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ABSTRACT

Grasping objects in a general household setting is a dexterous task, high compliance is

needed to generate a grasp that leads to grasp closure. Standard 6 Degree of Freedom

(DoF) manipulators with parallel grippers are naturally incapable of showing such

dexterity. This renders many objects in household settings difficult to grasp, as

the manipulator cannot access readily available antipodal (planar) grasps. In such

scenarios, one must either use a high DoF end effector to learn this compliance or

change the initial configuration of the object to find an antipodal grasp. A pipeline

that uses the extrinsic forces present in the environment to make up for this lack of

compliance is proposed. The proposed method: i) Takes the point cloud input from

the environment, and creates a search space with all its available poses. This search

space is used to identify the best graspable position for an object with a grasp score

network ii) Learn how to approach an object, and generate an appropriate set of

motor primitives that converts the current ungraspable pose to a graspable pose. iii)

Run a naive grasp detection network to verify the proposed methods and subsequently

grasp the initially ungraspable object. By integrating these components, objects that

were initially ungraspable, with a standard grasp detection model DexNet, remain no

longer ungraspable.
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Chapter 1

INTRODUCTION

Grasping objects in a simple household setting is an inherently complex task. It

requires high dexterity and often different grasp strategies to solve a single scene,

where the object might not be present in an initially graspable pose. Herzog et al.

(2014) demonstrate that it is possible to create a grasp library with the help of human

kinematic teaching for diverse objects. They generate hand-crafted features for each

demonstration across different objects to create grasp templates. While this method

enables a system to execute multiple grasping strategies, it also necessitates the cre-

ation of new hand-crafted features for different embodiments. Additionally, this ap-

proach struggles to generalize in out-of-distribution starting positions for known ob-

jects and objects previously unknown to the system. Hence, a grasping solution that

can generate multiple strategies over a generalized setting is needed.

The human hand kinematically provides for 27 DoF, but paired with the flexibility

and variable stiffness provided by the musculoskeletal structure, we can generate

near-infinite DoF for grasping. Standard Manipulators with parallel end effectors are

incapable of replicating this compliance. For example, to grasp a credit card from

a flat surface, you leverage the flexibility of your joints to hook your thumb to one

end of the card. The index finger then creates a sweeping motion across the opposite

edge, lifting the card over your thumb and tilting it to secure force closure. To achieve

this type of motion you would either need to design a specialized end effector such

as (Babin and Gosselin (2018); Andronas et al. (2021); Zhang et al. (2023)), that is

capable of recreating this grasping, or use a human end effector with high degrees of

freedom.
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The approaches mentioned above have their own set of limitations. ((Babin and

Gosselin (2018); Andronas et al. (2021); Zhang et al. (2023)) allow you to perfect

a particular type of grasp, for example, scooping grasp. However, this approach

standardizes the grasping procedure for the intended objects, leaving no room for

generalization with a different set of objects. Consequently, it becomes difficult to

transfer these strategies to a household setting where multiple grasping strategies

might be necessary.

A high DoF end effector has shown the ability to replicate human dexterity to some

extent. Andrychowicz et al. (2020) learn in-hand object manipulation of objects with

a humanoid gripper. While these grippers generate much higher dexterity, they also

come with larger state spaces. This increase in state space makes the learning problem

more complicated. Extending their policy to learn how to approach different objects

becomes near impossible due to the high dimensionality of the problem. Therefore,

restricting them to only applications where the object is either right below the end

effector or to in-hand manipulation tasks.

To tackle the above-stated problems, we propose a solution that uses a parallel

gripper to learn how to utilize extrinsic dexterity in the form of friction, surface area,

and density of different objects found in the environment. This allows us to learn a

simpler policy that is cognizant of the environment around it and utilize it to make

up for the lack of inherent compliance. By adopting this setup, we can learn how

to approach the objects and, therefore, learn a motor policy that is more aligned

with the object increasing the generalizability across objects. There has been work

that shows the ability to manipulate objects in a non-prehensile manner Zhou et al.

(2023); Dogar and Srinivasa (2012); Hogan and Rodriguez (2020). Furthermore, other

studies have shown the ability to grasp objects with the help of the environment, that

is pushing towards the wall to tilt the object Zhou and Held (2023), sliding the object
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to the edge of the table and then grasping it from the new side Zeng et al. (2018);

Pinto and Gupta (2017), or directly find a 6 DoF grasp approach Sundermeyer et al.

(2021); Mousavian et al. (2019); Ten Pas et al. (2017); Mahler et al. (2017).

While these approaches are valid, they operate under constrained settings, and

deviating from any of them would render the policy ineffective. For example, the

authors in (Zhou and Held (2023); Zeng et al. (2018); Pinto and Gupta (2017)),

learn how to grasp objects by first manipulating them. They learn a standard way to

approach the objects that would not withstand the change in dynamics resulting from

altered poses. (Zhou et al. (2023); Dogar and Srinivasa (2012); Hogan and Rodriguez

(2020)) try to learn how to manipulate objects in a table setting. While they learn

different contact points in varying positions, they do not establish a link between

grasping and manipulation of objects in their work. (Sundermeyer et al. (2021);

Mousavian et al. (2019); Ten Pas et al. (2017); Mahler et al. (2017)) provide 6 DoF

grasp proposals for varying objects. While these methods are capable of providing

grasp strategies beyond planar grasps, they lack the ability to find grasp proposals

from objects in an initially ungraspable position.

In this work, we formulate a pipeline that combines the dexterity of nonprehensile

manipulation with the rigidity of 6 DoF grasp networks to provide a way to grasp

objects from ungraspable poses. Our proposed method allows us to reason about the

orientation of the object and its graspability. Allowing us to change the object to a

pose from which it is most likely to be grasped. To achieve this we first, create a

search space based on the graspability of the object. The pose with the highest-rated

antipodal points would be selected as the goal state. Second, we transform the object

from the current pose to the newly obtained goal pose. We validate our method

by grasping objects that were ungraspable in the beginning. This method is pose

agnostic, where we find the ideal pose for an object to be present to execute planar
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grasps. The object could be initially placed anywhere on the table as we learn an

approach function capable of interacting with the object and changing it to the final

graspable pose. We observed that our method was able to grasp 42.3% of the objects

that were initially ungraspable by DexNet Mahler et al. (2017).
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Chapter 2

RELATED WORK

Manipulation for grasping objects as an end-to-end pipeline in a household envi-

ronment is a much studied problem. The various studies can be abstractly summa-

rized into two main categories, namely Prehensile grasping and Nonprehensile ma-

nipulation. We also briefly review the model-free architectures used for such tasks.

2.1 Prehensile Grasping

A grasp in which you can hold the object between the appendages is called a

prehensile grasp. In a 3D setting, they are represented as 6 DoF grasps, where the

end effector is defined with 3D orientation (roll, pitch, yaw) and 3D cartesian position

(x, y, z) of the gripper. For our work, we solely focus on Point cloud observations as

they provide a geometric representation that can be easily extracted with the help

of various architectures such as Pointnet Qi et al. (2017a), Pointnet ++ Qi et al.

(2017b), and Point Transformers Zhao et al. (2021b).

The Pointnet representation preserves information about the local geometric fea-

tures while providing an abstraction of high-dimensional data. Along with the point

clouds, object models from (Calli et al. (2017)), the YCB dataset, are used to learn

about the global structure. The approaches mentioned below either use the point

cloud approach or a combination of both. (Agnew et al. (2021); Yan et al. (2018))

have reconstructed 2D images into 3D images, which are then used to generate grasp

proposals. However, this procedure tends to lead to ambiguous grasp constructions.

Therefore, for our purposes, we stick to point cloud data (PCD) as input.

There are broadly two ways to classify the grasp from the PCD. First is a model-
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based approach, here we specifically map the PCD to an object model and then run

analytical grasps. All of the computation is done in an analytical fashion where we

calculate wench space matrices (Borst et al. (2004); Li and Sastry (1988)), force clo-

sure approximations (Zhu and Ding (2006); Liu et al. (2021)) or utilize the antipodal

grasp rule (Shi et al. (2022); Cai et al. (2019)). While these methods are effective in

producing robust grasps within the data distribution. They are unable to generalize

for out-of-distribution data leading to poor performances and limited use cases.

The other method is a model-free approach, where the 6DOF grasp is directly

classified based on the PCD input. The general outline for this method involves the

following steps: given a PCD, sample grasps on it, train a grasp scoring network

on these samples, and then post-process the grasps based on the gripper parameter.

There are two ways to sample grasps, an antipodal sampler as introduced in Ten Pas

and Platt (2018), or a sampling method learned as a separate model. (Liang et al.

(2019); Mahler et al. (2017)) make use of the antipodal sampler. Mahler et al. (2017)

classify the antipodal grasps based on a grasp quality convolutional neural network

(gqcnn). They train a neural network model directly on the depth images. Liang et al.

(2019) use a similar approach but instead of training on the depth images they use the

Pointnet features of the point cloud. The other method learns the sampling method

directly instead of using the analytical methods to generate samples. Mousavian

et al. (2019) trained a variational autoencoder to generate such grasp samples. This

grasp sampling methods allow for a more general grasp sampling, as it retains more

object-centric during grasp sampling. Alliegro et al. (2022) use a differential point

cloud sampler Lang et al. (2020), that is optimized with the grasp scoring model.

Zhao et al. (2021a), learn to sample points on the point cloud and train a network

that generates grasp proposals. These generated grasp proposals are further passed

into a network that is used to fine-tune the generated grasps.
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These models predict stable 6DoF grasps, provided that the grasps are sampled

correctly. If the initial grasp samples are inaccurate, the inference of these 6DoF

grasp becomes unreliable, even when the object has graspable samples in different

orientations. We sample different antipodal grasps in various orientations to ensure

that there are any graspable poses in the object. This ensures that if the object has

only one antipodal grasp accessible, it would be placed in a pose that the manipulation

can access that pose.

2.2 Non-prehensile Manipulation for Grasping

Non-prehensile manipulation is defined as the manipulation of objects without

grasping them. This form of manipulation is used in reorientation, pushing, or slid-

ing tasks on objects. It can also be used to achieve tasks such as implicit grasping

of objects like using a tray to carry objects. These tasks, in general, are divided into

two parts: learning the approach function, and learning appropriate motor primi-

tives. The first part entails, how the manipulator approaches an object, Hogan and

Rodriguez (2020) learn the contact modes for planar prehensile pushing tasks. This

is a high-dimensional problem as each contact point could be a discrete dimension,

increasing the complexity linearly. The second part is to learn torques optimized for

a certain goal. Reinforcement Learning has been used extensively for this task as it

allows for smooth learning of the object dynamics and a robust evaluation framework.

Pinto and Gupta (2017) make use of a shared embedding to identify pushing,

poking, and grasping tasks. They directly predict torques but are unable to learn

the object properties. Zeng et al. (2018) learns motor primitives, that is a set of

torques defined by the user, using Deep Reinforcement Learning. So instead, of

learning the torques directly, they learn primitives such as pushing up, down, left,

and right. In this, the object starts right below the end-effector, and the reward
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function is designed to encourage pushing. These two approaches are meant to be

used in specialized scenarios that lead to grasping objects, they are not robust to

either a change in object property or a change in object pose. Zhou and Held (2023)

learn how to grasp an object using the extrinsic properties of the world. This work

is closest to our work, they use a sparse reward to train a model-free Reinforcement

Learning Algorithm, to push an object toward a wall and grasp it by tilting it. They

learn an approach function based on a standard planar representation of the object.

While this work is promising, they are unable to reason about the environment, and

any change in the dynamics of the object will decrease the model’s accuracy.

Finally, Zhou et al. (2023); Kim et al. (2023) learn how to manipulate objects in

a nonprehensile way. They learn both the contact policy and the motor primitive, by

either explicitly or implicitly dividing their policies into pre-contact and post-contact

policies. Kim et al. (2023) optimizes two policies with different state representations.

Zhou et al. (2023) learns a single policy that divides the object into N discrete points

based on the pointcloud input, and calculates the per-point motor primitives. The

set of primitives that has the maximum q value is selected.

While these methods learn contact and motor primitives, they do not aim to

reason about the environment and produce poses for which grasp proposals would be

possible. We combine the flexible architecture of Zhou et al. (2023), and incorporate

reasoning about the object pose so that we can understand about the graspability of

an object. This allows us to convert objects from ungraspable positions to graspable

positions and finally execute planar grasp strategies to grasp the objects.

2.3 Model Free Learning

The model-free architecture allows for learning a function that maps state ob-

servations to the output actions if an avenue for exploration is provided. Various
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algorithms have been used to learn policies for tasks where it isn’t easy to model a

transition function of the environment. Watkins and Dayan (1992); Williams (1992)

forms the backbone of this approach, allowing models to learn a utility function and

a policy optimized by that learned utility function.

Techniques such as Proximal Policy Optimization Schulman et al. (2017), Soft

Actor Critic Haarnoja et al. (2018) and Twin-Delayed Deep Deterministic Policy

Gradient Fujimoto et al. (2018) provide a stable and sample efficient policy to train

deep neural networks as function approximations, that can be used as RL agents.

These techniques have shown promise allowing us to learn tasks mapping the

proprioceptive observations and object observations directly to torques in the end

effector space Vecerik et al. (2017); Rajeswaran et al. (2017). Integration of visual

observations Boroushaki et al. (2021); Lobos-Tsunekawa et al. (2018); Wang et al.

(2022) have also shown to learn a motor control policy directly. These solutions find

a mapping between the observations and the actions space, provided you define the

rewards properly, whether in a sparse or dense reward setting. In our case, external

guidance is necessary in the form of a reasoning module over the graspability of the

object. This is not implicitly present in the architecture of the traditional Model

Free Pipeline and would have to be specifically modeled to guide the Motor policy to

change the pose of ungraspable objects.
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Chapter 3

BACKGROUND

In this chapter, we talk about the relevant background information. We start with

Reinforcement Learning which forms the backbone of our nonprehensile manipulation.

We further explain: MDP, in which the RL problem is modeled after and Q learning,

a general set of algorithms that defines how a general update into our model works.

We also include information about our environment here

3.1 Reinforcement Learning

In reinforcement learning, we generally have an agent A that is capable of inter-

acting with the environment E. The environment has a structure with varying physics

of which the agent may or may not be cognizant explicitly. The agent takes some

observations from the environment that include the current state st ∈ S of the agent.

The agent is capable of executing actions, which allows the agent to interact with the

environment. The objective of this paradigm is to learn a function π, that is capable

of mapping state st, to an action at ∈ A, to maximize an objective function, in the

form of expected future discounted reward. A Reward function R is defined to guide

the policy. This reward decides how your trained agent is going to behave in your

environment.

3.1.1 MDP

RL is modeled as a Markov Decision Process (MDP) which consists of:

• States S
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• Actions A

• Reward R(st, at, st+1), where Reward is defined as the values that you receive

when you transition from state st to state s′t+1 after executing action at

• Transition function P (st | st+1, at), which is the probability of the agent being

in state st+1 provided its current state is S and it executes an action at.

The optimal policy π∗ trained after maximizing the objective function on the

Reward. For a finite horizon problem the Expected Return J can be modeled as :

U(π) =
∞∑
t=0

γtR(st, at, st+1) (3.1)

where:

• U(π) is the utility of policy π,

• t is the current time step,

• γ is the discount factor, that decides how far into the future we look into,

• R(st, at, st+1) is the reward received when transitioning from state st to state

st+1 after taking action at.

The utility function captures the cumulative reward an agent expects to receive

over an infinite time horizon, with rewards discounted by γt to account for the uncer-

tainty and temporal dependencies in the environment. We can also formulate this in

a finite horizon setting, if this were the case we would replace the ∞ to the horizon

H.

The expected utility can be formulated in the form of the Bellman Equation to

account for temporal updates:

11



Q(s, a)← Q(s, a) + α
(
R(s, a) + γmax

a′
Q(s′, a′)−Q(s, a)

)
(3.2)

where:

• Q(s, a) is the Q-value for state-action pair (s, a),

• α is the learning rate,

• R(s, a) is the immediate reward received after taking action a in state s,

• γ is the discount factor,

• maxa′ Q(s′, a′) represents the maximum Q-value over all possible actions a′ in

the next state s′.

3.1.2 Q-learning

Q - Learning: This is a subsection of RL algorithms that is used to find an optimal

policy in an MDP. It learns based on the Q function which is represented by the state

action pair. The Bellman optimality equation for Q-values, denoted as Q∗(s, a), is

given by:

Q∗(s, a) = max
π

E
[
r + γmax

a′
Q∗(s′, a′) | s, a

]
(3.3)

The updation of this function depends on the maximum Q values generated by the

state action pair, that is the action which generates the maximum utility for a state

is selected. This allows for the updation of your model based on the optimal action

present as per your current utility. The shortcoming of this method is the inherent lack

of exploration due to its Off Policy nature. This is remedied by introducing an epsilon

greedy exploration strategy that is with the probability of the parameter Epsilon, the

agent selects a random action, otherwise it selects an action that maximizes the Q

value (exploitation).
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Algorithm 1 Q-Learning

1: Initialize Q(s, a) arbitrarily for all state-action pairs

2: Set hyperparameters: learning rate (α), discount factor (γ), exploration rate (ϵ)

3: for each episode do

4: Initialize state s

5: while episode not terminated do

6: Choose action a using an exploration strategy (e.g., epsilon-greedy) based on

Q-values for state s

7: Take action a, observe reward r and next state s′

8: Update Q-value for state-action pair:

9: Q(s, a)← Q(s, a) + α [r + γmaxa′ Q(s′, a′)−Q(s, a)]

10: Update state: s← s′

11: end while

12: end for

3.2 Environment

We had several options that could have been used as our environment. Makoviy-

chuk et al. (2021), the nvidia powered issac simulator that allows for efficient par-

allelism of resources. Rohmer et al. (2013), built on top of the bullet engine. This

allows for a straightforward and modular and high-level control of the environment.In

situations such as planning tasks, or learning high-level policy copaliasim is easier to

interface. Our choice of simulation framework was Robosuite Zhu et al. (2020). The

reasons were twofold, first, it is based on the MuJoCo physics engine Todorov et al.

(2012). Mujoco renders realistic values of masses and inertia of objects, unlike the

bullet engine that aims to maintain a certain balance between all of its shape. This

makes learning about the physical properties extremely difficult in any other frame-
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work. For tasks, similar to ours it is necessary to have this level of accuracy as far as

the physics is concerned. Secondly, the rich documentation of Mujoco as compared

to the newly introduced issac sim, makes it much easier to work with.

Robosuite provides various sets of environments along with different models of

robots that replicate their real-world specifications. They also provide us with dif-

ferent controllers for the manipulator such as Operation Space Control (OSC). This

allows us to operate the robot in the end effector space and learn a policy that aligns

with our task. The modular environment also allowed for a straightforward way to

modify an already-built environment with a realistic physics engine. The base envi-

ronment of our work was built upon the bin-picking task. The objects used to train

were a set of household objects and boxes that varied in size, such that their x-y plane

was always bigger than the gripper length.

Figure 3.1: Robosuite Environment

In the Figure 5.1 we show our environment.Here we show objects that are ran-

domly sampled from the household dataset. We allocate them arbitrary poses such

that are lying flat on the surface.
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Chapter 4

METHODOLOGY

There are three inherent subproblems that are required to be solved in order to grasp

objects from ungraspable positions. First, we need to find a pose in which the object

is going to be graspable. Secondly, we need to convert that object to this newly

discovered pose. Finally, we have to generate grasp proposals to grasp the object.

We solve each sub-problem independently and execute them as a sequence of temporal

actions.

4.1 DECO

Alliegro et al. (2021) propose a point cloud completion algorithm, that they have

shown to work for grasping scenarios. This makes use of two parallel encoders that

are implemented as a graph convolution neural network. One encoder is used to

denoise the input while the other is trained with contrastive loss to encode the global

features. The loss could be defined as :

Lcc(Q,C) = Lnn(Q,C) + Lnn(C,Q) + Lmn(Q,C) (4.1)

Where,

• Q is the set of contact points

• C is the set of visible contact points

• Lnn is the average neighbor loss

• Lmn is the maximal neighbor loss
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With this formulation, the partial point cloud data is filled and a complete obser-

vation is produced. These observations are completed based on the ShapeNet dataset

Chang et al. (2015). This observation allows us to run different grasp samples and

find the best grasp proposal within the gripper constraints. Based on this inference,

we are then able to reason about the pose that would most likely lead to stable grasps.

4.2 HACMan

This acts as our base for the nonprehensile transformation of objects, that were

once in an ungraspable pose. A hybrid state representation is implemented. The

state representation consists of action location αloc and motion parameters am. The

contact location is to learn the approach function. Each contact locaiton is associated

with a set of torques am. The contact location is derived from based on the point

cloud {xi|i to N} where each i represents a point in the object. Therefore the contact

locations are defined over a discrete state space of size N , each of these discrete state

spaces will learn different motor primitives to maximize the reward. These motion

policies are in the end-effector space of the robot and thus are continuous. Therefore,

at each point, N × am actions are generated. Out of which the set of actions that

provides the maximum rewards are used, creating a policy that not only knows how

to create motor primitives but also where to apply those primitives.

The reward for this problem is defined as goal flow, where the mask of the goal-

positioned point cloud is subtracted from the masked current object position. It is

given by

∆xi = x′
i − xi (4.2)

where,

• ∆xi is the goal flow.
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• x′
i is the segmented goal point cloud mask

• x′ is the segmented object point cloud mask

This is a 3D vector representation that maps the difference in position and orientation

of the object. The negative of the goal flow is used as a reward to train the RL model

and a threshold is set based on the goal flow to define task success.

Figure 4.1: Hacman Pipeline

In Fig. 4.1 we explain the HACMan pipeline. The input point cloud data is first

extracted and provided to the network. The segmented object pcd is extracted and

unraveled as p1, p2, .....pN . This acts as an input to both the actor and critic. The

actor maps create per-point cartesian motor primitive, while the Critic map creates a

per-point feature map. This is then passed through a Multi-Layer Perceptron (MLP),

which outputs per point q values. The argmax of these q values provides us with the

contact location of the pcd to access. The corresponding idx of the per point actions

is executed once the gripper reaches the contact location.

The model architecture to learn this policy is based on a Q-learning-based Actor-

Critic architecture. It used the Twin Delayed Deep Deterministic Policy Gradient

(TD3), which consists of the actor that learns the policy and the critic that learns
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the Q-value function. Here the twin part indicates the creation of two networks to

learn these Q values, where the lower estimate of the two is propagated forward to

avoid the overestimation bias and improve the overall stability of the algorithm. They

also implement a system for Delayed Rewards as the actor-network (policy network)

should be updated less frequently compared to the critic network (Q-value function

network), as the Q values might deviate the policy to a poor optima, making the

whole process unstable. Therefore this increases the policy as the updating to the

actor (policy network) only occurs after the Q values have been optimized to a stable

state.

4.3 End to End architecture

We first spawn our base environment with the help of Robosuite. This environ-

ment contains a panda robot, a table, and a bin placed on top of the table. Here a

random box object is sampled and spawned in a random location in the bin. The

environment provides us with depth camera information in the form of point clouds

which are extracted from three cameras that triangulate the scene. Proprioceptive

information is also extracted from the manipulator in the form of end effector poses.

These observations allow us to create the state space representation that consists of

the pointcloud of the object and the proprioception information of the manipulator.

Based on this we first run a Pointnet++ feature encoder to create segmentation

masks to separate the background and foreground. This helps us to achieve Xobj,

which is the point cloud of the object. This PCD is partially completed as all the

information of the object in contact with the surface is lost. To complete this rep-

resentation we make use of a DECO encoder Alliegro et al. (2021) as explained in

section 4.1, the output of which is a completed PCD. We can then sample analytical

antipodal grasp, that is points that are diametrically opposite. We condition this
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sampling based on the end effector parameters, therefore leaving us with only gras-

pable samples. We set the goal pose of the object perpendicular to the plane where

that had the most constrained antipodal points.

This pose of the point cloud is now set as the goal pose. We let HacMAN Zhou

et al. (2023) as explained in section 4.2 generate motion primitive for us that are tem-

porally abstracted and spatially grounded. This pipeline is executed throughout ten

steps. Once the policy is executed or the success condition, a new PCD is generated.

This PCD is passed to a 6 DoF graspnet Mousavian et al. (2019). A collision-free

path that goes to the contact point with the approach angle is executed. If this action

leads to force closure, then we consider our task as success.
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Chapter 5

EXPERIMENT AND RESULTS

5.1 Experiment

We run our experiments for 1000 different configurations where objects and their

position are randomly sampled. All the objects are generated in such a way that

no antipodal grasps are possible within the constraints of our gripper, that is, the

box’s x-y plane is greater than the width of the gripper. This eliminates any possi-

bility for antipodal grasps, as there are no samples that lead to force closure in this

configuration.

We generate a variety of different combinations for the object. We also make sure

that the objects are initially ungraspable by running a standard DexNet model on

our initial pose. A check for force closure in the simulator is done to verify whether

the objects are graspable. We confirm that all of our generated configuration leads

to initially ungraspable as DexNet is unable to generate valid grasp proposals.

5.2 Results

Here we present our results in both qualitative and quantitative. In Figure 5.1,

we present objects in two configurations, the first in the start pose and the second

in the goal pose. Grasp proposals are then generated on the PCD of these objects.

We notice that the initial configuration does not generate any grasp. After changing

the orientation of the box, we see that the same model is now capable of generating

multiple grasps.
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Figure 5.1: Success Rate

In our experiments that we ran on 1000 object models that were initially ungraspable,

we observed that we were able to generate a policy that executed force closure on

42.3% of the objects. This accuracy is an upgrade over DexNet which was unable to

find a single proper grasp proposal for this configuration.

Figure 5.2: Qualitiative Results

21



Figure 5.3: Successful Rollout

In Fig 5.2 we present a successful rollout from our experiment. This is the box

experiment where the object is initially placed in an ungraspable pose. Here the

object is first moved laterally in the first step. Then the object orientation is changed

by tilting it from one of its edges. After that, a grasp motion is generated based on

the grasp proposals.
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Chapter 6

CONCLUSION AND FUTURE WORK

Based on our experiments, we can conclude that our pipeline is capable of reasoning

over the graspability of objects and grasping them from initially ungraspable poses,

which is beyond the ability of a naively trained grasping pipeline. Breaking down the

problems to learn different instances of the task, such as pose reasoning, re-posing,

and grasping allows for the abstraction and a mature policy to be executed.

We found from our experiments that while we can effectively execute our policy

on simple shapes like cuboids of various dimensions, our ability to reason over the

environment is limited. Our policy inherently learns about the physics of the world

through its training in the environment. Therefore, it does not adapt to changes in

parameters such as the object density or the position of the walls. There is no explicit

reasoning over these parameters making it difficult to adapt in scenarios other than

the learned setting.

Additionally, there is a lack of synergy among our pushing, reorientation, and

grasping actions. Our current approach involves a fixed number of steps, changing

the object pose before executing the grasping pipeline. This sequential approach

leaves room for errors, where the object may initially reach a graspable pose, but

eventually, change back to an ungraspable pose as we iterate through the remaining

steps. Therefore, there is a need to understand the transition between the mid-level

actions (pushing, re-orientating, grasping). Learning these transitions will enable us

to seamlessly switch between different forms of actions and determine when to change

the object pose and transition into grasping policy.

In the future, to extend our work, we would like to address the above mentioned
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concerns by implementing a hierarchical structure for our policy. The hierarchical

structure involves learning mid-level options, such as pushing, grasping, and flipping.

Each of these mid-level options would correspond to a combination of low-level ac-

tion. These actions would be learned based on the input observations of the model.

Additionally, we plan to incorporate intra-options learning to better understand the

execution of the mid-level policy. This would allow us to learn a synergy between

all of our mid-level options. To this, we would encode a better state representation

of the object than the initial point cloud observations. The objective of the new

representation is to have a deeper understanding of objects with their articulation

in terms of their physical property and graspability, leaving us with a more general

representation for manipulating the objects.

In conclusion, while we currently focus on reasoning over simple objects, we can

extend this work in more generalizable settings. A single model trained on a more apt

observation space that learns the synergy between its sub-modules such as reposing,

pushing, and grasping can be implemented. This enables us to expand our work to

a wider variety of objects capable of reasons based on the explicitly trained physical

characteristics of the object.
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