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ABSTRACT

This thesis lays down a foundation for more advanced work on bipeds by carefully
examining cart-inverted pendulum systems (CIPS, often used to approximate each leg
of a biped) and associated closed loop performance tradeoffs. A CIPS is characterized
by an instability (associated with the tendency of the pendulum to fall) and a right
half plane (RHP, non-minimum phase) zero (associated with the cart displacement x).
For such a system, the zero is typically close to (and smaller) than the instability. As
such, a classical PK control structure would result in very poor sensitivity properties.
It is therefore common to use a hierarchical inner-outer loop structure. As such, this
thesis examines how such a structure can be used to improve sensitivity properties
beyond a classic PK structure and systematically tradeoff sensitivity properties at
the plant input/output. While the instability requires a minimum bandwidth at the
plant input, the RHP zero imposes a maximum bandwidth on the cart displacement
x. Three CIPs are examined — one with a long, short and an intermediately sized
pendulum. We show that while the short pendulum system is the most unstable
and requires the largest bandwidth at the plant input for stabilization (hardest to
control), it also has the largest RHP zero. Consequently, it will permit the largest cart
displacement x-bandwidth, and hence, one can argue that the short pendulum system
is easiest to control. Similarly, the long pendulum system is the least unstable and
requires smallest bandwidth at the plant input for stabilization (easiest to control).
However, because this system also possesses the smallest RHP zero it will permit
the smallest cart displacement x-bandwidth, and hence, one can argue that the long
pendulum system is the hardest to control. Analogous “intermediate conclusions” can
be drawn for the system with the “intermediately sized” pendulum. A set of simple
academic examples (growing in plant and controller complexity) are introduced to

illustrate basic tradeoffs and guide the presentation of the trade studies.
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Chapter 1

INTRODUCTION AND OVERVIEW

1.1 Motivation: What can be modeled by a Cart Inverted Pendulum?

Balancing control problems are of interest for industrial applications such as
nuclear reactors, chemical industries, stabilization of elevators(Rodriguez, 2003,Ro-
driguez, 2004). The space and aerospace industry also uses this problem for launching
satellites, rockets, elevators in flights for attitude control (Chrif and Kadda, 2014). It
is necessary for these systems to acquire some instability with respect to some crucial
scenarios for more maneuverability (Turkoglu and Jafarov, 2007). Systems of inter-
est also involve segways, unicycle, figure skating, roller blading, jet skiing as well as
walkers used for locomotion(Younis and Abdelati, 2009). The robotics industry in the
recent times have used these control problems to get a reasonable tradeoff between
speed, maneuverability and stability with respect to different terrains(Zhang et al.,
2016). Most of this balancing control problems involve usage of simplistic models
such as the simple pendulum, cart inverted pendulum, see-saws, spring inverted pen-
dulums to infer on control strategies used for having a bigger hand on instability and
using it to their advantage. In the literature, the cart-inverted pendulums have been
used as simplistic model to reduce model complexity(Irfan et al., 2018).

Unipeds, bipeds and quadrupeds are legged creatures able to perform locomotion
with the help of appendages (Mu, 2004b). One can exemplify a pogostick as a means
of uniped locomotion (Yu et al., 2011). The uniped locomotion can be explained
with the model of simple inverted pendulum to understand its stability(Yu et al.,

2011). Moreover, the Spring Loaded Inverted Pendulum model can also be used to



understand the hopping behavior of Unipeds and its useful take the ground interac-
tion forces(TAMADDONT et al., 2010). Furthermore, the textbook models, namely,
Spring Loaded Inverted Pendulum and the Simple Inverted Pendulum serve as a useful
tool for understanding the tradeoff between stability and energy efficiency(Westervelt
et al., 2018). However, for these models in literature, the slip action is considered
to be negligible. The systems are analyzed before and after the impact of the foot
strike(Chen and Byl, 2012). In the case of slip movement of walkers, these models
have less chances of stabilizing themselves(Mu, 2004c). One of the objectives of the-
sis is to use these textbook models such as the cart-pole sytem to get an overview
of essential inferences related to stabilizing the system when the slipping motion oc-
curs(Fung, 2011). The cart-pole systems can approximate the behavior of the leg
movement with increasing amount of friction between the ground and feet(Yi et al.,
2016).

Although the aforementioned textbook models may be used as viable tool for
approximating biped behavior, there is a necessity for understanding the dynamics
while performing locomotion(Gu, 2009). The important element is the zero moment
point used for understanding the stabilizing action performed by the feet(Mu, 2004c).
The zero moment point is the point on the foot about which the net moment of all the
forces are equal to be zero(Raibert, 1986). It is enclosed by an area upon which the
stability of the entire system thrives(Mu, 2004b). This enclosed area is known as the
support polygon(B. He et al., 2019). Thinking of the center of mass as the lumped
mass of the cart-pole system and the cart as the support polygon, the behavior of
walking can be approximated(Vazquez and Velasco-Villa, 2013). This will be crucial
in achieving a reasonable understanding of the speed and maneuverability of the
robot under certain conditions under movements involving slip action as well as for

balancing control(Mu, 2004a).



Hence, this particular textbook model, namely, the cart-pole system is advanta-
geous in approximation of locomotion of legged creatures (Mu, 2004b). This model
has been used in the literature since the 1960s(Namasivayam, 2020). However, the
most interesting aspect of this particular model involves the usage of a variety of
control designs and control architectures(Gandhi et al., 2016). These architecture
and designs depict the usefulness and versatility of this model(Gandhi et al., 2016).
In contrast, not all of the control designs act as an ally for getting useful properties
(Middleton, 1991). Certainly, some fundamental issues associated come into play
that make this design difficult to introduce useful control methods(Gandhi et al.,
2016,Middleton, 1991). Omne can address these issues to get robust designs. Philo-
sophically speaking, all designs do have limitations, but some can be made useful
by using some simplistic architectures and observing the trade-offs(Middleton, 1991).
Inspite of addressing the architecture and trade-offs, fundamental performance lim-
itations such as actuator saturation, non-linearities associated with the model does
have an adverse impact on the design(Hu and Lin, 2001). These are the factors that
needs to be carefully understood so that the design computed is useful for practical
implementation(Rodriguez, 2004).

One can think of this system as a tool for understanding some of the impor-
tant control architectures and control design methods addressed in the literature
too(Middleton, 1991). Thus, taking these in mind, one can address the limitations
of a design. Furthermore, to understand the design in a comprehensive way, it is
necessarily useful to inspect the parameters involved and magnify the tradeoffs in-
volved(Middleton, 1991). To understand the tradeoffs incrementally, simple academic
examples growing in complexity has been used in this thesis. These examples are es-
sentially the subsystems of the cart-pole system. The best takeaway that from this

type of approach is that it is possible to exactly quantify the tradeoffs for guiding



us in our research(Gandhi et al., 2016). Hence, before one proceeds, it is necessarily
useful to get acquainted with the system properties, characteristics and its behavior
about its equilibrium(Persson, 2013). Furthermore, it illuminates the non-linearities
associated with a model(Persson, 2013). To understand the importance of this behav-
ior, one needs to look at the simple characteristics of this system by looking closely
at its transfer function(Rodriguez, 2003).

The cart inverted problem is very special since it has two poles almost symmetri-
cal about the imaginary axis and two zeros almost symmetrical about the imaginary
axis if modelled with respect to negligible friction(Rodriguez, 2003). But the spe-
ciality of this problem lies with the fact that it has a right hand plane zero of lesser
magnitude than the right hand plane pole(Rodriguez, 2003). Systems similar to this,
face tremendous control issues that become increasingly hard to control(Hu and Lin,
2001). This thesis motivates these problems and addresses them incrementally for
guiding us through pertaining research. The root cause of this issue lies on the real-
ity that it limits the bandwidth of the system to a maximum(Hu and Lin, 2001). This
issue gives rise to using versatile control architectures and demands aggressive and
non-aggressive control action putting more burden on the actuators involved(Mondal
et al., 2020). The control energy used to stabilize makes it very expensive if con-
ventional control architectures are used(Puttannaiah et al., 2016). In this thesis the
main focus is to use the textbook models such as the Cart Inverted Pendulum to have
a useful understanding of its stability under various conditions(Mondal et al., 2019).
Open loop trade studies and closed loop trade studies provide very useful analysis
on crafting a design magnifying some observable trends. These trends give us some
insight for improving the properties at the control and at the output for implemen-
tation on practical designs (Mondal et al., 2020). This thesis sheds some light on the

aforementioned ideas using some simple mathematical analogies.



1.2 Literature Survey

As mentioned earlier, balancing control problems are very crucial for systems that
lack mechanical support(Gandhi et al., 2016). To stabilize themselves, it needs actu-
ators and sensors that reduce the error to a minimum(Gandhi et al., 2016). Feedback
control is necessarily useful when it comes to error minimization and contributing to
this issue(Gandhi et al., 2016). This type of control involves designs that may be
a burden on the actuators and sensors involved with the control action(Xin, 2008).
However, some design methodologies and control architectures may ease the suffer-
ing on the actuators and sensor action(Middleton, 1991). In contrast to our previ-
ous statement, there are also some drawbacks and limitations associated with these
methodologies and architectures(Irfan et al., 2018). To realise the internal working of
these methodologies, there is a need for studying the trends involved with the designs
accounted for(Irfan et al., 2018). It gives useful inferences to prevent fundamental
performance limitations and the limitations pertaining to each design(Rigatos et al.,

2018).
1.2.1 P — K control architecture

This type of architecture has been preliminary used in the literature to minimize
the control action and error associated with a feedback control system(Rodriguez,
2003). However, these architectures become very difficult to implement under some
characteristics associated with a system(Rodriguez, 2003). One of them is the in-
stability associated with the system which restricts the ranges that can be used
by a controller to stabilize the system(Rodriguez, 2004). Secondly, the right hand
plane zero serves as another boundary on the gains that can be implemented by a

controller(Rodriguez, 2004). Generally speaking, a P — K control architecture in-



volves a controller in series with a plant accompanied by feedback to for minimizing
the error, disturbance attenuation, noise reduction and reference command follow-

ing(Rodriguez, 2003). This architecture will be discussed in the later chapters.
1.2.2 Inner-Outer Loop Control Architecture

In contrast to our previous architecture discussed, another type of control archi-
tecture becomes a crucial tool in addressing and avoiding the limitations associated
with it(Mondal et al., 2020). This type of architecture involves an inner and an outer
loop. The purpose of two loops is to distribute the control action into separate ar-
chitectures and use each other when it is necessary to trade-off the control action
required to get useful designs(Puttannaiah et al., 2016). The inner loop deals with
the right hand plane zero by pushing it to the left hand plane(Kwakernaak, 1993).
The zeros are a type of energy attractors. Hence, they attract the right hand pole
into the left hand plane(Mondal et al., 2020). But the action of moving the right
hand pole to the left hand plane is carried out by the outer loop(Mondal et al., 2020).
As one proceeds through the chapters, the necessity of this type of architecture is

illuminated(Kaya et al., 2007).
1.2.3 Cart Inverted Pendulum Modeling

To understand the cart-pole system in theory, the system needs a mathematical
model(Irfan et al., 2018). The urgency of this model is to understand and compute
the equations of motion(Irfan et al., 2018). The equations of motion are computed
using Euler-Lagrange(Irfan et al., 2018). These equations of motion are a necessity
for realizing the relations of outputs and inputs, computing transfer functions, un-
derstanding the exchange of energy involved with this system(Persson, 2013). But,

most importantly, it is immensely crucial for developing control architectures to solve



its issues with balancing control associated with any complex model that requires

balance(Irfan et al., 2018).
1.2.4  PID Control Design

This type of design has been initially used to address systems that involve an un-
stable pole(Vinodh Kumar and Jerome, 2013). The design, as inferred by its name,
contributes to proportional, integral and derivative action on the error to reduce the
problem of balancing control(J.-B. He et al., 2000). However, it has limitations too
such as sensor noise, but most importantly, it is impossible to build a true inte-
grator(Prasad et al., 2014). Furthermore, it is a heuristic method to evaluate the
gains involved. The different types of tuning methods to get the proportional, in-
tegral and derivative gains involve the Ziegler-Nichols tuning method, Cohen coon
method(Shahrokhi and Zomorrokhi, 2013). This tuning is used for initiating an ex-
haustive search that will be illuminated in the later chapters of this thesis(Shahrokhi
and Zomorrokhi, 2013).

1.2.5 LQR Design

The linear quadratic regulator also known as LQR involves minimizing an infinity
horizon control quadratic cost function.This design is very efficient in computing a
useful control law for designing closed loop systems(J.-B. He et al., 2000). However,
the design involves heuristic parametes to shape its cost to a minimum(Vinodh Kumar
and Jerome, 2013). The solutions of this control problem involves solving the algebraic
riccati equation associated with the problem The associated solution is very useful
to get a useful control law(Prasad et al., 2014). The problem necessarily gives good
properties at the plant input. In contrast, even though one might some nice properties

at the input, one might get some bad properties at the output(Vinodh Kumar and



Jerome, 2013). It does not promise good properties at the output(Gattami and
Rantzer, 2005). The selection of weights to reduce the quadratic cost is the main
trick to this design method(J.-B. He et al., 2000).Different hierarchical structures are
also incorporated using this design. However, the inner-outer loop structure with
LQR PI/PID is seen to have better properties than using the conventional P — K
structure with this design(J.-B. He et al., 2000). In the later chapters, this problem
will be addressed and by using some example related study, it might be possible to

get some decent properties at the output.
1.2.6 Equilibrated Designs

Equilibrated designs involve using designs which uses an optimal control problem
by implementation of weights on the norms to shape the sensitivities at the input, out-
put and controls(Mondal et al., 2019). This is very effective in rejecting disturbances,
command following with a reasonable control action. The speciality of these designs
are that the sensitivity at the output and controls are the same which leads to achiev-
ing a Pareto-optimal condition(Puttannaiah et al., 2016). By this, it is meant that
on fixing the bandwidth and tweaking the parameters, it might be possible to lower
and one sensitivity at output and increase the sensitivity at the controls(Bertsekas,
2009). This condition is called the Pareto-optimal condition(Mondal et al., 2019).
The general mixed sensitivity H> control method gives a good range of useful equi-
librated designs for getting some inferences on bandwidth and control action and get
some good properties at the input and at the output. The method involves Euler
parameters to convexify the problem(Boyd and Vandenberghe, 2004). The problem
thus formulated, is used to get some use parameters of the system by using convex
optimization(Bertsekas, 2015). Comparing these can be very useful for implementing

trade-offs and is addressed on the later chapters of this thesis.



1.3 Fundamental Questions to be Addressed

How the length of the pendulums affect the control system bandwidth? What

does it say about the actuator saturation associated with change in length?

What are the fundamental trade-offs related to the cart-inverted pendulum

systems?
When are the trends useful and exactly quantified?
How can designs be related to each other to depict useful information?

How can simple academic examples growing in complexity, be used to guide the

research in order to illuminate critical sensitivity trade-offs?

1.4 Contributions of Research

Thesis illuminates fundamental design trade-offs (peak sensitivity at controls
and output) associated with cart-inverted pendulum (unstable, non-minimum

phase) system under inner-outer loop PID control.

This thesis motivates this incremental thinking by using simple academic exam-
ples growing in complexity, in order to illuminate critical sensitivity trade-offs
This becomes immensely applicable for extensive research study on complicated

systems.

The bandwidth associated with each system governs its stability. Furthermore,
it also shows fundamental performance limitations pertaining to each of the
systems. Hence, to have a realistic control design, these limitations need to be

addressed carefully which is motivated by this thesis.



1.5 Overview of Thesis

e Chapter 2 includes study with examples which enhance incremental thinking to
approach the cart inverted pendulum system design. The system is decomposed
to simpler transfer functions with increasing levels of complexity to address the
hierarchy. Each of the example inherits some similarities and differences from
its previous example. However, it is observed that the fundamental similarities
remain the same. This is shown by a family of plots to gain insightful informa-
tion about how the cart inverted pendulum or any other complicated system
can be understood with a simplistic approach. The families of plots give us
the trends for stability margins, the peak sensitivities, the crossover frequen-
cies, the frequencies corresponding to the respective peak sensitivities at the
controls and at the output, delay margins which is very sensitive information

for getting some useful designs comprising some good properties.

e Chapter 3 includes the study of the cart-inverted pendulum system involving
some trends which are inherited from the conclusions received from the previous
examples. The chapter comprises of closed loop trade studies, open loop trade
studies, trends that depict closed loop stability properties at the input and at
the controls. Different cart inverted pendulum systems are compared to show

the control complexity related to each system.

e Chapter 4 includes control designs that contributes to inferences related to each
system studied. The designs are compared and related to each other via search

procedures and infers some intuitive information about equilibrated sensitivity.

e Chapter 5 summaries the thesis with the results that are received. It also

mentions the future scope and directions of research.
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Chapter 2

BENCHMARK EXAMPLES - ILLUMINATION OF FUNDAMENTAL
INNER-OUTER LOOP HIERARCHICAL DESIGN TRADEOFFS

The cart-pole system transfer function is given by:

gz =9z +9)
T P g

(2.0.1)

In this chapter, we highlight certain issues that influence the stability margins of
a control loop. The issues are induced by the poles and zeros of the system. The
cart pole system has a right hand plane zero (non-minimum phase) and a right hand
plane pole (maximum bandwidth). This induces our system to have the following
disadvantages:

1. The upward gain margin T GM is restricted to be less than infinite.

2. The downward gain margin || GM is restricted to be greater than zero.

To help with these issues, inner-outer loop design is used. The outer loop deals
with the position and velocity of the cart. The inner loop deals with the angle and
angular velocity of the pendulum. In time, it is noticed how this design is useful in
shifting the right and plane zero to the left hand plane. According to the design, the

plant is decomposed into the following:

1. Inner Loop Plant P;.

2. Outer Loop Plant P,.

11



Keeping the aforementioned disadvantages in mind, the system needs to be in-
spected carefully. It might be alluring to examine the system with four poles and two
zeros with the above issues in mind. Hence, for better understanding how the system

behaves, the system is decomposed into simple transfer functions with useful control

designs.
1. Example 1:
Po— (2 —8): Pi — — (2.0.2)
o=(z—3s);Pi= ; 0.
Y s _p7
2. Example 2:
z—8 _. 1
Po = ; Pi = ; (2.0.3)
§—=Pp
3. Example 3:
Po=*"5.pi— 2 (2.0.4)
o= ———: 1 = N U,
s? s—p’
4. Example 4:
Po—*"S.pi— 1 (2.0.5)
§2 s _p7
5. Example 5:
zZ—5 1
Po = ; Pi = ; 2.0.6
s? (s —p)(s +p) 200)
6. Example 6:
Po=""2.p ! (2.0.7)
0= ; Pi= ; 0.
52 (s —p)(s +p)
7. Example T7:
Po— 2= S)gz t8) o 9 (2.0.8)
s (s —p)(s+p)
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2.1 Example 1 Set Up and Assumptions

Block Diagram. The relevant block diagram can be found in Figure 2.1.1.

Figure 2.1.1: Block Diagram for Simple System

Nominal Parameters:

Parameter | Nominal Value Description
D 1 Pole of P;
Z 5 Zero of P,
Jo (0.2-3) Outer Loop Controller K, Gain (will be varied)
i (5-15) Inner Loop Controller K; Gain (will be varied)

Table 2.1.1: Nominal Parameter Values

For this simple example, the nominal parameters are chosen to depict the behavior
of the system at certain conditions of the poles and zeros.The range of g, and g; values
are chosen to show the trends that shed some light on useful corollaries that govern the
inner-outer control loop design. Pertaining to the ranges, we also obtain the trends
related to the open loop and once the loop is closed. At the end of this section, the

range of g, and g; values are changed to obtain some insights on peak sensitivities.
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Nominal System:

P = . Ki=g, >0

PO:(Z—S)7 Ko:%v 9o >0

Inner Loop Transfer Function:

gi

Inner Loop Sensitivity:

B 1 B s—p
"1+ L; s+ (g—p)

Inner Loop Complementary Sensitivity:

Ly 9i
1+ L s+ (g—p)

i

Loop Transfer Function at Output:

P; 9o zZ—S
LOZPO — KO:— _—
(1"'Pz'Kz‘> s [3+(P—gi)

Loop Transfer Function at Controls:

Lu:Ki-F)i+K0P0Pi: |:

Sensitivity at Output:

14

1 } {(gi — 9o)$ + go?

(2.1.1)

(2.1.2)

(2.1.3)

(2.1.4)

(2.1.5)

(2.1.6)

(2.1.7)



R R SR Lk )
1+L, $24+(9:—D— go)s+ goz

Sensitivity at Controls:

Inner Outer Loop Identity:

Si=

£l

Complementary Sensitivity at Output:

L _
T, =T, = ° = 9o(s — 2)
1+L,  $24(9i—D— 9o)s+ goz

Complementary Sensitivity at Controls:

__Lw (9= 905+ 902
1+L, $24+ (9 —P—090)5+ goz

u

Complementary Sensitivity Identities:

Tu - To = ESU
Tu - T‘z = ToSi
So = Tre; To = Try; Su = Tdiup; Tu = Tdiu

15

(2.1.8)

(2.1.9)

(2.1.10)

(2.1.11)

(2.1.12)

(2.1.13)

(2.1.14)

(2.1.15)



2.1.1 Fundamental Sensitivity Relationships

The closed-loop behavior does provide stability to the system but it does not
tell us anything about the properties of the system. However, good closed loop
characteristics of the system are obtained by close inspection of the sensitivity and
complementary sensitivity of the system. Any control design involving high peak
sensitivities can lead to instability, high overshoot and regretful consequences. A
useful control design is determined by observing the properties of the loop at controls
and the properties of the loop at output.The inner loop sensitivity .S; and inner loop
complementary sensitivity 7; has a major role in influencing these properties.

But before proceeding to the major roles the inner loop is involved with, it is
necessary to comprehend the dynamics of the inner loop. The inner-loop sensitivity,
outer loop sensitivity, control loop sensitivity are given by 2.1.4, 2.1.8, 2.1.9.

From the aforementioned sensitivities, a critical identity is obtained. This identity
assists with the trade-off between the properties of the loop at controls and the loop

at output.
e Identity: S, = 5,5;
From this identity it is observed that:

o lemma: ||Si]|;;0c > 1, /5]l y00 < ||Sullgye : Increasing the peak sensitivity of the
inner-loop more than one leads to better properties at controls than at output.
Consequently, thus, it is obtained that:

S > 1 Tullye < [ Tell e (since S, =1~ 75,8, = 1~ )

o lemma: ||Si]|;0 <1, [|Sull300 < ||Sollsye: Increasing the peak sensitivity of the

inner-loop less than one leads to better properties at output than at controls.
[1Sillygee < 1, ([ Tollggoe < |1 Tullgyee (since Sy =1—1T,,8, =1—T,).
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1. Corollary - 1: p — Non-Aggressive Inner Loop: ||Si[/;;« > 1 < g,+p <
9i <2p <= ol < [1Sullygee:
Proof: On a closer look at the S;, observations can be drawn that substituting
gi = 2p, ||Si||l g = 1. Hence for values of || Si||;;e > 1,9; < 2p. Therefore, from
the previous discussion, we obtain | 15|00 = ||Tullyee and ||Sollsee < [1Sull 50 -
Furthermore, it is noticed that lesser control action s involved in the inner
loop, hence, the name non-aggressive inner loop. Since, p is involved majorly,

the corollary is named as above .

2. Corollary - 2: p — Aggressive Inner Loop: |S;|l~ <1 <= max{g, +
p,2p} < gi = [[Sollygee > [1Sull3pee-
Proof: On a closer look at the S;, observations can be drawn that substituting
gi = 2p, ||Si|l g = 1. Hence for values of ||Si||; < 1,9; < 2p. Therefore, from
the previous discussion, we obtain ||T, |0 < [|Tullyee and [|Sollsee > [1Sull5ee-
Furthermore, it is noticed that more control action is involved in the inner loop,
hence, the name aggressive inner loop. Since, p is involved majorly, the corollary

1s named as above .

3. Corollary - 3: g — Aggressive Inner Loop: ||S|;~ <1 <= max{g, +
2200} < gi = [Tollym < [Tl
Proof: On a closer look at the S;, observations can be drawn that substituting
gi = 2p, ||Si]| e = 1. Hence for values of ||Si||,« < 1,9; < 2p. Therefore, from

the previous discussion, we obtain ||T, ||l < [|Tullyee and [|Solloee > [1Sulloee-

4. Comment: Peak Sensitivities: |S||,« |||~ increase with increasing g,

and decreasing g;.
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2.1.2 Closed Loop Stability

This example is the simplest model to demonstrate the advantages of inner-outer
loop design. This example is chosen as a stepping stone to the cart-pole model. One

can demonstrate the similarities of the cart-pole system and this example.

Contribution of the right hand plane pole

Considering the open-loop system, the right hand plane pole contributes to the in-

stability. It also restricts the | GM to be greater than zero.

Contribution of the right hand plane zero

Considering the open-loop system, the right hand plane zero contributes to the abid-
ing the pole to move in to the left half plane (from root-locus ideas). It also restricts
the T GM to be less than infinite (non-minimum phase). The requirement states
that, it is necessary for a design to push the zero to the left-half plane. Furthermore,
as we change the length of the pendulums for the cart system, the right hand pole

shifts its position.

25
Real Axis (seconds™')

Figure 2.1.2: Nominal System: Open Loop Transfer Function, p =1, 2 =5, g; = 5,

go:1
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Considering the closed-loop system, the inner-outer loop contributes to this is-
sue. Analytically, visualizing through root-locus ideas provides an idea about the

controller to be used for the loop at output and the controls.

Figure 2.1.3: Nominal System: Root locus of Loop Transfer Function at Output

p:17zz57gi:5790:1

Furthermore, observations can be drawn that:

1. If g; = g, + p; the system has poles near the imaginary axis which leads to

higher peak sensitivities t for the loop at output and for the loop at controls.

Real Axis (seconds™)

Figure 2.1.4: Nominal System: Root locus of Loop Transfer Function at Controls

p:17Z:57gi:5790:1
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2.1.3 Open Loop Trade Studies

Varying Outer Loop Gain g, with g; fixed at g; =5

Loop at Input:

Iner Loop Magaitude L for 2= 5 nner Loop Phase 4L, forz=5

Figure 2.1.5: Inner Loop Magnitude |L;| and Phase ZL;

Loop at Output and Loop at Controls:

L Loop Magnitude t Control (g, = ) for 2= 5 ., 21,7 Loop Phase at Controle (g, =8 forz=5.

Loop Magnitade at Output . (3, 9 for =5 21, Loop Phase st Ouput (g, = ) for =5

Figure 2.1.6: L, and L,: Loop Magnitude and Loop Phase (g; = 5) for z =5

e |L,|, |L,| increases with increasing g, and increases, decreases with decreasing

g; respectively. |L;|, ZL, is independent of g, and decreases with decreasing g;.
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Varying Outer Loop Gain ¢g; with ¢, fixed at g, = 2

Loop at Input:

Figure 2.1.7: Inner Loop Magnitude |L;| and Phase ZL;

Loop at Output and Loop at Controls:

1L, Loop Magnitude st Contros (g, = 2)forz= 5 2L, Loop Angl st Contros (g, = 2 for =5

Figure 2.1.8: L, and L,: Loop Magnitude and Loop Phase (g, = 2)

e |L,| increases with increasing g, and increases with decreasing g;. |L;|, ZL, is
independent of g, and decreases wtih decreasing g;. |L,| increases with increas-
ing g, and decreases with decreasing ¢;. ZL, decreases with increasing g, and

decreases wtih decreasing g;.
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2.1.4 Sensitivity Trade Studies

Varying Outer Loop Gain g, with Inner Loop Gain g; Fixed at g; =5

Inner Loop Sensitivity and Complementary Sensitivity

Inner Loop Sensitity IS forx=5 e Loop Complementary Sensitiy [T for =5

Figure 2.1.9: Inner Loop Sensitivity and Complementary Sensitivity |S;| and |T;]

Loop Sensitivity at Output and at Controls

1T, Loop Complementay Sensitly st Conrol (g, = 5 for =5 17, Loop Complementry Sansitivity at Output (3, = ) for =5

Figure 2.1.10: |S,| and |S,|: Loop Sensitivity at Output and at Controls (g; = 5)

e |S;| is independent of g, and increases with decreasing g;. It also is independent

of z value. |T;| is independent of g,, z and decreases with decreasing g;.
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Inner Outer Loop Complementary Sensitivity Ratio

(gi—go)s+goz
Ty _ For-gosiae: _ (9= 905 + 907 _ 9i5 + golz = 9)

T, - - = (2.1.16)
T e %G9 9ulz—5)
;S
:1+g(§:§ (2.1.17)
So
:1+(T>ﬂ (2.1.18)
|%| vs gi (9o - parameter)
Figure 2.1.11: [Z#] > 1V w >0 (¢ = 5)
T, =T, =TS, (2.1.19)
T. - T; = T.5 (2.1.20)

e g — Aggressive Inner Loop: max{g, + p,29,} < ¢; = |Tu| > |To|, g — Aggressive

. Tu — 7
toner Loop: max{go + 7,205} < g5 = Tl > 1T,] (v w>0), [ B =1
(> 0 since g; > g, + D > ¢o), %‘ (w > 0) increases with decreasing g,.
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Peak Sensitivity and Complimentary Sensitivity

Figure 2.1.12: Peak |S,]| , |S,l, |Tul, |To| Vs ¢o (gi-parameter)

e Peak |S,| increases with increasing g, or decreasing g;, peak |S,| increases with
increasing g, or decreasing g;, peak |T,| increases with increasing g, or decreasing
gi, peak |T,,| increases with increasing g, or decreasing g;. When g; gets closer to
gi, the inner loop becomes aggressive and also pushes the system to have higher
sensitivities. The peaks can be derived by substituting (jw) on the denominator
of the closed loop transfer function and finding its magnitude. The peaks are
denoted as a. The frequencies corresponding to them are denoted as wpeq-

Hence we have the following peaks: ag,, o, 1y, Q0.

w /UJ2+p2

1. gy —

Y Vot (gi—p—g0)2—2g02]w?+2g222
2 a o w2+(gi7p)2

® Wt H(gi—p—go)?2—2g0z|w? +2¢222
3. gy = 9272°+(9i—go)*w?

Y VWt (9i—p—g0)2—2902]w?+2g222)

22 2

4. ar, oV tw

Vwh+[(gi—p—go)2—2g0 2w +2g222
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Varying Outer Loop Gain ¢g; with ¢, fixed at g, = 2

Inner Loop Sensitivity and Complementary Sensitivity

15, Inner Loop Sensiuvity (5,= ) for 2= 5 T, Inner Loop Complementary Sensiivity (9, =2)for = 5

Figure 2.1.13: |S;| and |7;|: Inner Loop Sensitivity and Complementary Sensitivity

(90 = 2)

Loop Sensitivity and Complimentary sensitivity at Output and at Controls

15, Loop Sensitity s Control (, =2 for 2= 5

Figure 2.1.14: |S,| , |So|, |Tu| » |T,]: Loop Sensitivity at Output and at Controls

e Peak |S,|,|S.|, peak |T,|, peak |T,| increases with increasing g, or decreasing g;.
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%| decreases with decreasing ¢,. %| decreases with decreasing g;. It is alose
independent of z. In this example 1, this identity is always greater than 0 for w >
0. This identity varies with respect to different examples. Choosing appropriate

parameters for design, the identity can be shown to be identical to example 1.

T,—T, =TS, (2.1.21)

T, — T, =TS, (2.1.22)

%| vs g; (g, - parameter)

Figure 2.1.15: |7+ > 1V w >0 (g, = 2)

T . .
° ]ﬁ] decreases with decreasing g,.
. %] decreases with decreasing g;.
o
. |%] is alo independent of z
o
7
° TZ ((.U > O)
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Peak |S,| , |Suls |Tb], [Tl

Pesk 8,115 , (o, -parameter)for =5 Peskis,ve g, (g, - parameter) for 2= 5

PeakIT,|v5 5,0, - parameter) for =5

Figure 2.1.16: Peak [S,| , |Sul, |To|, |Tu| VS go (gi-parameter)

e The peaks can be derived by substituting (jw) on the denominator of the closed
loop transfer function and finding its magnitude. The peaks are denoted as a.
The frequencies corresponding to them are denoted as wpeqr. Hence we have
the following o equations are derived from which one can get the following

equations:

L. agy: (@® = Dwh 4+ [®(gi — P — 90)* — 202goz — p?lw? + 2(g,)?2% = 0

2. ag,: (@ —=1Nw+[0®(g; —p— 90)* — 202G,z — (g; — p)?|w? + @*(g,)?2% = 0

3. ary : (@)W [a?(gi—p—go)? —2%a2goz — (gi — go)*|w?+ (a® —1)(go)?2* = 0

4. are (@B wt +[a2(gi —p—go)? — 2% a2goz — (go)*|Jw? + (a® — 1)(g,)*2% = 0
These a equations are used for drawing the contour peaks with respect to g, and

gi- The peaks corresponding to the contours are chosen to be 2, 2.2, 2.5 and 3. The

values of g, and g; can be chosen selecting the peaks one wants to use for their design.
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|Sul,s |So| aggressive and non-aggressive behavior

|S.| aggressive behavior

15, Loop Sensitityat Cantrols (g, = 5 for = 5

yyyyyyyyyyy

Figure 2.1.17: |S,| aggressive behavior

|Su| non aggressive behavior

15, Loop Sensitity t Contos (5, 3 for =5

Figure 2.1.18: |S,| non aggressive behavior

e The frequencies corresponding to them are denoted as wpeqr. The w equations
can be derived by substituting jw in the denominator of the closed loop transfer

functions and computing with respect to w.

1 we — (9222) 49021/ (9:P—goP+902) (goP—giP+go2+2p?)
ek (9i—90)(2p—gi—3o)

(9022)+21/ 9222+ (29:—2p—go+22)(g9:—P) %90
29;i—2p—go+2z

3w — —(9222)—go21/ (9iP—goP+902) (9oP—giP+ 9oz +2(9i—90)?)
’ Tu — (gi_go)2

4 wro=2/(9:i —p+2) (290 — gi + p+ 2)
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2.1.5 Closed Loop Time Response Trade Studies

Varying Outer Loop Gain g, with Inner Loop Gain g; Fixed at g; =5

Time Domain Analysis: Impulse S,, S,, T,, T,

vl Responseu, o mpule InputDisturbane 0,5 or 2.2 impule s, Ero Respons ¢ o Impuse el Command (3, ) for 2= 5

Figure 2.1.19: Impulse S,, Sy, T,, T (g: = 5)

Time Domain Analysis: Step S,, S., T,, T,

St 5, ot Respons s, o Sep it Dsurbanc , 5, ) for x5 Stp's, Ero Respons ¢ 10Sep et Command (=) for2=5

Sip 7, Conrl Response 10 Sap o Disabance d, =) or =5 St 7, Outpt Response o Sap Rl Command 3, o225

Figure 2.1.20: Step S,, Sy, To, T (g: = 5)
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Varying Outer Loop Gain g, with Inner Loop Gain ¢; Fixed at g, = 2

Time Domain Analysis: Impulse S,, S,, T,, T,

ol Responseu o e gt Disrbane (0, =2 for =5 mpden 8, ErrorResponse o o el R, Command {5, =1 for =3

Figure 2.1.21: Impulse S,, Sy, To, T (9o = 2)

Time Domain Analysis: Step S,, S., T,, T,

Figure 2.1.22: Step S,, Su, T,, T (9o = 2)

e Sy, So, Ty, T, oscillations increase with increasing g, or decreasing g;.
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2.1.6 Summary and Conclusions

9o T

<
<~
N
<~

| L

LLy,

— |« | =

| Lo

ZL,

LGM

wiaMm

+GM

— | = | =

wrGM

PeaksS,

PeaksS,

PeakT,

&

Q

Q
S | === = |« |+ |= |+ |«
e e R R R e e e T e S I e I I

PeakT,

|5l

D T I R R = T = S IR I B I R R I I = S e e R

T -

Table 2.1.2: Summary: Example 1
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2.2 Example 2 Set Up and Assumptions

Block Diagram. The relevant block diagram can be found in Figure 2.2.1.

Figure 2.2.1: Block Diagram for Example 2

Nominal Parameters:

Parameter | Nominal Value Description
D 1 Pole of P;
z 5 Zero of P,
Jo (0.8-2) Outer Loop Controller K, Gain (will be varied)
i (5-15) Inner Loop Controller K; Gain (will be varied)
2o (0.1) Outer Loop Controller K, Zero

Table 2.2.1: Nominal Parameter Values

This example is a tad complicated compared to example 1. The analogy developed
in this example assists with the examples as we progress through each of them. In
agreement with the parameters mentioned above the following trade studies are very

insightful with respect to the cart inverted pendulum ideas.
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Nominal System:

P@'_ 5 Kl:gl7 g1>07 go>07 Zo>0

Po_z—s K, 9o(s+ 25)

=— 6i>0, g>0, 2>0
S S

Inner Loop Transfer Function:

Inner Loop Sensitivity:

g 1 B s—0p
"1+ L s+ (gi—p)

Inner Loop Complementary Sensitivity:

- L - 9i
"1+ L; s+(gi—p)

Loop Transfer Function at Output:

L,=P, (L) K,=% [(Z— 5>(8+Zo)]

1+ PK; s?2 | (s+(gi—p))

Loop Transfer Function at Controls:

— 2 _
L,= K,P,+ K,P,P, = (9i = 90)5° + (go% — Go%0)$ + (9o22o)
s%(s —p)

Sensitivity at Output:

33
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(2.2.2)

(2.2.3)

(2.2.4)

(2.2.5)

(2.2.6)

(2.2.7)



1 2 i —
S =S, — _ s°(s + (9 = p)) (2.2.8)
1+ L, $34+(9i—D— 90)$>+ (9o — GoZ0)S + G070

Sensitivity at Controls:

1 2(s —
o _ (5= p)) (2.2.9)
1+ L, $4(9i—p—90)5%+ (o2 — 9o20)S + Go220)
Inner Outer Loop Identity:
S,
S — 2.2.10
: (22.10)
Complementary Sensitivity at Output:
Lo o - o
=T, — _ 9o(z = 5)(s + 20) (2.2.11)
1+ Lo $34(9i— 0= 90)s% + (907 — Go20)S + G020
Complementary Sensitivity at Controls:
_ Lu _ (g’t - 90)32 + (goz - gozo)s + (gozzo) (2 9 12)
h 1+ Lu 53 + (gz 2 90)32 + (goz - gozo)s + JozZo o
Complementary Sensitivity Identities:
T,—T,=T,S, (2.2.13)
T,—-T,=T,5S; (2.2.14)
So = Tre; T, = Try; Su = Tdiup; T, = Tdiu (22]—5)
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2.2.1 Fundamental Sensitivity Relationships

Similar to example 1. The tradeoff between the properties of the loop at controls

and the loop at output is given by the inner-outer loop identity:
e Identity: S, =5,9;
From this identity it is observed that:

o lemma: Sl = L [[Sollyee < [Sullpee = [[Sillyee = L[ Tullyee < 1 Toll 5400

(since S, =1-1T,,5,=1-"T,).

o lemma: [[Siflyee < 1, [1Sullyee < [[Sollzgeer 1Sillgee < 1L [[Tollpgee < 1 Tullpe

(since S, =1—-1,,5,=1-1T,).

Hence, the inner-loop works as a major tool to play between the peak sensitvities
at output and controls.
From the above lemmas, and close inspection of the system following corollaries

are obtained:

1. Corollary 1: p — Non-Aggressive Inner Loop: ||Si||,;c > 1 <= g, +p+

Zo <6 <2 = Doy < |[Sullpee:

2. Corollary 2: p — Aggressive Inner Loop: ||S;||; <1 <= max{g, +p+
2 2pF < gi = [[Sollyee > [1Sullgee -

z2—2o

3. Corollary 3: g — Aggressive Inner Loop: ||S;||;;« <1 <= max{g, +p+

=200} < 9i = | Tollpee < | Tullpgoe-

z—2o '

4. Comment: Peak Sensitivities: |5« ,[|T||;;~ increase with increasing g,

and decreasing g;.
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2.2.2 Closed Loop Stability

Similar to example 1, we get the stability of the inner loop as:

...........

Rl s ssconce )

Figure 2.2.2: Nominal System: Open Loop Transfer Function

L If gi = go+p+ 72

z—

; the system has poles near the imaginary axis which leads

o

to higher peak sensitivities t for the loop at output and for the loop at controls.

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Figure 2.2.3: Nominal System: Root locus of Loop Transfer Function at Controls

(left) and at Output (right)

The above plots explain that the T GM at controls is infinite, | GM at controls is
finite. On the other hand, | GM at output is zero, T GM is finite because of the

right hand plane zero. Thus, this cause the system to be bandwidth limited.
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2.2.3 Open Loop Trade Studies

Varying Outer Loop Gain g, with g; fixed at g; =5

Loop at Input:

Figure 2.2.4: Inner Loop Magnitude |L;| and Phase ZL;

Loop at Output and Loop at Controls:

It Loop Magnitd at Contrle (5, = ), for = p= 1.0 0.1

Figure 2.2.5: L, and L,: Loop Magnitude and Loop Phase (g; = 5) for z =5

e |L,|, |L,| increases with increasing g, and increases, decreases with decreasing
g; respectively. /L, is independent of g, and decreases wtih decreasing ¢g;. ZL,

decreases with increasing g, and decreases wtih decreasing g;.
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Varying Outer Loop Gain ¢g; with ¢, fixed at g, = 2

Loop at Input:

Figure 2.2.6: Inner Loop Magnitude |L;| and Phase ZL;

Loop at Output and Loop at Controls:

L, Loop Magniuda st Contrle (5, =), for = 5= 120201 21,/ Loop Angle st Controls (g, =2), for 2= 5= 120= 01

Figure 2.2.7: L, and L,: Loop Magnitude and Loop Phase (g, = 2)

e |L,| increases with increasing g, and increases with decreasing g;. ZL, is inde-

pendent of g, and decreases wtih decreasing g;.

e |L,|increases with increasing g, and decreases with decreasing g;. ZL,, decreases

with increasing g, and decreases wtih decreasing g;.
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2.2.4  Sensitivity Trade Studies

Varying Outer Loop Gain g, with Inner Loop Gain g; Fixed at g; =5

Inner Loop Sensitivity and Complementary Sensitivity

I Loop Senstiy |5 for 2= 5p = 120 = 0.1 . Innar Loop Complemantary Sansitvity T or = 5= 120 =01

Figure 2.2.8: Inner Loop Sensitivity and Complementary Sensitivity |S;| and |T;]

Loop Sensitivity at Output and at Controls

15, Loop Sensiiviyat orirols (g, =5, forz= 5= 1,20 01 15, Loop Sensitity s Output 5, 5, forz= 55 12001

Figure 2.2.9: |S,| and |S,|: Loop Sensitivity at Output and at Controls (g; = 5)

e Peak S, |S,|, T, T, increases with increasing g, or decreasing g;.
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Inner Outer Loop Complementary Sensitivity Ratio %| vs g; (9o - param-

eter)

Figure 2.2.10: [2¢] > 1V w >0 (¢ = 5)

Peak Sensitivity and Complimentary Sensitivity

Pesk S, v 5, (,-parameten for 2= 5= 120 0.1

PoskiT,1vs 9, (g, - parameten for 2= 5p = 120 =0.1 POsKIT,| v8 0, (9, paramoter) for 2= 5= 10 0.1

Figure 2.2.11: Peak |S,| , |S,], |Tul, |To| VS ¢o (gi-parameter)
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Varying Outer Loop Gain ¢g; with ¢, fixed at g, = 2

Inner Loop Sensitivity and Complementary Sensitivity

Figure 2.2.12: |S;| and |T;|: Inner Loop Sensitivity and Complementary Sensitivity

(go = 2)

Loop Sensitivity and Complimentary sensitivity at Output and at Controls

15, Loop Sensitity at onirols (5, =36) forz=5 18,J:Loop Serstvty atOutput (9, =2), or 2= 5= 1,10 01

Figure 2.2.13: [S,| , |Sol, |Tul| , |To|: Loop Sensitivity at Output and at Controls

(go = 2)
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|%| vs g; (g, - parameter)

...........

Figure 2.2.14: |74 >1 VY w >0 (g, = 2)

Peak |S,| , |Suls |To], [Tl

Peak IS, v8.5,9, - paramete)for 22 5= 120 201

Figure 2.2.15: Peak [S,| , |Sul, | 7o, |Tu| VS go (gi-parameter)

e Peak S,, |S,|, Tu, T, increases with increasing g, or decreasing g;.
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|Sul,s |So| aggressive and non-aggressive behavior

|S.| aggressive behavior

15, Loop Sensiity st Controls (g, =5, for= 5= 1.20=0.1 18, Loop Sensitvity st Output g, 5, forx= Sp= .00

‘ el
? g o)

Figure 2.2.16: |S,| aggressive behavior

|Su| non aggressive behavior

15, Loop Sensitviyat Contros (g, = 19, for 2= 5= 120201

Figure 2.2.17: |S,| non aggressive behavior

o [Si| <1=[So| > |Suls|Si| >1=1]Su| > |S,|. The peaks are denoted as o. The
frequencies corresponding to them are denoted as wpeqr. The w equations can
be derived by substituting jw in the denominator of the closed loop transfer
functions and computing with respect to w. Peak |S,|, peak |S,|, peak |T|,

peak |T,| increases with increasing g, or decreasing g;.
e |L;| is independent of g,, decreases with g; and independent of z value.

e |S;| is independent of g, and increases with decreasing g;. It also is independent

of z value. |T;| is independent of g, and decreases with decreasing g;
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2.2.5 Closed Loop Time Response Trade Studies

Varying Outer Loop Gain g, with Inner Loop Gain g; Fixed at g; =5

Time Domain Analysis: Impulse S,, S,, T,, T,

‘‘‘‘‘‘‘ ) X ey it 8 EroeResponse o o impuee Rt Command 5, =) for 1= 89 = 10 =01

Figure 2.2.18: Impulse S,, Sy, T,, T (g: = 5)

Time Domain Analysis: Step S,, S., T,, T,

Figure 2.2.19: Step S,, Sy, To, T (g: = 5)
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Varying Outer Loop Gain g, with Inner Loop Gain ¢; Fixed at g, = 2

Time Domain Analysis: Impulse S,, S,, T,, T,

impiea T, - Outpu Response 1o kol R Command (3 for 2= 852 120201

Figure 2.2.20: Impulse S,, Sy, To, T (9o = 2)

Time Domain Analysis: Step S,, S., T,, T,

seps,

Figure 2.2.21: Step S,, Su, T,, T (9o = 2)

e Zero steady state error due to integrator in I,.
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2.2.6  Summary and Conclusions

GoT gl |21

| L

ZL,

— |~ | =
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ZL,

LGM
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+GM
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PM,

PM,
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Wgo
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Table 2.2.2: Summary: Example 2
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2.3 Example 3 Set Up and Assumptions

Block Diagram. The relevant block diagram can be found in Figure 2.3.1.

Figure 2.3.1: Block Diagram for Simple System

Nominal Parameters:

Parameter | Nominal Value Description
P 1 Pole of P,
z 5 Zero of P,
Jo (0.8-2) Outer Loop Controller K, Gain (will be varied)
i (5-15) Inner Loop Controller K; Gain (will be varied)
Zol (0.01) Outer Loop Controller K, zero
202 (0.01) Outer Loop Controller K, zero

Table 2.3.1: Nominal Parameter Values

This example introduces two zeros in the outer loop. The analogy developed in
this example assists with the examples as we progress through each of them. In

agreement with the parameters mentioned above the following trade studies are very

insightful with respect to the cart inverted pendulum ideas.
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Nominal System:

P, = , Ki=g, ¢>0

P - z—s K, - Go(5+ 201)(S + 202)

5 s 90 >0,
S S

Inner Loop Transfer Function:

Inner Loop Sensitivity:

1 _
s, Sl

:1+L¢:S+(Qz’—P)

Inner Loop Complementary Sensitivity:

- L - 9i
"1+ L; s+(gi—p)

Loop Transfer Function at Output:

Zol > 07

Zoa >0

1+ PK; s

L, =P, (L) K, — % [(z — $)(5 + 201) (5 + 202)

s+ (9i —p)

Loop Transfer Function at Controls:

L =KP + KPP = (b1)5° + go(b2)5* + go(3)s + goz 701 22

s3(s = p)
Sensitivity at Output:
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(2.3.1)

(2.3.2)

(2.3.3)

(2.3.4)

(2.3.5)

(2.3.6)

(2.3.7)



1 s3(s+g; — p)
1 + Lo 84 + (b1>83 + go(b2)82 + go<b3)5 + GoZ 201702

1 s*(s — p)

1 + Lu B 34 + (bl)s3 + go(b2)52 + go(b3)8 + GoR 201202

Inner Outer Loop Identity:

Complementary Sensitivity at Output:

L, go(z = 5)(5 + Zo1)(8 + %02)

1 + Lo 54 + (bl)ss + go(b2)32 + go(b?))s + GoZ201202

Complementary Sensitivity at Controls:

L, (b1)53 + go(b2)S + Go2201%02

“T 14 Ly 5+ (01)5 + go(ba)s® + gol(bs

bi = gi — Goi b2 = 2 — 21 — 202

by = 2201 + 2202 — Zo1%02
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(2.3.9)
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2.3.1 Fundamental Sensitivity Relationships

Similar to example 1. The tradeoff between the properties of the loop at controls

and the loop at output is given by the inner-outer loop identity:
e Identity: S, = 5,5;
From this identity it is observed that:

o lemma: Sl = L [[Sollyee < [Sullpee = [[Sillyee = L[ Tullyee < 1 Toll5400

(since S, =1-1T,,5,=1-"T,).

o lemma: |[Siflyc < 1 [[Sullyee < [ll3ee: [[Sillpee < L[ Tollgee < [[Tullpyoe

(since S, =1—-1T1,,5,=1-1T,).

Hence, the inner-loop works as a major tool to play between the peak sensitvities
at output and controls.
From the above lemmas, and close inspection of the system following corollaries

are obtained:

2(220142202—Z01202)

2= 201202+ 1/ (2= 201 —202) 2~ ZZ01Z02 )

1. z-condition =

2. Corollary 1: p — Non-Aggressive Inner Loop: ||Si||;x > 1 < go+p+

z — condition < g; < 2p <> HSoHHoo < HSuHHOOI

3. Corollary 2: p — Aggressive Inner Loop: ||S;||;;~ <1 <= max{g, +p+

z — condition, 2p} < g; <= ||Sollyee > ||Sull3yee-

4. Corollary 3: g — Aggressive Inner Loop: ||Si[/;;~. <1 <= max{g, +p+

z — condition, 29} < gi <= ||Tollse0 < [|Tullg00-

5. Comment: Peak Sensitivities: |||,/ ,||T||;j~ increase with increasing g,

and decreasing g;.
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2.3.2 Closed Loop Stability

Similar to example 1, we get the stability of the inner loop as:

PoieZoro Map

——

Figure 2.3.2: Nominal System: Open Loop Transfer Function

1. If g; = g, + p+ z — condition; the system has poles near the imaginary axis
which leads to higher peak sensitivities t for the loop at output and for the loop

at controls.

Figure 2.3.3: Nominal System: Root locus of Loop Transfer Function at Controls

(left) and at Output (right)
The above plots explain that the T GM at controls is infinite, | GM at controls is
finite. On the other hand, | GM at output is zero, T GM is finite because of the

right hand plane zero. Thus, this cause the system to be bandwidth limited.
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2.3.3 Open Loop Trade Studies

Varying Outer Loop Gain g, with g; fixed at g; =5

Loop at Input:

Figure 2.3.4: Inner Loop Magnitude |L;| and Phase ZL;

Loop at Output and Loop at Controls:

1L Loop Magritude st Controls (3, = ), for = 5= 1101 = 01202 = 001 ; L, Loop Phase st Contol (9, = 5. for = 5 = 1201 = 001,202 001

Figure 2.3.5: L, and L,: Loop Magnitude and Loop Phase (g; = 5) for z =5

e |L,| increases with increasing g, and increases with decreasing g;. ZL, is inde-

pendent of g, and decreases wtih decreasing g;.
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Varying Outer Loop Gain ¢g; with ¢, fixed at g, = 2

Loop at Input:

Figure 2.3.6: Inner Loop Magnitude |L;| and Phase ZL;

Loop at Output and Loop at Controls:

L Loop Magnitude ot Controls (5, = 2),or = 5 = 201 = 001,202 001 21, Loop Angle st Controa (g, =), for 2= 6= 201 = 001202 001

1,/ Loop Phase st Outpu (3, 2 for 1= 9. 1.101 = 001202+ 001

Figure 2.3.7: L, and L,: Loop Magnitude and Loop Phase (g, = 2)

e |L,| increases with increasing g, and increases with decreasing g;. ZL, is inde-
pendent of g, and decreases wtih decreasing g;. |L,| increases with increasing
g, and decreases with decreasing ¢;. ZL, decreases with increasing g, and

decreases wtih decreasing g;.
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2.3.4 Sensitivity Trade Studies

Varying Outer Loop Gain g, with Inner Loop Gain g; Fixed at g; =5

Inner Loop Sensitivity and Complementary Sensitivity

Iner Loop Sansitty 8 or 2= 5= 1201 = 001202 = 001 / e Loop Complementary Sensitviy [T, for 2. 5= 1201 =001 162+ 001

Figure 2.3.8: Inner Loop Sensitivity and Complementary Sensitivity |S;| and |T;]

Loop Sensitivity at Output and at Controls

15, Loop Sansitvity st Contros (5 = 5 forx = .= 1201 = 001,202 001 ) 15, Loop Sensitviy t Outp (9, = 5, for 2= 5= 1101 = 001 202 =001

11, Loop Complamentary Sensitiviy st Contrls (g, = . or £ = .= 1101 = 00152 = 001 17 Loop Complementary Sensitvity st Output 3, =5 for = .= 1201 = 001,262 = 001

Figure 2.3.9: |S,| and |S,|: Loop Sensitivity at Output and at Controls (g; = 5)

e Peak |S,| ,|S.| increases with increasing g, or decreasing g¢;, peak |T,|, ||

increases with increasing g, or decreasing g;.

54



Inner Outer Loop Complementary Sensitivity Ratio %| vs g; (9o - param-

eter)

Figure 2.3.10: [2¢] > 1V w >0 (¢ = 5)

Peak Sensitivity and Complimentary Sensitivity

1130, (0,-paramete) for 2 5= 1201 = 01202001 Peak 3, 0, (,-paramete) for 2= 59 = 201 = 001202+ 001

Figure 2.3.11: Peak |S,| , |S,l], |Tul, |To| vS g0 (gi-parameter)

%)



Varying Outer Loop Gain ¢g; with ¢, fixed at g, = 2

Inner Loop Sensitivity and Complementary Sensitivity

18, Inner Loop Sensivy (g, =2}, for 2= 5= 1201 = 001,262 001

Figure 2.3.12: |S;| and |7;|: Inner Loop Sensitivity and Complementary Sensitivity

(go = 2)

Loop Sensitivity and Complimentary sensitivity at Output and at Controls

e |S;|,|T;| is independent of g, and decreases with decreasing g;, independent of z.
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|%| vs g; (g, - parameter)

Figure 2.3.14: |7 >1 VY w >0 (g, = 2)

Peak |S,| , |Suls |To]s [Tl

18,8 5,9, - poramete) for = 5 = 1,201 = 001,202 0.2 POAKIS, Ve 5, (, -parameter) for 2= 5 = 1201 = 001,202 002

Figure 2.3.15: Peak |S,| , |Sul, |To|, |Tu| VS g0 (gi-parameter)

e Peak |S,|, |Sol, |Tul, |To| increases with increasing g, or decreasing g;.
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|Sul,y |S,| aggressive and non-aggressive behavior

|S.| aggressive behavior

15, Loop Sensitvity at Controls (g, = 5, for = 5 = 1201 = 001,202 001

‘‘‘‘‘‘‘‘‘‘‘‘

Figure 2.3.16: |S,| aggressive behavior

|Su| non aggressive behavior

Figure 2.3.17: |S,| non aggressive behavior

o [Si| <1=|So| > |Sul,|Si] >1=1]Su| > |So|. The peaks are denoted as o. The
frequencies corresponding to them are denoted as wpeqr. The w equations can
be derived by substituting jw in the denominator of the closed loop transfer
functions and computing with respect to w. Peak |S,|, peak |S,|, peak |T,|,
peak |T,| increases with increasing g, or decreasing g;. |L;| is independent of

Jo, decreases with g; and independent of z value.

e |S;| is independent of g, and increases with decreasing g;
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2.3.5 Closed Loop Time Response Trade Studies

Varying Outer Loop Gain g, with Inner Loop Gain g; Fixed at g; =5

Time Domain Analysis: Impulse S,, S,, T,, T,

impnes,; X w9 / impunes Command 9,25,

Figure 2.3.18: Impulse S,, Sy, T,, T (g: = 5)

Time Domain Analysis: Step S,, S., T,, T,

s, -5, Stop s, Ero Respons ¢ o Step Rt Command (9 for £ 8. 1201 001 2022 001

Figure 2.3.19: Step S,, Sy, To, T (g: = 5)
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Varying Outer Loop Gain g, with Inner Loop Gain ¢; Fixed at g, = 2

Time Domain Analysis: Impulse S,, S,, T,, T,

Figure 2.3.20: Impulse S,, Sy, To, T (9o = 2)

Time Domain Analysis: Step S,, S., T,, T,

Figure 2.3.21: Step S,, Su, T,, T (9o = 2)

e  Initial transient undershoot increases with increasing g,.
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2.3.6  Summary and Conclusions
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Q

Q
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PeakT,
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Table 2.3.2: Summary: Example 3
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2.4 Example 4 Set Up and Assumptions

Block Diagram. The relevant block diagram can be found in Figure 2.4.1.

Figure 2.4.1: Block Diagram for Simple System

Nominal Parameters:

Parameter | Nominal Value Description
P 1 Pole of P;
z 5 Zero of P,
9o (0.8-2) Outer Loop Controller K, Gain (will be varied)
i (5-15) Inner Loop Controller K; Gain (will be varied)
2 (0.1) Inner Loop Controller K; Zero
Zol (0.01) Outer Loop Controller K, Zero
202 (0.02) Outer Loop Controller K, Zero

Table 2.4.1: Nominal Parameter Values

This example introduces two zeros in the outer loop and one zero in the inner
loop. In agreement with the parameters mentioned above the following trade studies

are very insightful with respect to the cart inverted pendulum ideas.
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Nominal System:

1 i i
R S G ) B
(s —p) S
Po:Z;S, Kozgo(stzol)(Hz"Z)), 9o >0, 21 >0, 2p>0
S S

b P B+
s(s —p)

Inner Loop Sensitivity:
1 s(s —p)

izl—l—Li:sQ—i—(gi—p)s%—gizi

Inner Loop Complementary Sensitivity:

L; gi(s + 2)

7—%: =
1+ L s+ (g: —p)s+ giz

Loop Transfer Function at Output:

I _p ( P ) ~ Go(z — 8)(5+ 201) (8 + 202)
? \1+ PK; ? s2(s2+ (g: — p)s + gizi)

Loop Transfer Function at Controls:

(gl - go)SS + CL82 + bs + Go2Z01202

Lu = KZPZ + KoPoPi =
s3(s — p)

Sensitivity at Output:
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(2.4.2)

(2.4.3)

(2.4.4)

(2.4.5)

(2.4.6)
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1 s2(s2 4+ (g; — p)s + gizi)

So =98, = = 2.4.8
1+ L, s*4(g—p— go)s®+ as® + bs + goz201202 ( )
Sensitivity at Controls:
_ 1 _ s*(s — p) (2.4.9)
Yl + Ly st (gi—p— go)sP + as? +bs + go2Zo1 202 o
Inner Outer Loop Identity:
Sy
Si=— 2.4.10
= (2.4.10)
Complementary Sensitivity at Output:
=T = Lo _ 9o( = ) + 21) (5 + Z) (2.4.11)
14+ L, s*4(9i—p—go)s® + as® + bs + go2201202
Complementary Sensitivity at Controls:
o Lu - (gz - 90)33 + CLSQ + bS + GoZ 201202 (2 4 12)
Y14+ Ly st (g — D — go)s3 + as? 4+ bs + §o2201 202 o
Complementary Sensitivity Identities:
T,—T,=T,S, (2.4.13)
T,.—T,=1T,S; (2.4.14)
a = go= + GiZi — JoRol — JoRo2; b= GoRZo1 + GoRZ202 — JoR01”02; (2415)
So = Tre; T, = Try; Su = Td,-up; T, = Tdiu (2416)
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2.4.1 Fundamental Sensitivity Relationships

Similar to example 1. The tradeoff between the properties of the loop at controls

and the loop at output is given by the inner-outer loop identity:
e Identity: S, =5,9;
From this identity it is observed that:

o lemma: Sl = L [[Sollyee < [Sullpee = [[Sillyee = L[ Tullyee < 1 Toll 5400

(since S, =1-1T,,5,=1-"T,).

o lemma: [[Siflyee < 1, [1Sullyee < [[Sollzgeer 1Sillgee < 1L [[Tollpgee < 1 Tullpe

(since S, =1—-1,,5,=1-1T,).

1. g; - stability is very complicated to compute analytically, since the system has
more parameters. So it is computed numerically. The code for computing it

numerically is given in the appendix.

2. Corollary 1: p — Non-Aggressive Inner Loop: ||Si[j;c > 1 <= ¢; —

stability < g; < 2p <= || |l300 < ||Sullyyee 52 = 0:

3. Corollary 2: p — Aggressive Inner Loop: [|Si[l;;» <1 <= max{g —

stability, 2p} < g; <= |[Solle > [|Sullyye ;2 = 0.

4. Corollary 3: g — Aggressive Inner Loop: [|Si;~ < 1 <= max{g —

stability,2g,} < g <= ||Tollyee < [|Tull3ye ;2 = 0.

5. Comment: Peak Sensitivities: |||,/ ,||T||;j~ increase with increasing g,

and decreasing g;.
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2.4.2 Closed Loop Stability

Similar to example 1, we get the stability of the inner loop as:

..........

Rl s seconds”)

Figure 2.4.2: Nominal System: Open Loop Transfer Function

1. If g; = stabilitycondition; the system has poles near the imaginary axis which
leads to higher peak sensitivities t for the loop at output and for the loop at

controls.

uuuuuuuuuuuuuuu

Figure 2.4.3: Nominal System: Root locus of Loop Transfer Function at Controls

(left) and at Output (right)
The above plots explain that the T GM at controls is infinite, | GM at controls is
finite. On the other hand, | GM at output is zero, T GM is finite because of the

right hand plane zero. Thus, this cause the system to be bandwidth limited.
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2.4.3 Open Loop Trade Studies

Varying Outer Loop Gain g, with g; fixed at g; =5

Loop at Input:

Inor Loop Magnitude L for = 5 = 201 = 001162 = 0.0 =0 Innor Loop Phase <L, for 2= 5= 1201 = 001,202 = 0.022i =01

Figure 2.4.4: Inner Loop Magnitude |L;| and Phase ZL;

Loop at Output and Loop at Controls:

1L, Loop Magnitde st Controe (5, = ) for .= 5. 1201 = 001202 = 00211 = 01 ; 21, Loop Phase at Conrls (9, = 5. for = 5 = 1201 = 001202 = 002,11 = 01

Figure 2.4.5: L, and L,: Loop Magnitude and Loop Phase (g; = 5) for z =5

e Peak |S,|, |S,|, |Tul, |T,| increases with increasing g, or decreasing g;.
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Varying Outer Loop Gain ¢g; with ¢, fixed at g, = 2

Loop at Input:

Figure 2.4.6: Inner Loop Magnitude |L;| and Phase ZL;

Loop at Output and Loop at Controls:

Figure 2.4.7: L, and L,: Loop Magnitude and Loop Phase (g, = 2)

e |L,| increases with increasing g,, w,, decreases with increasing g,, ZL, is inde-

pendent of g,, PM is independent of g,.
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2.4.4 Sensitivity Trade Studies

Varying Outer Loop Gain g, with Inner Loop Gain g; Fixed at g; =5

Inner Loop Sensitivity and Complementary Sensitivity

Inner Loop Sensiy 5 or = 5= 1201 = 001202 = 002,21 = 01

Figure 2.4.8: Inner Loop Sensitivity and Complementary Sensitivity |S;| and |T;]

Loop Sensitivity at Output and at Controls

T, Loop Complementary Sensitity st Controls (5, = 5. for 2= 5 = 1201 = 001202 = 0.02.11 = 01 7 17, Loop Complementary Senstvty a Output (g, = ). for 2= 5, 1.201 = 001,202 = 00221 0.1

Figure 2.4.9: |S,| and |S,|: Loop Sensitivity at Output and at Controls (g; = 5)

e Peak |S,|, |Sul, |To|, |Tu| increases with increasing g, or decreasing g;.
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Inner Outer Loop Complementary Sensitivity Ratio %| vs g; (9o - param-

eter)

Figure 2.4.10: %| >1Vw >0(g=>5)

Peak Sensitivity and Complimentary Sensitivity

PeskIS |12 3, (3, -parametor) for = 5 = 1201 = 001102 = 0.02.1 = 0.1 / PeskiS, 12 5, (,-paramete) for £+ 5= 1201 = 001202 = 0021 = 01

Figure 2.4.11: Peak |S,| , |S,l], |Tul, |To| VS ¢o (gi-parameter)
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Varying Outer Loop Gain ¢g; with ¢, fixed at g, = 2

Inner Loop Sensitivity and Complementary Sensitivity

Figure 2.4.12: |S;| and |7;|: Inner Loop Sensitivity and Complementary Sensitivity

(go = 2)

Loop Sensitivity and Complimentary sensitivity at Output and at Controls

g (o) o radec)

o [Si| <1 —[S,| > S V¥ w.
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|%| vs g; (g, - parameter)

,,,,,,,,,,,

Figure 2.4.14: |7 >1 VY w >0 (g, = 2)

Peak |S,| , |Suls |To]s [Tl

POaK(S,1ve ,(, -parameter) for 2= .= 1201 = 001,202 0021 01 PeskIS | v8 5,9, - parameter fo 1= . 1201 = 001,202 = 00211 = 01

Figure 2.4.15: Peak [S,| , |Sul, |To], |Tu| VS go (gi-parameter)

e Peak |S,|, [Sul, |To], |Tu| increases with increasing g, or decreasing g;.
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2.4.5 Closed Loop Time Response Trade Studies

Varying Outer Loop Gain g, with Inner Loop Gain g; Fixed at g; =5

Time Domain Analysis: Impulse S,, S,, T,, T,

Figure 2.4.16: Impulse S,, Sy, T,, T, (g: = 5)

Time Domain Analysis: Step S,, S., T,, T,

Figure 2.4.17: Step Sy, Su, T, T (g: = 5)
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Varying Outer Loop Gain g, with Inner Loop Gain ¢; Fixed at g, = 2

Time Domain Analysis: Impulse S,, S,, T,, T,

mmmmmmm mpusa s,

Figure 2.4.18: Impulse S,, Sy, Ty, T (go = 2)

Time Domain Analysis: Step S,, S, T,, Ty

e, X 0,2 sers, s Bsorznspn

Figure 2.4.19: Step S,, Su, Ty, T (9o = 2)

e [nitial transient undershoot increases with increasing g,.
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2.4.6 Summary and Conclusions
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Table 2.4.2: Summary: Example 4
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2.5 Example 5 Set Up and Assumptions

Block Diagram. The relevant block diagram can be found in Figure 2.5.1.

Figure 2.5.1: Block Diagram for Simple System

Nominal Parameters:

Parameter | Nominal Value Description
P 1 Pole of P;
z 5 Zero of P,
9o (0.8-2) Outer Loop Controller K, Gain (will be varied)
i (5-15) Inner Loop Controller K; Gain (will be varied)
2 (2) Inner Loop Controller K; Zero
Zol (0.01) Outer Loop Controller K, Zero
202 (0.02) Outer Loop Controller K, Zero

Table 2.5.1: Nominal Parameter Values

This example introduces two zeros in the outer loop and one zero in the inner
loop. In agreement with the parameters mentioned above the following trade studies

are very insightful with respect to the cart inverted pendulum ideas.
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Nominal System:

P, = , Ki=g9i(s+2z), ¢g>02>0 2.5.1

(s —p)(s+p) ( ) (25.1)

P, = i _2 S, K, = gols + zo1) (s + 202)), Go>0, 2,1 >0, zp>0 (252)
S S

Inner Loop Transfer Function:

L, =PFPK, = M (2.5.3)
(s =p)(s+p)
Inner Loop Sensitivity:
14 L 24 gis gz — P -
Inner Loop Complementary Sensitivity:
L i i
T, = S /{Ch ) (2.5.5)
L+ L s*+gis+ gizi — p?
Loop Transfer Function at Output:
Pi go(z B S)<S+Zol>(S+Z02)
L,=P,| ———— | K, = 2.5.6
(1 +PiKi) s3(s% + gis + gizi — P?) (2:56)
Loop Transfer Function at Controls:
Ly = K+ K, p,p, = 95 T (0% = 90)5" + C15" 4 25+ Goorzer 5 5 oy

s3(s —p)(s +p)
Sensitivity at Output:
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1 s3(s* + gis + gizi — D?)

So =98, = = 2.5.8
1+ L, 8"+ gis* + (gizi — Go)s® + €18 + 28 + 02201 202 (25.8)
Sensitivity at Controls:
Y1+ Ly, 85+ gist 4 (gizi — go)s® + 182 4 €25 + Go22%01 202 o
Inner Outer Loop Identity:
Sy
S;i=— 2.5.10
= (2:5.10)
Complementary Sensitivity at Output:
Lo o - () (o)
T, =T —— _ 9o(2 = 8)(5 + 201) (5 + 200) (2.5.11)
14+ Ly 85+ gis* + (gizi — go)8® + cls? + €25 + §o2201 %02
Complementary Sensitivity at Controls:
Ly gist (9% — 90)8” + 18P 4+ 25 + Go2%01 %02 (2.5.12)
Y14+ Ly 85 it (gizi — Go)s3 182 4 €28 + Go2Z01 200 o
Complementary Sensitivity Identities:
T,—T,=T,S, (2.5.13)
T,—-1T,=T1T,5S; (2.5.14)
cl = (G2 — JoZol — G0%262); 2 = (Goz — GoZol — JoZ02); (2.5.15)
So = Tre; T, = Try; Su = Td,-up; T, = Tdiu (2516)
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2.5.1 Fundamental Sensitivity Relationships

Similar to example 1. The tradeoff between the properties of the loop at controls

and the loop at output is given by the inner-outer loop identity:
e Identity: S, =5,9;
From this identity it is observed that:

o lemma: Sl = L [[Sollyee < [Sullpee = [[Sillyee = L[ Tullyee < 1 Toll 5400

(since S, =1-1T,,5,=1-"T,).

o lemma: [[Siflyee < 1, [1Sullyee < [[Sollzgeer 1Sillgee < 1L [[Tollpgee < 1 Tullpe

(since S, =1—-1,,5,=1-1T,).

1. g; - stability is very complicated to compute analytically, since the system has
more parameters. So it is computed numerically. The code for computing it

numerically is given in the appendix.

2. Corollary 1: p — Non-Aggressive Inner Loop: ||Si[j;c > 1 <= ¢; —

stability < g; < 2p <= || |l300 < ||Sullyyee 52 = 0:

3. Corollary 2: p — Aggressive Inner Loop: [|Si[l;;» <1 <= max{g —

stability, 2p} < g; <= |[Solle > [|Sullyye ;2 = 0.

4. Corollary 3: g — Aggressive Inner Loop: [|Si;~ < 1 <= max{g —

stability,2g,} < g <= ||Tollyee < [|Tull3ye ;2 = 0.

5. Comment: Peak Sensitivities: |||,/ ,||T||;j~ increase with increasing g,

and decreasing g;.
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2.5.2 Closed Loop Stability

Similar to example 1, we get the stability of the inner loop as:

Pole-Zoro Map

gy A (oo

Figure 2.5.2: Nominal System: Open Loop Transfer Function

1. If g; = stabilitycondition; the system has poles near the imaginary axis which

leads to higher peak sensitivities t for the loop at output and for the loop at

controls.

.......

Rl A snconds)

Figure 2.5.3: Nominal System: Root locus of Loop Transfer Function at Controls

(left) and at Output (right)

The above plots explain that the T GM at controls is infinite, | GM at controls is
finite. On the other hand, | GM at output is zero, T GM is finite because of the

right hand plane zero. Thus, this cause the system to be bandwidth limited.

80



2.5.3 Open Loop Trade Studies

Varying Outer Loop Gain g, with g; fixed at g; =5

Loop at Input:

ner Loop Magnitud L for 2 5= .01 = 001 26200231 =2 Inner Loop Phase 2 L for 22 5= 1201 = 001 2022 00221 =2

Figure 2.5.4: Inner Loop Magnitude |L;| and Phase ZL;

Loop at Output and Loop at Controls:

1L Loop Magnitudeat Controls (g, = 5. or 2= 5= 1201 = 001202 = 00221 =2

Loop Magnitude ot Ouput I 9, 5. for 2= 5p = 201 » 001202 = 002312 21, Loop Phase at Outpu (,= 5. for2= 5= 1201 = 001202 = 002.1=2

Figure 2.5.5: L, and L,: Loop Magnitude and Loop Phase (g; = 5) for z =5

e |L,| increases with increasing g,, w,, decreases with increasing g,, ZL, is inde-

pendent of g,, PM is independent of g,. PM decreases with increasing g,
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Varying Outer Loop Gain ¢g; with ¢, fixed at g, = 2

Loop at Input:

Figure 2.5.6: Inner Loop Magnitude |L;| and Phase ZL;

Loop at Output and Loop at Controls:

1L Loop Magnitude st Output 9, =2 for 2 5= 1201 = 001202 = 002,822

o

Figure 2.5.7: L, and L,: Loop Magnitude and Loop Phase (g, = 2)

e |L,| increases with increasing g,, w,, decreases with increasing g,, ZL, is inde-

pendent of g,, PM is independent of g,.
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2.5.4  Sensitivity Trade Studies

Varying Outer Loop Gain g, with Inner Loop Gain g; Fixed at g; =5

Inner Loop Sensitivity and Complementary Sensitivity

nner Loop Senstiy I3 for 2= 8 = 1201 = 001,202 = 00221 =2

Figure 2.5.8: Inner Loop Sensitivity and Complementary Sensitivity |S;| and |T;]

Loop Sensitivity at Output and at Controls

18, Loop Sensitiviyat Controls (g = 5. for = 5 = 1201 = 001,202 = 002,21 2 18, Loop Sansitiity st Output (3 = ), for 2 5= 1201 = 001202 = 0.02.11 2

17 Loop Complementary Senskivy st Ouput (5 = ), for 2= 5= 101 = 001,262 002212

Figure 2.5.9: |S,| and |S,|: Loop Sensitivity at Output and at Controls (g; = 5)

e Peak |S,|, [Sul, |To|, |Tu| increases with increasing g, or decreasing g;.
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Inner Outer Loop Complementary Sensitivity Ratio %| vs g; (9o - param-

eter)

roq tsec)

roq radisoc)

Figure 2.5.10: |7 >1 VY w >0 (g; = 5)

Peak Sensitivity and Complimentary Sensitivity

PoskIS,v8 3, (3, -parameter) for = 5 = 1201 = 001102 = 002,11 =2

Figure 2.5.11: Peak |S,| , |S,], |Tul, |To| VS ¢o (gi-parameter)
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Varying Outer Loop Gain ¢g; with ¢, fixed at g, = 2

Inner Loop Sensitivity and Complementary Sensitivity

15, Inner Loop Sensiy (g, ) forx= . 1101 = 001,202 = 002512

Figure 2.5.12: |S;| and |7;|: Inner Loop Sensitivity and Complementary Sensitivity

(go = 2)

Loop Sensitivity and Complimentary sensitivity at Output and at Controls

Figure 2.5.13: |S,| , |So|, |Tu| » |T,]: Loop Sensitivity at Output and at Controls

e Peak |S,], |Sul, |To|, |Tu| increases with increasing g, or decreasing g;.
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|%| vs g; (g, - parameter)

Figure 2.5.14: [7#] >1 VY w >0 (g, = 2)

Peak |S,| , |Suls |To]5 [Tl

5p=1301 = 001202 = 002212 ssc0aag Pask(S 115 ,(, -parameter) for = 5 = 1201 = 001 2022002212
I i 22

Figure 2.5.15: Peak |S,| , |Sul, |To|, |Tu| VS g0 (gi-parameter)

e Peak |S,|, [Sul, |To], |Tu| increases with increasing g, or decreasing g;.
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2.5.5 Closed Loop Time Response Trade Studies

Varying Outer Loop Gain g, with Inner Loop Gain g; Fixed at g; =5

Time Domain Analysis: Impulse S,, S,, T,, T,

impues X 69 g,

Figure 2.5.16: Impulse S,, Sy, T,, T (g: = 5)

Time Domain Analysis: Step S,, S., T,, T,

Figure 2.5.17: Step S,, Sy, To, T (g: = 5)
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Varying Outer Loop Gain g, with Inner Loop Gain ¢; Fixed at g, = 2

Time Domain Analysis: Impulse S,, S,, T,, T,

..............................

Figure 2.5.18: Impulse S,, Sy, Ty, T (go = 2)

Time Domain Analysis: Step S,, S, T,, T,

Figure 2.5.19: Step S,, Su, Ts, T (9o = 2)

e [nitial transient undershoot increases with increasing g,.
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2.5.6 Summary and Conclusions
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Table 2.5.2: Summary: Example 5

89



2.6 Example 6 Set Up and Assumptions

Block Diagram. The relevant block diagram can be found in Figure 2.6.1.

Figure 2.6.1: Block Diagram for Simple System

Nominal Parameters:

Parameter | Nominal Value Description
P 1 Pole of P,
z 5 Zero of P,
Jo (0.8 - 2) Outer Loop Controller K, Gain (will be varied)
i (5-15) Inner Loop Controller K; Gain (will be varied)
Zi1 (1) Inner Loop Controller K; Zero (will be varied)
Zi (1.1) Inner Loop Controller K; Zero (will be varied)
Zo1 (0.01) Outer Loop Controller K, Zero (will be varied)
202 (0.02) Outer Loop Controller K, Zero (will be varied)

Table 2.6.1: Nominal Parameter Values

This example introduces two zeros in the outer loop and two zeros in the inner

loop.
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Nominal System:

1 i i i
p—_ b g _glsta)stze)) gL S (2.6.1)
(s—=p)(s+p) s
p_Z —2 57 K, — Go(8+ 2o1) (s + ZoQ))) G >0, 20 >0, 2p>0 (2.6.2)
s 5

Inner Loop Transfer Function:

gi(s + zi1)(s + zi2)

L;=PK,; = (2.6.3)
(s —p)(s +p)
Inner Loop Sensitivity:
o 1 _ S(S—p)(s—}-p) (264)
! 1 + Lz 83 —+ giS2 -+ (gizil -+ giZi2 — p2)8 -+ giZi1%:2 e
Inner Loop Complementary Sensitivity:
=L 9i(s + 2 ) (s + Zip) (2.6.5)
L+ L 83+ gis? + (giza + giziz — P*)s + gizin %
Loop Transfer Function at Output:
Pz' o - o 0!
Lo=P,(—X K, = gol2 = $)(s + 2o1)(5 + Zoo) (2.6.6)
1+ PK; s2(s3 + gis? + (gizin + Gizio — P)S + gizinziz
Loop Transfer Function at Controls:
L — K.P+ KPP — gis* 4 453 + 252 + €35 + Go2Z01 %02 (2.6.7)

s3(s — p)(s + p)

Sensitivity at Output:
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r s2(s* + ¢:s* + (gizin + gizio — P*)s + gizin Zin

S, =8, = = 2.6.8
1+ L, $% + g8t 4 cls® + 282 + ¢35 + §o2201202 ( )
Sensitivity at Controls:
1 3(s —
S, = _ (s = p)s+p) (2.6.9)
14+ L, 854 gis* +cls3 4+ 252 + €35 + go2201202
Inner Outer Loop Identity:
Sy
g, = 2u 2.6.10
= (2:6.10)

Complementary Sensitivity at Output:

T,=T, = — io(z _ 33)(5 i 2201)(5 ) (2.6.11)
§° + g;8* + cls® + €25 + €358 + §o2Z01%02

Complementary Sensitivity at Controls:

Ly gist 4?4257 4+ B + go2%01 %02
Y14 L,  $54 g5t + clsd + 252 + ¢35 4 Go2%01 Zon

(2.6.12)

cl = (gizi1 + gizi2 — go — p2)§ 2 = (goZ — JoZo1 — JoZo2 + GiZi1Zi2 + Gizi1Zi2);
(2.6.13)

3 = (902201 + GoRZo2 — 90201202)§ cd = (91211 + giZi2 — go);
(2.6.14)
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2.6.1 Fundamental Sensitivity Relationships

Similar to example 1. The tradeoff between the properties of the loop at controls

and the loop at output is given by the inner-outer loop identity:
e Identity: S, =5,9;
From this identity it is observed that:

o lemma: Sl = L [[Sollyee < [Sullpee = [[Sillyee = L[ Tullyee < 1 Toll 5400

(since S, =1-1T,,5,=1-"T,).

o lemma: [[Siflyee < 1, [1Sullyee < [[Sollzgeer 1Sillgee < 1L [[Tollpgee < 1 Tullpe

(since S, =1—-1,,5,=1-1T,).

1. g; - stability is very complicated to compute analytically, since the system has
more parameters. So it is computed numerically. The code for computing it

numerically is given in the appendix.

2. Corollary 1: p — Non-Aggressive Inner Loop: ||Si[j;c > 1 <= ¢; —

stability < g; < 2p <= || |l300 < ||Sullyyee 52 = 0:

3. Corollary 2: p — Aggressive Inner Loop: [|Si[l;;» <1 <= max{g —

stability, 2p} < g; <= |[Solle > [|Sullyye ;2 = 0.

4. Corollary 3: g — Aggressive Inner Loop: [|Si;~ < 1 <= max{g —

stability,2g,} < g <= ||Tollyee < [|Tull3ye ;2 = 0.

5. Comment: Peak Sensitivities: |||,/ ,||T||;j~ increase with increasing g,

and decreasing g;.
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2.6.2 Closed Loop Stability

Similar to example 1, we get the stability of the inner loop as:

------

Figure 2.6.2: Nominal System: Open Loop Transfer Function

1. If g; = stabilitycondition; the system has poles near the imaginary axis which
leads to higher peak sensitivities t for the loop at output and for the loop at

controls.

uuuuuuuuuuuuuuu

Figure 2.6.3: Nominal System: Root locus of Loop Transfer Function at Controls

(left) and at Output (right)
The above plots explain that the T GM at controls is infinite, | GM at controls is
finite. On the other hand, | GM at output is zero, T GM is finite because of the

right hand plane zero. Thus, this cause the system to be bandwidth limited.
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2.6.3 Open Loop Trade Studies

Varying Outer Loop Gain g, with g; fixed at g; =5

Loop at Input:

Figure 2.6.4: Inner Loop Magnitude |L;| and Phase ZL;

Loop at Output and Loop at Controls:

o (acec)

Figure 2.6.5: L, and L,: Loop Magnitude and Loop Phase (g; = 5) for z =5

e |L,| increases with increasing g,, w,, decreases with increasing g,, ZL, is inde-

pendent of g,, PM is independent of g,, PM decreases with increasing g,.
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Varying Outer Loop Gain ¢g; with ¢, fixed at g, = 2

Loop at Input:

Figure 2.6.6: Inner Loop Magnitude |L;| and Phase ZL;

Loop at Output and Loop at Controls:

1 Loop Magnitde st Output (g, =2, for = 5 = .01 = 001,102 = 0021 = 112 1.1 v, 1, Loop Phase st Output (5, = 2).or = 5= 1201 = 001,102 = 002,11 = 152 =11

Figure 2.6.7: L, and L,: Loop Magnitude and Loop Phase (g, = 2)

e |L,| increases with increasing g,, w,, decreases with increasing g,, ZL, is inde-

pendent of g,, PM is independent of g,, PM decreases with increasing g,.
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2.6.4 Sensitivity Trade Studies

Varying Outer Loop Gain g, with Inner Loop Gain g; Fixed at g; =5

Inner Loop Sensitivity and Complementary Sensitivity

Ianer Loop Sensivty I8 for = 5= 1201 = 001262 = 002,01 = 1.2 = 1.1

Figure 2.6.8: Inner Loop Sensitivity and Complementary Sensitivity |S;| and |T;]

Loop Sensitivity at Output and at Controls

15, Loop Sensitiviy st Controls (g, = ), for = = .01 = 01,202 = 002,11 = 122 1.1 18, Loop Sensitity s Output (g, = 5. for £ 5, 1201 = 0.0,202 = 002,21 = .12 = 1.1

Figure 2.6.9: |S,| and |S,|: Loop Sensitivity at Output and at Controls (g; = 5)

e Peak |S,|, [Sul, |To|, |Tu| increases with increasing g, or decreasing g;.
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Inner Outer Loop Complementary Sensitivity Ratio %| vs g; (9o - param-

eter)

Figure 2.6.10: [2¢| > 1V w >0 (¢ = 5)

Peak Sensitivity and Complimentary Sensitivity

K191 V8 3, 9, -Poramoterfor 1= 5= 1101 = 041201 = 0823H = 212 1.1 Poak[3,] v 0, (5, -paramater) for 2 5 = 1201 = 001,202 00211 =12+ 1.1

OuterLoop Gain )

Figure 2.6.11: Peak |S,| , |S,], |Tul, |To| VS ¢o (gi-parameter)
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Varying Outer Loop Gain ¢g; with ¢, fixed at g, = 2

Inner Loop Sensitivity and Complementary Sensitivity

15, InnarLoop Sensiiy (g, = 2, forz = 5 1201 = 001,202 = 00221 = 112 11 7, tnne Loop Complemantary Sensiivity (9, 2 for 1= 8= 1201 = 001,102 = 002,11 = 112 1.

Figure 2.6.12: |S;| and |7;|: Inner Loop Sensitivity and Complementary Sensitivity

(go = 2)

Loop Sensitivity and Complimentary sensitivity at Output and at Controls

15, Loop Senstiviy st Control (3, 2)for = §p = 1201 = 001,202 002.81 = 122 1.1 . \EfTECo

Figure 2.6.13: |S,| , |So|, |Tul| » |T,]: Loop Sensitivity at Output and at Controls

i |SZ| <l= |So| > |Su|7 Tu - irz = SiToa Tu - To = SOE
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|%| vs g; (g, - parameter)

Figure 2.6.14: [7#] >1 VY w >0 (g, = 2)

Peak |S,| , |Suls |To], [Tl

= 1201 = 001202 = 002511 = 15211 Paak8,1a 5, -parameter)for 22 59 = 201 =001 202 002,11 = 122+ 1.1

Figure 2.6.15: Peak |S,| , |Sul, |To|, |Tu| VS g0 (gi-parameter)

e Peak |S,|, [Sul, |To], |Tu| increases with increasing g, or decreasing g;.
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2.6.5 Closed Loop Time Response Trade Studies

Varying Outer Loop Gain g, with Inner Loop Gain g; Fixed at g; =5

Time Domain Analysis: Impulse S,, S,, T,, T,

....... . y oo ss2=021 = 20 11 Impuse s, rror Response o mpule Ret Command 3, ) fo 2= 5. 1101 001102 0521 = 12211

Figure 2.6.16: Impulse S,, Sy, T,, T (g: = 5)

Time Domain Analysis: Step S,, S., T,, T,

St Ere Response 1 Sep et Command (5,5, for 2= 5 = 1201 001202 002,81 = 1525 11

Figure 2.6.17: Step S,, Sy, To, T (g: = 5)
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Varying Outer Loop Gain g, with Inner Loop Gain ¢; Fixed at g, = 2

Time Domain Analysis: Impulse S,, S,, T,, T,

Figure 2.6.18: Impulse S,, Sy, Ty, T, (go = 2)

Time Domain Analysis: Step S,, S, T,, Ty

S0, Control Response, 0 Sup gt Dsubance 4 (3, 2. for £ 8= 1001 = 001202 = 04221 = 122 11

Figure 2.6.19: Step S,, Su, T,, T (9o = 2)

e Zero steady state error due to integrator in I,.
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2.6.6 Summary and Conclusions
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2.7 Example 7 Set Up and Assumptions

Block Diagram. The relevant block diagram can be found in Figure 2.7.1.

Nominal Parameters:

Figure 2.7.1: Block Diagram for Simple System

Parameter | Nominal Value Description
D 1 Pole of P;
z 5 Zero of P,
Jo (0.8-2) Outer Loop Controller K, Gain (will be varied)
i (5-15) Inner Loop Controller K; Gain (will be varied)
Zi1 (0.1) Inner Loop Controller K; Zero (will be varied)
Zi2 (2) Inner Loop Controller K; Zero (will be varied)
Zo1 (0.05) Outer Loop Controller K, Zero (will be varied)
Zo2 (0.05) Outer Loop Controller K, Zero (will be varied)
Table 2.7.1: Nominal Parameter Values
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Nominal System:

i i i + 2
po i glsrE)EE) s (27)
(s —p)(s+p) s
P - (z — s)gz + 3)7 K, — Go(S + 2o1) (s + zog))7 40> 0, 2 >0, 70
s s
(2.7.2)
Inner Loop Transfer Function:
L= PK, = gif + 7)) (5 + Zio) (2.7.3)
s*(s —p)(s +p)
Inner Loop Sensitivity:
1 _
S = _ ' s(s = p)(s “’)2 (2.7.4)
L+ L 83+ gis% + (gizin + gizio — P*)s + giza Zio
Inner Loop Complementary Sensitivity:
L Gi(s + zi1)(s + zi2) (2.75)
Y14 L 8P+ gis? + (giza + iz — D) + giZa zio o
Loop Transfer Function at Output:
I.—pP P; K, — Go(z — 8) (2 4+ 5)(s 4+ 201) (s + 202) (2.7.6)
1+ RKZ 82(53 —+ gl'S2 -+ (gizﬂ + giZio — p2)3 —+ gl'ZﬂZQ)
Loop Transfer Function at Controls:
i Yo 4 4 3 2 2 3 o 2 0l1%0
LuZKiB'—i-KoPon':(g Go)S* + cds® + €25° + €35 + §o2° 201202 (277)

s3(s —p)(s +p)
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Sensitivity at Output:

I 32<33 + i + (gizin + Gizia — p2)s + gizi1Zi2)

S, =8, = —
1+ L, 854 (9 — go)s* + cls® + 252 + €38 + 022201202

Sensitivity at Controls:

1 s°(s — p)(s +p)

S, = -
1+ L, 24 (gi— go)s* + cls® + €252 + €38 + 9022201 202

Inner Outer Loop Identity:

Sy
Sy = —
So
Complementary Sensitivity at Output:

9oz = 8)(2 + 5)(s + 2o1) (8 + 2o2)

T,=1T, =
S5+ (gi — go)s* + 183 + €282 + 35 + go22201 202

Complementary Sensitivity at Controls:

Lo (9 — Go)st + c4s® + 25 + ¢35 + go22 201202

v 1T L, $°4(9i — go)s* + cls® + ¢25% + ¢35 + 9022201202

Complementary Sensitivity Identities:

Tu _To :ES”LL

Tu - T‘z = ToSi

cl = (gizi1 + GiZi2 — GoZo1 — GoZo2 — p2); 2= (9022 + giZi1Zi2 — GoZo1%02);

3 = (902201 + 9oz’ 20); 4 = (gizi1 + Gi%iz — GoZo1 — JoZo2);
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2.7.1 Fundamental Sensitivity Relationships

Similar to example 1. The tradeoff between the properties of the loop at controls

and the loop at output is given by the inner-outer loop identity:
e Identity: S, =5,9;
From this identity it is observed that:

o lemma: Sl = L [[Sollyee < [Sullpee = [[Sillyee = L[ Tullyee < 1 Toll 5400

(since S, =1-1T,,5,=1-"T,).

o lemma: [[Siflyee < 1, [1Sullyee < [[Sollzgeer 1Sillgee < 1L [[Tollpgee < 1 Tullpe

(since S, =1—-1,,5,=1-1T,).

1. g; - stability is very complicated to compute analytically, since the system has
more parameters. So it is computed numerically. The code for computing it

numerically is given in the appendix.

2. Corollary 1: p — Non-Aggressive Inner Loop: ||Si[j;c > 1 <= ¢; —

stability < g; < 2p <= || |l300 < ||Sullyyee 52 = 0:

3. Corollary 2: p — Aggressive Inner Loop: [|Si[l;;» <1 <= max{g —

stability, 2p} < g; <= |[Solle > [|Sullyye ;2 = 0.

4. Corollary 3: g — Aggressive Inner Loop: [|Si;~ < 1 <= max{g —

stability,2g,} < g <= ||Tollyee < [|Tull3ye ;2 = 0.

5. Comment: Peak Sensitivities: |||,/ ,||T||;j~ increase with increasing g,

and decreasing g;.
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2.7.2 Closed Loop Stability

Similar to example 1, we get the stability of the inner loop as:

PolezeroMsp

Rl s (soconcs”)

Figure 2.7.2: Nominal System: Open Loop Transfer Function

1. If g; = stabilitycondition; the system has poles near the imaginary axis which
leads to higher peak sensitivities t for the loop at output and for the loop at

controls.

Figure 2.7.3: Nominal System: Root locus of Loop Transfer Function at Controls

(left) and at Output (right)
The above plots explain that the T GM at controls is infinite, | GM at controls is
finite. On the other hand, | GM at output is zero, T GM is finite because of the

right hand plane zero. Thus, this cause the system to be bandwidth limited.
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2.7.3 Open Loop Trade Studies

Varying Outer Loop Gain g, with g; fixed at g; =5

Loop at Input:

Figure 2.7.4: Inner Loop Magnitude |L;| and Phase ZL;

Loop at Output and Loop at Controls:

uuuuuuuuuu

Figure 2.7.5: L, and L,: Loop Magnitude and Loop Phase (g; = 5) for z =5

e |L,| increases with increasing g,, w,, decreases with increasing ¢,, ZL, is inde-

pendent of g,, PM is independent of g,, PM decreases with increasing g,
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Varying Outer Loop Gain ¢g; with ¢, fixed at g, = 2

Loop at Input:

Figure 2.7.6: Inner Loop Magnitude |L;| and Phase ZL;

Loop at Output and Loop at Controls:

Figure 2.7.7: L, and L,: Loop Magnitude and Loop Phase (g, = 2)

e |L,| increases with increasing g,, w,, decreases with increasing g,, ZL, is inde-

pendent of g,, PM is independent of g,, PM decreases with increasing g,.
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2.7.4 Sensitivity Trade Studies

Varying Outer Loop Gain g, with Inner Loop Gain g; Fixed at g; =5

Inner Loop Sensitivity and Complementary Sensitivity

Figure 2.7.8: Inner Loop Sensitivity and Complementary Sensitivity |S;| and |T;]

Loop Sensitivity at Output and at Controls

Figure 2.7.9: |S,| and |S,|: Loop Sensitivity at Output and at Controls (g; = 5)

e Peak |S,|, [Sul, |To|, |Tu| increases with increasing g, or decreasing g;.
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Inner Outer Loop Complementary Sensitivity Ratio %| vs g; (9o - param-

eter)

Figure 2.7.10: [2¢] > 1V w >0 (¢ = 5)

Peak Sensitivity and Complimentary Sensitivity

oK 5,18 3, (9, -paramater)for 2= 5 = 201 = 005,202 = 00821 0122 =3 Poak[S,v5 0, 9, paramete) for 2+ 5 = 1201 = 008202 = 008211 = 0.2+

9,6, parameter)for 2= 8p = 1201 = 005202 = 008311 = 0122 23 POOkIT,Jv3 0, (0, paramete) for 22 5= 1201 = 008202 = 005,211 = 0.2 =3

Figure 2.7.11: Peak |Su| , |S,l, |Tul, |To| Vs ¢o (gi-parameter)
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Varying Outer Loop Gain ¢g; with ¢, fixed at g, = 2

Inner Loop Sensitivity and Complementary Sensitivity

Figure 2.7.12: |S;| and |7;|: Inner Loop Sensitivity and Complementary Sensitivity

(go = 2)

Loop Sensitivity and Complimentary sensitivity at Output and at Controls

1T Loop Complementary Senitty at Controls (5, = 38)for =5 m =D forzespn1, m2e2

Figure 2.7.13: |S,| , |So|, |Tul| » |T,]: Loop Sensitivity at Output and at Controls

e Peak |S,], |Sul, |To|, | 1| increases with increasing g, or decreasing g;.
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|%| vs g; (g, - parameter)

Figure 2.7.14: |7 >1 VY w >0 (g, = 2)

Peak |S,| , |Suls |To]s [Tl

Pesk 18,1139, , -parsmeten o 2 591 1201 = 0052022 00511 = 0122 2 p Posk 8,118 8, 0, -parameten o 2= 9= 1201 005202005 21 =012 =2

Figure 2.7.15: Peak |S,| , |Sul; |To|, |Tu| VS g0 (gi-parameter)

e Peak |S,|, [Sul, |To|, |Tu| increases with increasing g, or decreasing g;.
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2.7.5 Closed Loop Time Response Trade Studies

Varying Outer Loop Gain g, with Inner Loop Gain g; Fixed at g; =5

Time Domain Analysis: Impulse S,, S,, T,, T,

p— " e mputes,; Commanari,= 10,

It T, O Responsey o npus ot Command (5, = 10 for £ 5 1201 008 2020081 =022 =2 [

Figure 2.7.16: Impulse S,, Sy, Ty, 1o, (g; = 5)

Time Domain Analysis: Step S,, S., T,, T,

01010250 w2 ., N seps,

Figure 2.7.17: Step Sy, Su, T, T (g: = 5)
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Varying Outer Loop Gain g, with Inner Loop Gain ¢; Fixed at g, = 2

Time Domain Analysis: Impulse S,, S,, T,, T,

Figure 2.7.18: Impulse S,, Sy, Ty, T (go = 2)

Time Domain Analysis: Step S,, S, T,, T,

e,

Figure 2.7.19: Step S,, Su, Ts, T (9o = 2)

e [nitial transient undershoot increases with increasing g,.
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2.7.6  Summary and Conclusions
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Chapter 3

NON-LINEAR CART-INVERTED PENDULUM DYNAMIC MODEL

All systems are non-linear. However, studies have been conducted with non-linear
systems, involving linearization of the system about its equilibria. This gives insightful
information for linear control designs that are applicable to non-linear models. To
understand the nonlinearities associated with a model, it is essential to have a major
understanding of its equilibria(Persson, 2013). The equilibria pertaining to a non-
linear model has been used rigorously for linearization. As we proceed through this
chapter, these techniques addressed will involve major linear concepts. These concepts
however may or may not be successful to make a non-linear model stable. Hence a
comparison between linear control design on non-linear models would be helpful and

highly recommended(Prasad et al., 2014).

3.1 Motivation: What can a Cart-Inverted Pendulum Be Used to Approximate.

This thesis motivates the idea of systems in nature which have the necessity to bal-
ance themselves about their vertical position. Systems that need balance are heavily
inspired by the cart-pole model. To understand the control action needed for restrict-
ing any instability, one needs to understand this model and its working. Hence, the
cart-inverted problem is an excellent example to approximate the necessary require-
ments to satisfy the conditions of locomotion as stated above(Yi et al., 2016). This
idea is illuminated from the fact that the analogies related to the examples related
to the previous chapter are useful in approximation of the cart-pole system. Hence
analogies from the cart-inverted problem can be applicable to a more complicated

system.
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3.2 Non-Linear Model: Variables, Parameters and Nominal Values

The model that has been extensively studied in this thesis (Ogata, 2001) and
(Ponce et al., 2014). The system parameters are selected with respect to the references

as stated above and are defined in the table below.

Variable | Nominal Value Description
m 0.21 mass of the pendulum
L 0.61 length of the pendulum
l 0.305 position of center of gravity of pendulum from pivot
b 0 coefficient of friction
g 9.81 acceleration due to center of gravity
I 0.006 moment of inertia
M 0.455 Mass of the cart

Table 3.2.1: System Variables.

Nominal Values:

Variable | Nominal Value (Units)
m 0.21 kg
L 0.61 m
[ 0.305 m
b 0 kgm?/s
g 9.81 m/s?
I 0.006 Nm/rad?/sec?
M 0.455 kg

Table 3.2.2: Nominal Parameter Values.
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The non-linear model pertaining to this system can be derived using euler-lagrange
equations. This methodology has been very useful for deriving the states with respect
to the control inputs. The code for linearizing the system about its equilibria is

provided in the appendix. The equations of representing the non-linear model can be

given by:

(M 4 m)i + mlf cos(8) + bd-—mb?lsin(g) = F (3.2.1)
(I +mi*)8 + ml cos(#)i — mglsin(h) = 0 (3.2.2)

Cart Inverted Pendulum: The relevant block diagram can be found in Figure

4.6.1.

mg

Figure 3.2.1: Block Diagram for cart-pole system

Assumptions:
The following assumptions are made for this model to get an idea of a system

related to our examples:

1. The coefficient of damping b is negligible.

2. The coefficient of rotational damping associated with the pendulum is negligible.
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3.3 Properties of Non-Linear Model

There are two degrees of freedom pertaining to the cart-pole system namely: one
translational degree of freedom and a rotational degree of freedom x, # and their
derivatives constitute the state variables of the plant which are respectively: the cart
position and the angle of the pendulum. The links are rigid with a lumped mass at
the center of gravity. A single input F' provides the control force. A disturbance d
may also be present at the plant input and it should be similar to tapping the cart
to verify that the control system is stabilizing the pendulum.

The model may be written as follows:

&= F(z,u),y =Cgz, (3.3.1)
up = |u — force on the cart (3.3.2)
x — cart position(m)
T — cart velocity(m/sec
Tp = (m/sec) (3.3.3)

0 — pendulum angle(rad)

0 — angular  wvelocity(rad/sec)

x — cart position(m
Yp = o (3.3.4)
0 — pendulum  angle(rad)
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3.4 Equilibrium Analysis

The cart-pendulum equilibrium can be shown by the computing the equations
of motion and using ordinary differential equations to simulate: the position, the
velocity, the angle, the angular velocity (Persson, 2013).

To view the equilibrium, we plot : the angular velocity of the pendulum about
angular position.The figure is given in 3.4.1. Hence we get the following phase por-

traits.

Phase Portrait

9 g I degisec)

Figure 3.4.1: Angular Velocity vs Angular Position

From this figure, we get the following equilibrium points for our states.

(3.4.1)

o o o O

This CIP system has two types of equilibria associated with the pendulum - sta-
ble (pendulum resting at bottom) and unstable equilibria (pendulum about vertical

position).
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3.5 Linear Model

The non-linear model is linearized about its equilbria z;, 3.4.1 and u, = 0 using

by using Jacobian method (I ~ 0, b = 0). The linear equations derived are as below:

(M +m)i +mlf = u (3.5.1)

ml%0 + mli — mglh = 0 (3.5.2)

Linearizing the model about its equilibrium results in the following state space

representation for the system is given by:

01 0 0 0
00 =2 o =
&y = M 4+ | M u (3.5.3)
0 0 0 1 0
(m~+M) _
_0 0 ¢ 7 O_ _ﬁll_
&, = Az, + Bu;y, = Cx, (3.5.4)
0 i
- = L? e (3.5.5)
1 2 _ g
X B E ST — T
u 82 L2 _ g(m+M)] (3.5.6)
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3.6 Analysis of Linear Model

Poles: Pole Zero Map

pole-zero map for plant transfer function

Fast Stability Mode -
Cart Position Equilibrium Mode Fast Instability Mode

e

1)

Imaginary Axis (sec

Fast Stability Mode Fast Instability Mode
)

Real Axis (seconds ™)

Figure 3.6.1: Pole-Zero Map

Poles:
Pole Description Poles
Pendulum Toppling Instability | A\ = 5.693
Pendulum Damping Ay = -5.693
Cart Position Equlibrium A3q =0
Table 3.6.1: System Poles
Zeros:

Zero Description Zeros

Pendulum Force Acceleration | z; = 4.958

Pendulum Force Deceration | zo = -4.958

Table 3.6.2: System Zeros
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Modes:

tmssaconcs) ’ ’ : imofsoconcs)

Figure 3.6.2: Modal Analysis

o Comment: The first marginally stable mode and the second marginally stable
mode corresponds to integrators in the plant responsible for cart position equilib-
rium. Since the poles are at the origin, the system remains balanced. Ofcourse,
this 1s theoritically applicable and is ideal. It is understood that this mode s

independent of any changes to the parameters of the system.

o Comment: The fast instability mode corresponds to right hand pole in the plant

responsible for pendulum instability.

o Comment: The fast stability mode corresponds to left hand pole in the plant

responsible for pendulum stability.

The system is controllable and observable at x - position of the cart. Hence, PBH

tests help prove no loss of controllability and observability.
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3.6.1 Stability Trade Studies
The CIP systems used for the study comprises of three models:
e System 1: Hernandez Model (Hernandez, 2000)
e System 2: Ogata Model(Ogata, 2001), (Ponce et al., 2014)

e System 3: Vignesh Model (Namasivayam, 2020)

The poles and zeros obtained from the aforementioned models are:

Systems Poles Zeros

System1 p = 0,0,-3.6,3.602 z = 3.118,-3.118

System2 | p = 0,0,-5.693, 5.693 | 2 = 4.598,-4.598

System3 | p = 0,0,-9.456,9.456 | » = 8.821, - 8.821

Table 3.6.3: Poles And Zeros Of Respective Systems

The pole-zero map for visualizing these designs can be very insightful on the
amount of bandwidth that can be used to control each of the systems. It also explains

how fast the instability affects the system.

Pole-Zero Map
T

Imaginary Axis (seconds™')

Real Axis (seconds™')

Figure 3.6.3: Pole Zero Map For Systems Discussed
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o Comment: The inner outer loop assists with stabilizing each of the systems as
discussed above. The system 1 has the longest pendulum. It has poles and zeros
closest to the imaginary axis compared to the other systems. Hence, it will
be easiest to stabilize. The system 3 has the smallest pendulum. It has poles
farthest from the imaginary axis. Consequently, the system will be hardest to
stabilize. The system 2 has the pendulum of intermediate length in comparison

to the others. It will be easier to stabilize in comparison to the other systems.

Root Locus of Systems 12 3 at Output

Imaginary Axis

Figure 3.6.4: Root Locus At Output

Root Locus of Systems 12 3 at Controls
T T T

5
Real Axis (seconds™")

Figure 3.6.5: Root Locus At Controls
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Varying Outer Loop Gain g, with Inner Loop Gain g; Fixed at g, = 20

Time Domain Analysis: Impulse S,, S,, T,, T,

s, (0 bocseasipeseaet s aset bt e2mza22 s, 3

Figure 3.6.6: Impulse S,, Sy, Ty, T (g; = 20)

Time Domain Analysis: Step S,, S., T,, T,

Figure 3.6.7: Step Sy, Sy, To, Ty (g; = 20)
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Varying Outer Loop Gain g, with Inner Loop Gain ¢; Fixed at g, = 2

Time Domain Analysis: Impulse S,, S,, T,, T,

....... Commandr(a,=2) mpues,

Figure 3.6.8: Impulse S,, Sy, Ty, T (9o = 2)

Time Domain Analysis: Step S,, S, T,, Ty

Figure 3.6.9: Step Sy, Su, To, Tu (9o = 2)

e Zero steady state error due to integrator in IK,.
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3.6.2 Frequency Response Trade Studies

Varying Outer Loop Gain g, with g; fixed at g; = 20

Loop at Input:

Figure 3.6.10: Inner Loop Magnitude |L;| and Phase ZL;

Loop at Output and Loop at Controls:

Figure 3.6.11: L, and L,: Loop Magnitude and Loop Phase (g; = 20) for z =5

e |L,| increases with increasing g,, w,, decreases with increasing ¢,, ZL, is inde-

pendent of g,, PM is independent of g,, PM decreases with increasing g,.
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Varying Outer Loop Gain ¢g; with ¢, fixed at g, = 2

Loop at Input:

Figure 3.6.12: Inner Loop Magnitude |L;| and Phase ZL;

Loop at Output and Loop at Controls:

Figure 3.6.13: L, and L,: Loop Magnitude and Loop Phase (g, = 2) for z = 5,2.5,1

e |L,| increases with increasing g,, w,, decreases with increasing g,, ZL, is inde-

pendent of g,, PM is independent of g,, PM decreases with increasing g,.
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3.6.3 Sensitivity Trade Studies

Varying Outer Loop Gain g, with Inner Loop Gain g; Fixed at g, = 20

Inner Loop Sensitivity and Complementary Sensitivity

Figure 3.6.14: Inner Loop Sensitivity and Complementary Sensitivity |S;| and |T;]

Loop Sensitivity at Output and at Controls

15, Loop Sensitivity st Contros (5, = 20), forx = 49589 = 569301 =1.4.102 = 041 = 21222 15, Loop Sansitvity st Output (g, = ) for =5

Figure 3.6.15: |S,| and |S,|: Loop Sensitivity at Output and at Controls (g; = 20)

e Peak |S,|, |Sul, |To|, |Tu| increases with increasing g, or decreasing g;.
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Varying Outer Loop Gain ¢g; with ¢, fixed at g, = 2

Inner Loop Sensitivity and Complementary Sensitivity

Figure 3.6.16: |S;| and |7;|: Inner Loop Sensitivity and Complementary Sensitivity

(go = 2)

Loop Sensitivity and Complimentary Sensitivity at Output and at Controls

15 : Loop Sensitity st Conrls (g, =2 forz=5

1T, Loop Complemantary Sensitvty at Contol (3, =2)for =5 y 17, Loop Complementary Senstvty t Output (3, =2) or =5

Figure 3.6.17: |S,| , |So|, |Tul| » |T,]: Loop Sensitivity at Output and at Controls

e Peak |S,], |Sul, |To|, |Tu| increases with increasing g, or decreasing g;.
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Varying Outer Loop Gain ¢g; with ¢, fixed at g, = 2

Peak |SO| ) |Su|7 |To|’ |Tu|

Figure 3.6.18: Peak [S,| , |Sul, |To], |Tu| VS go (gi-parameter)

Varying Outer Loop Gain g, with g; fixed at g, = 20

Figure 3.6.19: Peak [Sy| , |So|, |Tul, |To| Vs go (gi-parameter)
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3.6.4 Fundamental Performance Limitations: A Prelude to Control Design

From the conclusions above, the parameters for proportional integral derviative
design at input and at output can be implemented on the three systems which have

been selected, namely,

e System 1: Hernandez Model

e System 2: Ogata Model

e System 3: Vignesh Model

The bandwidth of each of these systems are limited. However it needs to be
computed for each of these systems to have intuitive information about each of the
bandwidth at controls and at output. For comparing the bandwidth, it is necessary
to fix the sensitivities at the input and the output. Hence, a sensitivity of 6 dB is

chosen for sensitivity at controls and 0 dB at output.

Comparison of sensitivity at the Controls:

Figure 3.6.20: Comparison of sensitivity at the Controls
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Comparison of sensitivity at the Output:

uuuuu

aaaaaa

rrrrrrrr

o
y (radls)

Figure 3.6.21: Comparison of sensitivity at the Output

The parameters for each of these systems for proportional integral derivative de-

sign at controls and at output are as below:

Systems Gi Zi1 Zi2 Yo Zol 202
System1 | 17.65 14 12.2 1 0.02 | 0.001 | 28
System?2 | 18.35 | 13.75 | 12.22 | 0.05 | 0.001 | 28.2
System3 | 20.65 | 13.5 | 12.3 | 0.08 | 0.001 | 29.2

Table 3.6.4: PID Design Parameters With Above Requirements

Using the above design parameters, the following w, at controls, w, at output,

4 GM at controls are obtained.

Systems | wgsy | Wgso | + GM
System1 | 14.9 | 0.003 | 0.3984
System2 | 14.4 | 0.2 | 0.4237
System3 | 13.24 | 0.51 | 0.4822

Table 3.6.5: System Insights

136




Comparison of Step Sensitivity at the Controls:

Step input disturbance d, to plant control response u
T

Time (seconds)

Figure 3.6.22: Comparison of Step sensitivity at the Controls

Comparison of Step sensitivity at the Output:

Step reference command r to error response e

1000 2000 3000 4000

Figure 3.6.23: Comparison of sensitivity at the Output

e The peak step response for shortest pendulum (largest | GM) is the shortest.
The peak sensitivity at the output is taken to be about 0 dB and the peak
sensitivity at the controls is taken to be 6dB. Using the Zeigler Nichols initiated

PID search, the following sensitivities and step responses are computed.
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3.7 Summary and Conclusions

For comparing the systems at input and at controls, it is essential to compute the
bandwidth at controls and at output while the systems have the same peak sensitivity
at the inner loop and the outer loop. The peak sensitivity at the output is taken to
be about 0 dB and the peak sensitivity at the controls is taken to be 6dB. Using
the Zeigler Nichols initiated PID search, the following sensitivities and step responses
are computed. The parameters involved with this search are given on table ?7. On
computing this, the following results are found.

At Controls: The aforementioned results depict that the shortest pendulum (sys-
tem 3) requires smallest bandwidth (w,,) at input to stabilize. It requires maximum
u - bandwidth (w,,) for stabilization. Meanwhile, the longest pendulum (system 1)
requires largest bandwidth (wg,) at controls to stabilize. It requires maximum w -
bandwidth (w,,) for stabilization.

At output: Furthermore, system 3 has the largest x-bandwidth (wgy,). Therefore
it is easiest to control. In contrast, the longest pendulum (system 1) requires smallest
bandwidth (wg,) at output for stabilization. As a consequence, it has the smallest
x-bandwidth (wy,). Therefore it is the hardest to control.

Using some non-linear concepts at play, it is found that the longest pendulum
is easiest one to saturate since it has the smallest | GM. Comparing the control
energies by showing step responses. The peak step response for shortest pendulum
4 GM is the shortest. On saturating too much, the closed loop system is bound to go
unstable. From a saturation point of view, the least likely to saturate is the longest
pendulum. However, if the actuator saturation is small, then the system 3 (shortest
pendulum) will be hardest to control, since there is only a short range of movement

allowed which does not give much room for the shortest pendulum for stabilization.
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Chapter 4

CONTROL DESIGN FOR NON-LINEAR CART INVERTED PENDULUM
SYSTEM

4.1 Motivation: Fundamental Performance Limitations Resolved- Issues, Control

Architectures and Trade-offs

From the previous chapter it is seen that the shortest pendulum requires largest
bandwidth at input to stabilize and has the largest x-bandwidth (hardest to control!!).
In contrast, the longest pendulum requires smallest bandwidth at input to stabilize
and has the smallest x-bandwidth (easiest to control!!). Using some non-linear think-
ing: the longest pendulum is easiest one to saturate since it has the smallest | GM.
Comparing the control energies by showing step responses. The peak step response
for shortest pendulum | GM. On saturating too much, the closed loop system is
unstable. From a saturation point of view, the least likely to saturate is the longest
pendulum(Hu and Lin, 2001).

The analogies from the previous examples is insightful to do a search using the
PID parameters at the input and at the output for obtaining some useful designs
with good properties at the output and at the controls. In the following chapter, the
disadvantages of conventional PK structure for control loops will be explained. Also
different designs such as Linear Quadratic Regulator and some computed H., designs
will be used to deduce some good properties at the input and some decent properties
at the output. Furthermore the PID control parameters will be used to relate to the

optimal control designs obtained.
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4.2 Hierarchical Inner-Outer Loop Control Architecture

The systems with right hand plane zeros and right hand plane poles have some
issues that need to be addressed such as bandwidth limitations, non-minimum phase.
These issue restrict the system from a | GM of zero and 1 GM of infinite. Addition-
ally, more contribution is made in making the system increasingly difficult to control.
To deal with these issues, a conventional inner-outer loop control architecture is used.
The hierarchical inner-outer control architecture also known as the cascade control
design serves a purpose to assist with the right hand plane zero associated with the

system.

Figure 4.2.1: Block Diagram for hierarchical inner-outer loop control architecture

However, the need for this control architecture relies on the fact that the classical
P — K control architecture does not give us good properties. The system could be
stabilized by using the conventional P — K structure. However, the sensitivities at the
output and at the input is not necessarily useful. It is observed that the sensitivities
are very high at the input and at the controls. This design, therefore, cannot be used
practically for implementation as it gives an immensely high overshoot which might

harm the device and its actuators used.
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4.3 Nominal Performance and Robustness Specifications

The nominal system has an instability associated with the system - the right hand
plane pole. In addition to this the right hand plane zero does not let this instability
to move to the left-half plane. A step response to the system depicts the system
to be unstable. Hence, to address this issue, three control desigs will be used for
comparison. To analyse the limitations of a design and relating the parameters to

one another, this comparison is very useful.
e Design 1: A Traditional Single-Loop PK Architecture and Tradeoffs
e Design 2: Inner-Outer Loop Control Design Via LQR servo
e Design 3: Computed general H-infinity Mixed senstivity design for comparison
e Design 4: Inner-Outer Loop Control Design Via PID parameter search

The robustness specifications associated with each of these designs are:

Designs Su So T, T,

Designl | 25.7dB | 25.7dB | 25.8 dB | 25.8dB

Design2 | 0dB 7 dB 0dB | 5.65dB

Design3 | 2dB 3dB 2.5dB | 1.5dB

Table 4.3.1: Robustness Of Aforementioned Designs

Using these designs and their respective sensitivities, the PID parameter search
is computed. The following sensitivities at input and at output are related with
the proportional integral derivative inner outer loop to match the sensitivities. On
computing this, one can relate between the designs to get more insights about the

PID inner-outer parameter search.
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4.4 Design 1: A Traditional Single-Loop PK Architecture

Figure 4.4.1: Block Diagram for P-K Structure

This tranditional P — K structure uses a model based compensator using pole
placement design. The plant is augmented to reject step disturbances at input and
at the output. Using separation principle,the controller is designed. The model
compensator poles corresponding to the contrller and the observer are chosen to
make the system stable and detectable.

Separation Principle:
K =[A-BG—-H(C - DG),H,G| (4.4.1)
Loop Transfer at Input and Output:
L;=PK;L,=KP (4.4.2)
Loop Senstivity and Complementary Sensitivity at Input
Tiwu, = Si=[I + Li| Ty =Ty = Li[I + L;)" (4.4.3)
Loop Senstivity and Complementary Sensitivity at Output

Tre=S,=[I+ L) T, =T,= L[l +L,)" (4.4.4)
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Sensitivity and Complimentary Sensitivity

Closed Loop Magritude Response 4,10 4,)
(sensitity st Piant input)

Mg () (48]

Froquency (rads)

Closed Loop Magnitude Response (10 u)
(Complementary Sensitity at lant Input)

g
Feaueny (a0s)
Glosed Loop Magntuce Response r107)
(Gomplemenar Sensity ot Pam Ot o)
)
g
E

Frequency (rads)

Figure 4.4.2: S;, S,, T;, T,

Step Responses

Stop Response (104,

Figure 4.4.3:

Stop Response (4, 101)

Stop Responss (r10)

0 -Poston

Step Si? So; E7 To
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From these above figures 4.5.4, the following peak senstivites are obtained:

Designs Sy So T, T,

MBC | 25.7dB | 25.7dB | 25.8 dB | 25.8dB

Table 4.4.1: Model Based Compensator Peak Senstivities

e The peak sensitivites and step responses obtained depict that inspite of having
good step responses the properties at the input and output are not useful. Con-

sidering the above results, the properties that the system depicts, are terrible.

e The conventional design does not give us good properties at the input and
output because of the control issues associated withthe system (non-minimum

phase, unstable).

e More precisely, using pole-placement also gives no information about the prop-
erties at the input and the output. It gives the position of poles with respect

to the imaginary axis and real axis.

e Moreover, this type of design architecture has same properties at the input as
well as on the output. Hence, tradeoffs are not involved with this control archi-
tecture. Additionally, the peak responses shows significant amount of saturation

occurs on the input as well as output.

e To tackle with these issue, the control architecture demands more than one
loop to address these control issues and help deal with them. As seen in the
literature, this motivates the need of a new control architecture for getting useful
properties at the input and output (inner-outer loop architecture). For this, it

is necessary to use a design that gives good properties at the input and output.
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4.5 Design 2: Inner-Outer Loop Control Design Via LQR servo

Figure 4.5.1: Block Diagram for hierarchial inner-outer loop LQR servo control

architecture

The LQR Servo uses an inner-outer loop control architecture as seen in figure
4.5.1. The cost function is minimized using:

LQR Problem Statement:
minJ(u) = %/Ooo(xTQx + u” Ru)dr (4.5.1)
Solution:
u=—Gx (4.5.2)
Control Gain Matrix:
G=R'B'K (4.5.3)
Control Algebraic Ricatti Equation:

0=KA+A"K+ M"™M - KBR'B'K (4.5.4)
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Inner-Outer Loop Control Design Via LQR - PI

Sensitivity and Complimentary Sensitivity

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

“
AN
\\
Figure 4.5.2: S;, S,, T;, T,
Step Responses

Tmeeonds T T secons)

Figure 4.5.3: Step S;, S,, T;, T,
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Inner-Outer Loop Control Design Via LQR - PID

Sensitivity and Complimentary Sensitivity

mmmmmmmmmmmmmmmmmmmmmmmmmmmmm

:\\;
// ( N N
i
Figure 4.5.4: S;, S,, T;, T,
Step Responses
1 5
E 2

Time tsecons) h h : ~ Timo tseconds)

Figure 4.5.5: Step S;, S,, T, T,
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From these above figures, the following peak senstivites are obtained:

Designs S S,

LOQR—-PI | 0dB | 7dB

LQR—PID | 0dB | 7 dB

LQR— PID | 0dB | 6 dB

LQR - PID | 0dB | 3dB

Table 4.5.1: LQR Peak Senstivities

e The peak sensitivites and step responses obtained depict that inspite of having
good step responses the properties at the input the design has decent properties
at output. However if more weights are placed on the state corresponding to

the position, angle angular velocity, properties at output are improved.

e The LQR PI has been used to obtain good peak |S,| (0dB as expected), un-
acceptable peak |S,| (7dB) which requires work (derivative action) to improve

peak |S,| (J.-B. He et al., 2000).

e The LQR PID on the other hand, obtains good peak |S,| (0dB as expected);

acceptable peak |S,| (3dB) using diagonal @) and R.

e Hence, it is seen that the inner-outer loop structure contributes to lower the
peak sensitivities of the inner loop and the outer loop. However, this structure
does not have a PID in the inner loop as well as the outer loop (Prasad et al.,

2014).

e Therefore, more parameters are not available for tradeoff. The Zeigler Nichols

PID search involves a PID in the inner loop and the outer loop.
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4.6 Design 3: Computed general H-infinity Mixed senstivity design for comparison

w z
Exogenous Signals — » I Pp  Regulated Signals
G
u
y
Control Signals Generalized Plant Measured Signals
K
l—
Controller

Figure 4.6.1: Generalized Feedback Structure

The H*> optimal controller satisfies a priori speicified peak performance bound ~

(v > 0) . The controller K stabilizes G such that the norm of the closed loop system

T (K) satisfies:

Lower Bound on Peak Sensitivity

s s VEUFE VE T+
Ui - yE VIR

M l

~I<
—_
_|_

5§

~10.5717 (20.5dB)

Weighting Function W,

o= 1 [e]

S + €wy

Weighting Function W,
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Parameter | Value

M, 10
Wy 1
€ 0.1

Table 4.6.1: Numerical Choices For W; Design Parameters

Wa(s) = M, (4.6.4)

Parameter | Value

M, 0.1

Table 4.6.2: Numerical Choices For W5 Design Parameters

Weighting Function W3

s+ e
Ws(s) = . (4.6.5)
Whe
Parameter | Value
M, 10
Whe 1
Table 4.6.3: Numerical Choices For W3 Design Parameters
Bilinear Transform Parameters.
I (4.6.6)




Parameter | Value

P1 —0.1

P2 —10"%

Table 4.6.4: Numerical Choices For Bilinear Transform Parameters.

General Weighted H*> Suboptimal Mixed Sensitivity Problem:

W15
| Toe (K ) [l 3g0 = || | Wo S <7 (4.6.7)

WsT
HOO

H>°-Optimal Controller K and Performance Measure ;.

Yopt = 0.5T744e + 03

The weights W, , W5 | W3 are chosen for significantly influencing the sensitiv-
ity at controls, sensitivity at output and complementary sensitivity to address
the closed loop stability, commmand following, disturbance attenuation, distur-

bance attenuation, sensor noise attenuation, reasonable control action.

The weights are used to reduce the norms to a minimal which gives some rea-
sonable gains for our controller to get good properties at the input, output and

at the controls.

This is achieved by using youla parameterization to convexify the problem. The
convexified problem is optimized using convex optimization to get some good
properties. The selected weights are chosen heuristically. The code for this
design is used from my labmate Brent Wallace. I want to give credit to him for

his work.
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4.7 Design 4: Inner-Outer Loop Control Design Via PID parameter search

4.7.1 Zeigler Nichols Tuning

wwwwwwwwwwwwww

Figure 4.7.1: Root Locus of Inner Loop (Left) and Outer Loop (Right)

To tune the parameters of a pid controller of the inner loop, the inner plant is
taken(Astrom and Higglund, 2004). As it is in the root locus in the above figure
4.7.1, the gain is increased till it reaches marginal stability. This gain is noted as K.
The time constant 7T, is the time of oscillations at marginal stability. The zeros of the
inner loop are chosen to stabilize the inner plant P; with the requirements mentioned

in the table below:

Designs K, |T;|Ty| Ki=% | Ka=T.,K,
PID 0.6K, | 2o | o | 125« 0.05K,T,
Some overshoot | 0.7K, | &= | L %% %%
T, | Ty 2Ky 1 Ky
No overshoot | 0.2K, | 5+ | 3 ST 5

Table 4.7.1: Zeigler Nichols Tuning Method

The same method is applied for taking the outer loop system K;B;[I + K;P;]™'P,
to get the parameters for outer loop K, K;, K4. The outer loop zeros and inner loop

zeros are found out corresponding to the parameters obtained above.
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4.7.2 Proportional Integral Derivative Search

This design involves a blind search involving six for loops to get a family of designs
corresponding to (Kp;, Ki;, Kd;, Kp,,Ki,, Kd,) for our design requirements.

Parameters for the search:

g; | Proportional Inner Loop Gain

Zil Zero Inner Loop Gain

Zil Zero Inner Loop Gain

g, | Proportional Outer Loop Gain

Zol Zero Outer Loop Gain

Zol Zero Outer Loop Gain

Table 4.7.2: PID Inner Outer Loop Parameter Definitions

This search mainly contributes to:

e Getting good properties at input and at controls.

e Relating this design to other designs achieved.

e Relating to various equilibrated designs for useful comparison.

The code for this search is given on the appendix. This search involves Zeigler
Nichols tuning to choose the parameters used for stabilizing the loop. The parameters
are chosen at the left and right of the parameter values corresponding to Zeigler
Nichols design with a change of about 2 percent. The percentage is then changed to

get required related designs.
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LQR related pid search

From the aforementioned LQR design, the following peak sensitivities are obtained:

Designs | S, S,

LQR |0dB|7dB

Table 4.7.3: LQR Design Peak Senstivities

The search is used with the following parameters corresponding to (Kp;, Ki;, Kd;,

Kp,,Ki,, Kd,) given as below:

Design g; Zi1 | Zi2 Yo Zol | Ro2 Wy, Wyo H SU H HSOH

PID,, |50| 2 [22]1217|05 161|359 |24 | 0dB | 7dB

Table 4.7.4: PID Related LQR Design Parameters

Design | | GM,, | PM, | T GM, | PM,

PID,, 0.33 | 8242 | 297 | 32.85

Table 4.7.5: PID Related LQR Design Parameters

Sensitivity at Controls and at Output

Bod Dingram Bode Disgram

Figure 4.7.2: S,, S, to relate to LQR design
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Relation to General weighted H* mixed sensitivity design problem

From the aforementioned H> design, the following peak sensitivities are obtained:

Designs Sy S,

H 28 dB | 2.8 dB

Table 4.7.6: H*> Design Peak Sensitivities

The search is used with the following parameters corresponding to (Kp;, Ki;, Kd;,

Kp,,Ki,, Kd,) given as below:

DeSign i Zi1 Zi2 o 2ol 202 wgu wgo HSuH HSOH

PID;, | 1785 | 2 [22 09504 |14 153 |0.57 | 2.8dB | 2.8 dB

Table 4.7.7: PID Related H* Design Parameters

Design | | GM, | PM, | + GM, | PM,

PID;, 0.5 74 6 29

Table 4.7.8: PID Related H* Design Parameters

Sensitivity at Controls and at Output

...................

[m—— Frequency (i)

Figure 4.7.3: S,, S, to relate to H>™ design
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Relation to System 3 Design

From the system 3 design, the following peak sensitivities are obtained:

Designs | S, S,

H> 7dB | 0dB

Table 4.7.9: System 3 Design Peak Sensitivities

The search is used with the following parameters corresponding to (Kp;, Ki;, Kd;,

Kp,,Ki,, Kd,) given as below:

Design | g¢; Zi1 | 22 9o Zot | 202 | Wou | Woo | 1Sull | 1Sl

PID,, 11695 | 14 | 12.2]0.02 | 0.001 | 28 | 184 | 0 | 7dB | 0dB

Table 4.7.10: PID Related System 3 Design Parameters

Design | | GM, | PM, | 1 GM, | PM,

PID,, 0.5 28 255 78

Table 4.7.11: PID Related System 3 Design Parameters

Sensitivity at Controls and at Output

Figure 4.7.4: S,, S, to relate to system 3 design
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Relation to System 1 Design

From the system 1 design, the following peak sensitivities are obtained:

Designs Sy S,

H 12dB | 0dB

Table 4.7.12: System 1 Design Peak Sensitivities

The search is used with the following parameters corresponding to (Kp;, Ki;, Kd,,

Kp,,Ki,, Kd,) given as below:

Design i 2l 2i2 Yo 2ol 202 wgu wgo HSuH HSOH

PID;, | 1225 |14 | 122 0.02 | 0.001 | 28 | 175 | 0 | 12dB | 0 dB

Table 4.7.13: PID Related System 1 Design Parameters

Design | | GM, | PM, | + GM, | PM,

PID;, 0.6 17 115 81

Table 4.7.14: PID Related System 1 Design Parameters

Sensitivity and Complimentary Sensitivity

....................

1

Fraquency (radis)

Figure 4.7.5: Sy, S, to relate to system 1 design
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The equilibrated designs pertain to sensitivities that are equilibrated at the input
and at the controls. The procedure involves adjusting the parameters (Kp;, Ki;, Kd;,
Kp,,Ki,, Kd,) such that the sensitivities at the controls and at the output are the
same (pareto-optimal condition). Following this, if the bandwidth is fixed, adjusting
the parameterst. Adjusting the gains depicts the sensitivity at controls increasing
and sensitivity at output decreasing and vice versa.

The search is used with the following parameters corresponding to (Kp;, Ki;, Kd;,

Kp,,Ki,, Kd,) given as below:

4.7.3 Equilibrated Designs

Examine Equilibrated PID Designs — Comparing Different Peaks

Parameter Set 1

gi Zil Zi2 Yo Zol 202 wgu wgo HSuH HSOH
17.95 1 1.97 [ 2.16 | 0.75 | 0.08 | 1 16 | 0.26 | 1.65dB | 1.65 dB
Wyi | Wysu | Wgso \L GMu PMu T GMO PMO
18 | 1.9 | 1.6 0.5 74 10 79
Parameter Set 2
gi Zi1 Zi2 Go 2ol 202 Wgu wgo ||Su|| ||SOH
1894 1 1.99 | 1.8 | 1.1 [ 0.09 | 0.52 | 15.7 | 0.36 | 2.3dB | 2.3 dB
wgi wgsu wgso \L GMu PMu T GMO PMO
1729 | 1.83 | 1.21 0.56 76 8 87.5
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Parameter Set 3

[1Sull | 11Soll

gi Zil Zi2 Jo Zol 202 | Wgu | Wgo

1785 2 | 22]095|04]14] 15 | 0.5 | 2.8dB | 2.8 dB

wgi Wgsu Wgso i GMu PMu T GMO PMO

16.14 | 1.74 | 0.51 0.5 70 6 93

Parameter Set 4

16.94 | 2.01 | 2.37 | 1.7429 | 0.07 | 1.05 | 13.1 | 0.71 | 4.03dB | 4.03 dB

Wi Wygsu | Wyso \L GMu PMu T GMO PMO

15.15 | 2.07 | 2.03 0.6 69 4.11 96

Parameter Set 5

1712122304 ]14|11]273]12.2dB |12.2dB

J/ GMu PMu T GMO PMO

Wyi Wysu | Wyso

15.19 | 2.08 | 2.13 0.8 65 1.67 19

® [[Sullgee < N1Soll3e

e As the peak increases, the open loop bandwidth at controls w,, decreases and

the open loop bandwidth at output wgy, decreases.
® w, ~ inner loop gain g;
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Examine Equilibrated PID Designs — Open Loop Plots

Loop Magritude at Output L |

,,,,,,,,,,,

Figure 4.7.6: Examine Equilibrated PID Designs — Open Loop Plots

Examine Equilibrated PID Designs — Closed Loop Plots

,,,,,,,,,,,,,,,,,,,,,,,,

g (aisc)

Figure 4.7.7: Examine Equilibrated PID Designs — Closed Loop Plots
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Parameter Set 1.1

Examine Equilibrated PID Designs — Comparing Same Peaks (2.8)

gi Zi1 Zi2 9o Zol 202 Wgu wgo HSuH HSOH
1545 146 |139]149 (19| 0.1]13.39|0.27 | 1.65dB | 1.65 dB
Wgi Wysu | Wgso J/ GMu PMu T C;’]\40 PMO
15.75 | 5.89 | 0.26 0.43 51.83 6 48.67
Parameter Set 1.2
9i Zi1 Zi2 Go Zol | %02 | Wgu | Wgo [[Sll 15
1575 | 1.97 | 2.16 | 0.749 | 0.08 | 1 16 | 0.26 | 1.65dB | 1.65 dB
Wi Wgsu | Wgso l/ GMu PMu T GMO PMO
16.24 | 1.9 | 1.62 0.54 74.14 10.2 79.5
Parameter Set 1.3
gi Zil 2i2 Yo Zol 202 wgu wgo HSuH HSOH
21.36 | 6.5 7 |239]4.05]0.05|19.89 | 0.25 | 1.65 dB | 1.65 dB
Wyi Wysu | Wygso J/ GMu PMu T GMO PMO
2191 | 11.8 | 1.87 0.31 49.51 6 78.47
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Parameter Set 1.4

9i Zi1 Zi2 Yo %ol 202 Wgu | Wgo |5l S5l
279109 | 1487 | 0.475 | 0.02 | 0.568 | 26.22 | 0.19 | 1.65 dB | 1.65 dB
Wi Wgsu | Wyso \L GMu PMu T GMO PMO
15.19 | 2.08 | 2.13 0.8 65 1.67 19
Parameter Set 1.5
Gi | Zi1 | Zi2 Yo Zol 202 Wou | Wgo 1Sl 155l
40 | 11 | 16.1 | 5.11 | 9.92 | 0.03 | 39.23 | 0.17 | 1.65 dB | 1.65 dB
Wi Wysu Wyso l/ GMu PMu T GMO PMO
43.28 | 2598 | 1.14 | 0.23 | 4894 | 5.78 | 7997
Parameter Set 1.6
gi |z | Z2 | o | Zot | Zo2 | Wou | Weo | NSull | (ISl
A7 | 11 ] 21.1 1 6.29 | 9.92 | 0.03 | 46.5 | 0.14 | 1.65dB | 1.65 dB
Wi Wysu Wyso J/ GMu PMu T GMO PMO
51.33 | 31.42 | 1.12 | 0.21 | 4890 | 5.77 | 77.92
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From these above tables, we get:

Wgo
290 w

Woo | Ty gi

qgu

13.29 | 0.35 | 0.026 | 15.75

16 1026 | 0.01 |16.24

19.89 | 0.25 | 0.009 | 21.91

26.22 | 0.19 | 0.007 | 26.73

39.23 | 0.17 | 0.004 | 43.28

46.5 | 0.14 | 0.003 | 51.33

Table 4.7.15: Equilibrated Design Bandwidths

e The PID search using six for loops corresponding to each of the gain parameters
involved in the controller, gives us designs related to every other design used in

this thesis.
e As the peaks increases , open loop bandwidths - wg, drops and the wy, rises up.
e Also the | GM, increases , T GM, decreases with rising peaks.

e Furthermore, the open loop bandwidth of the inner loop wy; is seen to be ap-

proximately equal to the inner loop gain g;.

e The root locus helps in understanding the behavior of poles and zeros and how
the peaks change with respect to them. The sensitivities associated depict the

behavior of closed loops near the poles.
e The ratio decreases with respect to increasing wy,.

e The ratio is seen to be increasing with respect to increasing equilibrated peaks
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Examine Equilibrated PID Designs — Open Loop Plots

1L, Loop Magnitudoat Coriros or poak =15

nnnnnnnnnnn

Figure 4.7.8: Examine Equilibrated PID Designs — Open Loop Plots

Examine Equilibrated PID Designs — Closed Loop Plots

o for peak = 165

 atssc)

Figure 4.7.9: Examine Equilibrated PID Designs — Closed Loop Plots

164



Examine Equilibrated PID Designs — Comparing Same Peaks (2.3)

Parameter Set 2.1
9 |z | z2| Yo | Zo1 | Z2 | Wou | Weo | [ISull | [l
1562 4.6 39]199|199|0.1|12.79]0.36 | 2.3dB | 2.3 dB
Wyi Wysu | Wyso \L GMu PMu T GMO PMO
13.13 | 5.95 | 2.7 0.43 52.07 | 6.37 71.5
Parameter Set 2.2
gi Zil Zi2 Jo Zol 202 wgu wgo ”SuH HSOH
18738 1 1.94 | 1.8 | 1.1 ] 0.09 | 0.52 | 15.7 | 0.357 | 2.3dB | 2.3 dB
Wi Wgsu | Wgso \lf GMu PMu T GMO PMO
16.14 | 1.45 | 0.52 0.61 76.16 5.5 57.9
Parameter Set 2.3
9i Zi1 Zi2 o Zol 202 wgu wgo HSuH HSOH
22 1893 721296 |4.25]0.23 (215|029 |23dB|23dB
Wi Wysu | Wgso \lf GMu PMu T GMO PMO
23.58 | 86 | 1.8 0.46 46.069 1.71 14.95
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Parameter Set 2.4

gi Zi1 Zi2 9o 2ol 202 Wou Wgo [|:Sull 1Sl

289 108|148 |0.57]0.09]0.56 | 27.15 | 0.282 | 2.3dB | 2.3 dB

Wi Wysu | Wyso i/ GMU PMu T GMO PMO

29.8 1 0.76 | 0.48 | 0.63 85 6.77 | 53.1

Parameter Set 2.5

gi | Zi1 Zi2 | Go | Rol | Ro2

wWou | weo | [1Sull | 115l
40 | 11| 16.7 | 7 [ 9.1]0.09 | 38.15 | 0.229 | 2.3 dB | 2.3 dB

Wyi Wysu Wyso i/ GMu PMu T GMO PMO

43.2 1 24.16 | 245 | 0.26 42.6 3.5 67.77

Parameter Set 2.6

gi Zil Zi2 go Zol 202 wgu wgo HSuH HSOH

47 11195 | 21.1 | 829 | 11,5 0.2 | 4524 | 0.2 | 2.3dB | 2.3 dB

Wyi Wgsu | Wgso i/ GMu PMu T GMO PMO

51.33 | 289 1 0.18 | 0.25 | 4232 | 344 | 499
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From these above tables, we get:

Wgo )
Wyu go Wou Wyi

12.79 | 0.36 | 0.028 | 16.13

15.7 | 0.357 | 0.022 | 19.2

21.5 1 0.296 | 0.013 | 23.5

27.15 1 0.282 | 0.01 | 20.2

38.15 | 0.229 | 0.006 | 43.5

4524 1 0.2 | 0.004 | 51.6

Table 4.7.16: Equilibrated Design Bandwidths

e The PID search using six for loops corresponding to each of the gain parameters
involved in the controller, gives us designs related to every other design used in

this thesis.
e As the peaks increases , open loop bandwidths - wg, drops and the wy, rises up.
e Also the | GM, increases , T GM, decreases with rising peaks.

e Furthermore, the open loop bandwidth of the inner loop wy; is seen to be ap-

proximately equal to the inner loop gain g;.

e The root locus helps in understanding the behavior of poles and zeros and how
the peaks change with respect to them. The sensitivities associated depict the

behavior of closed loops near the poles.
e The ratio decreases with respect to increasing wy,.

e The ratio is seen to be increasing with respect to increasing equilibrated peaks
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Examine Equilibrated PID Designs — Open Loop Plots

1 Loop Magritude st Cortros fo pesk =23 Loop Magnitude st Output L, o psk =23

Figure 4.7.10: Examine Equilibrated PID Designs — Open Loop Plots

Examine Equilibrated PID Designs — Closed Loop Plots

18, Loop Sensitiiy at Contros for peak =23

nner Loop Sensitiy |5 for pesk =2.3

Figure 4.7.11: Examine Equilibrated PID Designs — Closed Loop Plots
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Examine Equilibrated PID Designs — Comparing Same Peaks (2.8)

Parameter Set 3.1

gi Zil 242 go Zol 202 wgu wgo HSuH HSOH

1479 1 3.06 | 3.12 | 141 | 2 |04 | 1142 |0.62 | 28 dB | 2.8 dB

Wgi | Wysu | Wgso | + GM, | PM,, | + GM, | PM,

13.13 | 2.98 | 0.6 0.54 | 7416 | 10.2 9.5

Parameter Set 3.2

gi |z | zi2 | 9o | Zor | Zoz | Wou | wWoo | [ISull | [1Soll

1785 2 [22]0949 |04 | 14| 15 | 0.569 | 2.8dB | 2.8 dB

Wyi Wysu | Wgso J/ GMu PMu T GMO PMO

16.14 | 1.74 | 0.75 | 0.56 75.5 8.03 87.5

Parameter Set 3.3

i Zi1 Zi2 o Zol 202 wgu wgo HSUH HSOH

22.34 | 10.16 | 5.4 | 4.095 | 6.3 | 0.1 | 20.21 | 0.5319 | 2.8 dB | 2.8 dB

gt Wysu Wyso J/ GMu PMu T GMO PMO

23.58 | 12.05 | 1.35 | 0.58 | 73.49 6.1 58.76
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Parameter Set 3.4

i Zi1 Zi2 9o 2ol 202 wgu wgo ||Su|| ||So||
30.85 | 1 [1.1]0.69|0.02]0.535|29.36 | 0.312 | 2.8 dB | 2.8 dB
Wyi Wysu | Wyso i/ GMU PMu T GMO PMO
29810931095 | 0.61 |69.04 | 4.11 | 96.423
Parameter Set 3.5
gi |z | Zi2 | o | Zot | Zo2 | Wou | Weo | Sull | (ISl
40 | 11 | 16.1 | 8.71 | 2.92 | 0.03 | 37.55 | 0.09 | 2.8 dB | 2.8 dB
Wyi Wysu Wyso i GMu PMu T GMO PMO
43.2 | 245 | 11.24 0.8 65.64 | 1.67 | 19.23
Parameter Set 3.6
gi | Zn| Z2 | Go | Zot | Zo2 | Weu | wWeo | [[Sull | S]]
47 | 11 | 21.1 | 10.59 | 1.02 | 0.03 | 44.77 | 0.03 | 2.8 dB | 2.8 dB
Wi Wysu Wyso J/ GMu PMu T GMO PMO
51.33 | 29.71 | 0.02 0.8 65.64 | 1.67 | 19.23
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From these above tables, we get:

Wgo
Zg0 w

Wyo @gu gi

agu

11.42 | 0.62 0.05 | 13.13

15 | 0.569 | 0.037 | 16.14

20.21 | 0.531 | 0.026 | 23.58

28.3 | 0.312 | 0.011 | 29.8

37.55 | 0.09 | 0.002 | 43.2

44.77 | 0.03 | 0.0006 | 51.33

Table 4.7.17: Equilibrated Design Bandwidths

e The PID search using six for loops corresponding to each of the gain parameters
involved in the controller, gives us designs related to every other design used in

this thesis.
e As the peaks increases , open loop bandwidths - wg, drops and the wy, rises up.
e Also the | GM, increases , T GM, decreases with rising peaks.

e Furthermore, the open loop bandwidth of the inner loop wy; is seen to be ap-

proximately equal to the inner loop gain g;.

e The root locus helps in understanding the behavior of poles and zeros and how
the peaks change with respect to them. The sensitivities associated depict the

behavior of closed loops near the poles.
e The ratio decreases with respect to increasing wy,.

e The ratio is seen to be increasing with respect to increasing equilibrated peaks
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Examine Equilibrated PID Designs — Open Loop Plots

L Loop Magnituda o Controls fr peak= 28 Loop Wagnitude at Output L for pesk =28

yyyyyyyyyyy

Figure 4.7.12: Examine Equilibrated PID Designs — Open Loop Plots

Examine Equilibrated PID Designs — Closed Loop Plots

‘‘‘‘‘‘‘‘‘‘‘‘‘

Figure 4.7.13: Examine Equilibrated PID Designs — Closed Loop Plots
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Examine Equilibrated PID Designs — Comparing Same Peaks (4.03)

Parameter Set 4.1

9i Zil Zi2 Yo 2ol 202 Wgu Wgo HSuH HSOH
14.79 | 3.06 | 3.16 | 1.95 | 2 | 0.4 | 10.75| 0.84 | 4.03dB | 4.03 dB
Wyi Wysu | Wyso \L GMu PMu T GMO PMO
13.13 1292 | 1.8 0.59 54.59 3.17 67.01
Parameter Set 4.2
9i Zi1 Zi2 9o 2ol 202 wgu wgo ”SuH HSOH
16.94 | 2.01 | 2.37 | 1.749 | 0.07 | 1.05 | 13.1 | 0.71 | 4.03 dB | 4.03 dB
Wyi Wysu | Wgso J/ GMu PMu T GMO PMO
15.15 | 2.07 | 2.03 0.61 69.02 4.1 96.46
Parameter Set 4.3
9; Zi1 22 Yo 2ol 202 wgu wgo HSUH HSOH
22.34 1 10.16 | 5.4 | 5.8 | 4.3 0.1 ] 19.32| 0.5 | 4.03 dB | 4.03 dB
Wyi Wysu, Wyso J/ GMu PMu T GMO PMO
23.58 | 11.62 | 2.53 0.36 37.89 | 2.69 11.81
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Parameter Set 4.4

gi Zil Zi2 Yo Zol 202 wgu wgo ||Su|| ||So||

2985 1 | 1.1 088 |0.55|0.01|27.8]042|4.03dB | 4.03dB

Wyi Wysu | Wyso \L GMu PMu T GMO PMO

28.76 1 0.95 | 1.01 | 0.61 | 85.57 | 11.81 89

Parameter Set 4.5

i |z | Z2 | 9o | Zoa | Z2 | Wou | wWeo | [Sull | 1Sl

40 | 11 | 16.1 | 11.81 | 2.92 | 0.03 | 35.93 | 0.12 | 4.03 dB | 4.03 dB

Wyi Wysu Wyso \L GMu PMu T GMO PMO

43.38 12841 0.035 | 0.25 |3716| 2.69 | 77.69

Parameter Set 4.6

gi Zil Zi2 go 2ol 202 Wgu <")go HSuH HSOH

47111 | 21.1 | 14.5 | 1.02 | 0.03 | 42.91 | 0.04 | 4.03 dB | 4.03 dB

g1 wgsu Wgso \L GMu PMu T GMO PMO

01.33 | 284 | 0.03 | 0.25 |37.169 | 2.67 | 55.96
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From these above tables, we get:

Wgo )
Wyu go Wou Wyi

10.75 1 0.89 | 0.08 | 13.13

13.1 | 0.71 | 0.05 | 15.15

19.32 | 0.5 | 0.025 | 23.58

27.8 | 0.42 | 0.015 | 28.76

35.93 | 0.12 | 0.003 | 43.38

42.91 | 0.04 | 0.0009 | 51.33

Table 4.7.18: Equilibrated Design Bandwidths

e The PID search using six for loops corresponding to each of the gain parameters
involved in the controller, gives us designs related to every other design used in

this thesis.
e As the peaks increases , open loop bandwidths - wg, drops and the wy, rises up.
e Also the | GM, increases , T GM, decreases with rising peaks.

e Furthermore, the open loop bandwidth of the inner loop wy; is seen to be ap-

proximately equal to the inner loop gain g;.

e The root locus helps in understanding the behavior of poles and zeros and how
the peaks change with respect to them. The sensitivities associated depict the

behavior of closed loops near the poles.
e The ratio decreases with respect to increasing wy,.

e The ratio is seen to be increasing with respect to increasing equilibrated peaks
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Examine Equilibrated PID Designs — Open Loop Plots

1L Loop Magnitude st Controlsforpesk = 403 Loop Magritude at utput L o pesk = 4.3

nar Loop Magaitud I forpesk =23

Figure 4.7.14: Examine Equilibrated PID Designs — Open Loop Plots

Examine Equilibrated PID Designs — Closed Loop Plots

ity ot Controsfo paak = 403 15, Loop Sansitvty at Outputfor pesk =403

Figure 4.7.15: Examine Equilibrated PID Designs — Closed Loop Plots
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Examine Equilibrated PID Designs — Comparing Same Peaks (12.2)

Parameter Set 5.1

gi Zil Zi2 Jo Zol 202 Wgu wgo ||SuH HSOH

3.06 | 3.16 | 435 | 2 | 04| 762|401 |122dB | 12.2dB

14.79

LGM, | PM, |+ GM, | PM,
31.61 | 1.43 |29.22

Wyi Wysu | Wygso

13.15 ] 3.21 | 292 | 0.78

Parameter Set 5.2

wgo HSUH HSOH

Jo Zol 202 wgu
007 1 |951]33|122dB | 12.2dB

gi Zi1 22

16.64 | 2.01 | 2.7 | 3.749

LGM, | PM, |+ GM, | PM,

Wyi Wysu | Wygso

14.76 | 2.66 | 2.64 | 0.69 | 56.63 | 2.05 | 37.88

Parameter Set 5.3

1Sull | [1Soll

Zol 202 wgu wgo
15.58 | 1.98 | 12.2dB | 12.2 dB

gi Zi1 Zi2 o

22.342 | 10.16 | 54 | 11.8 | 4.3 | 0.1

yGMy | PMy | T GM, | PM,
83.03

Wyi Wysu, Wyso

23.58 | 10.56 | 4.27 | 0.61 | 15.58 | 1.32
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Parameter Set 5.4

9; Zi1 Zi2 Jo 2ol 202 wgu wgo ||SuH ||So||
25351 1 | 1.1 188|055 (0.01]21.96|1.69|12.2dB |12.2dB
Wyi Wysu | Wyso \L GMu PMu T GMO PMO
26.23 | 1.19 | 1.35 0.8 84.18 1.32 85.66
Parameter Set 5.5
gi Zil Zi2 Yo Zol 202 wgu wgo HSUH ||So||
40 [ 11.1 | 16.1 | 23.9]2.92 | 0.03 | 31.92 | 0.24 | 12.2dB | 12.2 dB
Wi Wysu Wyso l/ GMu PMu T GMO PMO
43.3 | 21.78 | 13.30 0.5 14.97 | 1.32 | 85.66
Parameter Set 5.6
9i |z | Ziz | Yo | Zor | Zo2 | Wou | wWeo | ISl 15|l
47 | 11 [ 21.1 1 29.3 | 1.02 | 0.03 | 38.65 | 0.07 | 12.2dB | 12.2 dB
Wgi | Wysu | Wgso | + GM,, | PM, | T GM, | PM,
51.33 | 26.5 | 17.63 0.46 14.54 1.32 71.19
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From these above tables, we get:

Wgo )
Wyu go Wou Wyi

7.62 | 4.01 | 0.526 | 13.15

9.51 | 3.3 | 0.347 | 14.76

15.58 | 1.98 | 0.127 | 23.58

21.96 | 1.69 | 0.076 | 26.23

31.92 | 0.24 | 0.007 | 43.3

28.65 | 0.07 | 0.001 | 51.33

Table 4.7.19: Equilibrated Design Bandwidths

e The PID search using six for loops corresponding to each of the gain parameters
involved in the controller, gives us designs related to every other design used in

this thesis.
e As the peaks increases , open loop bandwidths - wg, drops and the wy, rises up.
e Also the | GM, increases , T GM, decreases with rising peaks.

e Furthermore, the open loop bandwidth of the inner loop wy; is seen to be ap-

proximately equal to the inner loop gain g;.

e The root locus helps in understanding the behavior of poles and zeros and how
the peaks change with respect to them. The sensitivities associated depict the

behavior of closed loops near the poles.
e The ratio decreases with respect to increasing wy,.

e The ratio is seen to be increasing with respect to increasing equilibrated peaks
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Examine Equilibrated PID Designs — Open Loop Plots
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Figure 4.7.16: Examine Equilibrated PID Designs — Open Loop Plots

Examine Equilibrated PID Designs — Closed Loop Plots
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nner Loop Sensitvty S, for peak = 122

Figure 4.7.17: Examine Equilibrated PID Designs — Closed Loop Plots
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4.8 Summary and Conclusions

From this chapter, it is concluded that it is possible to get good properties at the
input and at the output using inner-outer loop control architecture. The conventional
P — K structure is not viable for a good design to get useful properties. Also, the
pole-placement design does not shed any light on improving the properties of the inner
loop and the outer loop. Moreover, it has the same properties at the input as well as
the output. Thus, this motivates the need of this inner-outer loop architecture. The
different designs using linear quadratic regulator, generalized mixed sensitivity earn
us a new pathway for shaping the loop sensitivity to get a good design.

The Zeigler Nichols initiated pid search takes about more than three hours to get
desired peaks. Furthermore, it obtains the family of designs, with excellent |S,| and
|So| peaks. Additionally, it also obtains a family of equilibrated designs (peak |S,| =
|So|). The identified best equilibrated designs peak |S,| = |S,| (1.65dB, 2.8dB). These
have maximum open loop bandwidth ratio % for given peak (no design with larger
ratio exists). One of the equilibrated designs (found via search) was obtained via
Generalized Mixed Sensitivity (Youla Parameterization, convex optimization) which
takes about one hour.

The PID search using six for loops corresponding to each of the gain parameters
involved in the controller, gives us designs related to every other design used in this
thesis However, the drawback is that it takes a lot more time to get the requirements
of a design on focus. The linear quadratic regulator on the other hand and the general
mixed sensitivity using H* design uses norms to get good PID parameters faster than

the search. However the weights are chosen heuristically but they take lesser time to

construct an algorithm.
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Chapter 5

SUMMARY, CONCLUSIONS AND FUTURE DIRECTIONS

5.1 Summary and Conclusions

This thesis illuminates fundamental design trade-offs (peak sensitivity at controls
and at output) associated with the cart-inverted pendulum system. It illustrates how
to tackle the control issues such as unstable, non-minimum phase associated with
the system under inner-outer loop PID control. The shortest pendulum requires the
maximum bandwidth at controls (u - bandwidth). It is most likely to saturate the
control input. However, this system, will have the largest bandwidth at output (z -
bandwidth) due to the largest right hand plane zero.

For large K;, |S;] < 1 which implies that |S,| < |S,| which results in an aggressive
inner loop and a non-aggressive outer loop. On the contrary, for small K;, |S;| > 1
which implies that |S,| > |S,| which results in an non-aggressive inner loop and an
aggressive outer loop. The Ziegler Nichols initiated pid search helps us attain good
peak |S,| (3dB), barely acceptable peak |S,| (7dB) which requires work (modified
Zeigler Nichols) to improve peak [S,|. The LQR PI has been used to obtain good
peak |S,| (0dB as expected), unacceptable peak |S,| (21dB) which requires work
(derivative action) to improve peak |S,|. The LQR PID on the other hand, obtains
good peak |S,| (0dB as expected); acceptable peak |S,| (3dB) using diagonal ) and
R.

The Ziegler Nichols initiated pid search takes about more than three hours to get
desired peaks. Furthermore, it obtains the family of designs, with excellent |S,| and

|So| peaks. Additionally, it also obtains a family of equilibrated designs (peak |S,| =
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|So|). The identified best equilibrated designs peak |.S,| = |S,| (1.65dB, 2.8dB). These
have maximum open loop bandwidth ratio Z—ZZ for given peak (no design with larger
ratio exists). One of the equilibrated designs (found via search) was obtained via
Generalized Mixed Sensitivity (Youla Parameterization, convex optimization) which
takes about one hour. The inner loop zeros move towards inner loop integrators
and pole. The outer loop zeros move towards outer loop integrators (used for a good
design). Root locus ideas help in understanding the equilibrated designs better. Inner
loop zeros provide lead to deal with inner loop integrators and plant poles. Outer loop
zeros provide lead which causes outer loop integrators to move towards them. The
best bandwidth ratio is observed at 4 dB. If 6 dB is our sensitivity limit, then there
exists only one equilibrated design with sensitivity less than 6 dB and a maximum
bandwidth ratio. Similarly, if 3 dB is our sensitivity limit, then there exists one

equilibrated design with sensitivity less than 3 dB and a maximum bandwidth ratio.
5.2 Directions for Future Research

These analogies will be used for computing stabilized controllers for biped walkers.
Using the work and directions from this thesis, this work will be used to combine the
analogies into walkers - quadrupeds, bipeds, unipeds.

From this thesis, it is evident that one can quantify the trade-offs used and use
them for getting required robust designs to get good properties at the inner loop
and the outer loop. The proportional integral derivative search assists us with this
and helps us find some interesting equilibrated designs. However, there are infinite
equilibrated designs associated with this design. Hence, the future scope includes
investigating these equilibrated designs and obtain some patterns that will assist us

with understanding the trade-offs better.
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DERIVATION OF NON-LINEAR CART PENDULUM MODEL

Kinematics

Ty = &+ 1sin(), T = @ + 01 cos(6)

Ym = 1008(0), G = —0l sin(6)

Kinetic Energy

1

1 1. 1 1 . .
K = -Mi*+ —m(i? +92) + 5]92 = 5(m + M)i?* + 5m@QZQ + mb?1? +

2 2

Potential Energy

u = mgh = mgl cos(0)

1 1 . . 1.
L=K-U= i(m + M)i* + §m92l2 + mO?1* + 5]92 — mgl cos(0)

Langrange Equations

doL OL

Qi
Equations of motion

(I +mi?*)6 + mli cos(f) — mglsin(h) = 0

(m + M)i + b8 + mbl cos() — mb?lsin(h) = F
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MATLAB CODE

%% example 1
function [Pi,Ki,Po,Ko] = example_1(p,z,gi,go,zil,zi2,z0l1,z02)
s = tf(’s?)

Pi = zpk([1,[pl,[1])

Ki = gi

Po = zpk([z],[0]1,[-11)

Ko = zpk([1,[0],[gol); %works but oscillatory

end

%% example 1 sym

function [Pi,Ki,Po,Ko]l = example_isym(p,z,gi,go,zil,zi2,z01,202,s)
zo = zol;

Pi = 1/(s-p); ’%inner plant

Po = (z-s)/s; %outer plant

Ki = gi; % inner loop gain

Ko = go/s; % outer loop gain

end

%% example 2

function [Pi,Ki,Po,Ko] = example_2(p,z,gi,go,zil,zi2,z01,2z02)
s = tf(’s?)

zo = zol;

Pi = zpk([1,[pl,[1])

Ki = gi

Po = zpk([z],[0],[-11)

Ko = zpk([-zo0],[0],[gol); %works but oscillatory

end

%% example 2 sym

function [Pi,Ki,Po,Kol] = example_2sym(p,z,gi,go,zil,zi2,z01,2z02,s)
zo zol;

Pi 1/(s-p); %inner plant

Po (z-s)/s; houter plant

Ki gi; % inner loop gain

Ko gox(s + zo)/s; % outer loop gain

end

%% example 3

function [Pi,Ki,Po,Ko] = example_3(p,z,gi,go,zil,zi2,z01,z02)

s = tf(’s?)

Pi = zpk([1,[pl,[11)

Ki = gi % does not work

Po = zpk([z],[0,0],[-1])

Ko = zpk([-zol,-z02]1,[0],[gol)

end

%% example 3 syms

function [Pi,Ki,Po,Ko] = example_3sym(p,z,gi,go,zil,zi2,z0l1,2z02,s)

Pi = 1/(s-p); ‘inner plant

Po = (z-s)/s"2; Y%outer plant

Ki = gi; % inner loop gain

Ko = gox(s + zol)*(s + zo02)/s; % outer loop gain

end

%% example 4

function [Pi,Ki,Po,Ko] = example_4(p,z,gi,go,zil,zi2,z01,z02)
s = t£(’s?)

zi = zil;

Pi = zpk([1,[pl,[1])

Ki = zpk([-zil,[0],[gil)

Po = zpk([z],[0,0],[-1]1)

Ko = zpk([-zol,-z02],[0],[gol);

end

%% example 4 sym

function [Pi,Ki,Po,Ko] = example_4sym(p,z,gi,go,zil,zi2,z0l1,2z02,s)
zi = zil;

Pi = 1/(s-p); %inner plant

Po = (z-s)/s"2; Jouter plant

Ki = gix(s + zi)/s; % inner loop gain

Ko = go*(s + zol)*(s + zo02)/s; % outer loop gain

end

%% example 5

function [Pi,Ki,Po,Ko]l = example_5(p,z,gi,go,zil,zi2,z01,z02)
s = tf(’s?)

zi = zil;

Pi = zpk([1,[p,-pl,[1])

Ki = zpk([-zil,[],[gil)

Po = zpk([z],[0,0],[-1])

Ko = zpk([-zol,-z02]1,[0],[gol)

end

%% example 5 sym

function [Pi,Ki,Po,Ko] = example_5sym(p,z,gi,go,zil,zi2,z0l1,2z02)
zi = zil;

Pi = 1/((s-p)*(s+p)); Y%inner plant

Po = (z-s)/s"2; Y%outer plant

Ki = gi*(s + zi); % inner loop gain

Ko = go*(s + zol)*(s + zo02)/s; % outer loop gain

end

%% example 6

function [Pi,Ki,Po,Ko] = example_6(p,z,gi,go,zil,zi2,z01,2z02)

s = tf(’s?)

Pi zpk ([1,[p,-pl,[11)

Ki zpk ([-zil,-zi2],[0],[gil)
Li_tf = series(Pi,Ki)

Po = zpk([z],[0,0]1,[-11)

Ko zpk ([-zo01,-202],[0],[gol)

end

%% example 6 sym

function [Pi,Ki,Po,Kol] = example_6sym(p,z,gi,go,zil,zi2,z0l1,2z02)

Pi = 1/((s-p)*(s+p)); %inner plant
Po = (z-s)/s"2; Jouter plant

190



Ki = gi*(s + zil)*(s + zi2)/s; % inner loop gain

Ko = go*(s + zol)*(s + zo02)/s; % outer loop gain

end

%% example 7

function [Pi,Ki,Po,Ko] = example_7(p,z,gi,go,zil,zi2,z01,2z02)

gpi = 1.928;

Pi = zpk([1,[p,-pl,[gpil)

Ki = zpk([-zil,-zi2],[0],[gil)
Li_tf = series(Pi,Ki)

Po = zpk([z,-z],[0,0],[-1])

Ko = zpk([-zol,-z02],[0],[gol)

end

%% example 7 sym

function [Pi,Ki,Po,Kol] = example_?sym(p,z,gi,go,zil,zi?,zol,202)
Pi = 1/((s-p)*(s+p)); %inner plant
Po = (z-s)*(z+s)/s"2; %outer plant

Ki = gi*(s + zil)*(s + zi2)/s; % inner loop gain
Ko = go*(s + zol)*(s + zo2)/s; % outer loop gain
end

%% Symbolic Representation

clc

clear all
close all

syms p z zil zi2 zol zo2 gi go s ’real’;

% Pi = 1/((s-p)*(s+p)); %inner plant

% Po = (z-s)x*(z+s)/s"2; %outer plant

% Ki = gi*(s + zi1l)*(s + zi2)/s; 7% inner loop gain

% Ko = gox(s + zol)*(s + zo2)/s; % outer loop gain
[Pi,Ki,Po,Ko] = example_1isym(p,z,gi,go,zil,zi2,zo0l,2z02,s)

pretty (Pi)
pretty (Po)
pretty (Ki)
pretty (Ko)

Li Pi*Ki; % inner loop

Li simplifyFraction(Li);

disp (’ Inner Loop Li’);

pretty (Li)

Lo = Po*Pi*Ko*[1/(1+(Pi*Ki))]l; % loop at output
Lo = simplifyFraction(Lo);

disp(’Loop at Output Lo’);

pretty (Lo)

Lu = ((Ki*Pi)+(Ko*Po*Pi)); % loop at controls
Lu = simplifyFraction(Lu);

disp(’Loop at Controls Lu’);

pretty (Lu)

Si = 1/(1 + Li); % Sensitivity at Loop at Output

Si = simplifyFraction(8i);

disp(’Sensitivity at Inner Loop’);

pretty (Si)

Ti = Li/(1 + Li); % Complementary Sensitivity at Loop at Output
Ti = simplifyFraction(Ti);

disp(’Complementary Sensitivity at Inner Loop’);
pretty (Ti)

So = 1/(1 + Lo); % Sensitivity at Loop at Output

So = simplifyFraction(So);

disp(’Sensitivity at Loop at Output’);

pretty (So)

To = Lo/(1 + Lo); % Complementary Sensitivity at Loop at Output
To = simplifyFraction(To);

disp(’Complementary Sensitivity at Loop at Output’);
pretty (To)

Su = 1/(1 + Lu); % Loop Sensitivity at Controls

Su = simplifyFraction(Su);

disp(’Sensitivity at Loop at Controls’);

pretty (Su)

Tu = Lu/(1 + Lu); % Loop Sensitivity at Controls

Tu = simplifyFraction(Tu);

disp(’Complementary Sensitivity at Loop at Controls’);
pretty (Tu)

%% For gi_stability

[num,eqn] = numden(So)
syms w ’real’;

s = wxij;

p = 1;

z = 1;

zil = 0.1;

zi2 = 3;

zol = 0.05;

zo2 0.05;
go = 2;

zi = zil;

zo = zol;

eqn = subs(eqgn);
aw = real(eqn);

bw = imag(eqn);

a = solve(aw,w);
b = solve(bw,w);
b = b(2:5);

f = a-b == 0;

£1 = £(2);

gi = solve(fl,gi)
gi = vpa(subs(gi))
%% Benchmark Example 8 cart inverted
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%% Cart Inverted Pendulum Analysis
clc

clear all

close all

%% Derivation of Equations (Matthew Peter Kelly)
syms pos(t) pos_dot(t) pos_dbldot(t) theta(t) theta_dot(t) theta_dbldot(t);
syms m M1 b g I uj

Xp = pos(t) + lxsin(theta(t));
Yp = lxcos(theta(t));

Xp_dot = diff (Xp);

Yp_dot = diff(Yp);

Xp_dot = subs(Xp_dot,[diff (pos(t),t), diff(theta(t),t)],[pos_dot(t) theta_dot(t)]);
Yp_dot = subs(Yp_dot,[diff (pos(t),t), diff(theta(t),t)],[pos_dot(t) theta_dot(t)]);

pos_dot (t) = subs(pos_dot(t),diff (pos(t),t),pos_dot(t));
T = ((1/2)*M*pos_dot(t)) + ((1/2)*m*((Xp_dot~2) + (Yp_dot~2)));

T = ((1/2)*Mxpos_dot (£)"2)+((1/2)*(m)*(pos_dot (t)"2))...
+((1/2)*m*(2*1*pos_dot (t)*theta_dot (t)*cos(theta(t))))...
+((1/2)*m*x(1°2)*(theta_dot~2))+((1/2)*xI*(theta_dot"~2))
m*g*lkcos (theta(t));

U
L T - U;

% First Equation with respect to thetal(t)
dL_dpos_dot(t) = functionalDerivative(L,pos_dot(t));

dL_dpos(t) = functionalDerivative(L,pos(t));

% Second Equation with respect to theta
dL_dtheta_dot(t) = functionalDerivative(L,theta_dot(t));

dL_dtheta(t) = functionalDerivative(L,theta(t));

dL_dpos_dot_dt = jacobian(dL_dpos_dot(t),t);

dL_dpos_dot_dt = subs(dL_dpos_dot_dt,[diff (pos(t),t),...
diff (pos_dot(t),t), diff(theta(t),t), diff(theta_dot(t),t)]...
,[pos_dot (t),pos_dbldot(t),theta_dot(t),theta_dbldot(t)]);

eqnl = dL_dpos_dot_dt - dL_dpos(t) + b*theta_dot(t) - u;
% theta_1idbldot(t) = solve(eqni,theta_idbldot(t),’Real’,true);

fprintf (’Equation 1: \n’);

disp(eqnil)

% fprintf (’Equation 1 in terms of theta_1dbldot(t): \n’);
% disp(theta_1dbldot(t))

% Remember this trick that you did, apply for all
dL_dtheta_dot_dt = jacobian(dL_dtheta_dot(t),t);
dL_dtheta_dot_dt = subs(dL_dtheta_dot_dt ,[diff (pos(t),t),...
diff (pos_dot(t),t), diff(theta(t),t), diff(theta_dot(t),t)]...
,[pos_dot (t),pos_dbldot(t),theta_dot(t),theta_dbldot(t)]);
eqn2 = dL_dtheta_dot_dt - dL_dtheta(t);

fprintf (’Equation 2: \n’);

disp(eqn2)

%% Finding the Langrange Equations with variables
syms x th x_dot th_dot x_dbldot th_dbldot;

eqnl = subs(eqnl,[pos(t),theta(t),pos_dot(t),theta_dot(t),...
pos_dbldot (t),theta_dbldot(t)], [x,th,x_dot,th_dot,...
x_dbldot ,th_dbldot]);

fprintf (’Equation of Motion 1: \n’);

disp(eqnl)

eqn2 = subs(eqn2,[pos(t),theta(t),pos_dot(t),theta_dot(t),...
pos_dbldot (t),theta_dbldot(t)], [x,th,x_dot,th_dot,...
x_dbldot ,th_dbldot]);

fprintf (’Equation of Motion 2: \n’);

disp (eqn2)

%% Linearization
syms u;
[x_dbldot ,th_dbldot]= solve([eqnl,eqn2],[x_dbldot,th_dbldot])

[x x_dot th th_dot];

q
u [ul;

Non Linear Function
fl1 = x_dot;

f2 = x_dbldot;

£3 th_dot;

fa th_dbldot;

e

F = [f1 f2 £3 f4];

% Jacobian
J = jacobian(F,q)
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% Equilibrium Points

q_e = [0 0 0 0];
J = subs(J,q,q_e);
disp(J);

% System Matrix

A = 7J;

% Input Matrix

B = jacobian(F,u);
B = subs(B,q,q_e);

%% Plant Nominal Values (hernandez)

= 0.267; % in Kilograms
= 2.016; % in metres
L/2; % in metres
0.0015; % in Kg m~2/s
; % in Kg/s~2

.8; % in m/s"2

; % in Nm/rad~2/sec”2
.8; %in Kilograms

m
L
1
b
k
g
I
M

0
9
0
]

0.21; % in Kilograms
0.61; % in metres
L/2; % in metres

% in Kg m~2/s

% in Kg/s"2

% in m/s"2

RHR N o B
n
cowoo

%in Kilograms

in Kilograms
% in metres
in metres

% in Kg m~2/s

0; % in Kg/s"2

9.81; % in m/s"2
0.0002545; %
1.21;

[ T ]

R HM@ RN O -

%in Kilograms

%% State Space

% in Nm/rad~2/sec”2

Plant Nominal Values (ogata)

%% Plant Nominal Values (vignesh)
0.20; %

in Nm/rad"2/sec”2

Ap = double(subs(A)) %System Matrix
Bp = double(subs(B)) % Input Matrix
% Cp = [1 0; 0 11;

% Cp = [1 00 0;

% 0 0 1 0] % Output Matrix

Cp = [1 0 0 0] % Output Matrix

% Dp = [0; 0];

Dp = zeros(size(Cp,1),size(Bp,2)) %
%% Scaling the Matrices

% FACTS ON SCALING:

Scaling affects

Feedforward Matrix

the shape of singular value plots

% (i.e. multivariable frequency responses).
% It does not alter pole locations, zero locations.
% It does alter directionality information.

% Scaling Matrices
%

% Convert radians to degrees

degrees/sec)

% Convert radians to degrees

% Convert radians to degrees

% unew = su uold (foot pounds, foot pounds)

% xnew = sx xold (degrees, degrees, degrees/sec,
% ynew = sy yold (degrees, degrees)

Y-

%

% 0.2247 1b/N <--- Convert N to 1b

% 4.45 N/1b

% 3.281 ft/m <--- Convert m to ft

% 0.3048 m/ft

% 180 degrees/pi rad <--- Convert rad to deg

%

r2d = 180/pi;

su = diag([1] ); % Convert N-m to 1lb-ft

sx = diag( [ 1, 1, r2d, r2d 1);

% sy = diag( [ 1 1,r2d,r2d 1 );

sy = diag( [1] );

%

% Scaled System Dynamics

%

%

% u = [ torque_1 (1b-ft) torque_2 (1b-ft) ]
% x = [ theta_1 (deg) theta_2 (deg)
% y = [ theta_1 (deg) theta_2 (deg) ]
%

Ap = sx*Apxinv(sx)

Bp = sx*Bp*inv(su)

Cp = sy*Cpxinv(sx)

Dp = sy*Dp*inv(su)

%% State Space Representation

states = {’x’,

inputs = {’force’}; % Inputs
% outputs = {’x’,’theta_dot’}
outputs = {’x’}; % Outputs
sys_ss =

’\theta’,’x_dot ’,’\theta_dot’}; %

inputs,’outputname’,outputs) % State Space

sys_tf = zpk(sys_ss) %

Transfer Function

dot_theta_1 (deg/sec)

States

ss (Ap,Bp,Cp,Dp,’statename’,states,’inputname’,...
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= [zeros(1,1) Cp
zeros (4,1) Apl
= [zeros(1,1)
Bpl
[zeros (2,2) [ones(size(Cp));Cpl]
zeros (4,2) Apl
[zeros(2,1)
Bp]

LQR Design Parameters

% q = diag([1,1, 1, 1, 1, 1]) % 7 db at output r = 0.01
% q = diag([1,1, 1, 10, 1, 11) % 6 db at output r = 0.01
q = diag([1,1, 100, 1, 100, 11) % 3 db at output r = 0.01
% q = diag([2, 10, 10, 0.1, 1001)
r = diag ([0.01])
% q = diag([1000000000, 200, 10, 10000, 1]) % 4.8 db at output r = 0.1
% r = diag ([0.01])
[g, k, clpoles] = 1lqr(An, Bn, q, 1)
Wh
% Form Open Loop Dynamical System
%
% State x = [ 2z’ xp’> 1’ = [z’ y’> =xr’ 1’
A
% where
% z is the integrator state
% y is the output (position and pendulum angle)
% xr contains the rest of the state (velocity and angular velocity)
3
gz = g(:,1:2)
gy = g(:,[3D)
gr = g(:,[4,5,61)
aol = [ O*ones(2,2) O*ones(2,4)

-Bp*gz Ap-Bp*[0O*ones(1,1) grl ]
bol = [ - eye(2,1)

Bp*gy ]

col = [ Oxones(1,2) Cp ]
dol = O*ones(1,1)
Wh
% Form CLosed Loop Dynamics
acl = aol - bolx*col;
bcl = bol;
ccl = col;
dcl = dol;
cls = ss(acl,bcl,ccl,dcl);
Wh
Su_tf = ss(An-Bn*g, Bn, -g, eye(1l,1)-O%ones(1,1))

bodemag (Su_tf);

title(’LQ Sensitivity: Plant Input’)
grid
xlabel (’Frequency (rad/sec)’)
ylabel (’Singular Values (dB)’)
hold on

pause

%return

%
%

step(Su_tf)
title (’Step S_u’)
grid on

hh

So_tf
bodemag (So_tf);

title (’LQ Sensitivity: Error Signal’)
grid
xlabel (’Frequency (rad/sec)’)
ylabel (’Singular Values (dB)’)
hold on

= ss(acl, bcl, -ccl, eye(1,1)-dcl);

step(So_tf)
title (’Step S_o’)
grid on

hh

Tu_tf
bodemag (Tu_tf);

title (’LQ Complementary Sensitivity: Plant Input’)
grid
xlabel (’Frequency (rad/sec)’)
ylabel (’Singular Values (dB)’)

hh

= ss(An-Bn*g, Bn, g, Oxones(1,1));

step (Tu_tf)

= ss(acl, bcl, ccl, dcl)

bodemag (To_tf (1,1));
title (’LQ Complementary Sensitivity: Plant Output’)
grid
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xlabel (’Frequency (rad/sec)’)
ylabel (’Singular Values (dB)’)
Wh
step(To_tf)
title (’Step T_o’)
grid on
%% NOMINAL PARAMETERS
pl = max(pole(sys_tf));
p2 = min(pole(sys_tf));
max (tzero(sys_tf));
)

zl =

z2 = min(tzero(sys_tf)

zil = 3.06;

zi2 = 3.12;

zol = 2;

zo2 = 0.4;

gi = 14.79;

go = 1.41;

Pi = zpk([],[pt1,p2],[1])

Ki = zpk([-zil,-zi2],[0],[gil)

Li_tf = series(Pi,Ki)

Po = zpk([z1,z2],[0,0]1,[-11)
Ko = zpk([-zol,-z02],[0],[go])
Li_tf = series(Pi,Ki)

Lo_tf =
Lu_tf = minreal ((Ki*Pi)+(Ko*xPo*Pi))

So_tf = feedback(1,Lo_tf)

Su_tf = feedback(1l,Lu_tf)

To_tf = feedback(Lo_tf,1)

Tu_tf = feedback(Lu_tf,1)

%% System Information

% Tz = tzero(sys_tf) ) transmission zeros
% iopzplot(sys_tf) J pole-zero map

pzmap (sys_tf)

%

% December 16, 2020

% Inner-Outer Loop Feedback Structure
% by Soham Sarkar, Armando Rodriguez, Brent

hh
close all;

clear all;
clc;

% Varying g_o with g_i as a parameter
% NOMINAL PARAMETERS

p = 5.693;
z =

% gi >17

49;

£(’s?)

k([1,[p,-pl,[1])

Ki = zpk([-zil,-zi2],[0],[gil)
Li_tf series (Pi,Ki)

Si_tf = feedback(1l,Li_tf)

Po = zpk([z,-z],[0,0]1,[-11)

Ko = zpk([-zol,-z02],[0],[gol)

minreal (Po*Pi*Kox(feedback (1, (Pi*Ki))))

Wallace

Li_tf = series(Pi,Ki)

Lo_tf = minreal (Po*Pi*Kox(feedback(1l,(Pi*Ki))))
Lu_tf = minreal ((Ki*Pi)+(Ko*xPo*Pi))

So_tf = feedback(1l,Lo_tf)

Su_tf = feedback(1l,Lu_tf)

To_tf = feedback(Lo_tf,1)

Tu_tf = feedback(Lu_tf,1)

%% Open Loop

figure (1)

w = logspace(-1,2, 2000);

[L_i_mag, L_i_phase] = bode(Li_tf,w);
semilogx (w, 20%1ogl0(L_i_mag(1,:)))
ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

% title(’Magnitude [S_il’)

grid on

hold on

% hh Su

% figure (2)

w = logspace(-1,2, 2000);

[L_u_mag, L_u_phase] = bode(Lu_tf,w);
semilogx (w, 20*xlogl0(L_u_mag(1l,:)))
ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

% title(’Magnitude [S_ul’)

grid on

hold on

% hh So

% figure(2)

w = logspace(-1,2, 2000);

[L_o_mag, L_o_phase] = bode(Lo_tf,w);
semilogx (w, 20%1ogl0(L_o_mag(1l,:)))
ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)
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% title(’Magnitude [S_ol’)

title (’Open Loop Magnitude Plot - 1.657)
grid on

legend ([’L_i’],[’L_u’],[’L_o’1)

%% Sensitivity

figure (2)

w = logspace(-1,2, 2000);

[S_i_mag, S_i_phase] = bode(Si_tf,w);
semilogx (w, 20%1ogl0(S_i_mag(1,:)))
ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

% title(’Magnitude [S_il’)

grid on

hold on

% hh Su

% figure (2)

w = logspace(-1,2, 2000);

[S_u_mag, S_u_phase] = bode(Su_tf,w);
semilogx (w, 20*logl0(S_u_mag(1l,:)))
ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

% title(’Magnitude [S_ul’)

grid on

hold on

% hh So

% figure(2)

w = logspace(-1,2, 2000);

[S_o_mag, S_o_phase] = bode(So_tf,w);
semilogx (w, 20%1ogl0(S_o_mag(1l,:)))
ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

% title(’Magnitude [S_ol’)
title(’Closed Loop Magnitude Plot - 1.657)
grid on
legend([’s_i’],[’S_u’]l,[’S_0o’1])

Wh

close all;

clear all;

clc;

% NOMINAL PARAMETERS

p = 5.693;

z = 4.958;

zil = 3.06;

zi2 = 3.12;

zol = 2;

zo2 = 0.4;

gi = 14.79; % gi >17
go = 1.41;

% s = tf(’s?)

Pi = zpk([1,[p,-pl,[11)

Ki = zpk([-zil,-zi2],[0],[gil)
Li_tf = series(Pi,Ki)

Si_tf = feedback(1l,Li_tf)

Po = zpk([z,-z],[0,0],[-1])

Ko = zpk([-zol,-z02],[0],[gol)

Li_tf = series(Pi,Ki)

Lo_tf = minreal (Po*Pi*Ko*(feedback(1,(Pi*Ki))))
Lu_tf = minreal ((Ki*Pi)+(Ko*Po*Pi))

So_tf = feedback(l,Lo_tf)

Su_tf = feedback(l,Lu_tf)

To_tf = feedback(Lo_tf,1)

Tu_tf = feedback(Lu_tf,1)

%% Open Loop

figure (1)

w = logspace(-1,2, 2000);

[L_i_mag, L_i_phase]l = bode(Li_tf,w);
semilogx (w, 20%1oglO0(L_i_mag(1,:)))
ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

% title(’Magnitude |S_il?)

grid on

hold on

% hh Su

% figure (2)

w = logspace(-1,2, 2000);

[L_u_mag, L_u_phase] = bode(Lu_tf,w);
semilogx (w, 20%logl0(L_u_mag(1l,:)))
ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

% title(’Magnitude [S_ul’)

grid on

hold on

% %% So

% figure(2)

w = logspace(-1,2, 2000);

[L_o_mag, L_o_phase] = bode(Lo_tf,w);
semilogx (w, 20%1ogl0(L_o_mag(1l,:)))
ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

% title(’Magnitude [S_ol’)

title (’Open Loop Magnitude Plot - 2.87)
grid on
legend([’L_i’],[’L_u’],[’L_o’])

%% Sensitivity

figure (2)

w = logspace(-1,2, 2000);
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[S_i_mag, S_i_phase]l = bode(Si_tf,w);
semilogx (w, 20%1ogl0(S_i_mag(1,:)))
ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

% title(’Magnitude [S_il’)

grid on

hold on

% hh Su

% figure (2)

w = logspace(-1,2, 2000);

[S_u_mag, S_u_phase] = bode(Su_tf,w);
semilogx (w, 20%1logl0(S_u_mag(1,:)))
ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

% title(’Magnitude [S_ul’)

grid on

hold on

% %% So

% figure(2)

w = logspace(-1,2, 2000);

[S_o_mag, S_o_phase]l = bode(So_tf,w);
semilogx (w, 20%1ogl0(S_o_mag(1l,:)))
ylabel (’Magnitude (dB)’)

xlabel (*freq (rad/sec)’)

% title(’Magnitude [S_ol’)
title(’Closed Loop Magnitude Plot - 2.87)
grid on
legend([’s_i’],[’S_u’],[’S_0o’])

%% Varying gi with go, zol, zo2, zil, zi2 as a paramter
clc
clear all

close all

% NOMINAL PARAMETERS

p = 5.693;
z = 4.958;
h z = 2.5;
hz =13

% Range of gi
gi_min = 20
gi_max = 25

% Range of go

go_min = 0.8
go_max = 2.0
go_count = 4
go_inc = (go_max-go_min)/go_count

% Range of zil
zil_min
zil_max

H

3;

% Range of zi2
zi2_min 2.2;
zi2_max 3.2;

% Range of zol
zol_min = 0.4;
zol_max = 1.4;

% Range of zo2
zo2_min = 0.08;
zo2_max = 0.4;

% gi = 4;

% fixed parameters
gi = gi_min;

zil = zil_min;

zi2 = zi2_min;

zol = zol_max;

z02 = zo2_max;

s = tf(’s’);
Po = zpk([z,-z],[0,01,[-11);

counter = 0;

for go = go_min:go_inc:go_max
counter = counter + 1;
go_values (:,counter) = go;

% transfer function analogy

Pi = zpk ([1,[p,-pl,[1])

Ki = zpk([-zi1,-zi2],[0],[gil)
Li_tf = series(Pi,Ki)

% inner loop state space
Li = ss(Li_tf)

ai Li.a

bi = Li.b

(fixed)
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ci = Li.c
di = Li.d
figurecounter = 1;

% inner loop poles
damp (Li)

% inner loop plots

% figure (figurecounter)

% w = logspace(-1,3, 2000);

% bode (Li,w)

% ylabel(’dB’)

% xlabel(’freq (rad/sec)’)

% title(’Inner Loop Magnitude (Li)’)

% grid on

% hold on

% figurecounter = figurecounter + 1;
figure (1)

w = logspace(-1,3, 2000);

[L_i_mag, L_i_phase] = bode(Li_tf,w);
semilogx (w, 20%1logl0(L_i_mag(1l,:)))
ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title ([’ Inner Loop Magnitude |L_il| for z = ’,num2str(z),’,p = ’,num2str(p)...
,7,z0ol = ?,num2str(zol),’,z02 = ’,num2str(zo2),’,zil = ’,num2str(zil)...
,?,2zi2 = ?,num2str(zi2)])
grid on
hold on
figurecounter = figurecounter + 1;
figure (2)
w = logspace(-1,3, 2000);

[L_i_mag, L_i_phase] = bode(Li_tf,w);
semilogx (w, L_i_phase(1,:))

ylabel (’Angle (deg)’)

xlabel (’freq (rad/sec)’)

title ([’ Inner Loop Phase \angle L_i for z = ’,num2str(z),’,p = ’,num2str(p)...
,2,z0l1 = ? num2str(zol),’,z02 = ’,num2str(zo2),’,zil = ’,num2str(zil)...
,?,2zi2 = ?,num2str(zi2)])

grid on

% figure (figurecounter)

% rlocus(Li)

% title(’Root Locus’)

% grid on

% hold on

% figurecounter = figurecounter + 1;

% figure (figurecounter)
% nyquist (Li)
% title(’Nyquist’)

% grid on

% hold on

% figurecounter = figurecounter + 1;
figure (3)

w = logspace(-1,3, 2000);

sen_i = feedback(1l,Li_tf)

[sen_i_mag, sen_i_phase] = bode(sen_i,w);
[hinf_sen_i,fpeak_sen_i] = hinfnorm(sen_i)
semilogx (w, 20*loglO(sen_i_mag(1l,:)))
ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title ([’ Inner Loop Sensitivity |S_il for z = ’,num2str(z),’,p = ’,num2str(p)...
,7,z01l = ?,num2str(zol),’,z02 = ’,num2str(zo2),’,zil = ’,num2str(zil)...
,2,2zi2 = ? ,num2str(zi2)])
grid on
hold on
figurecounter = figurecounter + 1;
figure (4)
w = logspace(-1,3, 2000);
comp_sen_i = feedback(Li_tf,1)
[comp_sen_i_mag, comp_sen_i_phase] = bode(comp_sen_i,w);
[hinf_comp_sen_i,fpeak_comp_sen_i] = hinfnorm(comp_sen_i)

semilogx (w, 20*loglO(comp_sen_i_mag(1l,:)))
ylabel (’Magnitude (dB)’)
xlabel (’freq (rad/sec)’)

title ([’ Inner Loop Complementary Sensitivity |T_il for z = ’,num2str(z)...
,7,p = ’,num2str(p)...
,?,z0l = ? num2str(zol),’,z02 = ’,num2str(zo2),’,zil = ’,num2str(zil)...
,?,2zi2 = ?,num2str(zi2)])
grid on
hold on
figurecounter = figurecounter + 1;
figure (5)
semilogx (w, 20%logl0(comp_sen_i_mag(1,:)), ’r’)
hold on
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semilogx (w, 20*logl0(sen_i_mag(1,:)), ’b’)
ylabel (’Magnitude (dB)’)
xlabel (’freq (rad/sec)’)

title ([’ Inner Loop Sensitivity |S_il| & Complementary Sensitivity |T_ilfor z = ’,...

num2str(z),’,p = ’,num2str(p)...
,7,zol = ?,num2str(zol),’,z02 = ’,num2str(zo2),’,zil = ’,num2str(zil)...
,2,zi2 = 7 ,num2str (zi2)])
grid on
hold on
legend ({’Complementary Sensitivity’,’Sensitivity’}...
,’Location’,’Southwest’,’NumColumns ’,1)
figurecounter = figurecounter + 1;

% Outer Loop at Output

B

transfer function

Lo_tf = zpk([z],[0,-(gi-p)],[-gol)

Ko = zpk([-zol,-z02],[0],[gol);

Lo_tf = minreal (Po*xPi*xKo*(feedback(1l,(Pi*Ki))));

% outer loop state space at output

Lo = ss(Lo_tf)
ao = Lo.a
bo = Lo.b
co = Lo.c
do = Lo.d

% outer loop poles at output

damp (Lo)

% outer loop plots at output
figure (6)

w = logspace(-1,3, 2000);

[L_o_mag, L_o_phase] = bode(Lo_tf ,w);
semilogx (w, 20*loglO(L_o_mag(1,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’Loop Magnitude at Output |L_ol (g_i =

b
num2str(gi),’), for z = ’,num2str(z),’,p = ’,num2str(p)...
,7,z01l = ?,num2str(zol),’,z02 = ’,num2str(zo2),’,zil = ’,num2str(zil)...
,7,2zi2 = ?,num2str(zi2)])

grid on

hold on

figurecounter = figurecounter + 1;
figure (7)
w = logspace(-1,3, 2000);

[L_o_mag, L_o_phase] = bode(Lo_tf ,w);

semilogx(w, L_o_phase(1,:)-360)

ylabel (’Angle (deg)’)

xlabel (’freq (rad/sec)’)

title([’\angle L_o : Loop Phase at Output (g_i = ’

S
num2str(gi),’), for z = ’,num2str(z),’,p = ’,num2str(p)...
,7,z0l = ?,num2str(zol),’,z02 = ’,num2str(zo2),’,zil = ’,num2str(zil)...
,2,2zi2 = 7 ,num2str(zi2)])
grid on
hold on
figurecounter = figurecounter + 1;
figure (6)
figure (8)
w = logspace(-1,3, 2000);
sen_o = feedback(1l,Lo_tf)
[sen_o_mag, sen_o_phase] = bode(sen_o,w);
[hinf_sen_o,fpeak_sen_o] = hinfnorm(sen_o)
hinf_so(:,counter) = hinf_sen_o

semilogx (w, 20*loglO(sen_o_mag(1l,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’|S_ol: Loop Sensitivity at Output (g_i = ~

,num2str(gi),’), for z = ’,num2str(z),’,p = ’,num2str(p)...
,7,z01 = ?,num2str(zol),’,z02 = ’,num2str(zo2),’,zil = ’,num2str(zil)...
,?,zi2 = ?,num2str(zi2)])
grid on
hold on
figurecounter = figurecounter + 1;
figure (7)
figure (9)
w = logspace(-1,3, 2000);
comp_sen_o = feedback(Lo_tf,1)
[comp_sen_o_mag, comp_sen_o_phase] = bode(comp_sen_o ,w);
[hinf_comp_sen_o,fpeak_sen_o] = hinfnorm(comp_sen_o)
hinf_cso(:,counter) = hinf_comp_sen_o

semilogx (w, 20*logl0(comp_sen_o_mag(1l,:)))
ylabel (’Magnitude (dB)’)
xlabel (’freq (rad/sec)’)

title([’|T_ol: Loop Complementary Sensitivity at Output (g_i = ’,...
num2str(gi),’), for z = ’,num2str(z),’,p = ’,num2str(p)...
,7,z01 = ?,num2str(zol),’,z02 = ’,num2str(zo2),’,zil = ’,num2str(zil)...
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,2,zi2 = 7 num2str(zi2)])

grid on
hold on
% figurecounter = figurecounter + 1;
% figure (8)
% semilogx (w, 20*logl0(comp_sen_o_mag(1l,:)), ’r’)
% hold on
% semilogx (w, 20%*logiO(sen_o_mag(1l,:)), ’b’)
% ylabel(’dB’)
% xlabel (’freq (rad/sec)’)
% title (’Outer Loop Sensitivity (S_o) & Complementary Sensitivity at Output(T_o)’)
% grid on
% hold on
% legend ({’Complementary Sensitivity’,’Sensitivity’},’Location’,’Southwest’,’NumColumns’,1)
% figurecounter = figurecounter + 1;

% Outer Loop at Controls

Lu_tf = minreal ((Ki*Pi)+(Ko*Po*Pi));

% % transfer function
% num_Lu = [(gi-go), gox*z]
% den_Lu = [1 -p 0]
% Lu_tf = tf(num_Lu,den_Lu)
% Lu_tf = zpk(Lu_tf)
o
%
% outer loop state space at controls
Lu = ss(Lu_tf)
au = Lu.a
bu = Lu.b
cu = Lu.c
du = Lu.d

% Outer Loop poles at controls

damp (Lo)

% Outer Loop poles at controls
% figure (9)

figure (10)

w = logspace(-1,3, 2000);

[L_u_mag, L_u_phase]l = bode(Lu_tf,w);

semilogx (w, 20*loglO(L_u_mag(1,:)))

ylabel (’Magnitude (dB)’)

xlabel(’freq (rad/sec)’)

title([’|L_ul: Loop Magnitude at Controls (g_i = ~’

b
num2str(gi),’), for z = ’,num2str(z),’,p = ’,num2str(p)...
,?,zol = 7 num2str(zol),’,zo02 = ’,num2str(zo2),’,zil = ’,num2str(zil)...
,7,zi2 = 7 ,num2str(zi2)])
grid on
hold on
% figurecounter = figurecounter + 1;

figure (11)

w = logspace(-1,3, 2000);

[L_u_mag, L_u_phasel = bode(Lu_tf,w);

semilogx (w, L_u_phase(1,:))

ylabel (’Angle (deg)’)

xlabel (’freq (rad/sec)’)

title([’\angle L_u: Loop Phase at Controls (g_i = ’

s
num2str(gi),’), for z = ’,num2str(z),’,p = ’,num2str(p)...
,?,z0l1 = ? num2str(zol),’,z02 = ’,num2str(zo2),’,zil = ’,num2str(zil)...
,?,2zi2 = ?,num2str(zi2)])

grid on

hold on

figure (12)

w = logspace(-1,3, 2000);

sen_u = feedback(l,Lu_tf)

[sen_u_mag, sen_u_phase] bode(sen_u,w);
[hinf_sen_u,fpeak_sen_ul hinfnorm(sen_u)
hinf_su(:,counter) = hinf_sen_u

semilogx (w, 20%logl0(sen_u_mag(1,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’|S_ul: Loop Sensitivity at Controls (g_i = °’,.

num2str(gi),’), for z = ’,num2str(z),’,p = ’,num2str(p)...
,7,z0l = ?,num2str(zol),’,z02 = ’,num2str(zo2),’,zil = ’,num2str(zil)...
,2,zi2 = 7 ,num2str(zi2)])
grid on
hold on
% figurecounter = figurecounter + 1;

figure (13)

w = logspace(-1,3, 2000);
comp_sen_u = feedback(Lu_tf,1)
[comp_sen_u_mag, comp_sen_u_phase]
[hinf_comp_sen_u,fpeak_comp_sen_u]

bode (comp_sen_u,w);
hinfnorm(comp_sen_u)
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hinf_csu(:,counter) = hinf_comp_sen_u
semilogx (w, 20*loglO(comp_sen_u_mag(1l,:)))
ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’|T_ul: Loop Complementary Sensitivity at Controls (g_i = ’,...
num2str(gi),’), for z = ’,num2str(z),’,p = ’,num2str(p)...
,2,z0l = 7 num2str(zol),’,z02 = ’,num2str(zo2),’,zil = ’,num2str(zil)...
,7,zi2 = 7 ,num2str(zi2)])
grid on
hold on
figurecounter = figurecounter + 1;

figure (14)

w = logspace(-1,3, 2000);

comp_sen_u_o = (comp_sen_u/comp_sen_o)

[comp_sen_u_o_mag, comp_sen_u_o_phase] = bode(comp_sen_u_o,w);
[hinf_comp_sen_u,fpeak_comp_sen_ul] = hinfnorm(comp_sen_u)
hinf_csu(:,counter) = hinf_comp_sen_u
comp_sen_u_o = tf([gi-go,go*z],[-go gox*zl])

[comp_sen_u_o_mag, comp_sen_u_o_phase] = bode(comp_sen_u_o,w);
comp_sen_u_o = 1 + ((sen_o/comp_sen_o)*comp_sen_i);
[comp_sen_u_o_mag, comp_sen_u_o_phase] = bode(comp_sen_u_o,w);

semilogx (w, 20*logl0(comp_sen_u_o_mag(1,:)))
ylabel (’Magnitude (dB)’)
xlabel (’freq (rad/sec)’)

title ([’$\frac{|IT_ul}{IT_ol} > 1 \; \forall \; \omega > 0 \; (p = ’,num2str(p)...
) \; for \; z = ’,num2str(z),’ $’],’Interpreter’,’latex’)

grid on

hold on

figure (12)

semilogx (w, 20*logl0(comp_sen_u_mag(1l,:)), ’r’)

hold on

semilogx (w, 20*loglO(sen_u_mag(1l,:)), ’b’)

ylabel(’dB?)

xlabel(’freq (rad/sec)’)

title (’Outer Loop Sensitivity (S_u) & Complementary Sensitivity at Output(T_u)’)

grid omn

hold on

legend({’Complementary Sensitivity’,’Sensitivity’},’Location’,’Southwest’,’NumColumns’,1)
figurecounter = figurecounter + 1;

% Control Response to Step Ref. Command at controls
figure (15)

tinc = 0.0005;
tmax = 10;
t = 0:tinc:tmax;

plot(t,step(sen_u,t));

xlabel (’Time (sec)’)

ylabel ([’u(t) 1)

title([’Step S_u: Control Response u_p to Step Input Dlsturbance d_i (g_i = ...

,num2str(gi),’), for z = ’,num2str(z),’,p = ’,num2str(p),’,zol = ’,..
num2str (zol), ,zo2 = ’,num2str (zo2),’,zil = ’,num2str(zil),’,zi2 = ’,...
num2str(zi2)])
grid on
hold on
figurecounter = figurecounter + 1;

% Output Response to Step Ref. Command at Controls
figure (16)

tinc = 0.0005;
tmax = 10;
t = 0:tinc:tmax;

plot(t,step(comp_sen_u,t))

xlabel (’Time (sec)’)

ylabel ([’y(t)’1)

title([’Step T_u: Control Response u to Step Input Disturbance d_i (g_i = ’...

,num2str(gi),’), for z = ’,num2str(z),’,p = ’,num2str(p),’,zol = ’,...
num2str(zol),’,z02 = ’,num2str(zo2),’,zil = ’,num2str(zil),’,zi2 = ’,...
num2str (zi2)])
grid on
hold on
figurecounter = figurecounter + 1;

% Control Response to Step Ref. Command at Output
figure (17)

tinc = 0.0005;
tmax = 10;
t = O:tinc:tmax;

plot(t,step(sen_o,t));

xlabel (’Time (sec)’)

ylabel ([’u(t) 1)

title([’Step S_o: Error Response e to Step Ref. Command r (g_i = ’...

,num2str(gi),’), for z = ’,num2str(z),’,p = ’,num2str(p),’,zol = ’,...
num2str(zol),’,z02 = ’,num2str(zo2),’,zil = ’,num2str(zil),’,zi2 = ’,...
num2str (zi2)])
grid on
hold on
figurecounter = figurecounter + 1;

% Output Response to Step Ref. Command at Output
figure (18)

201



tinc = 0.0005;

tmax = 10;

t = 0:tinc:tmax;

plot(t,step(comp_sen_o,t))

xlabel (’Time (sec)’)

ylabel ([’y(t)’1)

title([’Step T_o: Output Response y to Step Ref. Command r (g_i = ’...

,num2str(gi),’), for z = ’,num2str(z),’,p = ’,num2str(p),’,zol = ’,...
num2str(zol),’,z02 = ’,num2str(zo2),’,zil = ’,num2str(zil),’,zi2 = 7 ,...
num2str (zi2)])
grid on
hold on
% figurecounter = figurecounter + 1;

% impulse

% Control Response to Step Ref. Command at controls
figure (19)

tinc = 0.0005;
tmax = 10;
t = 0:tinc:tmax;

plot (t,impulse(sen_u,t));
xlabel (’Time (sec)’)
ylabel ([’u(t)’]1)

title ([’ Impulse S_u: Control Response u_p to Impulse Input Disturbance d_i (g_i = ’,...
num2str(gi),’), for z = ’,num2str(z),’,p b
num2str (p),’,zol = ,num2str(zol) 7,202 = 7, ...
num2str(zo2),’,zil = ’,num2str(zil),’,zi2 = ’,num2str(zi2)])
grid on
hold on
% figurecounter = figurecounter + 1;

% Output Response to Step Ref. Command at Controls
figure (20)

tinc = 0.0005;
tmax = 10;
t = O:tinc:tmax;

plot (t,impulse(comp_sen_u,t))

xlabel (’Time (sec)’)

ylabel ([’y(t)’]1)

title ([’ Impulse T_u: Output Response y to Impulse Ref. Command r (g_i = ’...

,num2str(gi),’), for z = ’,num2str(z),’,p = ’,num2str(p),’,zol = ’,...
num2str (zol),’,zo02 = ’,num2str(zo02),’,zil = ’,num2str(zil),’,zi2 = ’,...
num2str (zi2)])
grid on
hold on
% figurecounter = figurecounter + 1;

% Control Response to Step Ref. Command at Output
figure (21)

tinc = 0.0005;
tmax = 10;
t = 0:tinc:tmax;

plot (t,impulse(sen_o,t));
xlabel (’Time (sec)’)
ylabel ([’u(t)’1)

title ([’ Impulse S_o: Error Response e to Impulse Ref. Command r (g_i = ’...
,num2str(g1),’), for z = ’,num2str(z),’,p = ’,num2str(p),’,zol = ’,...
num2str (zol),’,z02 = ’,num2str(zo2),’,zil = ’,num2str(zil),’,zi2 = ’,...
num2str (zi2)1)
grid on
hold on
% figurecounter = figurecounter + 1;

% Output Response to Step Ref. Command at Output
figure (22)

tinc = 0.0005;
tmax = 10;
t = O:tinc:tmax;

plot (t,impulse (comp_sen_o,t))

xlabel (’Time (sec)’)

ylabel ([’y(t)’])

title ([’ Impulse T_o: Control Response u to Impulse Input Dlsturbance d_i (g_i = ...

,num2str(gi),’), for z = ,nquStr(z) ’,p = ’,num2str(p),’,zol = ’,.
num2str (zol),’,zo02 = ’,num2str(zo02),’,zil = ’,num2str(zil),’,zi2 = ’,...
num2str (zi2)])

grid on

hold on

end

% figure (2)
% yline(6.02 ,’-.b’,’6.02 db’);

figure (3)
yline(6.02 ,’-.b’,’6.02 db’);
figure (4)
yline(6.02 ,’-.b’,’6.02 db’);
figure (5)
yline(6.02 ,’-.b’,’6.02 db’);

figure (6)
% yline(6.02 ,’-.b’,’6.02 db’);
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legend ([’ g_
,[’g_o
g0

figure (7)
% yline (6.02
legend([’g_o
,[’g_o
,[’g_o

figure (8)

yline (6.02

legend ([’ g_
,[’g_o
, 0

nno-.

figure (9)

yline (6.02

legend ([’ g_
,[’g_o
,[’g_o

hno.

figure (10)
% yline (6.02
legend ([’

figure (11)
% yline (6.02
legend ([’

figure (12)
yline (6.02
legend([’g_o
,[g_o
,[g_o

figure (13)
yline (6.02 ,
legend([’g_o
g0
,[’g_o

figure (14)
legend([’g_o
»[’go =
g0

figure (15)
legend([’g_o
,[’g_o
,[’g_o

figure (16)

figure (17)
legend([’g_o
,[’g_o
,[g_o

figure (18)
legend([’g_o
»[’go =
g0

figure (19)
legend([’g_o
,[’g_o =
,[’g_o

figure (20)
legend([’g_o
,['g_o
,[’g_o

figure (21)

figure (22)
legend([’g_o
g0
g0

Benchmark

clear all
close all

> num2str(go_values(1,1))],[’g_o =
num2str (go_values(1,3))],[’g_o =

num2str (go_values(1,5))],’Location

’-.b’,’6.02 db’);

> num2str (go_values(1,1))],[’g_o
num2str (go_values(1,3))],[’g_o =
num2str (go_values(1,5))],’Location

.b?,’6.02 db’);

> num2str (go_values(1,1))],[’g_o
num2str (go_values(1,3))],[’g_o =
num2str (go_values(1,5))],’Location

.b?,26.02 db’);

> num2str (go_values(1,1))],[’g_o
num2str (go_values(1,3))],[’g_o = ’
num2str (go_values (1,5))],’Location

’-.b’,’6.02 db’);

> num2str (go_values(1,1))],[’g_o
num2str (go_values(1,3))],[’g_o = *
num2str (go_values(1,5))],’Location

’-.b’,’6.02 db’);

= ’ num2str(go_values(1,1))],[’g_o =
> num2str (go_values(1,3))],[’g_o = ’
> num2str (go_values(1,5))],’Location

.b?,%6.02 db’);

= ’ num2str(go_values(1,1))],[’g_o =
> num2str(go_values(1,3))],[’g_o =
> num2str (go_values(1,5))],’Location
-.b’,’6.02 db’);

= ’ num2str(go_values(1,1))],[’g_o =
> num2str (go_values(1,3))],[’g_o =
> num2str (go_values(1,5))],’Location

> num2str(go_values(1,1))],[’g_o
num2str (go_values(1,3))],[’g_o =

num2str (go_values(1,5))],’Location

> num2str (go_values(1,1))],[’g_o
num2str (go_values(1,3))],[’g_o =

num2str (go_values(1,5))],’Location

> num2str(go_values(1,1))],[’g_o =
num2str (go_values(1,3))],[’g_o = ’

num2str (go_values (1,5))],’Location

= ’ num2str(go_values(1,1))],[’g_o =
> num2str (go_values(1,3))],[’g_o = ~’
> num2str (go_values(1,5))],’Location

> num2str(go_values(1,1))],[’g_
num2str (go_values(1,3))],[’g_o

num2str (go_values(1,5))],’Locat

o
= >
ion

> num2str (go_values(1,1))],[’g_o
num2str (go_values(1,3))],[’g_o =

num2str (go_values(1,5))],’Location

> num2str(go_values(1,1))],[’g_o
num2str (go_values(1,3))],[’g_o = *

num2str (go_values(1,5))],’Location

= > num2str(go_values(1,1))],[’g_o =
> num2str(go_values(1,3))],[’g_o =
> num2str (go_values(1,5))], ’Location

= 7 num2str(go_values(1,1))],[’g_o =
> num2str(go_values(1,3))],[’g_o =
> num2str (go_values(1,5))],’Location

Example 8 cart inverted

Cart Inverted Pendulum Analysis

> num2str(go_values(1,2))]...
num2str (go_values(1,4))]...
’,’Southwest ’, ’NumColumns ’ ,1);

> num2str (go_values(1,2))]...
num2str (go_values(1,4))]...
> ,’Southwest ’,’NumColumns’ ,1);

> num2str (go_values(1,2))]...
num2str (go_values (1,4))]...
’,’Southwest ’,’NumColumns’ ,1);

> num2str (go_values(1,2))]...
num2str (go_values (1,4))]...
’>,’Southwest ’,’NumColumns’ ,1);

> num2str(go_values (1,2))]...
num2str (go_values (1,4))]...
’,’Southwest ’,’NumColumns ’ ,1);

> num2str (go_values(1,2))]...
num2str (go_values (1,4))]...
> ,?Southwest’, ’NumColumns ’,1);

> num2str(go_values (1,2))]...
num2str (go_values(1,4))]...
> ,’Southwest’, ’NumColumns ’,1);

> num2str(go_values (1,2))]...
num2str (go_values (1,4))]...
> ,’Southwest’, ’NumColumns’,1);

’ num2str (go_values(1,2))]...
num2str (go_values (1,4))]...
>,’Southwest ’,’NumColumns ’ ,1);

> num2str (go_values(1,2))]...
num2str (go_values(1,4))]...
’,’Southwest ’,’NumColumns’ ,1);

> num2str (go_values(1,2))]...
num2str (go_values (1,4))]...
’,’Southwest ’,’NumColumns’ ,1);

> num2str(go_values (1,2))]...
num2str (go_values (1,4))]...
> ,’Southwest’, ’NumColumns’,1);

> num2str(go_values (1,2))]...
num2str (go_values (1,4))]...
’,’Southwest ’,’NumColumns ’ ,1);

> num2str (go_values(1,2))]...
num2str (go_values(1,4))]...
> ,’Southwest ’,’NumColumns’ ,1);

> num2str (go_values(1,2))]...
num2str (go_values (1,4))]...
’,’Southwest ’,’NumColumns’ ,1);

> num2str(go_values (1,2))]...
num2str (go_values (1,4))]...
> ,?Southwest’, ’NumColumns’,1);

> num2str(go_values (1,2))]...
num2str (go_values (1,4))]...
’,’Southwest ’,’NumColumns ’ ,1);

203



%% Derivation of Equations (Matthew Peter Kelly)
syms pos(t) pos_dot(t) pos_dbldot(t) theta(t) theta_dot(t) theta_dbldot(t);
syms m M1 b g I u;

Xp = pos(t) + l*sin(theta(t));
Yp = lxcos(theta(t));

Xp_dot = diff (Xp);

Yp_dot = diff (Yp);

subs (Xp_dot , [diff (pos(t),t), diff (theta(t),t)],[pos_dot(t) theta_dot(t
subs (Yp_dot ,[diff (pos(t),t), diff(theta(t),t)],[pos_dot(t) theta_dot(t

)15
)15
pos_dot (t) = subs(pos_dot(t),diff(pos(t),t),pos_dot(t));

T = ((1/2)*Mxpos_dot(t)) + ((1/2)*m*((Xp_dot~2) + (Yp_dot~2)));

T

((1/2)*M*pos_dot (t)"2)+((1/2)*(m)*(pos_dot (£)~2))+((1/2)*m. ..
*(2*1*pos_dot (t)*theta_dot (t)*cos(theta(t))))+((1/2)*m*x(1"2)...
*(theta_dot~2))+((1/2)*I*(theta_dot~2))

m*g*l*cos (theta(t));

U
L T - U;

% First Equation with respect to thetal(t)
dL_dpos_dot(t) = functionalDerivative(L,pos_dot(t));

dL_dpos (t) = functionalDerivative(L,pos(t));

% Second Equation with respect to theta
dL_dtheta_dot(t) = functionalDerivative (L,theta_dot(t));

dL_dtheta(t) = functionalDerivative(L,theta(t));

dL_dpos_dot_dt = jacobian(dL_dpos_dot(t),t);

dL_dpos_dot_dt = subs(dL_dpos_dot_dt,[diff (pos(t),t),...
diff (pos_dot(t),t), diff (theta(t),t), diff(theta_dot(t),t)]...
,[pos_dot (t),pos_dbldot(t),theta_dot(t),theta_dbldot(t)]);

eqnl = dL_dpos_dot_dt - dL_dpos(t) + bxtheta_dot(t) - u;
% theta_1ldbldot(t) = solve(eqnl,theta_1idbldot(t),’Real’,true);

fprintf (’Equation 1: \n’);

disp(eqnil)

% fprintf (’Equation 1 in terms of theta_idbldot(t): \n’);
% disp(theta_1ldbldot (t))

% Remember this trick that you did, apply for all
dL_dtheta_dot_dt = jacobian(dL_dtheta_dot(t),t);
dL_dtheta_dot_dt = subs(dL_dtheta_dot_dt,[diff (pos(t),t),..
diff (pos_dot(t),t), diff (theta(t),t), diff (theta_dot(t),t)]...
,[pos_dot (t),pos_dbldot(t),theta_dot(t),theta_dbldot(t)]);
eqn2 = dL_dtheta_dot_dt - dL_dtheta(t);

fprintf (’Equation 2: \n’);

disp(eqn2)

%% Finding the Langrange Equations with variables
syms x th x_dot th_dot x_dbldot th_dbldot;

eqnl = subs(eqnl,[pos(t),theta(t),pos_dot(t),theta_dot(t),...
pos_dbldot (t),theta_dbldot(t)], [x,th,x_dot,th_dot,...
x_dbldot ,th_dbldot]);

fprintf (’Equation of Motion 1: \n’);

disp(eqni)

eqn2 = subs(eqn2,[pos(t),theta(t),pos_dot(t),theta_dot(t),...
pos_dbldot (t),theta_dbldot(t)], [x,th,x_dot,th_dot,...
x_dbldot ,th_dbldot]);

fprintf (’Equation of Motion 2: \n’);

disp(eqn2)

%% Linearization
syms u;
[x_dbldot ,th_dbldot]l= solve([eqnl,eqn2],[x_dbldot,th_dbldot])

q = [x x_dot th th_dotl;
u = [ul;

% Non Linear Function

f1 = x_dot;

f2 = x_dbldot;

f3 = th_dot;

f4 = th_dbldot;

F = [f1 f2 £3 f4];

% Jacobian
J = jacobian(F,q)

% Equilibrium Points
q_e = [0 0 0 0];

J = subs(J,q,q_e);
disp(J);
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% System Matrix

A= 7J;

% Input Matrix

B = jacobian(F,u);

B = subs(B,q,q_e);

%% Plant Nominal Values (hernandez)
m = 0.267; % in Kilograms
L = 2.016; % in metres

1 =1L/2; % in metres

b = 0.0015; % in Kg m~2/s
k = 0; % in Kg/s"2

g = 9.8; % in m/s"2

I 0; in Nm/rad"2/sec”2
M 0.8; %in Kilograms

% Plant Nominal Values (ogata)

m = 0.21; % in Kilograms

L = 0.61; % in metres

1 =1L/2; % in metres

b = 0; % in Kg m~2/s

k = 0; % in Kg/s"2

g = 9.8; % in m/s"2

I = 0.006; % in Nm/rad~2/sec”2
M = 0.455; J%in Kilograms

%% Plant Nominal Values (vignesh)

m = 0.20; % in Kilograms

% L = 0.115; % in metres

1 = 0.115; in metres

b = 0.0005; % in Kg m~2/s

k = 0; % in Kg/s"2

g = 9.81; % in m/s"2

I = 0.0002545; % in Nm/rad~2/sec”2
M 1.21; %in Kilograms

%% State Space

Ap = double(subs(A)) %System Matrix
Bp = double(subs(B)) % Input Matrix
% Cp = [1 0; 0 11;

% Cp = [1 00 0;

% 0 0 1 0] % Output Matrix

Cp = [1 0 0 0] % Output Matrix

% Dp = [0; 0];

Dp = zeros(size(Cp,1),size(Bp,2))
%% Scaling the Matrices

% FACTS ON SCALING: Scaling affects
(i.e.

%

Matrices

Feedforward Matrix

the shape of singular value plots
multivariable frequency responses).

It does not alter pole locatiomns,
It does alter directionality information.

zero locations.

dot_theta_2 (deg/sec) ]

]

% unew = su uold (foot pounds, foot pounds)

% xnew = sx xold (degrees, degrees, degrees/sec, degrees/sec)

% ynew = sy yold (degrees, degrees)

g-

A

% 0.2247 1b/N <--- Convert N to 1b

% 4.45 N/1b

% 3.281 ft/m <--- Convert m to ft

% 0.3048 m/ft

% 180 degrees/pi rad <--- Convert rad to deg

3

r2d = 180/pi; % Convert radians to degrees
su = diag([1] ); % Convert N-m to 1lb-ft

sx = diag( [ 1, 1, r2d, r2d 1); % Convert radians to degrees
% sy = diag( [ 1 1,r2d,r2d 1 );

sy = diag( [1] ); % Convert radians to degrees

1A

% Scaled System Dynamics

%

%

% u = [ torque_1 (1b-£ft) torque_2 (1b-£ft) 1]

% x = [ theta_1 (deg) theta_2 (deg) dot_theta_1 (deg/sec)
%y = [ theta_1 (deg) theta_2 (deg) 1

%

Ap sx*Ap*inv (sx)

Bp sx*Bp*inv (su)

Cp = sy*Cpxinv(sx)

Dp = sy*Dp#*inv(su)

%% State Space Representation

states = {’x’,’\theta’,’x_dot’,’\theta_dot’}; % States

inputs = {’force’}; % Inputs

% outputs = {’x’,’theta_dot’}

outputs = {’x’}; % Outputs

sys_ss = ss(Ap,Bp,Cp,Dp,’statename’,states,’inputname’,inputs,’outputname’,outputs) % State Space
sys_tf = zpk(sys_ss) % Transfer Function

%% Relations to different designs

% Varying g_o with g_i as a parameter

% NOMINAL PARAMETERS
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max (pole(sys_tf));
max (tzero(sys_tf));

N'T
[}

%% Relations to different designs
close all;

clear all;

clc;

% Varying g_o with g_i as a parameter

% NOMINAL PARAMETERS

P 5.693;

z 4.958;

zil_values = [14,0.001,2,2]

zi2_values [12.2,28,2.2,2.2];

zol_values [0.001,0.001,0.4,0.5];
zo2_values [28,28,1.4,1.6];

gi_values [16.95,34.5,17.85,50]; % gi >17
go_values [0.02,0.02,0.949,12.17];

for i = 1:length(go_values)

gi = gi_values(:,i);
zil = zil_values(:,i);
zi2 = zi2_values(:,i);
go = go_values(:,i);
zol = zol_values(:,i);
zo2 = zo2_values(:,i);

% transfer function analogy

Pi = zpk([],[p,-pl,[1])

Ki = zpk([-zi1,-zi2],[0],[gil)
Li_tf = series(Pi,Ki)

figure (1)

w = logspace(-1,3, 2000);

[L_i_mag, L_i_phase] = bode(Li_tf,w);
semilogx (w, 20*loglO(L_i_mag(1,:)))
ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title ([’ Inner Loop Magnitude |L_il ’1)

grid on

hold on

figure (2)

w = logspace(-1,3, 2000);

sen_i = feedback(1l,Li_tf)

[sen_i_mag, sen_i_phase] = bode(sen_i,w);

semilogx (w, 20*loglO(sen_i_mag(1l,:)))
ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title ([’ Inner Loop Sensitivity |S_il °’1)

grid on

hold on

figure (3)

w = logspace(-1,3, 2000);

comp_sen_i = feedback(Li_tf,1)

[comp_sen_i_mag, comp_sen_i_phase] = bode(comp_sen_i,w);

semilogx (w, 20*logl0(comp_sen_i_mag(1l,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title ([’ Inner Loop Complementary Sensitivity |T_il ’]1)
grid on

hold on

% transfer function

Po = zpk([z,-z],[0,0],[-11)

Ko = zpk([-zol,-z02],[0],[gol)

Lo_tf = minreal (PoxPix*Kox(feedback(1,(Pi*Ki))));

% outer loop plots at output

figure (4)

w = logspace(-1,3, 2000);

[L_o_mag, L_o_phase] = bode(Lo_tf,w);
semilogx (w, 20%1logl0(L_o_mag(1l,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’Loop Magnitude at Output |L_ol ’]1)

grid omn

hold on

figure (5)

w = logspace(-1,3, 2000);

sen_o = feedback(1l,Lo_tf)

[sen_o_mag, sen_o_phase] = bode(sen_o,w);

semilogx (w, 20*loglO(sen_o_mag(1l,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’IS_ol: Loop Sensitivity at Output ’]1)
grid on
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hold on

figure (6)

w = logspace(-1,3, 2000);

comp_sen_o = feedback(Lo_tf,1)

[comp_sen_o_mag, comp_sen_o_phase] = bode(comp_sen_o ,w);

semilogx (w, 20*logl0(comp_sen_o_mag(1l,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’|T_ol: Loop Complementary Sensitivity at Output ’1)
grid on

hold on

% Loop at Controls
Lu_tf = minreal ((Ki*Pi)+(Ko*Po*Pi));

figure (7)

w = logspace(-1,3, 2000);

[L_u_mag, L_u_phase] = bode(Lu_tf,w);
semilogx (w, 20*loglO(L_u_mag(1,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’|L_ul: Loop Magnitude at Controls ’]1)

grid on

hold on

figure (8)

w = logspace(-1,3, 2000);

sen_u = feedback(l,Lu_tf)

[sen_u_mag, sen_u_phase] = bode(sen_u,w);

semilogx (w, 20*loglO(sen_u_mag(1l,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’|S_ul: Loop Sensitivity at Controls ’])

grid on

hold on

figure (9)

w = logspace(-1,3, 2000);

comp_sen_u = feedback(Lu_tf,1)

[comp_sen_u_mag, comp_sen_u_phase] = bode(comp_sen_u,w);

semilogx (w, 20%1loglO(comp_sen_u_mag(1,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’|T_ul: Loop Complementary Sensitivity at Controls ’])
grid on

hold on

% Compute the margins of open loop system brken at different points
Li_margins = allmargin(Li_tf);
Lu_margins allmargin(Lu_tf);
Lo_margins allmargin(Lo_tf);
Si_margins allmargin(sen_i);
Su_margins allmargin(sen_u);
So_margins allmargin(sen_o);

Lu_downward_gain_margin(:,i) = Lu_margins.GainMargin(1);
Lo_upward_gain_margin(:,i) = Lo_margins.GainMargin(2);

Lu_downward_gain_margin_frequency(:,i) = Lu_margins.GMFrequency (1)
Lo_upward_gain_margin_frequency(:,i) = Lo_margins.GMFrequency (1);

% Lu_upward_gain_margin(:,i)
% Lo_upward_gain_margin(:,i)

= Lu_margins.GainMargin(2);
= Lo_margins.GainMargin(2);
% Lu_upward_gain_margin_frequency(:,i) = Lu_margins.GMFrequency(2);
% Lo_upward_gain_margin_frequency(:,i) = Lo_margins.GMFrequency(2);

Lu_phase_margin(:,i) = Lu_margins.PhaseMargin;
Lo_phase_margin(:,i) = Lo_margins.PhaseMargin;

Li_phase_margin_frequency(:,i) = Li_margins.PMFrequency;
Lu_phase_margin_frequency(:,i) = Lu_margins.PMFrequency;
Lo_phase_margin_frequency(:,i) = Lo_margins.PMFrequency;

Lu_delay_margin(:,i) = Lu_margins.DelayMargin;
Lo_delay_margin(:,i) = Lo_margins.DelayMargin;

Lu_delay_margin_frequency (: = Lu_margins.DMFrequency;
Lo_delay_margin_frequency(:,i) = Lo_margins.DMFrequency;

Si_margins.PMFrequency (1)
Su_margins.PMFrequency (1);
So_margins.PMFrequency (1);

Si_phase_margin_frequency (:,i)
Su_phase_margin_frequency (:,1i)
So_phase_margin_frequency (:,i)

end

figure (1)

legend ([’Parameter Set 1’],[’Parameter Set 2°],...
[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest’,’NumColumns’,1);

figure (2)
legend ([’Parameter Set 1’],[’Parameter Set 2°],...
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[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest ’,’NumColumns’,1);

figure (3)

legend ([’Parameter Set 1’],[’Parameter Set 2°],...
[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest ’,’NumColumns’,1);

figure (4)

legend ([’Parameter Set 1’],[’Parameter Set 2°],...
[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest ’,’NumColumns’,1);

figure (5)

legend ([’Parameter Set 1’],[’Parameter Set 2°],...
[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest ’,’NumColumns’,1);

figure (6)

legend ([’Parameter Set 1’],[’Parameter Set 2°],...
[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest’,’NumColumns ’,1);

figure (7)

legend ([’Parameter Set 1’],[’Parameter Set 2’],...
[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest ’,’NumColumns ’,1);

figure (8)

legend ([’Parameter Set 1’],[’Parameter Set 2’],...
[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest ’,’NumColumns’,1);

figure (9)

legend ([’Parameter Set 1’],[’Parameter Set 2°],...
[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest’,’NumColumns’,1);

Li_phase_margin_frequency
Lu_phase_margin_frequency
Lo_phase_margin_frequency

Lu_downward_gain_margin
Lo_upward_gain_margin

Lu_phase_margin
Lo_phase_margin

Si_phase_margin_frequency
Su_phase_margin_frequency
So_phase_margin_frequency

%% Comparing different peaks
close all;

clear all;

clc;

% Varying g_o with g_i as a parameter

% NOMINAL PARAMETERS

P 5.693;

z 4.958;

zil_values = [1.97, 1.99, 2, 2.01, 2]
zi2_values = [2.16, 1.8, 2.2, 2.37, 2.2];
zol_values = [0.08,0.09,0.4,0.07,0.4];
zo2_values = [1,0.52,1.4,1.05,1.4];
gi_values
go_values

[0.749,1.1,0.949,1.742,3];

for i = 1:length(go_values)
gi = gi_values(:,i);

zil = zil_values(:,i);
zi2 = zi2_values(:,i);
go = go_values(:,i);

zol = zol_values(:,i);
z0o2 = zo2_values(:,i);

% transfer function analogy

Pi = zpk([],[p,-pl,[11)

Ki = zpk([-zil1,-zi2],[0],[gil)
Li_tf = series(Pi,Ki)

figure (1)

w = logspace(-1,3, 2000);

[L_i_mag, L_i_phasel = bode(Li_tf,w);
semilogx (w, 20%1logl0(L_i_mag(1l,:)))
ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

[17.95, 18.94, 17.85, 16.94, 171; % gi >17
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title ([’ Inner Loop Magnitude |L_il ’])

grid on

hold on

figure (2)

w = logspace(-1,3, 2000);

sen_i = feedback(1,Li_tf)

[sen_i_mag, sen_i_phase] = bode(sen_i,w);

semilogx (w, 20%loglO(sen_i_mag(1l,:)))
ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title ([’ Inner Loop Sensitivity [S_il ’1)

grid on

hold on

figure (3)

w = logspace(-1,3, 2000);

comp_sen_i = feedback(Li_tf,1)

[comp_sen_i_mag, comp_sen_i_phase] = bode(comp_sen_i,w);

semilogx (w, 20*logl0(comp_sen_i_mag(1,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title ([’ Inner Loop Complementary Sensitivity [T_il °1)
grid on

hold on

% transfer function

Po = zpk([z,-z],[0,0],[-11)

Ko = zpk([-zol,-z02],[0],[gol)

Lo_tf = minreal (Po*Pi*Ko*(feedback(1,(Pi*Ki))));

% outer loop plots at output

figure (4)

w = logspace(-1,3, 2000);

[L_o_mag, L_o_phase] = bode(Lo_tf ,w);
semilogx (w, 20*loglO(L_o_mag(1,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’Loop Magnitude at Output |L_ol ’1)

grid on

hold on

figure (5)

w = logspace(-1,3, 2000);

sen_o = feedback(l,Lo_tf)

[sen_o_mag, sen_o_phase] = bode(sen_o,w);

semilogx (w, 20%loglO(sen_o_mag(1l,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’|S_ol: Loop Sensitivity at Output ’])

grid omn

hold on

figure (6)

w = logspace(-1,3, 2000);

comp_sen_o = feedback(Lo_tf,1)

[comp_sen_o_mag, comp_sen_o_phase] = bode(comp_sen_o ,w);

semilogx (w, 20%1log10(comp_sen_o_mag(1l,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’|T_ol: Loop Complementary Sensitivity at Output
grid on

hold on

% Loop at Controls
Lu_tf = minreal ((Ki*Pi)+(Ko*Po*Pi));

figure (7)

w = logspace(-1,3, 2000);

[L_u_mag, L_u_phase] = bode(Lu_tf,w);
semilogx (w, 20*loglO(L_u_mag(1,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’|L_ul: Loop Magnitude at Controls ’1)

grid on

hold on

figure (8)

w = logspace(-1,3, 2000);

sen_u = feedback(l,Lu_tf)

[sen_u_mag, sen_u_phase] = bode(sen_u,w);

semilogx (w, 20*loglO(sen_u_mag(1l,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’|S_ul: Loop Sensitivity at Controls ’])

grid on

hold on

figure (9)

w = logspace(-1,3, 2000);

comp_sen_u = feedback(Lu_tf,1)

[comp_sen_u_mag, comp_sen_u_phase] = bode(comp_sen_u,w);

semilogx (w, 20*loglO(comp_sen_u_mag(1l,:)))
ylabel (’Magnitude (dB)’)
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xlabel (’freq (rad/sec)’)

title ([’ |T_ul: Loop Complementary Sensitivity at Controls ’])
grid on

hold on

% Compute the margins of open loop system brken at different points
Li_margins = allmargin(Li_tf);

Lu_margins = allmargin(Lu_tf);
Lo_margins = allmargin(Lo_tf);
Si_margins = allmargin(sen_i);
Su_margins = allmargin(sen_u);
So_margins = allmargin(sen_o);
Lu_downward_gain_margin(:,i) = Lu_margins.GainMargin(1);
Lo_upward_gain_margin(:,i) = Lo_margins.GainMargin(2);
Lu_downward_gain_margin_frequency(:,i) = Lu_margins.GMFrequency (1)
Lo_upward_gain_margin_frequency(:,i) = Lo_margins.GMFrequency(1);

% Lu_upward_gain_margin(:,i) = Lu_margins.GainMargin(2);

% Lo_upward_gain_margin(:,i) = Lo_margins.GainMargin(2);

%

% Lu_upward_gain_margin_frequency(:,i) = Lu_margins.GMFrequency(2);

% Lo_upward_gain_margin_frequency(:,i) = Lo_margins.GMFrequency (2);
Lu_phase_margin(:,i) = Lu_margins.PhaseMargin;
Lo_phase_margin(:,i) = Lo_margins.PhaseMargin;
Li_phase_margin_frequency(:,i) = Li_margins.PMFrequency;
Lu_phase_margin_frequency(:,i) = Lu_margins.PMFrequency;
Lo_phase_margin_frequency(:,i) = Lo_margins.PMFrequency;
Lu_delay_margin(:,i) = Lu_margins.DelayMargin;
Lo_delay_margin(:,i) = Lo_margins.DelayMargin;
Lu_delay_margin_frequency(:,i) = Lu_margins.DMFrequency;
Lo_delay_margin_frequency(:,i) = Lo_margins.DMFrequency;
Si_phase_margin_frequency(:,i) = Si_margins.PMFrequency(1);
Su_phase_margin_frequency(:,i) = Su_margins.PMFrequency (1);
So_phase_margin_frequency(:,i) = So_margins.PMFrequency (1)

end

figure (1)

legend ([’ Parameter Set 1’],[’Parameter Set 2°],...

[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest’,’NumColumns ’,1);

figure (2)
legend ([’ Parameter Set 1’],[’Parameter Set 2°],...

[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest ’,’NumColumns’,1);

figure (3)
legend ([’ Parameter Set 1’],[’Parameter Set 2°],...

[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest ’,’NumColumns’,1);

figure (4)
legend ([’Parameter Set 1’],[’Parameter Set 2°],...

[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest ’,’NumColumns’,1);

figure (5)
legend ([’Parameter Set 1’],[’Parameter Set 2°],...

[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5°],[’Parameter Set 6°],...
’Location’,’Southwest ’,’NumColumns’,1);

figure (6)
legend ([’ Parameter Set 1’],[’Parameter Set 2°],...

[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest ’,’NumColumns’,1);

figure (7)
legend ([’ Parameter Set 1’],[’Parameter Set 2°],...

[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest’,’NumColumns ’,1);

figure (8)
legend ([’ Parameter Set 1’],[’Parameter Set 2°],...

[’Parameter Set 3’],[’Parameter Set 4°],.
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest ’,’NumColumns’,1);

figure (9)
legend ([’Parameter Set 1’],[’Parameter Set 2°],...

[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest ’,’NumColumns’,1);

Li_phase_margin_frequency
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Lu_phase_margin_frequency
Lo_phase_margin_frequency

Lu_downward_gain_margin
Lo_upward_gain_margin

Lu_phase_margin
Lo_phase_margin

Si_phase_margin_frequency
Su_phase_margin_frequency
So_phase_margin_frequency

%% Peak - 1.65 Su/So

% Varying g_o with g_i as a parameter

% NOMINAL PARAMETERS

p = max(pole(sys_tf));
z = max(tzero(sys_tf));
Wh
zil_values = [4.6, 1.97, 6.5, 0.9, 11, 11]

zi2_values [3.9, 2.16, 7, 1.487, 16.1, 21.11;

zol_values [1.9, 0.08, 4.05, 0.02, 9.92, 9.92];
zo02_values [0.351, 1, 0.05, 0.568, 0.03, 0.03];
gi_values [15.65, 17.95, 21.36, 27.9 , 40, 47]; % gi >17
go_values [1.49, 0.749, 2.39, 0.475, 5.11, 6.29];

for i = 1:length(go_values)

gi = gi_values(:,i);
zil = zil_values(:,i);
zi2 = zi2_values(:,i);
go = go_values(:,i);
zol = zol_values(:,i);
z0o2 = zo2_values(:,i);

% transfer function analogy

Pi = zpk([],[p,-pl,[11)

Ki = zpk([-zi1,-zi2],[0],[gil)
Li_tf = series(Pi,Ki)

figure (1)

w = logspace(-1,3, 2000);

[L_i_mag, L_i_phasel = bode(Li_tf,w);

semilogx (w, 20%1logl0(L_i_mag(1l,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title ([’ Inner Loop Magnitude |L_il| for peak = 1.65°])

grid omn

hold on

figure (2)

w = logspace(-1,3, 2000);

sen_i = feedback(1l,Li_tf)

[sen_i_mag, sen_i_phase] = bode(sen_i,w);

semilogx (w, 20%logl0(sen_i_mag(1,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title ([’ Inner Loop Sensitivity |S_il for peak = 1.65’])

grid on

hold on

figure (3)

w = logspace(-1,3, 2000);

comp_sen_i = feedback(Li_tf,1)

[comp_sen_i_mag, comp_sen_i_phase] = bode(comp_sen_i,w);

semilogx (w, 20%1logl0(comp_sen_i_mag(1,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title ([’ Inner Loop Complementary Sensitivity |T_il for peak = 1.65’])
grid on

hold on

% transfer function

Po = zpk([z,-z],[0,0],[-11)

Ko = zpk([-zol,-z02],[0],[gol)

Lo_tf = minreal (PoxPi*Kox(feedback(1,(Pi*Ki))));

% outer loop plots at output

figure (4)

w = logspace(-1,3, 2000);

[L_o_mag, L_o_phase] = bode(Lo_tf,w);

semilogx (w, 20%1logl0(L_o_mag(1l,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title ([’Loop Magnitude at Output |L_ol| for peak = 1.65°])
grid on

hold on

figure (5)
w = logspace(-1,3, 2000);

211



end

sen_o = feedback(1l,Lo_tf)

[sen_o_mag, sen_o_phase] = bode(sen_o,w);

semilogx (w, 20%loglO(sen_o_mag(1l,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’|S_ol: Loop Sensitivity at Output for peak = 1.65’])

grid omn

hold on

figure (6)

w = logspace(-1,3, 2000);

comp_sen_o = feedback(Lo_tf,1)

[comp_sen_o_mag, comp_sen_o_phase] = bode(comp_sen_o ,w);

semilogx (w, 20%1log10(comp_sen_o_mag(1l,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’|T_ol: Loop Complementary Sensitivity at Output for peak = 1.65°])
grid on

hold on

% Loop at Controls
Lu_tf = minreal ((Ki*Pi)+(Ko*Po*Pi));

figure (7)

w = logspace(-1,3, 2000);

[L_u_mag, L_u_phase] = bode(Lu_tf ,w);

semilogx (w, 20*loglO(L_u_mag(1,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’|L_ul: Loop Magnitude at Controls for peak = 1.65’])

grid on

hold on

figure (8)

w = logspace(-1,3, 2000);

sen_u = feedback(l,Lu_tf)

[sen_u_mag, sen_u_phase] = bode(sen_u,w);

semilogx (w, 20%loglO(sen_u_mag(1l,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’|S_ul: Loop Sensitivity at Controls for peak = 1.65’])

grid on

hold on

figure (9)

w = logspace(-1,3, 2000);

comp_sen_u = feedback(Lu_tf,1)

[comp_sen_u_mag, comp_sen_u_phase] = bode(comp_sen_u,w);

semilogx (w, 20*loglO(comp_sen_u_mag(1l,:)))
ylabel (’Magnitude (dB)’)
xlabel (’freq (rad/sec)’)

title([’|T_ul: Loop Complementary Sensitivity at Controls for peak = 1.65°])

grid on
hold on

% Compute the margins of open loop system brken at different points
Li_margins = allmargin(Li_tf);
Lu_margins allmargin(Lu_tf);
Lo_margins allmargin(Lo_tf);
Si_margins allmargin(sen_i);

Su_margins = allmargin(sen_u);
So_margins = allmargin(sen_o);

Lu_downward_gain_margin(:,i) = Lu_margins.GainMargin(1);
Lo_upward_gain_margin(:,i) = Lo_margins.GainMargin(2);

Lu_downward_gain_margin_frequency(:,i) = Lu_margins.GMFrequency (1)
Lo_upward_gain_margin_frequency(:,i) = Lo_margins.GMFrequency (1);

Lu_upward_gain_margin(:,i)
Lo_upward_gain_margin(:,i)

Lu_margins.GainMargin(2);
Lo_margins.GainMargin(2);

Lu_upward_gain_margin_frequency(:,i) = Lu_margins.GMFrequency (2);
Lo_upward_gain_margin_frequency(:,i) = Lo_margins.GMFrequency (2);

Lu_phase_margin(:,i) = Lu_margins.PhaseMargin;
Lo_phase_margin(:,i) = Lo_margins.PhaseMargin;

Li_phase_margin_frequency (:
Lu_phase_margin_frequency (:

= Li_margins.PMFrequency;
= Lu_margins.PMFrequency;

Lo_phase_margin_frequency(:,i) = Lo_margins.PMFrequency;

Lu_delay_margin(:,i) = Lu_margins.DelayMargin;
Lo_delay_margin(:,i) = Lo_margins.DelayMargin;

Lu_delay_margin_frequency(:,i) = Lu_margins.DMFrequency;
Lo_delay_margin_frequency(:,i) = Lo_margins.DMFrequency;

Si_phase_margin_frequency (:
Su_phase_margin_frequency (:
So_phase_margin_frequency (:

Si_margins.PMFrequency (1)
Su_margins.PMFrequency (1);
So_margins.PMFrequency (1) ;

figure (1)
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legend ([’ Parameter Set 1’],[’Parameter Set 2°],...
[’Parameter Set 3’],[’Parameter Set 4°],.
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest’,’NumColumns ’,1);

figure (2)

legend ([’Parameter Set 1’],[’Parameter Set 2’],...
[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest ’,’NumColumns’,1);

figure (3)

legend ([’Parameter Set 1’],[’Parameter Set 2°],...
[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],.
’Location’,’Southwest ’,’NumColumns’,1);

figure (4)

legend ([’Parameter Set 1’],[’Parameter Set 2°],...
[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest’,’NumColumns’,1);

figure (5)

legend ([’Parameter Set 1’],[’Parameter Set 2°],...
[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest ’,’NumColumns’,1);

figure (6)

legend ([’Parameter Set 1’],[’Parameter Set 2°],...
[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest ’,’NumColumns’,1);

figure (7)

legend ([’ Parameter Set 1’],[’Parameter Set 2°],...
[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest’,’NumColumns ’,1);

figure (8)

legend ([’Parameter Set 1’],[’Parameter Set 2’],...
[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest ’,’NumColumns’,1);

figure (9)

legend ([’Parameter Set 1’],[’Parameter Set 2°],...
[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest’,’NumColumns’,1);

Li_phase_margin_frequency
Lu_phase_margin_frequency
Lo_phase_margin_frequency

Lu_downward_gain_margin
Lo_upward_gain_margin

Lu_phase_margin
Lo_phase_margin

Si_phase_margin_frequency
Su_phase_margin_frequency
So_phase_margin_frequency

%% Peak - 2.8 Su/So
close all;

clear all;

clc;

% Varying g_o with g_i as a parameter

% NOMINAL PARAMETERS

p = 5.693;

z = 4.958;

zil_values = [3.06, 2, 10.165, 1, 11, 11]

zi2_values = [3.12, 2.2, 5.4, 1.1, 16.1, 21.1];
zol_values = [2, 0.4, 6.3, 0.02, 2.92, 1.02];

zo2_values = [0.4, 1.4, 0.1, 0.5346, 0.03, 0.03];
gi_values = [14.79, 17.85, 22.342, 30.858, 40, 47]1; % gi
go_values = [1.41, 0.949, 4.095, 0.69, 8.71, 10.59];

for i = 1:length(go_values)

gi = gi_values(:,i);
zil = zil_values(:,i);
zi2 = zi2_values(:,i);
go = go_values(:,i);
zol zol_values(:,i);
z02 = zo2_values(:,i);

% transfer function analogy

Pi = zpk([],[p,-pl,[1]1)

Ki = zpk([-zil,-zi2],[0],[gil)
Li_tf = series(Pi,Ki)

>17
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figure (1)

w = logspace(-1,3, 2000);

[L_i_mag, L_i_phase] = bode(Li_tf,w);

semilogx (w, 20*loglO(L_i_mag(1,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title ([’ Inner Loop Magnitude |L_i| for peak = 2.8°])

grid on

hold on

figure (2)

w = logspace(-1,3, 2000);

sen_i = feedback(1l,Li_tf)

[sen_i_mag, sen_i_phase] = bode(sen_i,w);

semilogx (w, 20%loglO(sen_i_mag(1,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title ([’ Inner Loop Sensitivity |S_il for peak = 2.8°])

grid on

hold on

figure (3)

w = logspace(-1,3, 2000);

comp_sen_i = feedback(Li_tf,1)

[comp_sen_i_mag, comp_sen_i_phase] = bode(comp_sen_i,w);

semilogx (w, 20*%logl0(comp_sen_i_mag(1,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title ([’ Inner Loop Complementary Sensitivity |T_il| for peak = 2.8°])
grid on

hold on

% transfer function

Po = zpk([z,-z],[0,0],[-1])

Ko = zpk([-zol,-z02],[0],[gol)

Lo_tf = minreal (Po*Pi*Ko*(feedback(1,(Pi*Ki))));

% outer loop plots at output

figure (4)

w = logspace(-1,3, 2000);

[L_o_mag, L_o_phase] = bode(Lo_tf,w);

semilogx (w, 20*1logl0(L_o_mag(1,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title ([’Loop Magnitude at Output |L_ol for peak = 2.8°])

grid on

hold on

figure (5)

w = logspace(-1,3, 2000);

sen_o = feedback(1l,Lo_tf)

[sen_o_mag, sen_o_phase] = bode(sen_o,w);

semilogx (w, 20%loglO(sen_o_mag(1l,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’|S_ol: Loop Sensitivity at Output for peak = 2.8’°])

grid on

hold on

figure (6)

w = logspace(-1,3, 2000);

comp_sen_o = feedback(Lo_tf,1)

[comp_sen_o_mag, comp_sen_o_phase] = bode(comp_sen_o ,w);

semilogx (w, 20%*logl0(comp_sen_o_mag(1,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’|T_ol: Loop Complementary Sensitivity at Output for peak = 2.8°])
grid on

hold on

% Loop at Controls
Lu_tf = minreal ((Ki*Pi)+(Ko*Po*Pi));

figure (7)

w = logspace(-1,3, 2000);

[L_u_mag, L_u_phase]l = bode(Lu_tf,w);

semilogx (w, 20*loglO(L_u_mag(1,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’|L_ul: Loop Magnitude at Controls for peak = 2.8°])

grid on

hold on

figure (8)

w = logspace(-1,3, 2000);

sen_u = feedback(l,Lu_tf)

[sen_u_mag, sen_u_phase] = bode(sen_u,w);

semilogx (w, 20*loglO(sen_u_mag(1l,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’|S_ul: Loop Sensitivity at Controls for peak = 2.8°])
grid on

hold on
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figure (9)

w = logspace(-1,3, 2000);
comp_sen_u = feedback(Lu_tf,1)
[comp_sen_u_mag, comp_sen_u_phase] = bode(comp_sen_u,w);

semilogx (w, 20*logl0(comp_sen_u_mag(1l,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’|T_ul: Loop Complementary Sensitivity at Controls for peak = 2.8°])
grid on

hold on

% Compute the margins of open loop system brken at different points

Li_margins = allmargin(Li_tf);

Lu_margins = allmargin(Lu_tf);

Lo_margins = allmargin(Lo_tf);

Si_margins = allmargin(sen_i);

Su_margins = allmargin(sen_u);

So_margins = allmargin(sen_o);

Lu_downward_gain_margin(:,i) = Lu_margins.GainMargin(1);
Lo_upward_gain_margin(:,i) = Lo_margins.GainMargin(2);
Lu_downward_gain_margin_frequency(:,i) = Lu_margins.GMFrequency (1);

Lo_upward_gain_margin_frequency (:,i) Lo_margins.GMFrequency (1);

% Lu_upward_gain_margin(:,i) = Lu_margins.GainMargin(2);

% Lo_upward_gain_margin(:,i) = Lo_margins.GainMargin(2);

%

% Lu_upward_gain_margin_frequency(:,i) = Lu_margins.GMFrequency (2);

% Lo_upward_gain_margin_frequency(:,i) = Lo_margins.GMFrequency(2);
Lu_phase_margin(:,i) = Lu_margins.PhaseMargin;
Lo_phase_margin(:,i) = Lo_margins.PhaseMargin;
Li_phase_margin_frequency(:,i) = Li_margins.PMFrequency;
Lu_phase_margin_frequency(:,i) = Lu_margins.PMFrequency;
Lo_phase_margin_frequency(:,i) = Lo_margins.PMFrequency;
Lu_delay_margin(:,i) = Lu_margins.DelayMargin;
Lo_delay_margin(:,i) = Lo_margins.DelayMargin;
Lu_delay_margin_frequency(:,i) = Lu_margins.DMFrequency;
Lo_delay_margin_frequency(:,i) = Lo_margins.DMFrequency;
Si_phase_margin_frequency(:,i) = Si_margins.PMFrequency(1);
Su_phase_margin_frequency(:,i) = Su_margins.PMFrequency (1)
So_phase_margin_frequency(:,i) = So_margins.PMFrequency (1)

end

figure (1)

legend ([’Parameter Set 1’],[’Parameter Set 2’],...
[’Parameter Set 3’],[’Parameter Set 4°],.
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest’,’NumColumns ’,1);

figure (2)

legend ([’Parameter Set 1’],[’Parameter Set 2’],...
[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest’,’NumColumns ’,1);

figure (3)

legend ([’Parameter Set 1’],[’Parameter Set 2°],...
[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest ’,’NumColumns’,1);

figure (4)

legend ([’Parameter Set 1’],[’Parameter Set 2°],...
[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest’,’NumColumns’,1);

figure (5)

legend ([’Parameter Set 1’],[’Parameter Set 2°],...
[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest ’,’NumColumns’,1);

figure (6)

legend ([’Parameter Set 1’],[’Parameter Set 2°],...
[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest ’,’NumColumns’,1);

figure (7)

legend ([’ Parameter Set 1’],[’Parameter Set 2°],...
[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest’,’NumColumns ’,1);

figure (8)

legend ([’ Parameter Set 1’],[’Parameter Set 2°],...
[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest’,’NumColumns ’,1);
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figure (9)

legend ([’ Parameter Set 1’],[’Parameter Set 2°],...
[’Parameter Set 3’],[’Parameter Set 4°],...
[’Parameter Set 5’],[’Parameter Set 6°],...
’Location’,’Southwest’,’NumColumns ’,1);

Li_phase_margin_frequency
Lu_phase_margin_frequency
Lo_phase_margin_frequency

Lu_downward_gain_margin
Lo_upward_gain_margin

Lu_phase_margin
Lo_phase_margin

Si_phase_margin_frequency
Su_phase_margin_frequency
So_phase_margin_frequency
%% December 16, 2020

%

% Inner-Outer Loop Feedback Structure

% by Soham Sarkar, Armando Rodriguez, Brent Wallace
%% Benchmark Example 8 cart inverted

%% Cart Inverted Pendulum Analysis

clc

clear all

close all

%% Derivation of Equations (Matthew Peter Kelly)
syms pos(t) pos_dot(t) pos_dbldot(t) theta(t) theta_dot(t) theta_dbldot(t);
syms m M 1 b g I u;

Xp = pos(t) + l*sin(theta(t));
Yp = l*cos(theta(t));

Xp_dot = diff (Xp);

Yp_dot = diff (Yp);

Xp_dot = subs(Xp_dot,[diff (pos(t),t), diff(theta(t),t)],[pos_dot(t) theta_dot(t)]);
Yp_dot = subs(Yp_dot,[diff(pos(t),t), diff(theta(t),t)],[pos_dot(t) theta_dot(t)]);

pos_dot (t) = subs(pos_dot(t),diff (pos(t),t),pos_dot(t));
T = ((1/2)*M*pos_dot(t)) + ((1/2)*m*((Xp_dot~2) + (Yp_dot~2)));

T

((1/2)*M*pos_dot (t)"2)+((1/2)*(m)*(pos_dot (t)~2))...
+((1/2)*m*(2*1*pos_dot (t)*theta_dot (t)*cos(theta(t))))...
+((1/2)*m*(1"2)*(theta_dot"2))+((1/2)*I*(theta_dot"2))
m*xg*l*kcos (theta(t));

T - U;

[

e

First Equation with respect to thetal(t)
dL_dpos_dot(t) = functionalDerivative(L,pos_dot(t));

dL_dpos(t) = functionalDerivative(L,pos(t));

% Second Equation with respect to theta
dL_dtheta_dot(t) = functionalDerivative(L,theta_dot(t));

dL_dtheta(t) = functionalDerivative(L,theta(t));

dL_dpos_dot_dt = jacobian(dL_dpos_dot(t),t);

dL_dpos_dot_dt = subs(dL_dpos_dot_dt,[diff (pos(t),t),...
diff (pos_dot(t),t), diff (theta(t),t), diff (theta_dot(t),t)]...
,[pos_dot (t),pos_dbldot(t),theta_dot(t),theta_dbldot(t)]);

eqnl = dL_dpos_dot_dt - dL_dpos(t) + bx*theta_dot(t) - u;
% theta_idbldot(t) = solve(eqnil,theta_lidbldot(t),’Real’,true);

fprintf (’Equation 1: \n’);

disp(eqnil)

% fprintf (’Equation 1 in terms of theta_ldbldot(t): \n’);
% disp(theta_1dbldot (t))

% Remember this trick that you did, apply for all
dL_dtheta_dot_dt = jacobian(dL_dtheta_dot(t),t);
dL_dtheta_dot_dt = subs(dL_dtheta_dot_dt,[diff (pos(t),t),..
diff (pos_dot(t),t), diff (theta(t),t), diff(theta_dot(t),t)]...
,[pos_dot (t),pos_dbldot(t),theta_dot(t),theta_dbldot(t)]);
eqn2 = dL_dtheta_dot_dt - dL_dtheta(t);

fprintf (’Equation 2: \n’);

disp(eqn2)

%% Finding the Langrange Equations with variables
syms x th x_dot th_dot x_dbldot th_dbldot;

eqnl = subs(eqni,[pos(t),theta(t),pos_dot(t),theta_dot(t),...
pos_dbldot (t),theta_dbldot(t)], [x,th,x_dot,th_dot,...
x_dbldot ,th_dbldot]);

fprintf (’Equation of Motion 1: \n’);

disp(eqnil)
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eqn2
pos_dbldot (t),theta_dbldot (t)],
x_dbldot ,th_dbldot]);

fprintf (’Equation of Motion 2:

disp(eqn2)

\n’);

%% Linearization
syms u;

[x_dbldot ,th_dbldot]= solve([eqnl,eqn2],[x_dbldot,th_

q = [x x_dot th th_dotl];
u = [ul;

% Non Linear Function

fi1 = x_dot;

f2 = x_dbldot;

f3 = th_dot;

f4 = th_dbldot;

F = [f1 £f2 £3 f4];

% Jacobian

J = jacobian(F,q)

% Equilibrium Points

q_e = [0 0 0 0];

J = subs(J,q,q_e);
disp(J);

% System Matrix

A =7

% Input Matrix

B = jacobian(F,u);

B = subs(B,q,q_e);

%% Plant Nominal Values (hernandez)
m = 0.267; % in Kilograms
L = 2.016; % in metres

1 =1L/2; % in metres

b = 0.0015; % in Kg m~2/s
k = 0; % in Kg/s"2

g = 9.8; % in m/s"2

I =0; % in Nm/rad~2/sec”2
M = 0.8; %in Kilograms

%% Plant Nominal Values (ogata)

m = 0.21; % in Kilograms

L = 0.61; % in metres

1 = L/2; % in metres

b = 0; % in Kg m"2/s

k = 0; % in Kg/s"2

g = 9.8; % in m/s"2

I = 0.006; % in Nm/rad~2/sec”2
M = 0.455; %in Kilograms

%% Plant Nominal Values (vignesh)

subs (eqn2, [pos (t),theta(t),pos_dot (t),theta_dot(t),...
[x,th,x_dot,th_dot,...

dbldot])

m = 0.20; % in Kilograms

% L = 0.115; % in metres

1 = 0.115; in metres

b = 0.0005; % in Kg m~2/s

k = 0; % in Kg/s"2

g = 9.81; % in m/s"2

I = 0.0002545; % in Nm/rad~2/sec”2

M = 1.21; %in Kilograms

%% State Space

Ap = double(subs(A)) %System Matrix

Bp = double(subs(B)) % Input Matrix

% Cp = [1 0; 0 1];

% Cp = [1 00 0;

% 0 0 1 0] % Output Matrix

Cp = [1 0 0 0] % Output Matrix

% Dp = [0; 0];

Dp = zeros(size(Cp,1),size(Bp,2)) % Feedforward Matrix

%% Scaling the Matrices

% FACTS ON SCALING: Scaling affects the shape of singular value plots
% (i.e. multivariable frequency responses).

It does not alter pole locationmns,

Matrices

%

% unew = su uold (foot pounds, foot pounds)

% xnew = sx xold (degrees, degrees, degrees/sec,
% ynew = sy yold (degrees, degrees)

% 0.2247 1b/N <--- Convert N to 1b

% 4.45 N/1b

% 3.281 ft/m <--- Convert m to ft

% 0.3048 m/ft

% 180 degrees/pi rad <--- Convert rad to deg
%

r2d = 180/pi;

su = diag([1] ); % Convert N-m to 1lb-ft

zero locations.

It does alter directionality information.

degrees/sec)

% Convert radians to degrees
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sx = diag( [ 1, 1, r2d, r2d 1); % Convert radians to degrees
% sy = diag( [ 1 1,r2d,r2d 1 );
sy = diag( [1] ); % Convert radians to degrees

% Scaled System Dynamics

% u = [ torque_1 (1b-ft) torque_2 (1b-ft) 1]

% x = [ theta_1 (deg) theta_2 (deg) dot_theta_1 (deg/sec)
%y = [ theta_1 (deg) theta_2 (deg) 1

%

Ap sx*Ap*inv (sx)

Bp = sx*Bp*inv(su)

Cp = sy*Cpxinv(sx)

Dp sy*Dp*inv (su)

%% State Space Representation

dot_theta_2 (deg/sec) 1

states = {’x’,’\theta’,’x_dot’,’\theta_dot’}; % States

inputs = {’force’}; % Inputs

% outputs = {’x’,’theta_dot’}

outputs = {’x’}; % Outputs

sys_ss = ss(Ap,Bp,Cp,Dp,’statename’,states,’inputname’,inputs,’outputname’,outputs) % State Space
sys_tf = zpk(sys_ss) % Transfer Function

%% pid search

% NOMINAL PARAMETERS

p = max(pole(sys_tf));

z = max(tzero(sys_tf));
numpoints = 2;

% Range of gi

gi_min = 10

gi_max = 15

gi_count = numpoints

gi_inc = (gi_max-gi_min)/gi_count
% Range of go

go_min = 0.8

go_max = 2.0

go_count = numpoints

go_inc = (go_max-go_min)/go_count
% Range of zil

zil_min = 0.1;

zil_max = 0.3;

zil_count = numpoints

zil_inc = (zil_max-zil_min)/zil_count
% Range of zi2

zi2_min =

H
H

zi2_count

2
zi2_max = 3

= numpoints

(

zi2_inc = (zi2_max-zi2_min)/zi2_count
% Range of zol
zol_min = 0.01;
zol_max = 0.05;
zol_count = numpoints
zol_inc = (zol_max-zol_min)/zol_count
% Range of zo2
zo2_min = 0.01;
zo2_max = 0.05;
zo2_count = numpoints
zo2_inc = (zo2_max-zo2_min)/zo2_count
s = t£(’s’);
counter = 0;
for go = go_min:go_inc:go_max
counter = counter + 1;
go_values (:,counter) = go;
counterl = 0;
for gi = gi_min:gi_inc:gi_max

counterl = counterl + 1;

gi_values (:,counterl) = gi;

counter2 = 0;

for zil = zil _min:zil_inc:zil_max
counter2 = counter2 + 1;
zil_values (:,counter2) = zil;
counter3 = 0;
for zi2 = zi2_min:zi2_inc:zi2_max

counter3 = counter3 + 1;

zi2_values (:,counter3) = zi2;

counter4 = 0;

for zol = zol_min:zol_inc:zol_max
counter4 = counter4 + 1;
zol_values (:,counter4) = zol;
counterb5 = 0;
for zo2 = zo2_min:zo2_inc:zo2_max

counter5 = counter5 + 1;

zo2_values (:,counter5) = zo2;

% replace the following example by example_(number)
% results
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[Pi,Ki,Po,Ko]l = example_7(p,z,gi,go,zil,zi2,z0l1,z02)
% transfer function analogy
Li_tf = series(Pi,Ki)

figure (1)
w = logspace(-1,3, 2000);
[L_i_mag, L_i_phase] = bode(Li_tf,w);
semilogx (w, 20%1loglO(L_i_mag(1,:)))
ylabel (’Magnitude (dB)’)
xlabel (’freq (rad/sec)’)
title ([’ Inner Loop Magnitude |L_il for z = ’,num2str(z)...
,7,p = ’,num2str(p)])
grid on
hold on

figure (2)

w = logspace(-1,3, 2000);

[L_i_mag, L_i_phase] = bode(Li_tf,w);

semilogx (w, L_i_phase(1,:))

ylabel (’Angle (deg)’)

xlabel (’freq (rad/sec)’)

title ([’ Inner Loop Phase \angle L_i for z = ’,num2str(z)...
,’,p = ’,num2str(p)l)

grid on

figure (3)
w = logspace(-1,3, 2000);
sen_i = feedback(1l,Li_tf)
[sen_i_mag, sen_i_phase] = bode(sen_i,w);
[hinf_sen_i,fpeak_sen_i] = hinfnorm(sen_i)
semilogx (w, 20*logl0(sen_i_mag(1,:)))
ylabel (’Magnitude (dB)’)
xlabel (’freq (rad/sec)’)
title ([’ Inner Loop Sensitivity [S_il| for z = ’,num2str(z)...
,7,p = ’,num2str(p)l)
grid on
hold on

figure (4)

w = logspace(-1,3, 2000);

comp_sen_i = feedback(Li_tf,1)

[comp_sen_i_mag, comp_sen_i_phase] = bode(comp_sen_i,w);
[hinf_comp_sen_i,fpeak_comp_sen_i] = hinfnorm(comp_sen_i)
semilogx (w, 20xlogl0(comp_sen_i_mag(1l,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title ([’ Inner Loop Complementary Sensitivity |T_il| for z = ’,num2str(z)...
,’,p = ’,num2str(p)l)
grid on
hold on

figure (5)

semilogx (w, 20%1logl0(comp_sen_i_mag(1,:)), ’r’)
hold on

semilogx (w, 20*loglO(sen_i_mag(1l,:)), ’b’)
ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title ([’ Inner Loop Sensitivity |S_il & Complementary Sensitivity |T_il| for z = ’,num2str(z),’,p = ’,num2str(p)])
grid on
legend ({’Complementary Sensitivity’,’Sensitivity’},...

’Location’,’Southwest’, ’NumColumns’,1)

% transfer function
Lo_tf = minreal (Po*xPi*Ko*(feedback (1, (Pi*Ki))));

% outer loop plots at output

figure (6)

w = logspace(-1,3, 2000);

[L_o_mag, L_o_phase] = bode(Lo_tf,w);
semilogx (w, 20%1logl0(L_o_mag(1,:)))
ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title ([’Loop Magnitude at Output |L_ol (g_i = ’,num2str(gi)...
,?), for z = ’,num2str(z),’,p = ’,num2str(p)])

grid on

hold omn

figure (7)

w = logspace(-1,3, 2000);

[L_o_mag, L_o_phase] = bode(Lo_tf,w);
semilogx (w, L_o_phase(1,:)-360)
ylabel (’ Angle (deg)’)

xlabel (’freq (rad/sec)’)

title([’\angle L_o : Loop Phase at Output (g_i = ’,num2str(gi)...
,?), for z = ’,num2str(z),’,p = ’,num2str(p)l)

grid on

hold on

figure (8)

w = logspace(-1,3, 2000);

sen_o = feedback(1l,Lo_tf)

[sen_o_mag, sen_o_phase] = bode(sen_o,w);
[hinf_sen_o,fpeak_sen_o] = hinfnorm(sen_o)
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hinf_so(:,counter) = hinf_sen_o

semilogx (w, 20%logl0O(sen_o_mag(1,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’|S_ol: Loop Sensitivity at Output (g_i = ’...
,num2str(gi),’), for z = ’,num2str(z),’,p = ’,num2str(p)]l)

grid on

hold on

figure (9)

w = logspace(-1,3, 2000);

comp_sen_o = feedback(Lo_tf,1)

[comp_sen_o_mag, comp_sen_o_phase] = bode(comp_sen_o,w);
[hinf_comp_sen_o,fpeak_sen_o] = hinfnorm(comp_sen_o)
hinf_cso(:,counter) = hinf_comp_sen_o

semilogx (w, 20*logl0(comp_sen_o_mag(1l,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’|T_ol: Loop Complementary Sensitivity at Output (g_i = ’,...
num2str(gi),’), for z = ’,num2str(z),’,p = ’,num2str(p)]l)

grid on

hold on

% Outer Loop at Controls
Lu_tf = minreal ((Ki*Pi)+(Ko*Po*Pi));

% Outer Loop poles at controls

figure (10)

w = logspace(-1,3, 2000);

[L_u_mag, L_u_phase] = bode(Lu_tf ,w);

semilogx (w, 20*logl0(L_u_mag(1l,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’|L_ul: Loop Magnitude at Controls (g_i = ’,...
num2str(gi),’), for z = ’,num2str(z),’,p = ’,num2str(p)])

grid on

hold on

figure (11)

w = logspace(-1,3, 2000);

[L_u_mag, L_u_phase] = bode(Lu_tf,w);

semilogx (w, L_u_phase(1,:))

ylabel (’ Angle (deg)’)

xlabel (’freq (rad/sec)’)

title([’\angle L_u: Loop Phase at Controls (g_i = ’,...
num2str(gi),’), for z = ’,num2str(z),’,p = ’,num2str(p)l)

grid on

hold on

figure (12)

w = logspace(-1,3, 2000);

sen_u = feedback(l,Lu_tf)

[sen_u_mag, sen_u_phase] = bode(sen_u,w);
[hinf_sen_u,fpeak_sen_ul] = hinfnorm(sen_u)
hinf_su(:,counter) = hinf_sen_u

semilogx (w, 20*loglO(sen_u_mag(1l,:)))

ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

title([’|S_ul: Loop Sensitivity at Controls (g_i = ’,...
num2str(gi),’), for z = ’,num2str(z),’,p = ’,num2str(p)]l)

grid on

hold on

figure (13)

w = logspace(-1,3, 2000);
comp_sen_u = feedback(Lu_tf,1)
[comp_sen_u_mag, comp_sen_u_phase]
[hinf_comp_sen_u,fpeak_comp_sen_u]
hinf_csu(:,counter) = hinf_comp_sen_u
semilogx (w, 20*logl0(comp_sen_u_mag(1l,:)))
ylabel (’Magnitude (dB)’)

xlabel (’freq (rad/sec)’)

bode (comp_sen_u,w);
hinfnorm(comp_sen_u)

title ([’ |T_ul: Loop Complementary Sensitivity at Controls (g_i = ’,...

num2str(gi),’), for z = ’,num2str(z),’,p = ’,num2str(p)])
grid on
hold on

figure (14)

w = logspace(-1,3, 2000);
comp_sen_u_o = (comp_sen_u/comp_sen_o)
[comp_sen_u_o_mag, comp_sen_u_o_phase] = bode(comp_sen_u_o,w);

semilogx (w, 20*logl0(comp_sen_u_o_mag(1l,:)))
ylabel (’Magnitude (dB)’)
xlabel (’freq (rad/sec)’)

title ([’$\frac{|IT_ul}{IT_ol} > 1 \; \forall \; \omega > 0 \; (p = ’,...
num2str(p),’) \; for \; z = ’,num2str(z),’ $’°]...
,’Interpreter’,’latex’)

grid on

hold on

% Control Response to Step Ref. Command at controls
figure (15)
tinc = 0.0005;
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tmax = 10;

t = 0:tinc:tmax;
plot (t,step(sen_u,t));

xlabel (’Time (sec)’)

ylabel ([’u(t)’1)

title([’Step S_u: Control Response u_p to Step Input Disturbance d_i (g_i = ’,...
num2str(gi),’), for z = ’,num2str(z),’,p = ’,num2str(p)])

grid on

hold on

% Output Response to Step Ref. Command at Controls
figure (16)

tinc = 0.0005;
tmax = 10;
t = 0:tinc:tmax;

plot(t,step(comp_sen_u,t))

xlabel (’Time (sec)’)

ylabel ([’y(t) 1)

title([’Step T_u: Control Response u to Step Input Disturbance d_i (g_i = PRI
num2str(gi),’), for z = ’,num2str(z),’,p = ’,num2str(p)]l)

grid on

hold on

% Control Response to Step Ref. Command at Output
figure (17)

tinc = 0.0005;
tmax = 10;
t = 0:tinc:tmax;

plot(t,step(sen_o,t));

xlabel (’Time (sec)’)

ylabel ([’u(t)’1)

title([’Step S_o: Error Response e to Step Ref. Command r (g_i = ’,...
num2str(gi),’), for z = ’,num2str(z),’,p = ’,num2str(p)])

grid on

hold on

% Output Response to Step Ref. Command at Output
figure (18)

tinc = 0.0005;
tmax = 10;
t = 0:tinc:tmax;

plot (t,step(comp_sen_o,t))

xlabel (’Time (sec)’)

ylabel ([’y(t) 1)

title([’Step T_o: Output Response y to Step Ref. Command r (g_i = ’,...
num2str(gi),’), for z = ’,num2str(z),’,p = ’,num2str(p)]l)

grid on

hold on

% impulse

% Control Response to Step Ref. Command at controls
figure (19)

tinc = 0.0005;
tmax = 10;
t = O:tinc:tmax;

plot (t,impulse(sen_u,t));
xlabel (’Time (sec)’)
ylabel ([’u(t)’])

title ([’ Impulse S_u: Control Response u_p to Impulse Input Disturbance d_i (g_i = ’,...
num2str(gi),’), for z = ’,num2str(z),’,p = ’,num2str(p)l)

grid on

hold on

% Output Response to Step Ref. Command at Controls
figure (20)

tinc = 0.0005;
tmax = 10;
t = O:tinc:tmax;

plot (t,impulse (comp_sen_u,t))

xlabel (’Time (sec)’)

ylabel ([’y(t)°’1)

title ([’ Impulse T_u: Output Response y to Impulse Ref. Command r (g_i =
,num2str (gi),’), for z = ’,num2str(z),’,p = ’,num2str(p)l)

grid on

hold on

B

% Control Response to Step Ref. Command at Output
figure (21)

tinc = 0.0005;
tmax = 10;
t = O:tinc:tmax;

plot(t,impulse(sen_o,t));
xlabel (’Time (sec)’)
ylabel ([’u(t) 1)

title ([’ Impulse S_o: Error Response e to Impulse Ref. Command r (g_i = ...
,num2str (gi),’), for z = ’,num2str(z),’,p = ’,num2str(p)]l)

grid on

hold on

% Output Response to Step Ref. Command at Output
figure (22)

tinc = 0.0005;
tmax = 10;
t = O:tinc:tmax;

plot(t,impulse (comp_sen_o,t))
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xlabel (’Time (sec)’)
ylabel ([’y(t)’]1)

title ([’ Impulse T_o: Control Response u to Impulse Input Disturbance d_i (g_i = ’...

,num2str(gi),’), for z = ’,num2str(z),’,p = ’,num2str(p)]l)
grid on
hold on

222



	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION AND OVERVIEW
	Motivation: What can be modeled by a Cart Inverted Pendulum?
	Literature Survey
	P-K control architecture
	Inner-Outer Loop Control Architecture
	Cart Inverted Pendulum Modeling
	PID Control Design
	LQR Design
	Equilibrated Designs

	Fundamental Questions to be Addressed
	Contributions of Research
	Overview of Thesis

	BENCHMARK EXAMPLES - ILLUMINATION OF FUNDAMENTAL INNER-OUTER LOOP HIERARCHICAL DESIGN TRADEOFFS
	Example 1 Set Up and Assumptions
	Fundamental Sensitivity Relationships
	Closed Loop Stability
	Open Loop Trade Studies
	Sensitivity Trade Studies
	Closed Loop Time Response Trade Studies
	Summary and Conclusions

	Example 2 Set Up and Assumptions
	Fundamental Sensitivity Relationships
	Closed Loop Stability
	Open Loop Trade Studies
	Sensitivity Trade Studies
	Closed Loop Time Response Trade Studies
	Summary and Conclusions

	Example 3 Set Up and Assumptions
	Fundamental Sensitivity Relationships
	Closed Loop Stability
	Open Loop Trade Studies
	Sensitivity Trade Studies
	Closed Loop Time Response Trade Studies
	Summary and Conclusions

	Example 4 Set Up and Assumptions
	Fundamental Sensitivity Relationships
	Closed Loop Stability
	Open Loop Trade Studies
	Sensitivity Trade Studies
	Closed Loop Time Response Trade Studies
	Summary and Conclusions

	Example 5 Set Up and Assumptions
	Fundamental Sensitivity Relationships
	Closed Loop Stability
	Open Loop Trade Studies
	Sensitivity Trade Studies
	Closed Loop Time Response Trade Studies
	Summary and Conclusions

	Example 6 Set Up and Assumptions
	Fundamental Sensitivity Relationships
	Closed Loop Stability
	Open Loop Trade Studies
	Sensitivity Trade Studies
	Closed Loop Time Response Trade Studies
	Summary and Conclusions

	Example 7 Set Up and Assumptions
	Fundamental Sensitivity Relationships
	Closed Loop Stability
	Open Loop Trade Studies
	Sensitivity Trade Studies
	Closed Loop Time Response Trade Studies
	Summary and Conclusions


	NON-LINEAR CART-INVERTED PENDULUM DYNAMIC MODEL
	Motivation: What can a Cart-Inverted Pendulum Be Used to Approximate.
	Non-Linear Model: Variables, Parameters and Nominal Values
	Properties of Non-Linear Model
	Equilibrium Analysis
	Linear Model
	Analysis of Linear Model
	Stability Trade Studies
	Frequency Response Trade Studies
	Sensitivity Trade Studies
	Fundamental Performance Limitations: A Prelude to Control Design

	Summary and Conclusions

	CONTROL DESIGN FOR NON-LINEAR CART INVERTED PENDULUM SYSTEM
	Motivation: Fundamental Performance Limitations Resolved- Issues, Control Architectures and Trade-offs
	Hierarchical Inner-Outer Loop Control Architecture
	Nominal Performance and Robustness Specifications
	Design 1: A Traditional Single-Loop PK Architecture
	Design 2: Inner-Outer Loop Control Design Via LQR servo
	Design 3: Computed general H-infinity Mixed senstivity design for comparison
	Design 4: Inner-Outer Loop Control Design Via PID parameter search
	Zeigler Nichols Tuning
	Proportional Integral Derivative Search
	Equilibrated Designs

	Summary and Conclusions

	SUMMARY, CONCLUSIONS AND FUTURE DIRECTIONS
	Summary and Conclusions
	Directions for Future Research
	REFERENCES
	DERIVATION OF NON-LINEAR CART PENDULUM MODEL
	MATLAB CODE









