 48, 1,
1–33 (2015).

Beck, N., S. White, M. Paraschou and S. Naffziger, “’Zeppelin’: An SoC for multichip
architectures”, in “Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC)”, pp. 40–42
(2018).

Begum, R., M. Hempstead, G. P. Srinivasa and G. Challen, “Algorithms for CPU and
DRAM DVFS under inefficiency constraints”, in “Proc. IEEE Int. Conf. on Comp.
Design (ICCD)”, pp. 161–168 (2016).

Bellavista, P., A. Corradi, L. Foschini and D. Scotece, “Differentiated service/data
migration for edge services leveraging container characteristics”, IEEE Access 7,
139746–139758 (2019).

Belocchi, G., V. Cardellini, A. Cammarano and G. Bianchi, “Paxos in the NIC:
Hardware acceleration of distributed consensus protocols”, in “Proc. IEEE Int. Conf.
on the Design of Reliable Communication Networks”, pp. 1–6 (2020).

Ben Azzouz, L. and I. Jamai, “SDN, slicing, and NFV paradigms for a smart home:
A comprehensive survey”, Trans. on Emerging Telecommun. Techn. 30, 10, e3744.1–
e3744.13 (2019).

358

Ben-Yehuda, M., M. D. Day, Z. Dubitzky, M. Factor, N. Har’El, A. Gordon, A. Liguori,
O. Wasserman and B.-A. Yassour, “The Turtles project: Design and implementation
of nested virtualization.”, in “Proc. USENIX Symp. on Operating Sys. Design and
Impl. (OSDI)”, vol. 10, pp. 423–436 (2010).

Benini, L., E. Flamand, D. Fuin and D. Melpignano, “P2012: Building an ecosystem
for a scalable, modular and high-efficiency embedded computing accelerator”, in
“Proc. Design, Automation & Test in Europe Conf. & Exhibition (DATE)”, pp.
983–987 (2012).

Bernal-Mor, E., V. Pla, J. Martinez-Bauset and D. Pacheco-Paramo, “A model of
resource management in small cells with dynamic traffic and backhaul constraints”,
in “Proc. IEEE Eu. Wireless Conf. (EW)”, pp. 1–6 (2013).

Bhamare, D., R. Jain, M. Samaka and A. Erbad, “A survey on service function
chaining”, J. Network and Computer Applications 75, 138–155 (2016).

Biermann, T., L. Scalia, C. Choi, H. Karl and W. Kellerer, “CoMP clustering and
backhaul limitations in cooperative cellular mobile access networks”, Pervasive and
Mobile Computing 8, 5, 662–681 (2012).

Bikram Kumar, B., L. Sharma and S.-L. Wu, “Online distributed user as-
sociation for heterogeneous radio access network”, Sensors 19, 6, URL
http://www.mdpi.com/1424-8220/19/6/1412 (2019).

Binsahaq, A., T. R. Sheltami and K. Salah, “A survey on autonomic provisioning and
management of QoS in SDN networks”, IEEE Access 7, 73384–73435 (2019).

Blagodurov, S., A. Fedorova, S. Zhuravlev and A. Kamali, “A case for numa-aware
contention management on multicore systems”, in “2010 19th International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT)”, pp. 557–558
(IEEE, 2010).

Blake, G., R. G. Dreslinski and T. Mudge, “A survey of multicore processors”, IEEE
Signal Processing Magazine 26, 6, 26–37 (2009).

Blanco, B., J. O. Fajardo, I. Giannoulakis, E. Kafetzakis, S. Peng, J. Pérez-Romero,
I. Trajkovska, P. S. Khodashenas, L. Goratti, M. Paolino, E. Sfakianakis, F. Liberal
and G. Xilouris, “Technology pillars in the architecture of future 5G mobile networks:
NFV, MEC and SDN”, Computer Standards & Interfaces 54, 216–228 (2017).

Blenk, A., A. Basta, M. Reisslein and W. Kellerer, “Survey on network virtualization
hypervisors for software defined networking”, IEEE Communications Surveys &
Tutorials 18, 1, 655–685 (2015a).

Blenk, A., A. Basta, J. Zerwas and W. Kellerer, “Pairing sdn with network virtualiza-
tion: The network hypervisor placement problem”, in “2015 IEEE Conference on
Network Function Virtualization and Software Defined Network (NFV-SDN)”, pp.
198–204 (IEEE, 2015b).

359

Blenk, A., A. Basta, J. Zerwas, M. Reisslein and W. Kellerer, “Control plane latency
with sdn network hypervisors: The cost of virtualization”, IEEE Transactions on
Network and Service Management 13, 3, 366–380 (2016).

Bojkovic, Z., B. Bakmaz and M. Bakmaz, “Principles and enabling technologies of 5G
network slicing”, in “Paving the Way for 5G Through the Convergence of Wireless
Systems”, pp. 271–284 (IGI Global, Hershey, PA, 2019).

Bojnordi, M. N. and E. Ipek, “Memristive Boltzmann machine: A hardware accelerator
for combinatorial optimization and deep learning”, in “Proc. IEEE Int. Symp. on
High Perf. Computer Arch. (HPCA)”, pp. 1–13 (2016).

Bonfim, M. S., K. L. Dias and S. F. Fernandes, “Integrated NFV/SDN architectures: A
systematic literature review”, ACM Computing Surveys (CSUR) 51, 6, 114:1–114:39
(2019).

Bouras, C., A. Kollia and A. Papazois, “SDN & NFV in 5G: Advancements and
challenges”, in “Proc. IEEE Conf. on Innov. in Clouds, Internet and Netw. (ICIN)”,
pp. 107–111 (2017).

Bressoud, T. C. and F. B. Schneider, “Hypervisor-based fault tolerance”, in “Proceed-
ings of the fifteenth ACM symposium on Operating systems principles”, pp. 1–11
(1995).

Broquedis, F., N. Furmento, B. Goglin, R. Namyst and P.-A. Wacrenier, “Dynamic task
and data placement over NUMA architectures: an OpenMP runtime perspective”,
in “Proc. Int. Workshop on OpenMP”, pp. 79–92 (Springer, Berlin, Heidelberg,
Germany, 2009).

Bui, L. X., S. Sanghavi and R. Srikant, “Distributed link scheduling with constant
overhead”, IEEE TON 17, 5, 1467–1480 (2009).

Bulkan, U., T. Dagiuklas, M. Iqbal, K. M. S. Huq, A. Al-Dulaimi and J. Rodriguez,
“On the load balancing of edge computing resources for on-line video delivery”, IEEE
Access 6, 73916–73927 (2018).

Bumgardner, V. C., V. W. Marek and C. D. Hickey, “Cresco: A distributed agent-
based edge computing framework”, in “Proc. IEEE Int. Conf. Network and Service
Management”, pp. 400–405 (2016).

Burr, G. W., R. S. Shenoy, K. Virwani, P. Narayanan, A. Padilla, B. Kurdi and
H. Hwang, “Access devices for 3D crosspoint memory”, Journal of Vacuum Science
& Technology B 32, 4, 040802 (2014).

Casellas, R., R. Mart́ınez, R. Vilalta and R. Muñoz, “Control, management, and
orchestration of optical networks: Evolution, trends, and challenges”, IEEE/OSA
Journal of Lightwave Technology 36, 7, 1390–1402 (2018).

Catania, V., A. Mineo, S. Monteleone, M. Palesi and D. Patti, “Improving energy
efficiency in wireless network-on-chip architectures”, ACM Journal on Emerging
Technologies in Computing Systems (JETC) 14, 1, 9.1–9.24 (2017).

360

Caulfield, A., E. Chung, A. Putnam, H. Angepat, J. Fowers, S. Heil, J. Kim, D. Lo,
M. Papamichael, T. Massengill, D. Chiou and D. Burger, “A cloud-scale acceleration
architecture”, IEEE Micro, in print pp. 1–1 (2020).

Caulfield, A., P. Costa and M. Ghobadi, “Beyond SmartNICs: Towards a fully
programmable cloud”, in “Proc. IEEE Int. Conf. on High Perf. Switching and
Routing (HPSR)”, pp. 1–6 (2018).

Cavaliere, F., P. Iovanna, J. Mangues-Bafalluy, J. Baranda, J. Núñez-Mart́ınez, K.-Y.
Lin, H.-W. Chang, P. Chanclou, P. Farkas, J. Gomes, L. Cominardi, A. Mourad,
A. De La Oliva, J. A. Hernandez, D. Larrabeiti, A. DiGiglio, A. Paolicelli and
P. Oedling, “Towards a unified fronthaul-backhaul data plane for 5G the 5G-
Crosshaul project approach”, Comp. Standards & Interf. 51, 56–62 (2017).

CCIX® Consortium Incorp., “An Introduction to CCIX® White Paper”,
Https://www.ccixconsortium.com/wp-content/uploads/2019/11/CCIX-White-
Paper-Rev111219.pdf, Last accessed June 9, 2020 (2020).

Cen, Y., Y. Cen, K. Wang and J. Li, “Energy-efficient nonuniform content edge
pre-caching to improve quality of service in fog radio access networks”, Sensors 19,
6, URL http://www.mdpi.com/1424-8220/19/6/1422 (2019).

Cepa, V., Product-line development for mobile device applications with attribute
supported containers, Ph.D. thesis, TU Darmst. (2005).

Cerović, D., V. Del Piccolo, A. Amamou, K. Haddadou and G. Pujolle, “Fast packet
processing: A survey”, IEEE Commun. Surv. & Tut. 20, 4, 3645–3676 (2018).

Cerrato, I., M. Annarumma and F. Risso, “Supporting fine-grained network functions
through Intel® DPDK”, in “Proc. IEEE EWSDN”, pp. 1–6 (2014).

Challa, N. R., “Hardware based i/o virtualization technologies for hypervisors, con-
figurations and advantages-a study”, in “2012 IEEE International Conference on
Cloud Computing in Emerging Markets (CCEM)”, pp. 1–5 (IEEE, 2012).

Chanclou, P., L. A. Neto, K. Grzybowski, Z. Tayq, F. Saliou and N. Genay, “Mobile
fronthaul architecture and technologies: A RAN equipment assessment”, IEEE/OSA
J. Opt. Commun. and Netw. 10, 1, A1–A7 (2018).

Chandna, S., N. Naas and H. Mouftah, “Software defined survivable optical intercon-
nect for data centers”, Optical Switching and Networking 31, 86–99 (2019).

Chang, H.-C., B.-J. Qiu, J.-C. Chen, T.-J. Tan, P.-F. Ho, C.-H. Chiu and B.-S. P. Lin,
“Empirical experience and experimental evaluation of open5gcore over hypervisor
and container”, Wireless Communications and Mobile Computing 2018 (2018).

Chang, K. K., A. Kashyap, H. Hassan, S. Ghose, K. Hsieh, D. Lee, T. Li, G. Pekhi-
menko, S. Khan and O. Mutlu, “Understanding latency variation in modern DRAM
chips: Experimental characterization, analysis, and optimization”, ACM SIGMET-
RICS Performance Evaluation Review 44, 1, 323–336 (2016a).

361

Chang, K. K., P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi and O. Mutlu, “Low-
cost inter-linked subarrays (LISA): Enabling fast inter-subarray data movement
in DRAM”, in “Proc. IEEE Int. Symp. on High Perf. Comp. Arch. (HPCA)”, pp.
568–580 (2016b).

Charles, J., P. Jassi, N. S. Ananth, A. Sadat and A. Fedorova, “Evaluation of the
intel® Core i7 Turbo Boost feature”, in “Proc. IEEE Int. Symp. on Workload
Charact. (IISWC)”, pp. 188–197 (2009).

Chaudhary, J. K., J. Bartelt and G. Fettweis, “Statistical multiplexing in fronthaul-
constrained massive MIMO”, in “Proc. European Conf. on Networks and Commun.
(EuCNC)”, pp. 1–6 (2017).

Checko, A., H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger and
L. Dittmann, “Cloud RAN for mobile networks—a technology overview”, IEEE
Communications Surveys & Tutorials 17, 1, 405–426 (2015).

Chen, A., “A review of emerging non-volatile memory (NVM) technologies and
applications”, Solid-State Electronics 125, 25–38 (2016).

Chen, T., Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen and O. Temam, “Diannao: A
small-footprint high-throughput accelerator for ubiquitous machine-learning”, ACM
SIGARCH Computer Architecture News 42, 1, 269–284 (2014).

Chen, X., W. Ni, T. Chen, I. Collings, X. Wang, R. P. Liu and G. B. Giannakis,
“Multi-timescale online optimization of network function virtualization for service
chaining”, IEEE Trans. on Mobile Computing, in print (2019).

Chen, X., C. Wang, D. Xuan, Z. Li, Y. Min and W. Zhao, “Survey on QoS manage-
ment of VoIP”, in “Proc. IEEE Int. Conf. on Computer Netw. and Mobile Comp.
(ICCNMC)”, pp. 69–77 (2003).

Chen, Y., X. Wei, J. Shi, R. Chen and H. Chen, “Fast and general distributed
transactions using RDMA and HTM”, in “Proc. ACM Eu. Conf. on Computer
Sys.”, pp. 26.1–26.17 (2016).

Chhajer, S., A. S. Thyagaturu, A. Yatavelli, P. Lalwaney, M. Reisslein and K. G.
Raja, “Hardware accelerations for container engine to assist container migration
on client devices”, in “Proc. IEEE Int. Symp. on Local and Metropolitan Area
Networks (LANMAN”, pp. 1–6 (2020).

Chiang, M., “Stochastic network utility maximization”, Eur. T. on Telecommun. 22,
1–22 (2008).

Chiang, M., S. H. Low, R. Calderbank and J. C. Doyle, “Layering as optimization
decomposition”, Proc. IEEE 95, 255–312 (2007).

Chih-Lin, I., “Seven fundamental rethinking for next-generation wireless communica-
tions”, APSIPA Trans. on Signal and Inform. Processing 6, e10, 1–16 (2017).

362

Chih-Lin, I., H. Li, J. Korhonen, J. Huang and L. Han, “RAN revolution with NGFI
(xHaul) for 5G”, IEEE/OSA Journal of Lightwave Technology 36, 2, 541–550
(2018a).

Chih-Lin, I., H. Li, J. Korhonen, J. Huang and L. Han, “RAN revolution with NGFI
(xhaul) for 5G”, Journal of Lightwave Technology 36, 2, 541–550 (2018b).

Choi, H., D. Hong, J. Lee and S. Yoo, “Reducing DRAM refresh power consumption
by runtime profiling of retention time and dual-row activation”, Microprocessors
and Microsystems 72, 102942.1–102942.1–11 (2020).

Choi, S., S. J. Park, M. Shahbaz, B. Prabhakar and M. Rosenblum, “Toward scalable
replication systems with predictable tails using programmable data planes”, in
“Proc. ACM Asia-Pacific Workshop on Networking”, pp. 78–84 (2019a).

Choi, S., M. Shahbaz, B. Prabhakar and M. Rosenblum, “λ-NIC: Interactive serverless
compute on programmable smartnics”, arXiv preprint arXiv:1909.11958 (2019b).

Choi, Y.-K., J. Cong, Z. Fang, Y. Hao, G. Reinman and P. Wei, “A quantitative
analysis on microarchitectures of modern CPU-FPGA platforms”, in “Proc. ACM
Ann. Design Autom. Conf.”, pp. 1–6 (2016).

Chou, C.-H. and L. N. Bhuyan, “A multicore vacation scheme for thermal-aware
packet processing”, in “Proc. IEEE Int. Conf. on Computer Design”, pp. 565–572
(2015).

Cilfone, A., L. Davoli, L. Belli and G. Ferrari, “Wireless mesh networking: An IoT-
oriented perspective survey on relevant technologies”, Future Internet 11, 4, URL
http://www.mdpi.com/1999-5903/11/4/99 (2019).

Clark, M., “A new ×86 core architecture for the next generation of computing.”, in
“Proc. IEEEE Hot Chips Symp.”, pp. 1–19 (2016).

Clayman, S., E. Maini, A. Galis, A. Manzalini and N. Mazzocca, “The dynamic
placement of virtual network functions”, in “Proc. IEEE Network Operations and
Management Symp.”, pp. 1–9 (2014).

Cloutier, F., “CPU Identification”, Https://www.felixcloutier.com/x86/cpuid, last
accessed June 2, 2020 (2019).

Cohen, A., F. Finkelstein, A. Mendelson, R. Ronen and D. Rudoy, “On estimating
optimal performance of CPU dynamic thermal management”, IEEE Computer
Architecture Letters 2, 1, 6–6 (2003).

Coppola, M., M. D. Grammatikakis, R. Locatelli, G. Maruccia and L. Pieralisi, Design
of Cost-Efficient Interconnect Processing Units: Spidergon STNoC (CRC Press,
Boca Raton, FL, 2018).

Corporation, I. and D. Mulnix, “Intel® Xeon® Processor E5-2600 V4 Product
Family Technical Overview”, Https://software.intel.com/en-us/articles/intel-xeon-
processor-e5-2600-v4-product-family-technical-overview (2020).

363

Costa-Perez, X., A. Garcia-Saavedra, X. Li, T. Deiss, A. de la Oliva, A. di Giglio, P. Io-
vanna and A. Moored, “5G-Crosshaul: An SDN/NFV integrated fronthaul/backhaul
transport network architecture”, IEEE Wireless Commun. 24, 1, 38–45 (2017a).

Costa-Perez, X., A. Garcia-Saavedra, X. Li, T. Deiss, A. De La Oliva, A. Di Giglio, P. Io-
vanna and A. Moored, “5G-Crosshaul: An SDN/NFV integrated fronthaul/backhaul
transport network architecture”, IEEE Wireless Communications 24, 1, 38–45
(2017b).

Costanzo, S., I. Fajjari, N. Aitsaadi and R. Langar, “A network slicing prototype for a
flexible cloud radio access network”, in “Proc. IEEE Consumer Commun. & Netw.
Conf. (CCNC)”, pp. 1–4 (2018).

Coutinho, E. F., F. R. de Carvalho Sousa, P. A. L. Rego, D. G. Gomes and J. N.
de Souza, “Elasticity in cloud computing: a survey”, Annals of Telecommunications
70, 7-8, 289–309 (2015).

Cox, G., C. Dike and D. Johnston, “Intel’s digital random number generator (DRNG)”,
in “Proc. IEEE Hot Chips Symp. (HCS)”, pp. 1–13 (2011).

Cox, J. H., J. Chung, S. Donovan, J. Ivey, R. J. Clark, G. Riley and H. L. Owen,
“Advancing software-defined networks: A survey”, IEEE Access 5, 25487–25526
(2017).

Cui, Y. and E. M. Yeh, “Delay optimal control and its connection to the dynamic
backpressure algorithm”, in “IEEE Int. Symp. Info.”, pp. 451–455 (2014).

Cui, Y., E. M. Yeh and R. Liu, “Enhancing the delay performance of dynamic
backpressure algorithms”, IEEE/ACM T. Netw. 24, 2, 954–967 (2016).

CXL Consortium, “Compute Express Link�”, URL
https://www.computeexpresslink.org/download-the-specification, last
accessed June 9, 2020 (2019).

Cziva, R., S. Jouet, K. J. White and D. P. Pezaros, “Container-based network
function virtualization for software-defined networks”, in “2015 IEEE symposium
on computers and communication (ISCC)”, pp. 415–420 (IEEE, 2015).

Cziva, R. and D. P. Pezaros, “Container network functions: bringing NFV to the
network edge”, IEEE Communications Magazine 55, 6, 24–31 (2017).

Daoud, F., A. Watad and M. Silberstein, “GPUrdma: GPU-side library for high
performance networking from GPU kernels”, in “Proc. ACM Int. Workshop on
Runtime and Oper. Sys. for Supercomp.”, pp. 6.1–6.8 (2016).

Datta, D., D. Mittal, N. P. Mathew and J. Sairabanu, “Comparison of performance of
parallel computation of CPU cores on CNN model”, in “Proc. IEEE Int. Conf. on
Emerging Trends in Information Technology and Engineering”, pp. 1–8 (2020).

364

De Domenico, A., V. Savin and D. Ktenas, “A backhaul-aware cell selection algorithm
for heterogeneous cellular networks”, in “Proc. IEEE Personal Indoor and Mobile
Radio Commun.”, pp. 1688–1693 (2013).

de Sousa, N. F. S., D. A. L. Perez, R. V. Rosa, M. A. Santos and C. E. Rothenberg,
“Network service orchestration: A survey”, Computer Communications 142-143,
69–94 (2019).

Dehkordi, J. S. and V. Tralli, “Interference analysis for optical wireless communications
in Network-on-Chip (NoC) scenarios”, IEEE Transactions on Communications 68,
3, 1662–1674 (2019).

Desai, A., R. Oza, P. Sharma and B. Patel, “Hypervisor: A survey on concepts
and taxonomy”, International Journal of Innovative Technology and Exploring
Engineering 2, 3, 222–225 (2013).

Deutsch, P., “RFC1952: GZIP file format specification version 4.3”, (1996).

Devera, M. and D. Cohen, “HTB linux queuing discipline manual-user guide”, M.
Devera web site, Tech. Rep (2002).

Dinakar, K. R., “A survey on virtualization and attacks on virtual machine monitor
(VMM)”, Int. Research J. of Eng. and Techn. (IRJET) 6, 3, 6558–6563 (2019).

Doan, T. V., G. T. Nguyen, M. Reisslein and F. H. P. Fitzek, “FAST: Flexible and low-
latency state transfer in mobile edge computing”, IEEE Access 9, 115315–115334
(2021).

Dong, Y., D. Xu, Y. Zhang and G. Liao, “Optimizing network I/O virtualization
with efficient interrupt coalescing and virtual receive side scaling”, in “2011 IEEE
International Conference on Cluster Computing”, pp. 26–34 (IEEE, 2011).

Dong, Y., Z. Yu and G. Rose, “SR-IOV networking in Xen: Architecture, design and
implementation.”, in “Proc. USENIX Workshop on I/O Virtualization (WIOV)”,
pp. 1–10 (2008).

Dosanjh, M. G., W. Schonbein, R. E. Grant, P. G. Bridges, S. M. Ghazimirsaeed and
A. Afsahi, “Fuzzy matching: Hardware accelerated MPI communication middle-
ware”, in “Proc. IEEE/ACM Int. Symp. in Cluster, Cloud, and Grid Computing
(CCGrid 2019)”, pp. 210–220 (2019).

Droste, H., P. Rost, M. Doll, I. Berberana, C. Mannweiler, M. Breitbach, A. Banchs
and M. A. Puente, “An adaptive 5G multiservice and multitenant radio access
network architecture”, Trans. Emerging Telecommun. Techn. 27, 9, 1262–1270
(2016).

Duan, Q., N. Ansari and M. Toy, “Software-defined network virtualization: An
architectural framework for integrating SDN and NFV for service provisioning in
future networks”, IEEE Network 30, 5, 10–16 (2016).

365

Durai, S., S. Raj and A. Manivannan, “Impact of thermal boundary resistance on
the performance and scaling of phase change memory device”, IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, in print (2020).

Elgendi, I., K. S. Munasinghe, D. Sharma and A. Jamalipour, “Traffic offloading
techniques for 5G cellular: a three-tiered SDN architecture”, Annals of Telecommu-
nications 71, 11–12, 583–593 (2016).

Emmerich, P., D. Raumer, A. Beifuß, L. Erlacher, F. Wohlfart, T. M. Runge, S. Gal-
lenmüller and G. Carle, “Optimizing latency and CPU load in packet processing
systems”, in “Proc. IEEE Int. Symp. on Perf. Eval. of Computer and Telecommun.
Sys. (SPECTS)”, pp. 1–8 (2015).

Eran, H., L. Zeno, M. Tork, G. Malka and M. Silberstein, “NICA: An infrastructure
for inline acceleration of network applications”, in “Proc. USENIX Annual Techn.
Conf.”, pp. 345–362 (2019).

Fan, W., Y. Liu, B. Tang, F. Wu and Z. Wang, “Computation offloading based on
cooperations of mobile edge computing-enabled base stations”, IEEE Access 6,
22622–22633 (2018).

Farhady, H., H. Lee and A. Nakao, “Software-defined networking: A survey”, Computer
Networks 81, 79–95 (2015).

Farooq, U., Z. Marrakchi and H. Mehrez, “FPGA architectures: An overview”, in
“Tree-based Heterogeneous FPGA Architectures”, pp. 7–48 (Springer, New York,
NY, 2012).

Farris, I., T. Taleb, Y. Khettab and J. Song, “A survey on emerging SDN and NFV
security mechanisms for IoT systems”, IEEE Commun. Surveys & Tutorials 21, 1,
812–837 (2018).

Fernandes, S., B. C. Oliveira and I. S. Silva, “Using NoC routers as processing
elements”, in “Proc. ACM Symposium on Integrated Circuits and System Design”,
pp. 1–6 (2009a).

Fernandes, S. R., B. Oliveira, M. Costa and I. S. Silva, “Processing while routing: A
network-on-chip-based parallel system”, IET Computers & Digital Techniques 3, 5,
525–538 (2009b).

Ferrari, L., N. Karakoc, A. Scaglione, M. Reisslein and A. Thyagaturu, “Layered
cooperative resource sharing at a wireless SDN backhaul”, in “Proc. IEEE ICC
Workshops”, pp. 1–6 (2018a).

Ferrari, L., N. Karakoc, A. Scaglione, M. Reisslein and A. Thyagaturu, “Layered
cooperative resource sharing at a wireless SDN backhaul”, in “Proc. of IEEE Int.
Conf. on Commun. Workshops (ICC Workshops), Int. Workshop on 5G Architecture
(5GARCH)”, pp. 1–6 (2018b).

366

Ferrer, A. J., J. M. Marquès and J. Jorba, “Towards the decentralised cloud: Survey
on approaches and challenges for mobile, ad hoc, and edge computing”, ACM Comp.
Surv. 51, 6, 1–36 (2019).

Fiessler, A., C. Lorenz, S. Hager, B. Scheuermann and A. W. Moore, “HyPaFilter+:
Enhanced hybrid packet filtering using hardware assisted classification and header
space analysis”, IEEE/ACM Transactions on Networking 25, 6, 3655–3669 (2017).

Fleming, M., “A thorough introduction to eBPF”, Available from
https://lwn.net/Articles/740157, Last accesed Apr. 2, 2020 (2017).

Foukas, X., G. Patounas, A. Elmokashfi and M. K. Marina, “Network slicing in 5G:
Survey and challenges”, IEEE Communications Magazine 55, 5, 94–100 (2017).

Frascolla, V., C. K. Dominicini, M. H. M. Paiva, G. Caporossi, M. A. Marotta, M. R. N.
Ribeiro, M. E. V. Segatto, M. Martinello, M. E. Monteiro and C. B. Both, “Opti-
mizing C-RAN backhaul topologies: A resilience-oriented approach using graph in-
variants”, Applied Sciences 9, 1, URL http://www.mdpi.com/2076-3417/9/1/136
(2019).

Gabriel, F., S. Wunderlich, S. Pandi, F. H. Fitzek and M. Reisslein, “Caterpillar
RLNC with feedback (CRLNC-FB): Reducing delay in selective repeat ARQ through
coding”, IEEE Access 6, 44787–44802 (2018).

Gade, S. H. and S. Deb, “HyWin: Hybrid wireless NoC with sandboxed sub-networks
for CPU/GPU architectures”, IEEE Transactions on Computers 66, 7, 1145–1158
(2016).

Gade, S. H., S. S. Ram and S. Deb, “Millimeter wave wireless interconnects in deep
submicron chips: Challenges and opportunities”, Integration 64, 127–136 (2019).

Gallenmüller, S., P. Emmerich, F. Wohlfart, D. Raumer and G. Carle, “Comparison
of frameworks for high-performance packet IO”, in “Proc. ACM/IEEE Symp. on
Architectures for Net. and Commun. Systems”, pp. 29–38 (2015).

Garay, J., J. Matias, J. Unzilla and E. Jacob, “Service description in the NFV
revolution: Trends, challenges and a way forward”, IEEE Communications Magazine
54, 3, 68–74 (2016).

Garcia-Saavedra, A., X. Costa-Perez, D. J. Leith and G. Iosifidis, “FluidRAN: Opti-
mized vRAN/MEC orchestration”, in “Proc. IEEE Infocom”, pp. 1–9 (2018).

Gazit, L. and H. Messer, “Advancements in the statistical study, modeling, and
simulation of microwave-links in cellular backhaul networks”, Environments 5, 7,
URL http://www.mdpi.com/2076-3298/5/7/75 (2018).

Ge, X., Y. Liu, D. H. Du, L. Zhang, H. Guan, J. Chen, Y. Zhao and X. Hu,
“OpenANFV: Accelerating network function virtualization with a consolidated frame-
work in openstack”, ACM SIGCOMM Computer Communication Review 44, 4,
353–354 (2014).

367

Ge, X., S. Tu, G. Mao, V. Lau and L. Pan, “Cost efficiency optimization of 5G wireless
backhaul networks”, IEEE Transactions on Mobile Computing, in print (2019).

Gen, “The Gen-Z Consortium”, Https://genzconsortium.org, Last accessed June 9,
2020 (2020).

Georgiadis, L., M. J. Neely and L. Tassiulas, “Resource allocation and cross-
layer control in wireless networks”, Found. Trends Netw. 1, 1, 1–144, URL
http://dx.doi.org/10.1561/1300000001 (2006).

Gerszberg, I., K. X. Huang, C. K. Kwabi, J. S. Martin, I. R. R. Miller and J. E.
Russell, “Network server platform for internet, JAVA server and video application
server”, US Patent 6,044,403 (2000).

Ghosh, A., A. Maeder, M. Baker and D. Chandramouli, “5G evolution: A view on
5G cellular technology beyond 3GPP release 15”, IEEE Access 7, 127639–127651
(2019).

Gilles, K., S. Groesbrink, D. Baldin and T. Kerstan, “Proteus hypervisor: Full virtual-
ization and paravirtualization for multi-core embedded systems”, in “International
Embedded Systems Symposium”, pp. 293–305 (Springer, 2013).

Giunta, G., R. Montella, G. Agrillo and G. Coviello, “A GPGPU transparent virtual-
ization component for high performance computing clouds”, in “Proc. Eur. Conf.
on Parallel Proc.”, pp. 379–391 (2010).

Gobriel, S., Energy Efficiency in Communications and Networks (IntechOpen, London,
UK, 2012).

Goehringer, D., L. Meder, M. Hubner and J. Becker, “Adaptive multi-client network-
on-chip memory”, in “Proc. IEEE Int. Conf. on Reconfig. Comp. and FPGAs”, pp.
7–12 (2011).

Gonzalez, C., E. Fluhr, D. Dreps, D. Hogenmiller, R. Rao, J. Paredes, M. Floyd,
M. Sperling, R. Kruse, V. Ramadurai et al., “3.1 POWER9�: A processor family
optimized for cognitive computing with 25Gb/s accelerator links and 16Gb/s PCIe
Gen4”, in “Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC)”, pp. 50–51 (2017).

González, S., A. Oliva, X. Costa-Pérez, A. Di Giglio, F. Cavaliere, T. Deiß, X. Li
and A. Mourad, “5G-Crosshaul: An SDN/NFV control and data plane architecture
for the 5G integrated fronthaul/backhaul”, Trans. Emerg. Telecom. Techn. 27, 9,
1196–1205 (2016).

Gowdal, N. M., X. Si and A. Sabharwall, “Full-duplex DOCSIS: A modem architecture
for wideband (> 1GHZ) self-interference cancellation for cable modem termina-
tion systems (CMTS)”, in “Proc. IEEE Asilomar Conf. on Signals, Systems, and
Computers”, pp. 2202–2206 (2018).

Goyal, S., “Public vs private vs hybrid vs community-cloud computing: a critical
review”, IJCNIS 6, 3, 20–29 (2014).

368

Granizo Arrabe, R., C. A. Platero, F. Alvarez Gomez and E. Rebollo Lopez, “New
differential protection method for multiterminal HVDC cable networks”, Energies
11, 12 (2018).

Gray, J., “GRVI Phalanx: A massively parallel RISC-V FPGA accelerator accelerator”,
in “Proc. IEEE Int. Symp. on Field-Progr. Custom Comp. Mach. (FCCM)”, pp.
17–20 (2016).

Gu, H., K. Chen, Y. Yang, Z. Chen and B. Zhang, “MRONoC: A low latency and
energy efficient on chip optical interconnect architecture”, IEEE Photonics Journal
9, 1, 1–12 (2017).

Gu, L., Q. Tang, S. Wu, H. Jin, Y. Zhang, G. Shi, T. Lin and J. Rao, “N-Docker: A
NVM-HDD hybrid Docker storage framework to improve docker performance”, in
“Proc. IFIP Int. Conf. on Net. and Parallel Comp.”, pp. 182–194 (2019).

Guck, J. W., M. Reisslein and W. Kellerer, “Function split between delay-constrained
routing and resource allocation for centrally managed QoS in industrial networks”,
IEEE Transactions on Industrial Informatics 12, 6, 2050–2061 (2016).

Guck, J. W., A. Van Bemten, M. Reisslein and W. Kellerer, “Unicast QoS routing
algorithms for SDN: A comprehensive survey and performance evaluation”, IEEE
Commun. Sur. & Tut. 20, 1, 388–415 (2018).

Guerrieri, A., S. Kashani-Akhavan, M. Asiatici and P. Ienne, “Snap-on user-space
manager for dynamically reconfigurable system-on-chips”, Ieee Access 7, 103938–
103947 (2019).

Gui, C.-Y., L. Zheng, B. He, C. Liu, X.-Y. Chen, X.-F. Liao and H. Jin, “A survey on
graph processing accelerators: Challenges and opportunities”, Journal of Computer
Science and Technology 34, 2, 339–371 (2019).

Guo, L., Y. Ge, W. Hou, P. Guo, Q. Cai and J. Wu, “A novel IP-core mapping algorithm
in reliable 3D optical network-on-chips”, Optical Switching and Networking 27,
50–57 (2018).

Gupta, A. and R. K. Jha, “A survey of 5G network: Architecture and emerging
technologies”, IEEE Access 3, 1206–1232 (2015).

Gupta, A., X. Lin and R. Srikant, “Low-complexity distributed scheduling algorithms
for wireless networks”, IEEE/ACM T. Netw. 17, 6, 1846–1859 (2009).

Gupta, V., P. Brett, D. Koufaty, D. Reddy, S. Hahn, K. Schwan and G. Srinivasa,
“The forgotten ’uncore’: On the energy-efficiency of heterogeneous cores”, in “Proc.
USENIX Annual Techn. Conf. (ATC)”, pp. 367–372 (2012).

Gutiérrez, J., N. Maletic, D. Camps-Mur, E. Garćıa, I. Berberana, M. Anastasopou-
los, A. Tzanakaki, V. Kalokidou, P. Flegkas, D. Syrivelis, T. Korakis, P. Legg,
D. Markovic, G. Lyberopoulos, J. Bartelt, J. K. Chaudhary, M. Grieger, N. Vucic,
J. Zou and E. Grass, “5G-XHaul: a converged optical and wireless solution for 5G
transport networks”, Trans. Emer. Telecom. Techn. 27, 9, 1187–1195 (2016).

369

Hamidouche, K. and M. LeBeane, “GPU initiated OpenSHMEM: Correct and efficient
intra-kernel networking for dGPUs”, in “Proc. ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming”, pp. 336–347 (2020).

Han, B., V. Gopalakrishnan, L. Ji and S. Lee, “Network function virtualization:
Challenges and opportunities for innovations”, IEEE Communications Magazine
53, 2, 90–97 (2015).

Han, D., R.-H. Shiao and L. Xu, “Graceful shutdown with asynchronous DRAM
refresh of non-volatile dual in-line memory module”, US Patent App. 15/261,397
(2018).

Haque, I. T. and N. Abu-Ghazaleh, “Wireless software defined networking: A survey
and taxonomy”, IEEE Commun. Surv. & Tut. 18, 4, 2713–2737 (2016).

Har’El, N., A. Gordon, A. Landau, M. Ben-Yehuda, A. Traeger and R. Ladelsky, “High
performance I/O interposition in virtual systems”, in “USENIX Annual Technical
Conference”, (2013).

Hassan, H., G. Pekhimenko, N. Vijaykumar, V. Seshadri, D. Lee, O. Ergin and
O. Mutlu, “ChargeCache: Reducing DRAM latency by exploiting row access
locality”, in “Proc. IEEE Int. Symp. on High Perf. Comp. Arch. (HPCA)”, pp.
581–593 (2016).

Hassan, T. U. and F. Gao, “An active power control technique for downlink interference
management in a two-tier macro–femto network”, Sensors 19, 9 (2019).

Hennessy, J. L. and D. A. Patterson, “A new golden age for computer architecture.”,
Commun. ACM 62, 2, 48–60 (2019).

Herdt, V., D. Große, H. M. Le and R. Drechsler, “Early concolic testing of embedded
binaries with virtual prototypes: A RISC-V case study”, in “Proc. ACM/IEEE
Design Automation Conf.”, pp. 1–6 (2019).

Herrera, J. G. and J. F. Botero, “Resource allocation in NFV: A comprehensive
survey”, IEEE Trans. on Network and Service Management 13, 3, 518–532 (2016).

Heuchert, S., B. P. Rimal, M. Reisslein and Y. Wang, “Design of a small-scale and
failure-resistant IaaS cloud using OpenStack”, Applied Computing and Informatics,
in print (2022).

Hoeschele, T., C. Dietzel, D. Kopp, F. H. Fitzek and M. Reisslein, “Importance of
internet exchange point (IXP) infrastructure for 5G: Estimating the impact of 5G
use cases”, Telecommunications Policy 45, 3, 102091 (2021).

Hofemeier, G. and R. Chesebrough, “Introduction to Intel AES-NI
and Intel Secure Key Instructions, Intel Corp., White Paper”, URL
https://software.intel.com/en-us/articles/introduction-to-intel-aes-ni-
and-intel-secure-key-instructions, last accessed Apr. 3, 2020 (2012).

370

Hohlfeld, O., J. Krude, J. H. Reelfs, J. Rüth and K. Wehrle, “Demystifying the
performance of XDP BPF”, in “Proc. IEEE Conf. on Net. Softwarization (NetSoft)”,
pp. 208–212 (2019).

Høiland-Jørgensen, T., J. D. Brouer, D. Borkmann, J. Fastabend, T. Herbert, D. Ahern
and D. Miller, “The express data path: Fast programmable packet processing in
the operating system kernel”, in “Proc. Inte. Conf. on Emerging Net. EXperiments
and Techn.”, pp. 54–66 (2018).

Hovemeyer, D., J. K. Hollingsworth and B. Bhattacharjee, “Running on the bare
metal with GeekOS”, ACM SIGCSE Bulletin 36, 1, 315–319 (2004).

Hsu, Y., C.-Y. Chuang, X. Wu, G.-H. Chen, C.-W. Hsu, Y.-C. Chang, C.-W. Chow,
J. Chen, Y.-C. Lai, C.-H. Yeh et al., “2.6 Tbit/s on-chip optical interconnect sup-
porting mode-division-multiplexing and PAM-4 signal”, IEEE Photonics Technology
Letters 30, 11, 1052–1055 (2018).

Huang, C., J. Zhang and T. Huang, “Updating data-center network with ultra-low
latency data plane”, IEEE Access 8, 2134–2144 (2020).

Huang, L., H. Gu, Y. Tian and T. Zhao, “Universal method for constructing the
on-chip optical router with wavelength routing technology”, IEEE/OSA Journal of
Lightwave Technology, in print (2020).

Huang, W., L. Ding, D. Meng, J. N. Hwang, Y. Xu and W. Zhang, “QoE-based
resource allocation for heterogeneous multi-radio communication in software-defined
vehicle networks”, IEEE Access 6, 3387–3399 (2018a).

Huang, Y., C. Lu, M. Berg and P. Ödling, “Functional split of zero-forcing based
massive MIMO for fronthaul load reduction”, IEEE Access 6, 6350–6359 (2018b).

Huang, Y.-J., H.-H. Wu, Y.-C. Chung and W.-C. Hsu, “Building a KVM-based
hypervisor for a heterogeneous system architecture compliant system”, in “Proc.
ACM SIGPLAN/SIGOPS Int. Conf. on Virtual Execution Environments”, pp. 3–15
(2016).

Huang, Z., S. Wu, S. Jiang and H. Jin, “FastBuild: Accelerating Docker image building
for efficient development and deployment of container”, in “Proc. Symp. on Mass
Storage Sys. and Techn.”, pp. 28–37 (2019).

Huerfano, D., I. Demirkol and P. Legg, “Joint optimization of path selection and link
scheduling for Millimeter Wave transport networks”, in “Proc. IEEE Int. Conf. on
Commun. Workshops (ICC Workshops)”, pp. 115–120 (2017).

Intel, “Intel® Xeon® Processor Scalable Family Technical Overview”, URL
https://software.intel.com/en-us/articles/intel-xeon-processor-
scalable-family-technical-overview, last accessed June 2, 2020 (2019a).

Intel, “Overview – Claims and Benchmark Library”, URL
https://edc.intel.com/content/www/us/en/products/performance/
benchmarks/overview.html (2019b).

371

Intel Corp., “Intel® Data Direct I/O Technol-
ogy (Intel DDIO) A Primer v1.0”, Available from
https://www.intel.com/content/dam/www/public/us/en/documents/technology-
briefs/data-direct-i-o-technology-brief.pdf, Last accessed Apr. 2, 2020 (2012).

Intel Corp., “Data Plane Development Kit (DPDK)”, (2014).

Intel Corp., “Intel® scalable I/O virtualization technical speci-
fication, reference number: 337679-001, revision: 1.0”, URL
https://software.intel.com/sites/default/files/managed/cc/0e/intel-
scalable-io-virtualization-technical-specification.pdf, last accessed
June 9, 2020 (2018).

Intel Corp., “Intel® Data Streaming Accelera-
tor Preliminary Architecture Specification”, URL
https://software.intel.com/sites/default/files/341204-intel-data-
streaming- accelerator-spec.pdf, last accessed June 9, 2020 (2019a).

Intel Corp., “Intel® Optane DC Persistent Memory - Content Delivery Networks Use
Case”, Https://builders.intel.com/docs/networkbuilders/intel-optane-dc-persistent-
memory-content-delivery-networks-use-case.pdf, Last accessed June 9, 2020 (2019b).

Intel Corp., “Intel® QuickAssist Adapter 8960 and 8970 Product Brief”, URL
https://www.intel.com/content/www/us/en/products/docs/network-io/
ethernet/10-25-40-gigabit-adapters/quickassist-adapter-8960-8970-
brief.html, last accessed June 9, 2020 (2019c).

Intel Corp., “Intel® Resource Director Technology (Intel® RDT),
Unlock System Performance in Dynamic Environments”, URL
https://www.intel.com/content/www/us/en/architecture-and-technology
/resource-director-technology.html, last accessed June 9, 2020 (2019d).

Intel Corp., “White Paper: Accelerating High-Speed Networking with Intel® I/OAT”,
URL https://www.intel.com/content/www/us/en/io/i-o-acceleration-
technology -paper.html, last accessed June 2, 2020 (2019e).

Intel Corp., “Intel oneAPI Product Brief”, URL
https://software.intel.com/content/www/us/en/develop/download/oneapi-
product-brief.html, last accessed June 9, 2020 (2020a).

Intel Corp., “Intel Quickassist Technology Accelerator Abstraction Layer
(AAL), White Paper, Platform-level Services for Accelerators”, URL
https://blog-assets.oss-cn-shanghai.aliyuncs.com/18951/
6103fadf4dd3a0dfbd0d637308a94b8e99e799d2.pdf, last accessed June 9, 2020
(2020b).

Intel Corp., “Introduction to virtual machine extensions”,
Https://xem.github.io/minix86/manual/intel-x86-and-64-manual-
vol3/o fe12b1e2a880e0ce-1043.html, Last accessed June 9, 2020 (2020c).

372

Intel Corp., “Virtual machine extension (VMX) operation”,
Https://software.intel.com/content/www/us/en/develop/documentation/debug-
extensions-windbg-hyper-v-user-guide/top/virtual-machine-extension-vmx-
operation.html, Last accessed June 9, 2020 (2020d).

Intel Corporation, “Clear linux* project”, URL https://clearlinux.org/about
(2020a).

Intel Corporation, “Configurable Spatial Accelerator (CSA)”,
Https://en.wikichip.org/wiki/intel/configurable spatial accelerator, last accessed
June 2, 2020 (2020b).

Intel Corporation, “Intel Quartus Prime Pro Edition User
Guide: Partial Reconfiguration, UG-20136, 2020.05.11”,
Https://www.intel.com/content/www/us/en/programmable/documentation/
tnc1513987819990.html, last accessed June 2, 2020 (2020c).

Intel Corporation, “Intel® Architecture Instruction Set Ex-
tensions and Future Features Programming Reference”,
Https://software.intel.com/sites/default/files/managed/c5/15/architecture-
instruction-set-extensions-programming-reference.pdf, Last accessed June 9, 2020
(2020d).

Jaber, M., M. A. Imran, R. Tafazolli and A. Tukmanov, “5G backhaul challenges and
emerging research directions: A survey”, IEEE Access 4, 1743–1766 (2016).

Jagadeesan, N. A. and B. Krishnamachari, “Software-defined networking paradigms
in wireless networks: A survey.”, ACM Comput. Surv. 47, 2, 27–1 (2014).

Jain, A. K., X. Li, P. Singhai, D. L. Maskell and S. A. Fahmy, “DeCO: A DSP block
based FPGA accelerator overlay with low overhead interconnect”, in “Proc. IEEE
Int. Symp. on Field-Progr. Custom Comp. Mach. (FCCM)”, pp. 1–8 (2016a).

Jain, P., S. J. Desai, M.-W. Shih, T. Kim, S. M. Kim, J.-H. Lee, C. Choi, Y. Shin,
B. B. Kang and D. Han, “OpenSGX: An open platform for SGX research”, in “Proc.
Netw. and Distr. Sys. Security Symp. (NDSS)”, (2016b).

Jain, R. and S. Paul, “Network virtualization and software defined networking for
cloud computing: A survey”, IEEE Communications Magazine 51, 11, 24–31 (2013).

Jang, H. B., J. Lee, J. Kong, T. Suh and S. W. Chung, “Leveraging process variation
for performance and energy: In the perspective of overclocking”, IEEE Transactions
on Computers 63, 5, 1316–1322 (2012).

Jani, N., M. Deval, A. Singhai, P. Sarangam, M. Aggarwal, N. Parikh, A. H. Duyck,
K. Patil, R. M. Sankaran, S. K. Kumar et al., “Virtual device composition in a
scalable input/output (I/O) virtualization (S-IOV) architecture”, US Patent App.
16/211,941 (2019).

373

Jeddeloh, J. and B. Keeth, “Hybrid memory cube new DRAM architecture increases
density and performance”, in “Proc. IEEE Symp. on VLSI Techn. (VLSIT)”, pp.
87–88 (2012).

Ji, B., C. Joo and N. Shroff, “Throughput-optimal scheduling in multihop wireless
networks without per-flow information”, IEEE/ACM T. Netw. 21, 2, 634–647
(2013).

Johansson, B., P. Soldati and M. Johansson, “Mathematical decomposition techniques
for distributed cross-layer optimization of data networks”, IEEE J. Sel. Area. Comm.
24, 1535–1547 (2006).

Junping, Z., K. Xu, M. Sohail and W. Cui, “Layer-aware data movement control for
containers”, US Patent 10,659,533 (2020).

Kaljic, E., A. Maric, P. Njemcevic and M. Hadzialic, “A survey on data plane flexibility
and programmability in Software-Defined Networking”, IEEE Access 7, 47804–47840
(2019).

Kang, D., W. Jeong, C. Kim, D.-H. Kim, Y. S. Cho, K.-T. Kang, J. Ryu, K.-M. Kang,
S. Lee, W. Kim et al., “256 Gb 3 b/cell V-NAND flash memory with 48 stacked
WL layers”, IEEE Journal of Solid-State Circuits 52, 1, 210–217 (2016a).

Kang, K., S. Park, J.-B. Lee, L. Benini and G. De Micheli, “A power-efficient 3-D
on-chip interconnect for multi-core accelerators with stacked L2 cache”, in “Proc.
EDA Conf. on Design, Autom. & Test in Europe”, pp. 1465–1468 (2016b).

Kapre, N. and J. Gray, “Hoplite: Building austere overlay NoCs for FPGAs”, in “Proc.
IEEE Int. Conf. on Field Progr. Logic and Appl.”, pp. 1–8 (2015).

Kar, K., X. Luo and S. Sarkar, “Throughput-optimal scheduling in multichannel access
point networks under infrequent channel measurements”, IEEE T. Wirel. Commun.
7, 7 (2008).

Kar, K., S. Sarkar, A. Ghavami and X. Luo, “Delay guarantees for throughput-optimal
wireless link scheduling”, IEEE T. Automat. Contr. 57, 11, 2906–2911 (2012).

Karakoc, N., A. Scaglione and A. Nedic, “Multi-layer decomposition of optimal
resource sharing problems”, in “2018 IEEE Conf. on Dec. and Control (CDC)”, pp.
178–183 (2018).

Karakoç, N., A. Scaglione, A. Nedić and M. Reisslein, “Multi-layer decomposition of
network utility maximization problems”, IEEE/ACM Transactions on Networking
28, 5, 2077–2091 (2020).

Karakoç, N., A. Scaglione, M. Reisslein and R. Wu, “Federated edge network utility
maximization for a multi- server system: Algorithm and convergence”, IEEE/ACM
Transactions on Networking, in print (2022).

374

Karandikar, S., A. Ou, A. Amid, H. Mao, R. Katz, B. Nikolić and K. Asanović,
“FirePerf: FPGA-accelerated full-system hardware/software performance profiling
and co-design”, in “Proc. ACM Int. Conf. on Arch. Support for Progr. Lang. and
Operat. Sys.”, pp. 715–731 (2020).

Karunaratne, M., A. K. Mohite, T. Mitra and L.-S. Peh, “HyCUBE: A CGRA with
reconfigurable single-cycle multi-hop interconnect”, in “Proc. ACM/EDAC/IEEE
Design Automation Conf. (DAC)”, pp. 1–6 (2017).

Kaur, K., T. Dhand, N. Kumar and S. Zeadally, “Container-as-a-service at the edge:
Trade-off between energy efficiency and service availability at fog nano data centers”,
IEEE Wireless Commun. 24, 3, 48–56 (2017).

Kavanagh, A., “OpenStack as the API framework for NFV: The benefits, and the
extensions needed”, Ericsson Review 2015-3, 1–8 (2015).

Kekely, M., L. Kekely and J. Kořenek, “General memory efficient packet matching
FPGA architecture for future high-speed networks”, Microproc. and Microsys. 73,
102950.1–102950.12 (2020).

Kellerer, W., P. Kalmbach, A. Blenk, A. Basta, M. Reisslein and S. Schmid, “Adaptable
and data-driven softwarized networks: Review, opportunities, and challenges”, Proc.
IEEE 107, 4, 711–731 (2019).

Kelly, F. P., A. K. Maulloo and D. K. H. Tan, “Rate control for communication
networks: Shadow prices, proportional fairness and stability”, The Journal of the
Operational Research Society 49, 3, 237–252 (1998).

Khan, S., D. Lee and O. Mutlu, “PARBOR: An efficient system-level technique to
detect data-dependent failures in DRAM”, in “Proc. IEEE/IFIP Int. Conf. on Dep.
Systems and Netw. (DSN)”, pp. 239–250 (2016).

Khan, S., C. Wilkerson, Z. Wang, A. R. Alameldeen, D. Lee and O. Mutlu, “Detect-
ing and mitigating data-dependent DRAM failures by exploiting current memory
content”, in “Proc. IEEE/ACM Int. Symp. on Microarchitecture”, pp. 27–40 (2017).

Kim, H. J., H. Hirayama, S. Kim, K. J. Han, R. Zhang and J. W. Choi, “Review of
near-field wireless power and communication for biomedical applications”, IEEE
Access 5, 21264–21285 (2017).

Kim, M. and Y. S. Shao, “Hardware acceleration”, IEEE Micro 38, 6, 6–7 (2018).

King, D., A. Farrel, E. N. King, R. Casellas, L. Velasco, R. Nejabati and A. Lord, “The
dichotomy of distributed and centralized control: METRO-HAUL, when control
planes collide for 5G networks”, Optical Switching and Networking 33, 49–55 (2019).

Koehler, S., J. Curreri and A. D. George, “Performance analysis challenges and
framework for high-performance reconfigurable computing”, Parallel Computing
34, 4-5, 217–230 (2008).

375

Kostal, K., R. Bencel, M. Ries, P. Truchly and I. Kotuliak, “High
performance SDN WLAN architecture”, Sensors 19, 8, URL
http://www.mdpi.com/1424-8220/19/8/1880 (2019).

Kouchaksaraei, H. R. and H. Karl, “Service function chaining across OpenStack and
Kubernetes domains”, in “Proc. ACM Int. Conf, on Distr, and Event-based Sys.”,
pp. 240–243 (2019).

Kourtis, M.-A., G. Xilouris, V. Riccobene, M. J. McGrath, G. Petralia, H. Koumaras,
G. Gardikis and F. Liberal, “Enhancing VNF performance by exploiting SR-IOV
and DPDK packet processing acceleration”, in “Proc. IEEE Conf. on Network
Function Virt. and Software Defined Netw. (NFV-SDN)”, pp. 74–78 (2015).

Kozat, U. C., A. Xiang, T. Saboorian and J. Kaippallimalil, “The requirements and
architectural advances to support URLLC verticals”, in “5G Verticals: Customiz-
ing Applications, Technologies and Deployment Techniques”, pp. 137–167 (Wiley,
Hoboken, NJ, 2020).

Kratzke, N. and P.-C. Quint, “Understanding cloud-native applications after 10 years
of cloud computing-a systematic mapping study”, Journal of Systems and Software
126, 1–16 (2017).

Krzywda, J., A. Ali-Eldin, T. E. Carlson, P.-O. Östberg and E. Elmroth, “Power-
performance tradeoffs in data center servers: DVFS, CPU pinning, horizontal, and
vertical scaling”, Future Generation Computer Systems 81, 114–128 (2018).

Kumar, S., A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tiensyrja
and A. Hemani, “A network on chip architecture and design methodology”, in “Proc.
IEEE Comp. Soc. Ann. Symp. on VLSI (ISVLSI)”, pp. 117–124 (2002).

Kutch, P., “PCI-SIG SR-IOV primer: An introduction to SR-IOV technology”, (2011).

Lachaize, R., B. Lepers and V. Quéma, “Memprof: A memory profiler for {NUMA}
multicore systems”, in “Presented as part of the 2012 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 12)”, pp. 53–64 (2012).

Lakshminarayana, S., M. Assaad and M. Debbah, “H-infinity control based scheduler
for the deployment of small cell networks”, Performance Eval. 70, 7, 513–527 (2013).

Lal, S., T. Taleb and A. Dutta, “NFV: Security threats and best practices”, IEEE
Commun. Magazine 55, 8, 211–217 (2017).

Lallet, J., A. Enrici and A. Saffar, “FPGA-based system for the acceleration of
cloud microservices”, in “Proc. IEEE Int. Symp. on Broadband Multi. Sys. and
Broadcasting”, pp. 1–5 (2018).

Landis, J. A., T. V. Powderly, R. Subrahmanian, A. Puthiyaparambil and J. R.
Hunter Jr, “Computer system para-virtualization using a hypervisor that is imple-
mented in a partition of the host system”, US Patent 7,984,108 (2011).

376

Langley, A., A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang, F. Koura-
nov, I. Swett, J. Iyengar et al., “The QUIC transport protocol: Design and Internet-
scale deployment”, in “Proc. Conf. ACM Special Interest Group on Data Communi-
cation”, pp. 183–196 (2017).

Lauer, H. and N. Kuntze, “Hypervisor-based attestation of virtual environments”,
in “2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Ad-
vanced and Trusted Computing, Scalable Computing and Communications, Cloud
and Big Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld)”, pp. 333–340 (IEEE, 2016).

Le, Y., H. Chang, S. Mukherjee, L. Wang, A. Akella, M. M. Swift and T. Lakshman,
“UNO: Uniflying host and smart NIC offload for flexible packet processing”, in “Proc.
ACM Symp. on Cloud Comp.”, pp. 506–519 (2017).

Lee, D. U., K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim, Y. J. Park, J. H. Kim,
D. S. Kim, H. B. Park, J. W. Shin et al., “25.2 A 1.2 V 8Gb 8-channel 128GB/s
high-bandwidth memory (HBM) stacked DRAM with effective microbump I/O test
methods using 29 nm process and TSV”, in “Proc. IEEE Int. Solid-State Circuits
Conf. Digest of Techn. Papers (ISSCC)”, pp. 432–433 (2014).

Lee, V. W., C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish,
M. Smelyanskiy, S. Chennupaty, P. Hammarlund et al., “Debunking the 100X GPU
vs. CPU myth: An evaluation of throughput computing on CPU and GPU”, ACM
SIGARCH Comp. Arch. News 38, 3, 451–460 (2010a).

Lee, Y., W. Kang and H. Son, “An Internet traffic analysis method with mapreduce”, in
“Proc. IEEE/IFIP Network Operations and Management Symposium Workshops”,
pp. 357–361 (2010b).

Leivadeas, A., G. Kesidis, M. Falkner and I. Lambadaris, “A graph partitioning
game theoretical approach for the VNF service chaining problem”, IEEE Trans. on
Network and Service Management 14, 4, 890–903 (2017).

Lepak, K., G. Talbot, S. White, N. Beck, S. Naffziger et al., “The next generation
AMD® enterprise server product architecture”, in “Proc. IEEE Hot Chips”, vol. 29,
pp. 1–26 (2017).

Lettieri, G., V. Maffione and L. Rizzo, “A survey of fast packet I/O technologies
for network function virtualization”, in “Proc. Int. Conf. on High Performance
Computing”, pp. 579–590 (2017).

Li, A., S. L. Song, J. Chen, J. Li, X. Liu, N. Tallent and K. Barker, “Evaluating
Modern GPU Interconnect: PCIe, NVLink, NV-SLI, NVSwitch and GPUDirect”,
arXiv preprint arXiv:1903.04611 (2019a).

Li, B., K. Tan, L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng and E. Chen,
“ClickNP: Highly flexible and high performance network processing with reconfig-
urable hardware”, in “Proc. ACM SIGCOMM Conf.”, pp. 1–14 (2016a).

377

Li, B., B. Yan and H. Li, “An overview of in-memory processing with emerging
non-volatile memory for data-intensive applications”, in “Proc. ACM Great Lakes
Symp. on VLSI”, pp. 381–386 (2019b).

Li, J., Z. Sun, J. Yan, X. Yang, Y. Jiang and W. Quan, “DrawerPipe: A reconfigurable
pipeline for network processing on FPGA-Based SmartNIC”, Electronics 9, 1,
59.1–59.24 (2020).

Li, S., C. Xu, Q. Zou, J. Zhao, Y. Lu and Y. Xie, “Pinatubo: A processing-in-memory
architecture for bulk bitwise operations in emerging non-volatile memories”, in
“Proc. ACM Ann. Des. Autom. Conf.”, pp. 1–6 (2016b).

Li, W., B. Guo, X. Li, Y. Zhou, S. Huang and G. N. Rouskas, “A large-scale nesting
ring multi-chip architecture for manycore processor systems”, Optical Switching
and Networking 31, 183–192 (2019c).

Li, W., Y. Zi, L. Feng, F. Zhou, P. Yu and X. Qiu, “Latency-optimal virtual network
functions resource allocation for 5G backhaul transport network slicing”, Applied
Sciences 9, 4 (2019d).

Li, X., R. Casellas, G. Landi, A. de la Oliva, X. Costa-Perez, A. Garcia-Saavedra,
T. Deiss, L. Cominardi and R. Vilalta, “5G-Crosshaul network slicing: Enabling
multi-tenancy in mobile transport networks”, IEEE Commun. Mag. 55, 8, 128–137
(2017).

Li, X. and C. Qian, “A survey of network function placement”, in “Proc. IEEE
Consumer Commun. & Netw. Conf. (CCNC)”, pp. 948–953 (2016).

Li, Y. and M. Chen, “Software-defined network function virtualization: A survey”,
IEEE Access 3, 2542–2553 (2015).

Liao, G., D. Guo, L. Bhuyan and S. R. King, “Software techniques to improve
virtualized I/O performance on multi-core systems”, in “Proceedings of the 4th
ACM/IEEE Symposium on Architectures for Networking and Communications
Systems”, pp. 161–170 (2008).

Lin, F., “Accelerate the Exploration of the Value of Ge-
nomic Data with Intel® QuickAssist Technology”, URL
https://01.org/sites/default/files/downloads/intelr-quickassist-
technology/336873-001crpesscasestudybgiquickassist.pdf (2018).

Lin, X., N. B. Shroff and R. Srikant, “A tutorial on cross-layer optimization in wireless
networks”, IEEE J. Sel. Area. Comm. 24, 8, 1452–1463 (2006).

Lin, X., N. B. Shroff and R. Srikant, “On the connection-level stability of congestion-
controlled communication networks”, IEEE T. Inform. Theory 54, 5, 2317–2338
(2008).

Linguaglossa, L., S. Lange, S. Pontarelli, G. Rétvári, D. Rossi, T. Zinner, R. Bifulco,
M. Jarschel and G. Bianchi, “Survey of performance acceleration techniques for
network function virtualization”, Proc. of the IEEE 107, 4, 746–764 (2019).

378

Linux Assembly, “Virtual machine extensions (VMX) instructions set”,
Http://linasm.sourceforge.net/docs/instructions/vmx.php, Last accessed June 9,
2020 (2018).

Linux Foundation, “IO Visor Project”, URL https://www.iovisor.org/, last ac-
cessed Apr. 2, 2020 (2020).

Littley, M., A. Anwar, H. Fayyaz, Z. Fayyaz, V. Tarasov, L. Rupprecht, D. Skourtis,
M. Mohamed, H. Ludwig, Y. Cheng et al., “Bolt: Towards a scalable Docker registry
via hyperconvergence”, in “Proc. IEEE Cloud Comp.”, pp. 358–366 (2019).

Liu, J. and Q. Zhang, “Offloading schemes in mobile edge computing for ultra-reliable
low latency communications”, IEEE Access 6, 12825–12837 (2018).

Liu, J., S. Zhou, J. Gong, Z. Niu and S. Xu, “Statistical multiplexing gain analysis
of heterogeneous virtual base station pools in cloud radio access networks”, IEEE
Trans. Wireless Communications 15, 8, 5681–5694 (2016a).

Liu, T., K. Wang, C. Ku and Y. Hsu, “QoS-aware resource management for multimedia
traffic report systems over LTE-A”, Computer Networks 94, 375–389 (2016b).

Lopez Rodriguez, F., U. Silva Dias, D. R. Campelo, R. d. Oliveira Albuquerque, S.-J.
Lim and L. J. Garcia Villalba, “QoS management and flexible traffic detection
architecture for 5G mobile networks”, Sensors 19, 6 (2019).

Lotfollahi, M., M. J. Siavoshani, R. S. H. Zade and M. Saberian, “Deep packet: A novel
approach for encrypted traffic classification using deep learning”, Soft Computing
24, 3, 1999–2012 (2020).

Low, S. H. and D. E. Lapsley, “Optimization flow control. I. basic algorithm and
convergence”, IEEE/ACM Trans. on Netw. 7, 6, 861–874 (1999).

Lu, J., Y. Wan, Y. Li, C. Zhang, H. Dai, Y. Wang, G. Zhang and B. Liu, “Ultra-fast
bloom filters using SIMD techniques”, IEEE Trans. on Parallel and Distr. Sys. 30,
4, 953–964 (2018).

Lu, Z., Y. Wu, J. Xu and T. Wang, “An acceleration method for Docker image
update”, in “Proc. IEEE Int. Conf. on Fog Comp.”, pp. 15–23 (2019).

Lucani, D. E., M. V. Pedersen, D. Ruano, C. W. Sørensen, F. H. Fitzek, J. Heide,
O. Geil, V. Nguyen and M. Reisslein, “Fulcrum: Flexible network coding for
heterogeneous devices”, IEEE Access 6, 77890–77910 (2018).

Luong, N. C., P. Wang, D. Niyato, Y.-C. Liang, Z. Han and F. Hou, “Applications of
economic and pricing models for resource management in 5G wireless networks: A
survey”, IEEE Communications Surveys & Tutorials, in print (2019).

Luong, P., F. Gagnon, C. Despins and L.-N. Tran, “Joint virtual computing and radio
resource allocation in limited fronthaul green C-RANs”, IEEE Trans. on Wireless
Communications 17, 4, 2602–2617 (2018).

379

Lyu, X., C. Ren, W. Ni, H. Tian, R. P. Liu and Y. J. Guo, “Multi-timescale decentral-
ized online orchestration of software-defined networks”, IEEE Journal on Selected
Areas in Communications 36, 12, 2716–2730 (2018).

Ma, L., S. Yi and Q. Li, “Efficient service handoff across edge servers via docker
container migration”, in “Proc. IEEE Symp. Edge Comp.”, pp. 1–13 (2017).

Ma, Z., S. Shao, S. Guo, Z. Wang, F. Qi and A. Xiong, “Container migration mechanism
for load balancing in edge network under power internet of things”, IEEE Access 8,
118405–118416 (2020).

Macri, J., “AMD’s next generation GPU and high bandwidth memory architecture:
FURY”, in “Proc. IEEE Hot Chips Symp. (HCS)”, pp. 1–26 (2015).

Mahajan, R., Z. Qian, R. S. Viswanath, S. Srinivasan, K. Aygün, W.-L. Jen, S. Sharan
and A. Dhall, “Embedded multidie interconnect bridge–a localized, high-density
multichip packaging interconnect”, IEEE Trans. on Components, Packaging and
Manufacturing Techn. 9, 10, 1952–1962 (2019a).

Mahajan, R., R. Sankman, K. Aygun, Z. Qian, A. Dhall, J. Rosch, D. Mallik and
I. Salama, “Embedded multi-die interconnect bridge (EMIB): A localized, high
density, high bandwidth packaging interconnect”, in “Advances in Embedded and
Fan-Out Wafer-Level Packaging Technologies”, pp. 487–499 (Wiley – IEEE Press,
Hoboken, NJ, 2019b).

Majo, Z. and T. R. Gross, “Memory management in numa multicore systems: trapped
between cache contention and interconnect overhead”, in “Proceedings of the
international symposium on Memory management”, pp. 11–20 (2011).

Makineni, S. and R. Iyer, “Performance characterization of TCP/IP packet processing
in commercial server workloads”, in “Proc. IEEE Int. Conf. on Commun.”, pp.
33–41 (2003).

Mao, Y., J. Zhang, S. Song and K. B. Letaief, “Stochastic joint radio and computa-
tional resource management for multi-user mobile-edge computing systems”, IEEE
Transactions on Wireless Communications 16, 9, 5994–6009 (2017).

Marabissi, D., R. Fantacci and L. Simoncini, “SDN-based routing for backhauling in
ultra-dense networks”, Journal of Sensor and Actuator Networks 8, 2, 1–23 (2019).

Mardani, M., G. Mateos and G. B. Giannakis, “Recovery of low-rank plus compressed
sparse matrices with application to unveiling traffic anomalies”, IEEE Transactions
on Information Theory 59, 8, 5186–5205 (2013).

Mart́ı Luque, A., Developing and deploying NFV solutions with OpenStack, Kubernetes
and Docker, Master’s thesis, Universitat Politècnica de Catalunya (2019).

Martin, A., S. Raponi, T. Combe and R. Di Pietro, “Docker ecosystem–vulnerability
analysis”, Computer Commun. 122, 30–43 (2018).

380

Marvell, “NITROX® III Security Processor Family”,
Https://www.marvell.com/products/security-solutions/nitrox-security-
processors/nitrox-iii.html, Last accessed June 9, 2020 (2020).

Matthews, E. and L. Shannon, “Taiga: A new RISC-V soft-processor framework
enabling high performance CPU architectural features”, in “Proc. IEEE Int. Conf.
on Field Progr. Logic and Appl. (FPL)”, pp. 1–4 (2017).

Mayoral, A., R. Munoz, R. Vilalta, R. Casellas, R. Martinez and V. Lopez, “Need
for a transport API in 5G for global orchestration of cloud and networks through
a virtualized infrastructure manager and planner [invited]”, IEEE/OSA J. Opt.
Commun. and Netw. 9, 1, A55–A62 (2017).

McDonnell, N. D., Z. Zhu and J. Mangan, “Power aware load balancing using a
hardware queue manager”, US Patent App. 16/131,728 (2019).

McGinnis, C., “PCI-SIG® Fast Tracks Evolution to 32 GT/s with PCI Express 5.0
Architecture”, News Release, June 7 (2017).

Mechtri, M., C. Ghribi, O. Soualah and D. Zeghlache, “NFV orchestration framework
addressing SFC challenges”, IEEE Communications Magazine 55, 6, 16–23 (2017).

Medhat, A. M., T. Taleb, A. Elmangoush, G. A. Carella, S. Covaci and T. Magedanz,
“Service function chaining in next generation networks: State of the art and research
challenges”, IEEE Communications Magazine 55, 2, 216–223 (2017).

Mehrabi, M., S. Shen, Y. Hai, V. Latzko, G. P. Koudouridis, X. Gelabert, M. Reisslein
and F. H. Fitzek, “Mobility-and energy-aware cooperative edge offloading for
dependent computation tasks”, Network 1, 2, 191–214 (2021).

Mehrabi, M., D. You, V. Latzko, H. Salah, M. Reisslein and F. H. P. Fitzek, “Device-
enhanced MEC: Multi-access edge computing (MEC) aided by end device computa-
tion and caching: A survey”, IEEE Access 7, 166079–166108 (2019).

Meng, N., M. Strassmaier and J. Erwin, “LS-DYNA® Performance on Intel® Scalable
Solutions”, in “Proc. Int. LS-DYNA® Users Conf.”, pp. 1–8 (2018).

Merrifield, T. and H. R. Taheri, “Performance implications of extended page tables
on virtualized x86 processors”, ACM SIGPLAN Notices 51, 7, 25–35 (2016).

Mharsi, N., M. Hadji, D. Niyato, W. Diego and R. Krishnaswamy, “Scalable and
cost-efficient algorithms for baseband unit (BBU) function split placement”, in
“Proc. IEEE Wireless Commun. and Netw. Conf. (WCNC)”, pp. 1–6 (2018).

Mijumbi, R., J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck and R. Boutaba,
“Network function virtualization: State-of-the-art and research challenges”, IEEE
Commun. Surveys & Tutorials 18, 1, 236–262 (2015).

381

Mikaeil, A. M., W. Hu, S. B. Hussain and A. Sultan, “Traffic-estimation-
based low-latency XGS-PON mobile front-haul for small-cell C-RAN based
on an adaptive learning neural network”, Applied Sciences 8, 7, URL
http://www.mdpi.com/2076-3417/8/7/1097 (2018).

Miotto, G., M. C. Luizelli, W. L. da Costa Cordeiro and L. P. Gaspary, “Adaptive
placement & chaining of virtual network functions with NFV-PEAR”, J. Internet
Services and Appl. 10, 1, 3.1–3.19 (2019).

Mnejja, S., Y. Aydi, M. Abid, S. Monteleone, V. Catania, M. Palesi and D. Patti, “Delta
multi-stage interconnection networks for scalable wireless on-chip communication”,
Electronics 9, 6, 913.1–913.19 (2020).

Moby, “Moby project: An open framework to assemble specialized container systems
without reinventing the wheel”, URL https://mobyproject.org/ (2020).

Moon, Y., S. Lee, M. A. Jamshed and K. Park, “AccelTCP: Accelerating network
applications with stateful TCP offloading”, in “Proc. USENIX Symp. on Netw.
Systems Design and Impl. (NSDI)”, pp. 77–92 (2020).

Morabito, R., “A performance evaluation of container technologies on internet of
things devices”, in “Proc. IEEE Infoc. Wkshp.”, pp. 999–1000 (2016).

Morais, L., V. Silva, A. Goldman, C. Alvarez, J. Bosch, M. Frank and G. Araujo,
“Adding tightly-integrated task scheduling acceleration to a RISC-V multi-core
processor”, in “Proc. IEEE/ACM Int. Symp. on Microarch.”, pp. 861–872 (2019).

Nadgowda, S., S. Suneja, N. Bila and C. Isci, “Voyager: Complete container state
migration”, in “Proc. IEEE Int. Conf. Distr. Comp. Sys.”, pp. 2137–2142 (2017).

Nagaraj, D. and C. Gianos, “Intel® Xeon® processor D: The first Xeon processor
optimized for dense solutions”, in “Proc. IEEE Hot Chips Symp. (HCS)”, pp. 1–22
(2015).

Nakajima, J., Q. Lin, S. Yang, M. Zhu, S. Gao, M. Xia, P. Yu, Y. Dong, Z. Qi, K. Chen
et al., “Optimizing virtual machines using hybrid virtualization”, in “Proceedings
of the 2011 ACM Symposium on Applied Computing”, pp. 573–578 (2011).

Nakajima, Y., H. Masutani and H. Takahashi, “High-performance vNIC framework
for hypervisor-based NFV with userspace vSwitch”, in “Proc. IEEE Eu. Workshop
on Software Defined Netw.”, pp. 43–48 (2015).

Narmanlioglu, O., E. Zeydan and S. S. Arslan, “Service-aware multi-resource allocation
in software-defined next generation cellular networks”, IEEE Access 6, 20348–20363
(2018).

Nasrallah, A., A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao, M. Reisslein and
H. ElBakoury, “Ultra-low latency (ULL) networks: The IEEE TSN and IETF
DetNet standards and related 5G ULL research”, IEEE Communications Surveys
& Tutorials 21, 1, 88–145 (2018).

382

Nasrallah, A., A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao, M. Reisslein and
H. Elbakoury, “Performance comparison of ieee 802.1 tsn time aware shaper (tas)
and asynchronous traffic shaper (ats)”, IEEE Access 7, 44165–44181 (2019).

Neely, M. J., “Energy optimal control for time-varying wireless
networks”, IEEE Trans. Inf. Theor. 52, 7, 2915–2934, URL
http://dx.doi.org/10.1109/TIT.2006.876219 (2006).

Neely, M. J., “Delay-based network utility maximization”, IEEE/ACM T. Netw. 21,
1, 41–54 (2013).

Nehama, D., R. Shiveley, J. Gasparakis and R. Love, “Develop-
ing High-Performance, Flexible SDN & NFV Solutions with Intel®

Open Network Platform Server Reference Architecture”, URL
http://docplayer.net/4394470-Developing-high-performance-flexible-sdn
-nfv-solutions-with-intel-open-network-platform-server-reference-
architecture.html, last accessed June 9, 2020 (2014).

Neiger, G., A. Santoni, F. Leung, D. Rodgers and R. Uhlig, “Intel virtualization tech-
nology: Hardware support for efficient processor virtualization.”, Intel Technology
Journal 10, 3, 167–178 (2006).

Neshatpour, K., M. Malik, A. Sasan, S. Rafatirad and H. Homayoun, “Hardware
accelerated mappers for Hadoop MapReduce streaming”, IEEE Trans. on Multi-
Scale Computing Sys. 4, 4, 734–748 (2018).

Nguyen, V., E. Tasdemir, G. T. Nguyen, D. E. Lucani, F. H. P. Fitzek and M. Reisslein,
“DSEP Fulcrum: Dynamic sparsity and expansion packets for Fulcrum network
coding”, IEEE Access 8, 78293–78314 (2020).

Nguyen, V.-G., A. Brunstrom, K.-J. Grinnemo and J. Taheri, “SDN/NFV-based
mobile packet core network architectures: A survey”, IEEE Commun. Surveys &
Tutorials 19, 3, 1567–1602 (2017).

Ni, Z., G. Liu, D. Afanasev, T. Wood and J. Hwang, “Advancing network function
virtualization platforms with programmable NICs”, in “Proc. IEEE Int. Symp. on
Local and Metropolitan Area Netw. (LANMAN)”, pp. 1–6 (2019).

Nie, J., C. Zhang, D. Zou, F. Xia, L. Lu, X. Wang and F. Zhao, “Adaptive sparse
matrix-vector multiplication on CPU-GPU heterogeneous architecture”, in “Proc.
ACM High Perf. Comp. and Cluster Techn. Conf.”, pp. 6–10 (2019).

Niemiec, G. S., L. M. S. Batista, A. E. Schaeffer-Filho and G. L. Nazar, “A survey on
FPGA support for the feasible execution of virtualized network functions”, IEEE
Commun. Surveys & Tutorials 22, 1, 504–525 (2020).

Niephaus, C., O. G. Aliu, M. Kretschmer, S. Hadzic and G. Ghinea, “Wireless Back-
haul: a software defined network enabled wireless back-haul network architecture
for future 5G networks”, IET Networks 4, 6, 287–295 (2015).

383

Niu, B., Y. Zhou, H. Shah-Mansouri and V. W. S. Wong, “A dynamic resource sharing
mechanism for cloud radio access networks”, IEEE Trans. Wirel. Comm. 15, 12,
8325–8338 (2016).

Nobach, L. and D. Hausheer, “Open, elastic provisioning of hardware acceleration in
NFV environments”, in “Proc. IEEE Int. Conf. and Workshops on Networked Sys.
(NetSys)”, pp. 1–5 (2015).

Nunes, F. D. and M. E. Kreutz, “Using SDN strategies to improve resource management
on a NoC”, in “Proc. IFIP/IEEE Int. Conf. on Very Large Scale Integration (VLSI-
SoC)”, pp. 224–225 (2019).

Nurvitadhi, E., J. Sim, D. Sheffield, A. Mishra, S. Krishnan and D. Marr, “Accelerating
recurrent neural networks in analytics servers: Comparison of FPGA, CPU, GPU,
and ASIC”, in “Proc. IEEE Int. Conf. on Field Progr. Logic and Appl. (FPL)”, pp.
1–4 (2016).

NVidia Fermi, “Nvidia’s next generation CUDA compute architecture”, NVidia, Santa
Clara, CA (2009).

Ogawa, H., G. K. Tran, K. Sakaguchi and T. Haustein, “Traffic adaptive formation
of mmWave meshed backhaul networks”, in “Proc. IEEE ICC Workshops”, pp.
185–191 (2017).

Ogudo, K. A., D. Muwawa Jean Nestor, O. Ibrahim Khalaf and H. Daei Kasmaei,
“A device performance and data analytics concept for smartphones’ iot services
and machine-type communication in cellular networks”, Symmetry 11, 4, URL
http://www.mdpi.com/2073-8994/11/4/593 (2019).

Oliva, L., A. De, X. C. Perez, A. Azcorra, A. D. Giglio, F. Cavaliere, D. Tiegelbekkers,
J. Lessmann, T. Haustein, A. Mourad and P. Iovanna, “Xhaul: toward an integrated
fronthaul/backhaul architecture in 5G networks”, IEEE Wireless Commun. 22, 5,
32–40 (2015).

Ordonez-Lucena, J., P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz, J. Lorca and
J. Folgueira, “Network slicing for 5G with SDN/NFV: Concepts, architectures, and
challenges”, IEEE Communications Magazine 55, 5, 80–87 (2017).

OSv, “NFV-optimized OS”, URL http://osv.io/nfv (2020).

Ouyang, Y., Q. Wang, M. Ru, H. Liang and J. Li, “A novel low-latency regional
fault-aware fault-tolerant routing algorithm for wireless NoC”, IEEE Access 8,
22650–22663 (2020).

Owaida, M., G. Alonso, L. Fogliarini, A. Hock-Koon and P.-E. Melet, “Lowering the
latency of data processing pipelines through FPGA based hardware acceleration”,
Proc. of the VLDB Endowment 13, 1, 71–85 (2019).

Ozdal, M. M., S. Yesil, T. Kim, A. Ayupov, J. Greth, S. Burns and O. Ozturk, “Energy
efficient architecture for graph analytics accelerators”, in “Proc. ACM/IEEE Int.
Symp. on Comp. Arch. (ISCA)”, pp. 166–177 (2016).

384

Palomar, D. P. and M. Chiang, “A tutorial on decomposition methods for network
utility maximization”, IEEE Journal on Selected Areas in Communications 24, 8,
1439–1451 (2006).

Pan, C. and A. Naeemi, “A fast system-level design methodology for heterogeneous
multi-core processors using emerging technologies”, IEEE Journal on Emerging and
Selected Topics in Circuits and Systems 5, 1, 75–87 (2015).

Papadimitriou, G., M. Kaliorakis, A. Chatzidimitriou, D. Gizopoulos, P. Lawthers
and S. Das, “Harnessing voltage margins for energy efficiency in multicore CPUs”,
in “Proc. IEEE/ACM Int. Symp. on Microarch.”, pp. 503–516 (2017).

Park, D., A. Vaidya, A. Kumar and M. Azimi, “MoDe-X: Microarchitecture of a layout-
aware modular decoupled crossbar for on-chip interconnects”, IEEE Transactions
on Computers 63, 3, 622–636 (2012).

Parvez, I., A. Rahmati, I. Guvenc, A. I. Sarwat and H. Dai, “A survey on low latency
towards 5G: RAN, core network and caching solutions”, IEEE Commun. Surv. &
Tut. 20, 4, 3098–3130 (2018).

Pateromichelakis, E., J. Gebert, T. Mach, J. Belschner, W. Guo, N. P. Kuruvatti,
V. Venkatasubramanian and C. Kilinc, “Service-tailored user-plane design framework
and architecture considerations in 5G radio access networks”, IEEE Access 5, 17089–
17105 (2017).

Pattaranantakul, M., R. He, Q. Song, Z. Zhang and A. Meddahi, “NFV security
survey: From use case driven threat analysis to state-of-the-art countermeasures”,
IEEE Commun. Surveys & Tutorials 20, 4, 3330–3368 (2018).

Pattaranantakul, M., Q. Song, Y. Tian, L. Wang, Z. Zhang and A. Meddahi, “Foot-
prints: Ensuring trusted service function chaining in the world of SDN and NFV”, in
“Proc. Int. Conf. on Security and Privacy in Commun. Sys.”, pp. 287–301 (Springer,
Cham, Switzerland, 2019).

Pauls, F., R. Wittig and G. Fettweis, “A latency-optimized hash-based digital signature
accelerator for the tactile internet”, in “Proc. Int. Conf. on Embedded Computer
Systems, Lecture Notes in Computer Science, vol 11733”, pp. 93–106 (Springer,
Cham, Switzerland, 2019).

Pellegrini, A., N. Stephens, M. Bruce, Y. Ishii, J. Pusdesris, A. Raja, C. Abernathy,
J. Koppanalil, T. Ringe, A. Tummala et al., “The Arm Neoverse N1 platform:
Building blocks for the next-gen cloud-to-edge infrastructure SoC”, IEEE Micro 40,
2, 53–62 (2020).

Perez-Botero, D., J. Szefer and R. B. Lee, “Characterizing hypervisor vulnerabilities
in cloud computing servers”, in “Proceedings of the 2013 international workshop on
Security in cloud computing”, pp. 3–10 (2013).

Pham, Q.-V., H.-L. To and W.-J. Hwang, “A multi-timescale cross-layer approach for
wireless ad hoc networks”, Comput. Netw. 91, 471–482 (2015).

385

Pitaev, N., M. Falkner, A. Leivadeas and I. Lambadaris, “Characterizing the perfor-
mance of concurrent virtualized network functions with OVS-DPDK, FD.IO VPP
and SR-IOV”, in “Proc. ACM/SPEC Int. Conf. on Perform. Eng.”, pp. 285–292
(2018).

Plouffe, J., S. H. Davis, A. D. Vasilevsky, B. J. Thomas III, S. S. Noyes and T. Hazel,
“Distributed virtual machine monitor for managing multiple virtual resources across
multiple physical nodes”, US Patent 8,776,050 (2014).

Pongrácz, G., L. Molnár and Z. L. Kis, “Removing roadblocks from SDN: Openflow
software switch performance on Intel DPDK”, in “Proc. IEEE Eu. Workshop on
Software Defined Netw.”, pp. 62–67 (2013).

Pontarelli, S., M. Bonola and G. Bianchi, “Smashing OpenFlow’s ”atomic” actions:
Programmable data plane packet manipulation in hardware”, Int. Journal of Netw.
Management 29, 1, e2043.1–e2043.20 (2019).

Power, N., S. Harte, N. D. McDonnell and A. Cunningham, “System, apparatus and
method for real-time activated scheduling in a queue management device”, US
Patent App. 15/719,769 (2019).

Prasad, N., M. Arslan and S. Rangarajan, “A two time scale approach for coordinated
multi-point transmission and reception over practical backhaul”, in “Proc. Int. Conf.
on Commun. Sys. and Netw. (COMSNETS)”, pp. 1–8 (2014).

Qadir, J., N. Ahmed and N. Ahad, “Building programmable wireless networks: an ar-
chitectural survey”, EURASIP Journal on Wireless Communications and Networking
2014, 1, 1–31 (2014).

qatzip, “Intel® QuickAssist Technology (QAT) QATzip Library”, URL
https://github.com/intel/QATzip (2020).

Raj, H. and K. Schwan, “High performance and scalable I/O virtualization via self-
virtualized devices”, in “Proceedings of the 16th international symposium on High
performance distributed computing”, pp. 179–188 (2007).

Ramirez-Perez, C. and V. Ramos, “SDN meets SDR in self-organizing networks:
Fitting the pieces of network management”, IEEE Commun. Mag. 54, 1, 48–57
(2016).

Randazzo, A. and I. Tinnirello, “Kata containers: An emerging architecture for en-
abling mec services in fast and secure way”, in “2019 Sixth International Conference
on Internet of Things: Systems, Management and Security (IOTSMS)”, pp. 209–214
(IEEE, 2019).

Rao, J., K. Wang, X. Zhou and C.-Z. Xu, “Optimizing virtual machine scheduling in
numa multicore systems”, in “2013 IEEE 19th International Symposium on High
Performance Computer Architecture (HPCA)”, pp. 306–317 (IEEE, 2013).

386

Raparti, V. Y., N. Kapadia and S. Pasricha, “ARTEMIS: An aging-aware runtime
application mapping framework for 3D NoC-based chip multiprocessors”, IEEE
Transactions on Multi-Scale Computing Systems 3, 2, 72–85 (2017).

Ray, J., V. George, I. M. Sodhi and J. R. Wilcox, “Common platform for one-level
memory architecture and two-level memory architecture”, US Patent 9,600,413
(2017).

Regula, J., “Using non-transparent bridging in PCI Express systems, White Pa-
per”, URL https://docs.broadcom.com/doc/12353428, last accessed Apr. 4, 2020
(2004).

Rehman, A. U., R. L. Aguiar and J. P. Barraca, “Network functions virtualization:
The long road to commercial deployments”, IEEE Access 7, 60439–60464 (2019).

Rehmani, M. H., A. Davy, B. Jennings, Z. Kaleem, A. S. Thyagaturu, H. Moustafa and
A.-S. K. Pathan, “Ieee access special section editorial: Software-defined networks
for energy internet and smart grid communication”, IEEE Access 9, 69139–69142
(2021).

Reis, D., J. Takeshita, T. Jung, M. Niemier and X. S. Hu, “Computing-in-memory
for performance and energy efficient homomorphic encryption”, arXiv preprint
arXiv:2005.03002 (2020).

Reza, A., “Online multi-application mapping in photonic Network-on-Chip with mesh
topology”, Optical Switching and Networking 25, 100–108 (2017).

Ricart-Sanchez, R., P. Malagon, A. Matencio-Escolar, J. M. Alcaraz Calero and
Q. Wang, “Toward hardware-accelerated QoS-aware 5G network slicing based on
data plane programmability”, Trans. on Emerging Telecommun. Techn. 31, 1,
e3726.1–e3726.19 (2020).

Richart, M., J. Baliosian, J. Serrat and J. L. Gorricho, “Resource slicing in virtual
wireless networks: A survey”, IEEE Trans. on Network and Service Management
13, 3, 462–476 (2016a).

Richart, M., J. Baliosian, J. Serrat and J.-L. Gorricho, “Resource slicing in virtual
wireless networks: A survey”, IEEE Trans. on Network and Service Management
13, 3, 462–476 (2016b).

Rischke, J., P. Sossalla, S. Itting, F. H. P. Fitzek and M. Reisslein, “5G campus
networks: A first measurement study”, IEEE Access 9, 121786–121803 (2021).

Rodrigues, J. J. P. C., D. B. D. R. Segundo, H. A. Junqueira, M. H. Sabino, R. M.
Prince, J. Al-Muhtadi and V. H. C. D. Albuquerque, “Enabling technologies for the
Internet of Health Things”, IEEE Access 6, 13129–13141 (2018).

Rodriguez, M. A. and R. Buyya, “Container-based cluster orchestration systems: A
taxonomy and future directions”, Software: Practice and Experience 49, 5, 698–719
(2019).

387

Rooney, R. and N. Koyle, “Introducing Micron® DDR5
SDRAM: More Than a Generational Update”, URL
https://www.micron.com/-/media/client/global/documents/products/
white-paper/ddr5 new features white paper.pdf, last accessed June 9, 2020
(2019).

Roseboro, R., “Cloud-native NFV architecture for agile service creation & scal-
ing”, Https://www.mellanox.com/related-docs/whitepapers/wp-heavyreading-nfv-
architecture-for-agile-service.pdf, Last accessed May 19, 2020 (2016).

Ross, K. W., Multiservice Loss Models for Broadband Telecommunication Networks
(Springer Science, London, UK, 1995).

Ruaro, M., N. Velloso, A. Jantsch and F. G. Moraes, “Distributed SDN architecture for
NoC-based many-core SoCs”, in “Proceedings of the 13th IEEE/ACM International
Symposium on Networks-on-Chip”, pp. 1–8 (2019).

Ruiz, M., D. Sidler, G. Sutter, G. Alonso and S. López-Buedo, “Limago: An FPGA-
based open-source 100 GbE TCP/IP Stack”, in “Proc. IEEE Int. Conf. on Field
Progr. Logic and Appl.”, pp. 286–292 (2019).

Russell, R., “virtio: towards a de-facto standard for virtual i/o devices”, ACM SIGOPS
Operating Systems Review 42, 5, 95–103 (2008).

Sachs, J., G. Wikstrom, T. Dudda, R. Baldemair and K. Kittichokechai, “5G radio
network design for ultra-reliable low-latency communication”, IEEE Network 32, 2,
24–31 (2018).

sagroups, “Next generation fronthaul interface (1914) working group”, URL
http://sites.ieee.org/sagroups-1914 (1914).

Sailer, R., E. Valdez, T. Jaeger, R. Perez, L. Van Doorn, J. L. Griffin, S. Berger,
R. Sailer, E. Valdez, T. Jaeger et al., “sHype: Secure hypervisor approach to trusted
virtualized systems”, Techn. Rep. RC23511 5 (2005).

Samdanis, K., R. Shrivastava, A. Prasad, D. Grace and X. Costa-Perez, “TD-LTE
Virtual Cells: An SDN architecture for user-centric multi-eNB elastic resource
management”, Computer Commun. 83, 1–15 (2016).

Sandoval-Arechiga, R., R. Parra-Michel, J. Vazquez-Avila, J. Flores-Troncoso and
S. Ibarra-Delgado, “Software defined networks-on-chip for multi/many-core systems:
A performance evaluation”, in “Proc. ACM Symp. on Arch. for Netw. and Commun.
Sys.”, pp. 129–130 (2016).

Santa, J., P. J. Fernandez, J. Ortiz, R. Sanchez-Iborra and A. F. Skarmeta, “SUR-
ROGATES: Virtual OBUs to foster 5G vehicular services”, Electronics 8, 2, URL
http://www.mdpi.com/2079-9292/8/2/117 (2019).

388

Scarpiniti, M., E. Baccarelli and A. Momenzadeh, “VirtFogSim: A paral-
lel toolbox for dynamic energy-delay performance testing and optimization
of 5G mobile-fog-cloud virtualized platforms”, Applied Sciences 9, 6, URL
http://www.mdpi.com/2076-3417/9/6/1160 (2019).

Scheepers, M. J., “Virtualization and containerization of application infrastructure: A
comparison”, in “Proc. Stu. Conf. IT”, pp. 1–7 (2014).

Scheitle, Q., T. Chung, J. Amann, O. Gasser, L. Brent, G. Carle, R. Holz, J. Hiller,
J. Naab, R. van Rijswijk-Deij, O. Hohlfeld, D. Choffnes and A. Mislove, “Measuring
adoption of security additions to the HTTPS ecosystem”, in “Proc. of the Applied
Net. Research Workshop”, pp. 1–2 (2018).

Schone, R., D. Hackenberg and D. Molka, “Memory performance at reduced CPU clock
speeds: An analysis of current x86 64 processors”, in “Proc USENIX Workshop on
Power-Aware Computing and Systems”, pp. 1–5 (2012).

Scionti, A., S. Mazumdar and A. Portero, “Software defined network-on-chip for
scalable CMPs”, in “Proc. IEEE Int. Conf. on High Perf. Comp. & Simul. (HPCS)”,
pp. 112–115 (2016).

Scionti, A., S. Mazumdar and A. Portero, “Towards a scalable software defined
network-on-chip for next generation cloud”, Sensors 18, 7, 2330.1–2330.24 (2018).

Sebastian, A., M. Le Gallo, R. Khaddam-Aljameh and E. Eleftheriou, “Memory
devices and applications for in-memory computing”, Nature Nanotechnology pp.
1–16 (2020).

Semiari, O., W. Saad, S. Valentin, M. Bennis and H. Vincent Poor, “Context-aware
small cell networks: How social metrics improve wireless resource allocation”, IEEE
Transactions on Wireless Communications 14, 11, 5927–5940 (2015).

Sengupta, S., S. Basak, P. Saikia, S. Paul, V. Tsalavoutis, F. Atiah, V. Ravi and
A. Peters, “A review of deep learning with special emphasis on architectures,
applications and recent trends”, Knowledge-Based Systems 194, 105596.1–105596.33
(2020).

Seshadri, A., M. Luk, N. Qu and A. Perrig, “Secvisor: A tiny hypervisor to provide
lifetime kernel code integrity for commodity oses”, in “Proceedings of twenty-first
ACM SIGOPS symposium on Operating systems principles”, pp. 335–350 (2007).

Seshadri, V., D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch,
O. Mutlu, P. B. Gibbons and T. C. Mowry, “Ambit: In-memory accelerator for bulk
bitwise operations using commodity DRAM technology”, in “Proc. IEEE/ACM Int.
Symp. on Microarch.”, pp. 273–287 (2017).

Shah, P. and R. Patil, “Hardware Assisted Virtualization, 15-612
Operating System Practicum, Carnegie Mellon University”, URL
https://www.cs.cmu.edu/ 412/lectures/L04 VTx.pdf, last accessed Apr.
2, 2020 (2013).

389

Shah, S. D. A., M. A. Gregory, S. Li and R. Fontes, “SDN enhanced multi-access
edge computing (MEC) for E2E mobility and QoS management”, IEEE Access 8,
77459–77469 (2020).

Shah, S. D. A., M. A. Gregory, S. Li and R. D. R. Fontes, “SDN enhanced multi-access
edge computing (MEC) for E2E mobility and QoS management”, IEEE Access 8,
77459–77469 (2020).

Shantharama, P., A. S. Thyagaturu, N. Karakoc, L. Ferrari, M. Reisslein and
A. Scaglione, “LayBack: SDN management of multi-access edge computing (MEC)
for network access services and radio resource sharing”, IEEE Access 6, 57545–57561
(2018a).

Shantharama, P., A. S. Thyagaturu, N. Karakoc, L. Ferrari, M. Reisslein and
A. Scaglione, “LayBack: SDN management of multi-access edge computing (MEC)
for network access services and radio resource sharing”, IEEE Access 6, 57545–57561
(2018b).

Shantharama, P., A. S. Thyagaturu and M. Reisslein, “Hardware-accelerated platforms
and infrastructures for network functions: A survey of enabling technologies and
research studies”, IEEE Access 8, 132021–132085 (2020).

Sharkawi, S. S. and G. Chochia, “Communication protocol optimization for enhanced
GPU performance”, IBM Journal of Research and Development 64, 3/4, 9:1–9:9
(2020).

Sharma, P., L. Chaufournier, P. Shenoy and Y. Tay, “Containers and virtual machines
at scale: A comparative study”, in “Proc. Int. Middleware Conf.”, pp. 1–13 (2016).

Sharma, S. K., I. Woungang, A. Anpalagan and S. Chatzinotas, “Toward tactile
internet in beyond 5G era: Recent advances, current issues, and future directions”,
IEEE Access 8, 56948–56991 (2020).

Shen, Z., Q. Jia, G.-E. Sela, B. Rainero, W. Song, R. van Renesse and H. Weatherspoon,
“Follow the sun through the clouds: Application migration for geographically shifting
workloads”, in “Proc. ACM Symp. on Cloud Computing”, pp. 141–154 (2016).

Shen, Z., Z. Sun, G.-E. Sela, E. Bagdasaryan, C. Delimitrou, R. Van Renesse and
H. Weatherspoon, “X-containers: Breaking down barriers to improve performance
and isolation of cloud-native containers”, in “Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems”, pp. 121–135 (2019).

Sieber, C., R. Durner, M. Ehm, W. Kellerer and P. Sharma, “Towards optimal
adaptation of NFV packet processing to modern CPU memory architectures”, in
“Proc. ACM Workshop on Cloud-Assisted Netw.”, pp. 7–12 (2017).

Silberstein, M., “OmniX: an accelerator-centric OS for omni-programmable systems”,
in “Proc. ACM Workshop on Hot Topics in Operating Sys.”, pp. 69–75 (2017).

390

Silva, J. d. C., J. J. P. C. Rodrigues, J. Al-Muhtadi, R. A. L. Rabelo and V. Furtado,
“Management platforms and protocols for internet of things: A survey”, Sensors 19,
3, URL http://www.mdpi.com/1424-8220/19/3/676 (2019).

Singhal, R., “Inside intel next generation nehalem microarchitecture”, in “Hot Chips”,
vol. 20, p. 15 (2008).

Smith, D. R. and W. Whitt, “Resource sharing for efficiency in traffic systems”, Bell
Labs Techn. J. 60, 1, 39–55 (1981).

Solomon, R. L. and T. E. Hoglund, “Paravirtualization acceleration through single
root i/o virtualization”, US Patent 8,332,849 (2012).

Song, H., J. Gong and H. Chen, “Network map reduce”, arXiv preprint
arXiv:1609.02982 (2016).

Sotomayor, B., K. Keahey and I. Foster, “Overhead matters: A model for virtual
resource management”, in “Proc. IEEE Virt. Tech. in Distr. Comp.”, pp. 1–8 (2006).

Srikant, R., “On the positive recurrence of a markov chain describing file arrivals and
departures in a congestion-controlled network”, in “IEEE Conf. Comput.”, (2004).

Stoess, J., C. Lang and F. Bellosa, “Energy management for hypervisor-based virtual
machines.”, in “USENIX annual technical conference”, pp. 1–14 (2007).

Storck, C. R. and F. Duarte-Figueiredo, “A 5G V2X ecosystem providing internet of
vehicles”, Sensors 19, 3, URL http://www.mdpi.com/1424-8220/19/3/550 (2019).

Strunk, A., “Costs of virtual machine live migration: A survey”, in “Proc. IEEE
Eighth World Congress on Services”, pp. 323–329 (2012).

Stuecheli, J., W. J. Starke, J. D. Irish, L. B. Arimilli, D. Dreps, B. Blaner, C. Wollbrink
and B. Allison, “IBM POWER9 opens up a new era of acceleration enablement:
OpenCAPI”, IBM Journal of Research and Development 62, 4/5, 8–1 (2018).

Stunkel, C., R. Graham, G. Shainer, M. Kagan, S. S. Sharkawi, B. Rosenburg and
G. Chochia, “The high-speed networks of the Summit and Sierra supercomputers”,
IBM Journal of Research and Development 64, 3/4, 3:1–3:10 (2020).

Su, R., D. Zhang, R. Venkatesan, Z. Gong, C. Li, F. Ding, F. Jiang and Z. Zhu,
“Resource allocation for network slicing in 5G telecommunication networks: A survey
of principles and models”, IEEE Network 33, 6, 172–179 (2019).

Sugerman, J., G. Venkitachalam and B.-H. Lim, “Virtualizing I/O devices on VMware
workstation’s hosted Virtual Machine Monitor”, in “Proc. USENIX Annual Techn.
Conf., General Track”, pp. 1–14 (2001).

Sundaresan, K., M. Y. Arslan, S. Singh, S. Rangarajan and S. V. Krishnamurthy,
“FluidNet: a flexible cloud-based radio access network for small cells”, IEEE/ACM
Trans. on Netw. 24, 2, 915–928 (2016).

391

Szabo, R., M. Kind, F.-J. Westphal, H. Woesner, D. Jocha and A. Csaszar, “Elastic
network functions: opportunities and challenges”, IEEE Network 29, 3, 15–21
(2015).

Szefer, J. and R. B. Lee, “Architectural support for hypervisor-secure virtualization”,
ACM SIGPLAN Notices 47, 4, 437–450 (2012).

Taherizadeh, S. and M. Grobelnik, “Key influencing factors of the Kubernetes auto-
scaler for computing-intensive microservice-native cloud-based applications”, Ad-
vances in Engineering Software 140, 102734.1–102734.11 (2020).

Taleb, T., Y. Hadjadj-Aoul and K. Samdanis, “Efficient solutions for enhancing data
traffic management in 3GPP networks”, IEEE Systems Journal 9, 2, 519–528 (2015).

Taleb, T., K. Samdanis, B. Mada, H. Flinck, S. Dutta and D. Sabella, “On multi-access
edge computing: A survey of the emerging 5G network edge cloud architecture and
orchestration”, IEEE Commun. Surveys & Tutorials 19, 3, 1657–1681 (2017).

Tam, S. M., H. Muljono, M. Huang, S. Iyer, K. Royneogi, N. Satti, R. Qureshi, W. Chen,
T. Wang, H. Hsieh et al., “SkyLake-SP: A 14 nm 28-Core Xeon® processor”, in
“Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC)”, pp. 34–36 (2018).

Tanaka, H., M. Yoshida, K. Mori and N. Takahashi, “Multi-access edge computing: A
survey”, Journal of Information Processing 26, 87–97 (2018).

Tang, J., B. Shim and T. Q. S. Quek, “Service multiplexing and revenue maximization
in sliced C-RAN incorporated with URLLC and multicast eMBB”, IEEE J. on Sel.
Areas in Commun. 37, 4, 881–895 (2019).

Tang, J., L. Teng, T. Q. S. Quek, T. H. Chang and B. Shim, “Exploring the interactions
of communication, computing and caching in cloud RAN under two timescale”,
in “Proc. IEEE Int. Workshop on Signal Proc. Advances in Wireless Commun.
(SPAWC)”, pp. 1–6 (2017).

Tang, L. and H. Hu, “Computation offloading and resource allocation for the internet of
things in energy-constrained MEC-enabled HetNets”, IEEE Access 8, 47509–47521
(2020).

Tasdemir, E., M. Tömösközi, J. A. Cabrera, F. Gabriel, D. You, F. H. P. Fitzek and
M. Reisslein, “SpaRec: Sparse systematic RLNC recoding in multi-hop networks”,
IEEE Access 9, 168567–168586 (2021).

Tassiulas, L. and A. Ephremides, “Stability properties of constrained queueing systems
and scheduling policies for maximum throughput in multihop radio networks”, IEEE
T. Automat. Contr. 37, 12, 1936–1948 (1992).

Tassiulas, L. and A. Ephremides, “Dynamic server allocation to parallel queues with
randomly varying connectivity”, IEEE T. Inform. Theory 39, 2, 466–478 (1993).

Tayyaba, S. K. and M. A. Shah, “Resource allocation in sdn based 5g cellular networks”,
Peer-to-Peer Networking and Applications 12, 2, 514–538 (2019).

392

Teich, P., “The heart of AMD’s EPYC comeback is Infinity Fabric”, URL
https://www.nextplatform.com/2017/07/12/heart-amds-epyc-comeback-
infinity-fabric/, last accessed June 2, 2020 (2017).

Telco Systems, A Bath Company, “NFVTime-OS: The NFVi
OS that turns any x86 into a carrier class uCPE”, URL
https://www.telco.com/product-description/nfvtime-os, last accessed
Apr. 4, 2020 (2020).

Teng, Y. and M. Song, “Cross-layer optimization and protocol analysis for cognitive
ad hoc communications”, IEEE Access (2017).

Tensilica, “Tensilica Customizable Processor and DSP IP: Application Optimization
with the Xtensa Processor Generator”, Https://ip.cadence.com/ipportfolio/tensilica-
ip, Last accessed June 8, 2020 (2020).

Thalheim, J., P. Bhatotia, P. Fonseca and B. Kasikci, “Cntr: Lightweight {OS}
containers”, in “2018 {USENIX} Annual Technical Conference ({USENIX}{ATC}
18)”, pp. 199–212 (2018).

Thyagaturu, A., Y. Dashti and M. Reisslein, “SDN based smart gateways (Sm-
GWs) for multi-operator small cell network management”, IEEE Trans. Netw. Serv.
Managm. 13, 4, 740–753 (2016a).

Thyagaturu, A. S., Z. Alharbi and M. Reisslein, “R-FFT: Function split at IFFT/FFT
in unified LTE CRAN and cable access network”, IEEE Transactions on Broadcasting
64, 3, 648–665 (2018a).

Thyagaturu, A. S., Z. Alharbi and M. Reisslein, “R-fft: Function split at ifft/fft in
unified lte cran and cable access network”, IEEE Transactions on Broadcasting 64,
3, 648–665 (2018b).

Thyagaturu, A. S., A. Mercian, M. P. McGarry, M. Reisslein and W. Kellerer, “Software
defined optical networks (sdons): A comprehensive survey”, IEEE Communications
Surveys & Tutorials 18, 4, 2738–2786 (2016b).

Tonini, F., B. M. Khorsandi, S. Bjornstad, R. Veisllari and C. Raffaelli, “C-RAN
traffic aggregation on latency-controlled ethernet links”, Applied Sciences 8, 11,
URL http://www.mdpi.com/2076-3417/8/11/2279 (2018).

Tork, M., L. Maudlej and M. Silberstein, “Lynx: A SmartNIC-driven accelerator-
centric architecture for network servers”, in “Proc. ACM Int. Conf. on Arch. Support
for Progr. Lang. and Operat. Sys.”, pp. 117–131 (2020).

Tran, G. K., R. Santos, H. Ogawa, M. Nakamura, K. Sakaguchi and
A. Kassler, “Context-based dynamic meshed backhaul construction for 5G het-
erogeneous networks”, Journal of Sensor and Actuator Networks 7, 4, URL
http://www.mdpi.com/2224-2708/7/4/43 (2018).

393

Tsai, W.-C., Y.-C. Lan, Y.-H. Hu and S.-J. Chen, “Networks on chips: structure
and design methodologies”, Journal of Electrical and Computer Engineering 2012,
509465, 1–15 (2012).

Tu, C.-C., M. Ferdman, C.-T. Lee and T.-C. Chiueh, “A comprehensive implementation
and evaluation of direct interrupt delivery”, ACM SIGPLAN Notices 50, 7, 1–15
(2015).

Tzanakaki, A., M. Anastasopoulos, I. Berberana, D. Syrivelis, P. Flegkas, T. Korakis,
D. C. Mur, I. Demirkol, J. Gutierrez, E. Grass, Q. Wei, E. Pateromichelakis,
N. Vucic, A. Fehske, M. Grieger, M. Eiselt, J. Bartelt, G. Fettweis, G. Lyberopoulos,
E. Theodoropoulou and D. Simeonidou, “Wireless-optical network convergence:
Enabling the 5G architecture to support operational and end-user services”, IEEE
Communications Magazine 55, 10, 184–192 (2017).

Van Doorn, L., “Hardware virtualization trends”, in “Proc. ACM Int. Conf. on Virtual
Execution Environm.”, pp. 45–45 (2006).

Vaughan-Nichols, S. J., “New approach to virtualization is a lightweight”, Computer
39, 11, 12–14 (2006).

Velte, T. and A. Velte, Cisco A Beginner’s Guide (McGraw-Hill Education Group,
New York, 2013).

Venkat, A., H. Basavaraj and D. M. Tullsen, “Composite-ISA cores: Enabling multi-
ISA heterogeneity using a single ISA”, in “Proc. IEEE Int. Symp. on High Perf.
Computer Arch. (HPCA)”, pp. 42–55 (2019).

Venkat, A. and D. M. Tullsen, “Harnessing ISA diversity: Design of a heterogeneous-
ISA chip multiprocessor”, in “Proc. ACM/IEEE Int. Symp. on Comp. Arch.”, pp.
121–132 (2014).

Vikranth, B., R. Wankar and C. R. Rao, “Topology aware task stealing for on-chip
numa multi-core processors”, Procedia Computer Science 18, 379–388 (2013).

Vipin, K. and S. A. Fahmy, “FPGA dynamic and partial reconfiguration: a survey of
architectures, methods, and applications”, ACM Computing Surveys (CSUR) 51, 4,
72.1–72.39 (2018).

Wang, C., F. R. Yu, C. Liang, Q. Chen and L. Tang, “Joint computation offloading and
interference management in wireless cellular networks with mobile edge computing”,
IEEE Trans. on Vehicular Techn. 66, 8, 7432 – 7445 (2017a).

Wang, D., L. Zhang, Y. Qi and A. Quddus, “Localized mobility management for
SDN-integrated LTE backhaul networks”, in “Proc. of IEEE VTC”, pp. 1–6 (2015a).

Wang, H., Z. Peng and Y. Pei, “Offloading schemes in mobile edge computing with
an assisted mechanism”, IEEE Access 8, 50721–50732 (2020).

394

Wang, J., D. Bonneau, M. Villa, J. W. Silverstone, R. Santagati, S. Miki, T. Yamashita,
M. Fujiwara, M. Sasaki, H. Terai et al., “Chip-to-chip quantum photonic interconnect
by path-polarization interconversion”, Optica 3, 4, 407–413 (2016a).

Wang, K., S. Qi, Z. Chen, Y. Yang and H. Gu, “SMONoC: Optical network-on-chip
using a statistical multiplexing strategy”, Optical Switching and Networking 34,
1–9 (2019a).

Wang, M., N. Karakoc, L. Ferrari, P. Shantharama, A. S. Thyagaturu, M. Reisslein
and A. Scaglione, “A multi-layer multi-timescale network utility maximization
framework for the SDN-based LayBack architecture enabling wireless backhaul
resource sharing”, Electronics 8, 9, 937.1–937.28 (2019b).

Wang, N., E. Hossain and V. Bhargava, “Backhauling 5G small cells: A radio resource
management perspective”, IEEE Wireless Communications 22, 5, 41–49 (2015b).

Wang, P.-H., C.-H. Li and C.-L. Yang, “Latency sensitivity-based cache partitioning
for heterogeneous multi-core architecture”, in “Proc. ACM Ann. Design Autom.
Conf.”, pp. 1–6 (2016b).

Wang, R., Y. Wang, J.-S. Tsai, A. Herdrich, T.-Y. Tai, N. McDonnell, S. Van Doren,
D. Sonnier, D. Bernstein, H. Wilkinson et al., “Technologies for a distributed
hardware queue manager”, US Patent App. 15/087,154 (2017b).

Wang, S., J. Xu, N. Zhang and Y. Liu, “A survey on service migration in mobile edge
computing”, IEEE Access 6, 23511–23528 (2018).

Wang, S., X. Zhang, Y. Zhang, L. Wang, J. Yang and W. Wang, “A survey on mobile
edge networks: Convergence of computing, caching and communications”, IEEE
Access 5, 6757–6779 (2017c).

Wang, X., X. Chen, T. Chen, L. Huang and G. B. Giannakis, “Two-scale stochastic
control for integrated multipoint communication systems with renewables”, IEEE
Trans. on Smart Grid 9, 3, 1822–1834 (2018a).

Wang, Y., “Numa-aware design and mapping for pipeline network functions”, in “Int.
Conf. on Systems and Informatics (ICSAI)”, pp. 1049–1054 (IEEE, 2017).

Wang, Z. and X. Jiang, “Hypersafe: A lightweight approach to provide lifetime
hypervisor control-flow integrity”, in “Proc. IEEE Symp. on Security and Privacy”,
pp. 380–395 (2010).

Wang, Z., L. Zhang, M. Wang, Z. Wang, D. Zhu, Y. Zhang and W. Zhao, “High-density
NAND-like spin transfer torque memory with spin orbit torque erase operation”,
IEEE Electron Device Letters 39, 3, 343–346 (2018b).

Weiland, M., A. Jackson, N. Johnson and M. Parsons, “Exploiting the performance
benefits of storage class memory for HPC and HPDA workflows”, Supercomputing
Frontiers and Innovations 5, 1, 79–94 (2018).

395

Woesner, H., P. Greto and T. Jungel, “Hardware acceleration of virtualized network
functions: Offloading to SmartNICs and ASIC”, in “Proc. IEEE Int. Scientific and
Techn. Conf. Modern Computer Netw. Techn. (MoNeTeC)”, pp. 1–6 (2018).

Wood, T., K. Ramakrishnan, J. Hwang, G. Liu and W. Zhang, “Toward a software-
based network: Integrating software defined networking and network function
virtualization”, IEEE Network 29, 3, 36–41 (2015).

Wunderlich, S., F. H. Fitzek and M. Reisslein, “Progressive multicore RLNC decoding
with online DAG scheduling”, IEEE Access 7, 161184–161200 (2019).

Wunderlich, S., F. Gabriel, S. Pandi, F. H. Fitzek and M. Reisslein, “Caterpillar
RLNC (CRLNC): A practical finite sliding window RLNC approach”, IEEE Access
5, 20183–20197 (2017).

Xia, W., T. Q. S. Quek, J. Zhang, S. Jin and H. Zhu, “Programmable hierarchical
C-RAN: From task scheduling to resource allocation”, IEEE Trans. on Wireless
Commun. 18, 3, 2003–2016 (2019).

Xiang, Z., F. Gabriel, E. Urbano, G. T. Nguyen, M. Reisslein and F. H. Fitzek,
“Reducing latency in virtual machines: Enabling tactile internet for human-machine
co-working”, IEEE J. Sel. Areas in Commun. 37, 5, 1098–1116 (2019).

Xiang, Z., M. Höweler, D. You, M. Reisslein and F. H. Fitzek, “X-MAN: A non-
intrusive power manager for energy-adaptive cloud-native network functions”, IEEE
Transactions on Network and Service Management, in print (2022).

Xiao, J., P. Andelfinger, D. Eckhoff, W. Cai and A. Knoll, “A survey on agent-based
simulation using hardware accelerators”, ACM Computing Surveys (CSUR) 51, 6,
131.1–131.35 (2019).

Xie, Z., X. Song and S. Xu, “Peer-to-peer enhanced task scheduling for D2D enabled
MEC network”, IEEE Access pp. 1–1 (2020).

Xu, C., S. Chen, J. Su, S.-M. Yiu and L. C. Hui, “A survey on regular expression
matching for deep packet inspection: Applications, algorithms, and hardware
platforms”, IEEE Commun. Surv. & Tut. 18, 4, 2991–3029 (2016).

Xu, Q., H. Siyamwala, M. Ghosh, T. Suri, M. Awasthi, Z. Guz, A. Shayesteh and
V. Balakrishnan, “Performance analysis of NVMe SSDs and their implication on
real world databases”, in “Proc. ACM Int. Systems and Storage Conf.”, pp. 6.1–6.11
(2015).

Xu, X., A. Watts and M. Reed, “Does access to Internet promote innovation? A look
at the US broadband industry”, Growth and Change 50, 4, 1423–1440 (2019).

Yahya, M. R., N. Wu, Z. A. Ali and Y. Khizar, “Optical versus electrical: Perfor-
mance evaluation of Network On-Chip topologies for UWASN manycore processors”,
Wireless Personal Communications, in print pp. 1–29 (2020).

396

Yamato, Y., “Openstack hypervisor, container and baremetal servers performance
comparison”, IEICE Communications Express 4, 7, 228–232 (2015).

Yan, J., L. Tang, J. Li, X. Yang, W. Quan, H. Chen and Z. Sun, “UniSec: a unified
security framework with SmartNIC acceleration in public cloud”, in “Proc. ACM
Turing Celebration Conf.-China”, pp. 1–6 (2019).

Yang, J., J. Luo, F. Lin and J. Wang, “Content-sensing based resource allocation
for delay-sensitive VR video uploading in 5G H-CRAN”, Sensors 19, 3, URL
http://www.mdpi.com/1424-8220/19/3/697 (2019a).

Yang, M., Y. Li, D. Jin, L. Zeng, X. Wu and A. V. Vasilakos, “Software-defined and
virtualized future mobile and wireless networks: A survey”, Mobile Networks and
Applications 20, 1, 4–18 (2015).

Yang, S., “Extending KVM with new intel® virtualization technology”, URL
https://www.linux-kvm.org/images/c/c7/KvmForum2008%24kdf2008 11.pdf,
kVM Forum (2008).

Yang, S., W.-H. Yeung, T.-I. Chao, K.-H. Lee and C.-I. Ho, “Hardware acceleration
for batched sparse codes”, US Patent 10,237,782 (2019b).

Yang, W., “Conceptual verification of integrated heterogeneous network based on 5G
millimeter wave use in gymnasium”, Symmetry 11, 3 (2019).

Yang, W. and C. Fung, “A survey on security in network functions virtualization”, in
“Proc. IEEE NetSoft Conf. and Workshops (NetSoft)”, pp. 15–19 (2016).

Yao, R. and Y. Ye, “Towards a high-performance and low-loss Clos-Benes based optical
Network-on-Chip architecture”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, in print (2020).

Yao, Y., L. Huang, A. B. Sharma, L. Golubchik and M. J. Neely, “Power cost reduction
in distributed data centers: A two-time-scale approach for delay tolerant workloads”,
IEEE Trans. on Parallel and Distributed Systems 25, 1, 200–211 (2014).

Yasukata, K., M. Honda, D. Santry and L. Eggert, “StackMap: Low-latency networking
with the OS stack and dedicated NICs”, in “Proc. USENIX Ann. Techn. Conf.”,
pp. 43–56 (2016).

Yazdanshenas, S. and V. Betz, “Interconnect solutions for virtualized field-
programmable gate arrays”, IEEE Access 6, 10497–10507 (2018).

Ye, Y., W. Zhang and W. Liu, “Thermal-aware design and simulation approach for
optical NoCs”, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, in print pp. 1–1 (2020).

Yeoh, C. Y., M. H. Mokhtar, A. A. A. Rahman and A. K. Samingan, “Performance
study of LTE experimental testbed using OpenAirInterface”, in “Proc. IEEE Int.
Conf. Adv. Comm. Tech.”, pp. 617–622 (2016).

397

Yi, S., C. Li and Q. Li, “A survey of fog computing: Concepts, applications and
issues”, in “Proc. ACM Workshop on Mobile Big Data”, pp. 37–42 (2015).

Yi, X., J. Duan and C. Wu, “GPUNFV: A GPU-accelerated NFV system”, in “Proc.
ACM Asia-Pacific Workshop on Networking”, pp. 85–91 (2017).

Yokoyama, D., B. Schulze, F. Borges and G. Mc Evoy, “The survey on ARM processors
for HPC”, The Journal of Supercomputing 75, 7003–7036 (2019).

Yousaf, F. Z., V. Sciancalepore, M. Liebsch and X. Costa-Perez, “MANOaaS: A
multi-tenant NFV MANO for 5G network slices”, IEEE Communications Magazine
57, 5, 103–109 (2019).

Youseff, L., R. Wolski, B. Gorda and C. Krintz, “Paravirtualization for hpc systems”, in
“International Symposium on Parallel and Distributed Processing and Applications”,
pp. 474–486 (Springer, 2006).

Yu, B., Y. Liu, Y. Ye, X. Liu and Q. J. Gu, “Low-loss and broadband G-band dielec-
tric interconnect for chip-to-chip communication”, IEEE Microwave and Wireless
Components Letters 26, 7, 478–480 (2016).

Yu, L., T. Jiang, Y. Cao and Q. Qi, “Joint workload and battery scheduling with
heterogeneous service delay guaranteesfor data center energy cost minimization”,
IEEE Trans. on Parallel and Distributed Systems 26, 7, 1937–1947 (2015).

Zhang, F., J. Chen, H. Chen and B. Zang, “CloudVisor: Retrofitting protection of
virtual machines in multi-tenant cloud with nested virtualization”, in “Proc. ACM
Symp. on Operating Sys. Principles”, pp. 203–216 (2011).

Zhang, H., “The end of the x86 dominance in databases?”, in “Proc. Biennial Conf.
on Innovative Data Sys. Res. (CIDR)”, p. 1 (2019).

Zhang, J., G. Park, D. Donofrio, J. Shalf and M. Jung, “DRAM-Less: Hardware
acceleration of data processing with new memory”, in “Proc. IEEE Int. Symp. on
High Perf. Computer Arch. (HPCA)”, pp. 287–302 (2020).

Zhang, L., Y. Zhang, A. Tsuchiya, M. Hashimoto, E. S. Kuh and C.-K. Cheng, “High
performance on-chip differential signaling using passive compensation for global
communication”, in “Proc. IEEE Asia and South Pacific Design Autom. Conf.”, pp.
385–390 (2009).

Zhang, Q., L. Liu, C. Pu, Q. Dou, L. Wu and W. Zhou, “A comparative study of
containers and virtual machines in big data environment”, in “Proc. IEEE Int. Conf.
on Cloud Comp. (CLOUD)”, pp. 178–185 (2018).

Zhang, S., Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen and Y. Chen,
“Cambricon-X: An accelerator for sparse neural networks”, in “Proc. IEEE/ACM
Int. Symp. on Microarch.”, pp. 1–12 (2016).

398

Zhang, S., C. Kai and L. Song, “SDN based uniform network architecture for future
wireless networks”, in “Proc. Int. Conf. on Computing, Commun. and Netw. Techn.
(ICCCNT)”, pp. 1–5 (2014).

Zhang, T., “Design of NFV platforms: A survey”, arXiv preprint arXiv:2002.11059
(2020).

Zhang, T., L. Linguaglossa, M. Gallo, P. Giaccone, L. Iannone and J. Roberts,
“Comparing the performance of state-of-the-art software switches for NFV”, in “Proc.
ACM Int. Conf. on Emerging Netw. Exp. and Techn.”, pp. 68–81 (2019a).

Zhang, W., L. Li, N. Zhang, T. Han and S. Wang, “Air-ground integrated mobile edge
networks: A survey”, IEEE Access 8, 125998–126018 (2020).

Zhang, Y., A. Rucker, M. Vilim, R. Prabhakar, W. Hwang and K. Olukotun, “Scalable
interconnects for reconfigurable spatial architectures”, in “Proc. Int. Symp. on
Computer Arch.”, pp. 615–628 (2019b).

Zhang, Y., X. Xiao, K. Zhang, S. Li, A. Samanta, Y. Zhang, K. Shang, R. Proietti,
K. Okamoto and S. B. Yoo, “Foundry-enabled scalable all-to-all optical interconnects
using silicon nitride arrayed waveguide router interposers and silicon photonic
transceivers”, IEEE Journal of Selected Topics in Quantum Electronics 25, 5, 1–9
(2019c).

Zhao, N., X. Liu, F. R. Yu, M. Li and V. C. Leung, “Communications, caching,
and computing oriented small cell networks with interference alignment”, IEEE
Commun. Mag. 54, 9, 29–35 (2016).

Zhezlov, K. A., F. M. Putrya and A. A. Belyaev, “Analysis of performance bottle-
necks in SoC interconnect subsystems”, in “Proc. IEEE Conf. of Russian Young
Researchers in Electrical and Electronic Eng.”, pp. 1911–1914 (2020).

Zhong, Y., Z. Zhou, D. Li, M. Guo, Q. Liu, Y. Liu and L. Guo, “SAED: A self-adaptive
encryption and decryption architecture”, in “Proc. IEEE Int. Conf. on Parallel
Distr. Proc. with Appl.”, pp. 388–397 (2019).

Zhou, Y., F. He, N. Hou and Y. Qiu, “Parallel ant colony optimization on multi-core
SIMD CPUs”, Future Generation Computer Systems 79, 473–487 (2018).

Zhu, Q., B. Akin, H. E. Sumbul, F. Sadi, J. C. Hoe, L. Pileggi and F. Franchetti,
“A 3D-stacked logic-in-memory accelerator for application-specific data intensive
computing”, in “Proc. IEEE Int. 3D Systems Integration Conf.”, pp. 1–7 (2013).

Zilberman, N., P. M. Watts, C. Rotsos and A. W. Moore, “Reconfigurable network
systems and software-defined networking”, Proc. IEEE 103, 7, 1102–1124 (2015).

399

